CROSS-REFERENCE TO RELATED APPLICATIONS
BACKGROUND
[0002] The present disclosure relates generally to the field of amusement parks. More specifically,
embodiments of the present disclosure relate to methods and equipment utilized to
manage amusement park experiences, including queuing for attractions.
[0003] Since the early twentieth century, amusement parks have substantially grown in popularity.
In order to address this increasing demand, amusement parks have been expanding by
adding attractions and space. The addition of attractions (e.g., rides, restaurants,
shops, and shows) generally provides an amusement park with additional capacity to
handle a larger number of guests. However, the additional attractions also typically
provide potential guests with an incentive to visit the amusement park. Thus, while
a particular amusement park may add additional capacity, the additional capacity does
not always result in an increased ability for guests to participate in park entertainment
(e.g., shopping, viewing shows, riding rides) or reduced wait times for attractions.
This is because there is often a corresponding increase in attendance. Further, due
to operating efficiencies, it is often desirable to limit the availability of attractions
during low attendance times. Thus, queuing for attractions, which may limit participation
in park activities, is a perennial issue for amusement parks.
[0004] While guests have demanded bigger, better, and more elaborate attractions, they also
require and expect a positive overall experience. Providing a positive overall experience
for amusement park guests entails addressing certain issues related to queuing for
attractions. Indeed, it is now recognized that park guests can be deterred from returning
to a particular amusement park due to negative experiences with queue waiting times.
Further, guests may be prevented from accessing amusement park businesses (e.g., shops)
due to time spent waiting in queues. Indeed, in the past, guests have been forced
to wait hours in line to experience some of the more popular attractions at an amusement
park. Additionally, it is now recognized that park capacity does not always equal
guest utilization of that capacity due to individual guest preferences for certain
attractions over others. Accordingly, it is now recognized that it is desirable to
improve amusement park queuing systems and methods.
SUMMARY
[0005] Certain embodiments commensurate in scope with the originally claimed subject matter
are summarized below. These embodiments are not intended to limit the scope of the
disclosure, but rather these embodiments are intended only to provide a brief summary
of certain disclosed embodiments. Indeed, the present disclosure may encompass a variety
of forms that may be similar to or different from the embodiments set forth below.
[0006] In accordance with one embodiment, a virtual queue system is provided. The virtual
queue system includes at least one virtual queuing station associated with an individual
attraction within a theme park. The virtual queue system also includes a transceiver
of the at least one virtual queuing station, wherein the transceiver is configured
to receive a wireless signal from a guest-associated device, wherein the wireless
signal comprises identification information for a guest associated with a guest device.
The virtual queue system also includes a virtual queue control system in communication
with the at least one virtual queuing station and the active wearable, wherein the
virtual queue control system is configured to receive a communication comprising the
identification information from the at least one virtual queuing station and wherein
receiving the communication causes the virtual queue control system to add the wearer
to a virtual queue for the individual attraction and to send a confirmation message
to one or both of the at least one virtual queuing station or to the guest device
that the guest has been added to the virtual queue.
[0007] In accordance with another embodiment, a virtual queue system is provided. The virtual
queue system includes a plurality of virtual queuing stations associated with respective
attractions within a theme park; and a virtual queue control system configured to
maintain respective virtual queues for the respective attractions and in communication
with the plurality of virtual queuing stations, wherein the virtual queue control
system is configured to receive communications from the plurality of virtual queuing
stations and add guests to the respective virtual queues based on the communications.
[0008] In accordance with another embodiment, a method is provided. The method includes
the steps of providing a wireless signal using communication circuitry of an active
wearable to a virtual queuing station associated with an individual attraction within
a theme park, wherein the wireless signal comprises identification information for
a guest associated with a guest device; receiving a confirmation message via the communications
circuitry confirming being added to a virtual queue of the individual attraction;
and receiving a status message via the communications circuitry related to a position
in the virtual queue.
DRAWINGS
[0009] These and other features, aspects, and advantages of the present disclosure will
become better understood when the following detailed description is read with reference
to the accompanying drawings in which like characters represent like parts throughout
the drawings, wherein:
FIG. 1 is a flow diagram of a method using a virtual queue system in accordance with
present techniques;
FIG. 2 is a schematic view of a theme park including a virtual queue system in accordance
with present techniques;
FIG. 3 is a block diagram of an active wearable in accordance with present techniques;
and
FIG. 4 is a block diagram of a virtual queue system in accordance with present techniques.
