(11) EP 4 239 203 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 06.09.2023 Bulletin 2023/36

(21) Application number: 23154893.4

(22) Date of filing: 03.02.2023

(51) International Patent Classification (IPC):

F04D 29/62 (2006.01) F04D 13/16 (2006.01)

F04D 29/42 (2006.01) F04D 29/70 (2006.01)

F04B 53/04 (2006.01)

(52) Cooperative Patent Classification (CPC): F04D 29/708; F04D 13/16; F04D 29/4293; F04D 29/628; F05D 2250/52; F05D 2260/602

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA

Designated Validation States:

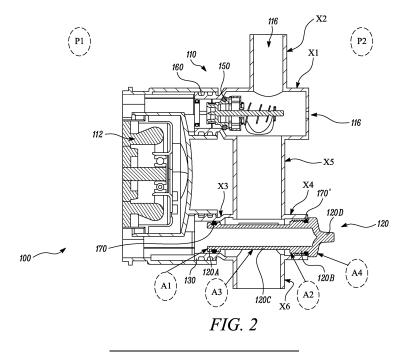
KH MA MD TN

(30) Priority: 03.03.2022 EP 22159878

(71) Applicant: Husqvarna AB 561 82 Huskvarna (SE)

(72) Inventors:

Soor, Florian
 89312 Günzburg (DE)


Demmelmaier, Tobias
 89284 Pfaffenhofen an der Roth (DE)

(74) Representative: Finkele, Rolf Gardena Manufacturing GmbH Hans-Lorenser-Straße 40 89079 Ulm (DE)

(54) PUMP ASSEMBLY COMPRISING A DRAIN PLUG

(57) A pump assembly (100) includes a pump housing (110) adapted to house a drive motor (112) therein. The pump housing (110) defines an inlet opening (114), an outlet opening (116) and a drainage opening (118) therein. A drainage plug (120) is adapted to be engaged with the drainage opening (118). The pump assembly (100) is characterized in that the drainage plug (120) includes a first plug element (120A) having a first

cross-sectional area (A1) and a second plug element (120B) having a second cross-sectional area (A2). The second plug element (120B) is coupled to the first plug element (120A) through a coupling rod (120C). A cross-sectional area (A3) of the coupling rod (120C) is smaller than the first cross-sectional area (A1) and the second cross-sectional area (A2).

TECHNICAL FIELD

[0001] The present disclosure relates to a pump assembly, and more particularly to structure of a drainage plug to be used with the pump assembly.

1

BACKGROUND

[0002] A pump assembly may often be required to operate in a cold