DETAILED DESCRIPTION
[0010] Presently disclosed embodiments facilitate virtual queuing within a theme park. A
virtual queue control system as provided herein manages queuing for various attractions
with the theme park to minimize or eliminate guest time spent waiting in a physical
queue. In certain embodiments, a given attraction has a single virtual queue that
is dynamically managed by the control system to add or remove guests, update positions
in the queue, and send messages to the guests related to their queue positions. The
system receives various inputs from the attractions and/or guests that are used to
dynamically manage the various queues. In certain embodiments, queuing is mediated
via guest devices such as active wearables (e.g., bracelets, wearable tags, necklaces
or badges, etc.) that are carried by or associated with the guests and that interact
with various kiosks or check-in points to permit guest to enter attraction queues.
In this manner, park guests may enjoy the park without carrying paper tickets, identification,
or other credentials. For example, guests at a water park may not wish to manage paper
tickets that can get wet. Further, because guests wearing bathing suits have limited
ability to carry identification items or handheld devices, active wearables that are
compatible with water activities (e.g., waterproof) may be a more convenient way to
manage queue information than a mobile device.
[0011] FIG. 1 is a flow diagram of a method 10 of virtual queue management in accordance
with present embodiments. The method 10 includes receiving or providing park credentials
(block 12), entering or facilitating entry to an amusement park or park feature (block
14), determining or providing one or more attraction wait times (block 16), entering
or establishing a position within a virtual queue (block 18), monitoring or waiting
in the virtual queue (block 20), initiating or participating in an attraction experience
(block 22), and providing or obtaining user data (block 24). Details of the aspects
of the method 10 will be discussed in further detail below with respect to related
system features.
[0012] FIG. 2 is a schematic representation of a system 100 for facilitating queuing in
accordance with present embodiments. The system 100 includes a computer system 102,
monitoring sensors 104, a wireless communication system 106, system displays 108,
active wearables 110 (e.g., a bracelet including accessible data and communication
features) and other components that coordinate in accordance with present embodiments,
as will be described in detail below. Certain aspects of the system 100 will be referenced
with respect to the part they play in the method 10 illustrated by FIG. 1. Specifically,
it should be noted that present embodiments facilitate virtual queuing such that amusement
park guests 120 can obtain a position within a virtual queue and subsequently enter
a physical queue or standby loading group 122 of limited length. Present embodiments
may function to limit time spent by guests 120 in physically waiting 122 and encourage
participation in other areas of an amusement park, such as dining, shopping, and other
entertainment venues (e.g., rides, shows).
[0013] As generally represented by block 12 of method 10, when guests 120 arrive at a ticketing
location 124 (e.g., hotel front desk, kiosk, guest service counter, park gate), the
guests 120 may be provided with entry credentials (e.g., tickets or active wearables
110) among other items, such as a park map, virtual queuing instructions, and amenities
instructions. Informational media (e.g., audio, video) and instructional signage may
be present at all such ticketing locations 124. In some instances, guests 120 may
have obtained entry credentials prior to arrival and may skip acquiring such credentials
at the ticketing location 124.
[0014] As generally represented in block 14 of method 10, guests may enter and be provided
entry into the park or a park area via an entryway 126. Specifically, as illustrated
in FIG. 1, the entryway 126 may exclude a physical turnstile or similar physical traversal
counting or control features that can provide an impediment to traversal of the entryway
126 when the entry way 126 is intended to be open. That is, the entry way 126 may
be turnstile-less during operation. If guests 120 already have their entry credentials
or an identification code or number transferred into an active wearable ("AW") 110,
the guests 120 may be provided essentially direct access to the park or park area.
For example, guests 120 with properly activated AWs 110 may be allowed to walk through
the entryway 126 without stopping. The credentials associated with the AW 110 being
held or worn by the guests 120 will be detected and provided to a gate monitoring
facility 128 that may be monitored by a park employee (e.g., a security service company).
For example, this may include providing a photograph of the guest 120 (e.g., a photograph
of the guest's face) passing through the entryway 126. Thus, the photograph may be
used for entry privilege confirmation. In other embodiments, other features may be
used, such as fingerprints or other identifying aspects (e.g., facial recognition).
While certain embodiments of the disclosure are illustrated in conjunction with an
AW 110, it should be understood that the disclosed techniques may be implemented with
guest-associated devices that are configured to wirelessly communicate guest information,
such as pocket-carried devices, handheld devices, or mobile devices. In particular
embodiments, the guest-associated devices are waterproof.
[0015] Also, as generally represented by block 14 of method 10, if guests 120 do not have
their AW 110 with them or if their AW 110 is not properly activated, they may insert
ticket media 132 into a scanner 134, which facilitates transfer of information to
the gate monitoring facility 128, which may include any of a number of gate monitoring
systems, and informs a park employee that the guest 120 is authorized to enter the
park or park area. If authorization is granted in this manner, an AW 110 may be distributed
to them and a photograph of the guest's face automatically taken. For example, a photograph
may be automatically taken by a camera 136 positioned proximate the entryway 126.
The same camera 136 may be used for monitoring purposes as well. In other embodiments,
the picture of guests 120 acquiring their AW 110 may occur in a different location.
Further, in some embodiments, the guests 120 may acquire their AW 110 after progressing
through the entry way 126 (as in the illustrated embodiment of FIG. 2) or prior to
progressing through the entryway 126.
[0016] As generally represented by block 16 of method 10, wait times may be ascertained
by guests by viewing displays provided at numerous locations throughout the park or
park area. At the entrance of certain or all attractions, displays 108 provide the
wait time for the specific attraction. For example, the water slide 142 includes a
display 144 that specifically provides a wait time for that attraction. The information
for each display may be provided based on information obtained by tracking AWs 110
or otherwise monitoring park areas (e.g., ride exits and entrances) with monitoring
sensors 104. Further, at the exit of certain or all attractions, a display may be
provided to indicate the wait times for all attractions (e.g., all attractions in
the park or park area). For example, the exit area of the water slide 142 includes
a display 146 that may provide wait times for all of the surrounding attractions (e.g.,
rides 148). The display 146 may even provide wait times for non-ride attractions,
such as a wait time for a restaurant 150. The display 146 may be limited to display
of wait times for attractions within a particular park area 152 (e.g., a park "village").
Also, within each park area 152, one or more wait time boards 154 (e.g., centrally
located displays 108) may indicate wait times for all park attractions or attractions
within the park area 152. Further still, before guests 120 place their portable devices
(e.g., mobile phones) into lockers 160, mobile applications may be used via the mobile
devices to ascertain wait times.
[0017] Block 18 generally represents entering or establishing a position within a virtual
queue. In one embodiment, the guest 120 enters the queue by walking to the attraction
entry and walking through an entry portal. For example, the guest 120 may walk to
the water slide 142 and walk through its entry portal 166. Once the guest 120 walks
through the portal 166, the guest's AW 110 will notify him/her (via a tone, vibration,
illuminator) of being added to the virtual queue. This may be achieved by detecting
the AW 110 with the monitoring sensor 104 at the entry portal 166 and via aspects
of the AW 110, which will be discussed further below. In another embodiment, the guest
120 may enter the virtual queue by walking to a queue entry post 168, which may indicate
the name of the attraction and current wait time, and engaging the post 168 with the
AW 110. This may include tapping the AW 110 against or positioning it near the post
168. The posts 168 may be located at the exit or entry of each attraction and at a
central location within each park area 152 or village. In one embodiment, an individual
post 168 may be associated with only one attraction such that engaging with the post
168 automatically enters the guest 120 in the virtual queue of the associated attraction,
e.g., the virtual queue is entered without any guest selection between different attractions
at the post 168, and tapping or engaging the post is the selection step for selecting
the associated attraction.
[0018] Once the guest engages the queue entry post 168, the guest's AW 110 will notify the
guest (e.g., via a tone, vibration, illuminator) of being added to the virtual queue.
For example, the AW 110 may receive a signal to cause the displayed information on
the AW 110 to change. Further, the post 168 may additionally or alternatively provide
a notification of successful addition to the queue. The notification may be generated
and/or communicated by a central virtual queue control system to the AW 110. In another
embodiment, the notification is generated and/or communicated by the queue entry post
168. In yet another embodiment, the guest 120 may enter the virtual queue by walking
to a queue kiosk 172 (e.g., a single device that displays the names and wait times
for all virtual queuing attractions in the park or park area). Queue kiosks 172 may
be located at the entry or exit of each attraction and in a central location within
each park area 152. The guest 120 selects the queue he/she wishes to enter and engages
(e.g., taps) the kiosk with his/her AW 110. Once the guest 120 engages the queue kiosk
172, the guest's AW 110 will notify the guest 120 (e.g., via a tone, vibration, illuminator)
of being added to the virtual queue. For example, the AW 110 may receive a signal
to cause the displayed information on the AW 110 to change. Further, the kiosk 172
may additionally or alternatively provide a notification of successful addition to
the queue.
[0019] In another embodiment, the guest 120 must physically go the area of a particular
attraction and engage with the designated queue entry post 168 for that attraction
to enter the queue. That is, virtual queue entry is mediated only via the designated
queue entry post (or posts) 168 that are physically co-located with the attraction.
In this manner, the guest is encouraged to see an individual ride 148 and determine
if the ride is of interest before entering the ride virtual queue. The central queue
controller receives the communication form the post 168 or kiosk 172 and adds the
guest to the appropriate virtual queue. The addition may be based on a time stamp
or a counter. For example, for attractions that have multiple tap-in posts 168, the
guests may be added based on the individual time stamp of the tap-in event and on
a first-in basis.
[0020] In each of the embodiments discussed above, the guest's AW 110 may display the estimated
return time. For example, a display on the AW 110 may provide a time (e.g., 5:02 PM)
by which the guest should return to enter a loading group 122. This time may dynamically
change depending on the operational factors (e.g., current ride capacity, other guests
leaving the queue, guests with express (e.g., credentials to automatically jump to
the front of a physical and/or virtual queue) or very important person (VIP) credentials
entering the queue, inclement weather, and/or downtimes). In some embodiments, once
the guest 120 has entered a virtual queue (or some limited number of virtual queues),
the guest 120 can no longer enter any other virtual queue unless he/she leaves the
current virtual queue, either by entering the ride or by entering a different virtual
queue. For example, in one embodiment, engaging the post 168 of a ride or attraction
overrides any previously existing places in a virtual queue. In this manner, the guest
120 may traverse the park and, upon noting a ride that is of greater interest or that
has a shorter wait time, may simply swipe the AW 110 to enter into a new virtual queue
and be automatically removed from a previous virtual queue with one action, which
permits the guest 120 to minimize engagement with queue devices and enjoy the park
experience.
[0021] . Further, if more than one virtual queue can be entered, the difference between
wait times for the available virtual queues may be set to be a sufficient time for
both to be entered taking into consideration variables such as travel time between.
The system may also artificially space multiple virtual queues to optimize the patrons'
day and transit time. In one embodiment, if there is no penalty for failure to arrive
at a queued attraction, aside from not being able to enter additional queues, the
system may permit close-together times but may also account for a certain predicted
percentage of no-shows. In another embodiment, the virtual queuing system may only
be in effect if the wait time for the current attraction is greater than 10 minutes.
In another embodiment, the guest 120 may be permitted to enter two virtual queues
at the same time, but may only enter a single virtual queue at a time that is associated
with a ride designated as a low capacity ride. For example, certain park rides may
have relatively low capacity and, therefore, may develop longer virtual queues than
higher capacity rides, which are capable of moving a greater number of guests through
the ride in a given period of time. To control the virtual queue length of lower capacity
rides, the virtual queue system as provided herein may, in certain embodiments, prevent
the guest 120 from entering two low capacity ride virtual queues simultaneously. For
example, when the guest 120 is already entered in a low capacity queue, engaging with
the designated post 168 of a second low capacity ride may trigger a warning message
displayed on a display of the post 168, e.g., "GLTESTS IN LINE FOR DINOSAUR ADVENTURE
MAY NOT ENTER THE LINE FOR VOLCANO RUSH. WOULD YOU LIKE TO EXIT THE LINE FOR DINOSAUR
ADVENTURE TO JOIN THE LINE FOR VOLCANO RUSH?" The post 168 may then receive a guest
selection of YES or NO. If the guest 120 selects no, the engagement with the post
168 of the second low capacity ride is ended. If the guest 120 selects YES, the guest
120 is added to the virtual queue of the second low capacity ride and automatically
removed from the virtual queue of the first low capacity ride.
[0022] As generally represented by block 20 of method 10, present embodiments facilitate
monitoring or waiting in the virtual queue. Guests 120 may wait in the virtual queue
by experiencing instantaneous capacity attractions (e.g., a wave pool, swimming pool,
splash pad, lazy river, a ride with no wait time), visiting food, beverage, or merchandising
locations, or simply relaxing (e.g., resting in a lounge chair). If an attraction
wait time of a virtual queue changes, this information may be provided via the communication
system 106 to the AW 110, which will notify the wearing guest 120 and display the
updated wait time. If a guest 120 wishes to leave a current virtual queue for another
virtual queue, he/she can do so by just joining a new virtual queue as set forth in
the description of the various embodiments above. If a guest leaves the park (or,
in some cases, a park area) while waiting in a virtual queue, he/she is automatically
removed from any virtual queues he/she is currently in. Present embodiments may establish
no geographical limits within the park while waiting in a virtual queue and guests
120 may be free to go to any location and perform any task within the park.
[0023] As generally represented by block 22 of method 10, present embodiments encourage
initiating and participating in attraction experiences. In some embodiments, the virtual
queuing system 100 will notify the guest 120 prior to the guest's ride time. To determine
the amount of prior notification time, the system 100 will utilize multiple factors
to optimize capacity: current wait time at the attraction, current distance of the
guest 120 away from the attraction, the guest's current activity, and the guest's
history for arrival speeds from previous virtual queues. Once the guest is notified,
the guest 120 travels to the attraction entrance and walks to the load platform, which
accommodates the limited standby group 122. These factors or variables are monitored
by the computer system 102 (e.g., a network of computers 302), which includes at least
one processor 304 and at least one memory 306, via communication with the monitoring
sensors 104. To ensure that the attraction throughput is not starved, a small standby
group 122 (less than 10 minutes) may be formed prior to the load platform at each
attraction. Once a guest reaches the load platform and enters the ride, he/she is
removed from the current virtual queue. After experiencing the attraction, guests
120 can join another virtual queue as described above (e.g., a post, kiosk, or the
like located in the exit path of the attraction).
[0024] As generally represented by block 24 of method 10, present embodiments also facilitate
communication and management of additional data related to park management. For example,
the AW 110 may also perform functions other than facilitating queue access. Specifically,
the AW 110 may operate as an identification device used for cashless purchases and
for validation to access controlled areas. In some embodiments, guest photographs
are automatically taken while on each attraction, as triggered by the AW 110. Such
photographs can be purchased by the guest 120 via an Internet portal (e.g., website,
app, kiosk). Further, information may be automatically logged by the virtual queuing
system 100 for data analysis. This information may include: experienced attractions
(including count and order of visit), wait time for each attraction, time it takes
for the guest to return to the attraction once notified, entry time into the park,
exit time out of the park, amount of money spent via cashless system.
[0025] FIG. 3 is a schematic representation of an AW 110 in accordance with present embodiments.
In the illustrated embodiment, the AW 110 includes a housing 400 in the form of a
bracelet. However, in other embodiments, it may include a necklace, a headband, a
ring, or other conveniently wearable item. A device 402 may be imbedded in the housing
400. The device 402 may include several separate or unified components that perform
certain functions. In the illustrated embodiment, the device 402 includes a memory/identifier
404, a power module 406, a display 408, an indicator 410, a transmitter 412, and a
receiver 414. In some embodiments, these features may be limited. For example, the
display 408 and the transmitter 412 may be excluded. In some embodiments, the memory/identifier
404 may include a simple identifier (e.g., an RFID tag), which the system 100 associates
with a guest 120. In operation, the device 402 may operate to at least receive information
from the system 100 to provide the user with information (e.g., a return time for
a ride). Further, an indicator (e.g., a light, a vibration mechanism, or an audio
feature) may provide feedback to the guest 120. Specifically, the device 402 may communicate
with the system 100 via the communication system 106. In some embodiments, this may
include communication from the device 402 to the system 100. However, in other embodiments,
detecting the device 402 throughout the park area using the monitoring sensors 104
and analyzing such data with the system 100 may provide information related to the
device 402 (e.g., wait times experienced by the user 120 associated with the device
402). In some embodiments, the AW 110 may be essentially passive and indications (e.g.,
confirmation sounds) may be provided by the system 100 (e.g., a speaker announcing
a nickname of the wearer being entered into a particular virtual queue).
[0026] FIG. 4 is a block diagram of a virtual queue system 500 that may be implemented to
manage queues in a theme park. The system 500 includes a virtual queue control system
502 in communication with one or more virtual queuing stations 530. The virtual queuing
stations 530 may be implemented as portals or posts (e.g., portal 166 or post 168,
see FIG. 2), kiosks, or the like. Each park ride or attraction may be associated with
one or more dedicated virtual queuing stations 530 that receive queue inputs from
guests. That is, in certain embodiments, each virtual queuing station 530 may facilitate
entry into the virtual queue of only one attraction. One or both of the virtual queue
control system 502 and an individual virtual queuing station 530 may include communications
circuitry (e.g., communications circuitry 504 or 506), such as antennas, radio transceiver
circuits, and signal processing hardware and/or software (e.g., hardware or software
filters, A/D converters, multiplexers amplifiers), or a combination thereof, and that
may be configured to communicate over wired or wireless communication paths via IR
wireless communication, satellite communication, broadcast radio, Microwave radio,
Bluetooth, Zigbee, Wifi, UHF, NFC, etc. Such communication may also include intermediate
communications devices, such as radio towers. In one embodiment, the communication
between the virtual queuing station 530 and the virtual queue control system 502 is
wired.
[0027] In addition, one or both of the virtual queue control system 502 and an individual
virtual queuing station 530 may include a memory device (e.g., memory device 508 or
510) for storing instructions executable by a processor (e.g., processor 512 or 514)
to perform the methods and control actions described herein. For example, the processor
512 may execute instructions for dynamic virtual queue management based on inputs
from the virtual queuing stations 530 as well as data on guest entry into a ride and
guest exit from a park. Additional inputs to dynamic queue management may include
guest location within the park. For example, a reminder to return to the attraction
may be based at least in part on the guest's location relative to the attraction,
as determined via wireless signal or global positioning system (GPS) information from
the guest active wearable or by a guest's last tap-in location with the virtual queuing
station or other tap-in device. The system 500 may store guest locations during a
park visit to create an accessible log of guest locations within the park for use
in predicting guest current and future locations. If the guest is estimated to be
located within a first distance or within a first zone relative to the attraction,
the return reminder or message is sent within to return within a first time (e.g.,
"20 MINUTES UNTIL VOLCANO RUSH"), which accounts for a shorter travel time to the
attraction. If the guest is instead in a farther second zone or a farther estimated
second distance, the return reminder or message accounts for the longer travel time
by providing an earlier return time (e.g., "5 MINUTES UNTIL VOLCANO RUSH"), to account
for longer walking times to the attraction. In this manner, guests at similar positions
in the virtual queue but at different locations within the park are estimated to return
to the attraction within the same approximate time window.
[0028] The processor may include one or more processing devices, and the memory may include
one or more tangible, non-transitory, machine-readable media. By way of example, such
machine-readable media can include RAM, ROM, EPROM, EEPROM, or optical disk storage,
magnetic disk storage or other magnetic storage devices, or any other medium which
can be used to carry or store desired program code in the form of machine-executable
instructions or data structures and which can be accessed by the processor or by other
processor-based devices (e.g., mobile devices). For example, the virtual queue control
system 502 or an individual virtual queuing station 530 may include may be accessed
by an operator interface 520, e.g., a computer-based workstation or a mobile device,
and/or may include an input/output interface 510 and a display (e.g., display 532).
[0029] The virtual queuing station 530 receives signals (e.g., wireless signals, such a
RF signals) from a guest AW 540. The AW 540 may, in one embodiment, tap in to the
virtual queuing station (e.g., via a hand wave or via positioning the AW 540 within
the reading zone of the virtual queuing station 530) where it send the signal via
NFC and receives signal back and updates via NFC. Additionally, components of the
system (e.g., the virtual queuing station 540 and/or the AW 540) may be actively listening
for a wireless broadcast and may update the display upon receipt of the appropriate
broadcast. Another option is a system where the virtual queuing station 530 are dumb/passive
and the AW 540 reads the totem location and transmits the request through a wireless
network bypassing the need to have the virtual queuing station 530 or ride entry/exit
stations read the AW 540. These signals may, in turn, be communicated to the virtual
queue control system 502 to add the guest associated with the AW 540 to the virtual
queue. While the virtual queuing station 530 facilitates guest entry into a virtual
queue, the virtual queue system 500 may also include ride entry stations 550. An individual
ride entry station 550 may be implemented as an automatic gate or reader such that
the AW 540 as it passes through the ride entry station 550 is automatically read and
the guest associated with the AW 540 is indicated as entering the ride and, therefore,
is automatically removed from the virtual queue. An individual ride entry station
550 may include communications circuitry 550, a processor 554, and a memory device
556 as provided herein. It should be understood that certain features of the virtual
queue control system 502 may additionally or alternatively be implemented locally
at the virtual queuing station 530 or the ride entry station 550.
[0030] The virtual queue system 500 may, in certain embodiments, manage a total guest experience
to ensure that an individual guest may experience a minimum number of rides or experiences
per day. For example, based on the virtual queue load for various attractions, the
virtual queue system 500 may permit entry into a predetermined number of queues at
the beginning of the day. Alternatively, the virtual queue system 500 may dynamically
present ride options to each guest at a central kiosk (e.g., queue kiosk 172, see
FIG. 2). That is, while in certain embodiments, the virtual queue control system is
implemented without any central queue kiosk that permits selection and virtual queue
entry to multiple queues of different attractions at a single device and within a
single interaction, in other embodiments one or more central kiosks may mediate entry
into multiple virtual queues at once.
[0031] While only certain features of the present embodiments have been illustrated and
described herein, many modifications and changes will occur to those skilled in the
art. It is, therefore, to be understood that the appended claims are intended to cover
all such modifications and changes as fall within the true spirit of the present disclosure.
Further, it should be understood that certain elements of the disclosed embodiments
may be combined or exchanged with one another.
[0032] Further features and aspects of the embodiments of the present invention may reside
in the below clauses.
[0033] A virtual queue system in an aspect comprises at least one virtual queuing station
associated with an individual attraction within a theme park, a transceiver of the
at least one virtual queuing station, wherein the transceiver is configured to receive
a wireless signal from a guest-associated device, wherein the wireless signal comprises
identification information for a guest associated with a guest device, and a virtual
queue control system in communication with the at least one virtual queuing station
and the active wearable, wherein the virtual queue control system is configured to
receive a communication comprising the identification information from the at least
one virtual queuing station and wherein receiving the communication causes the virtual
queue control system to add the wearer to a virtual queue for the individual attraction
and to send a confirmation message to one or both of the at least one virtual queuing
station or to the guest device that the guest has been added to the virtual queue.
[0034] In some embodiments of this aspect, the at least one virtual queuing station is located
in an area proximate to the individual attraction.
[0035] In certain embodiments of this aspect, the virtual queue control system can only
add the wearer to the virtual queue of the individual attraction based on the communication
is from the at least one virtual queuing station.
[0036] In some embodiments of this aspect, the individual attraction does not have a physical
queue. In certain embodiments of this aspect, the individual attraction has a standby
physical queue.
[0037] In this aspect, the communication may comprise a time stamp or a counter and the
wearer may be added to the virtual queue based at least in part on the time stamp
or the counter.
[0038] In some embodiments of this aspect, the guest is added to a numbered position of
the virtual queue.
[0039] In certain embodiments of this aspect, the virtual queue system comprises a ride
entry station associated with the individual attraction and configured to receive
a ride entry signal from the guest device when the wearer enters the individual attraction.
In such embodiments, the ride entry station may be configured to communicate the ride
entry signal to the virtual queue control system. Additionally, in these embodiments,
the guest may be removed from the virtual queue based on the ride entry signal.
[0040] In some embodiments of this aspect, the virtual queue system comprises a ride entry
station associated with the individual attraction, wherein the ride entry station
is configured to permit entry to the individual attraction of a guest in a second
position in the virtual queue when a guest in a first position is not present.
[0041] In this aspect, the virtual queue system may comprise a display of the at least one
virtual queuing station, wherein the display is configured to display the confirmation
message.
[0042] In some embodiments of this aspect, the virtual queue control system is configured
to provide one or more queue status messages to the guest device based on a change
in a position in the virtual queue.
[0043] In certain embodiments of this aspect, the virtual queue control system is configured
to provide a message to the guest device to return to the individual attraction based
on a position on the virtual queue.
[0044] In some embodiments of this aspect, the virtual queue control system is configured
to provide a message to the guest to return to the individual attraction based on
a position on the virtual queue and a location of the guest device within the theme
park.
[0045] The virtual queue control system may be configured to estimate a location of the
guest device within the theme park based on one or more radio frequency signals from
the active wearable or based on GPS information.
[0046] In certain embodiments of this aspect, the virtual queue control system is configured
to log interactions of the guest device with the at least one virtual queuing station
and additional stations within the theme park.
[0047] In another aspect, a virtual queue system comprises a plurality of virtual queuing
stations associated with respective attractions within a theme park, and a virtual
queue control system configured to maintain respective virtual queues for the respective
attractions and in communication with the plurality of virtual queuing stations, wherein
the virtual queue control system is configured to receive communications from the
plurality of virtual queuing stations and add guests to the respective virtual queues
based on the communications.
[0048] In some embodiments of this aspect, the communications from an individual virtual
queuing station are used to add guests to only one virtual queue.
[0049] In further embodiments of this aspect, the communications are based on signals from
active wearables of the guests.
[0050] In certain embodiments of this aspect, the virtual queue control system is configured
to allow an individual guest to be placed in no more than two virtual queues.
[0051] In this aspect, the virtual queue control system may be configured to allow an individual
guest to be placed in three or more virtual queues.
[0052] In some embodiments of this aspect, the virtual queue control system is configured
to allow an individual guest to be placed in a first virtual queue and a second virtual
queue, wherein only one of the first virtual queue or the second virtual queue is
designated as a low capacity ride.
[0053] In another aspect, a method comprises providing a wireless signal using communication
circuitry of an active wearable to a virtual queuing station associated with an individual
attraction within a theme park, wherein the wireless signal comprises identification
information for a guest associated with a guest device, receiving a confirmation message
via the communications circuitry confirming being added to a virtual queue of the
individual attraction, and receiving a status message via the communications circuitry
related to a position in the virtual queue.
[0054] In some embodiments of this aspect, the status message comprises a reminder to return
to the individual attraction.
[0055] In certain embodiments of this aspect, the guest device is an active wearable worn
by the guest.
1. A virtual queue system (100), comprising:
a guest-associated device comprising communication features, wherein the communication
features are configured to transmit a wireless signal comprising identification information
associated with the guest-associated device;
a camera (136) of an attraction; and
a control system storing instructions that, when executed, cause the control system
to:
receive an indication from the attraction that the guest-associated device has entered
the attraction based on the wireless signal being read by a sensor (104) of the attraction;
and
trigger the camera (136) to take a photograph of the attraction based on receiving
the indication.
2. The virtual queue system (100) of claim 1, comprising sending the photograph to a
kiosk, and receiving a user input related to the photograph at the kiosk.
3. The virtual queue system (100) of any previous claim, comprising a second camera of
an entryway (126) and a detector of the entryway (126), wherein the detector reads
the wireless signal from the guest-associated device as the guest-associated device
passes through the entryway (126).
4. The virtual queue system (100) of claim 3, wherein the second camera captures a second
photograph of a guest passing through the entryway (126) and sends the second photograph
and the identification information associated with the guest-associated device to
the control system.
5. The virtual queue system (100) of claim 4, wherein the control system determines that
the second photograph corresponds to entry credentials of the guest.
6. The virtual queue system (100) of any previous claim, wherein the guest-associated
device is a mobile device.
7. The virtual queue system (100) of any of claims 1 to 5, wherein the guest-associated
device is an active wearable device (110).
8. The virtual queue system (100) of claim 7, wherein the active wearable device (110)
is a bracelet.
9. The virtual queue system (100) of claim 7, wherein the active wearable device (110)
is waterproof.
10. The virtual queue system (100) of any previous claim, wherein the sensor (104) is
a radio-frequency identification reader.
11. A method, comprising:
receiving a first wireless signal from communication features of a guest-associated
device using a monitoring sensor (104) of an individual attraction in a theme park,
wherein the first wireless signal comprises identification information associated
with the guest-associated device
receiving, at a control system, an indication from the attraction that the guest-associated
device has entered the attraction based on the first wireless signal being received
by the monitoring sensor (104) of the attraction; and
capturing a photograph of the guest using a camera (136) of the attraction, based
on the indication received by the control system.
12. The method of claim 11, comprising validating the guest based on features of the photograph.
13. The method of claim 11, further comprising:
receiving a second wireless signal from the communication features of the guest-associated
device at a virtual queuing station associated with the individual attraction, wherein
the second wireless signal comprises identification information associated with the
guest-associated device;
sending a confirmation message to the communication features confirming being added
to a virtual queue of the individual attraction, wherein the confirmation message
causes activation of an indicator on the guest-associated device;
14. The method of claim 13, comprising validating the guest to the individual attraction
based on a position in the virtual queue of the guest-associated device.
15. The method of any of claims 11 to 14, where the guest-associated device is an active
wearable device (110).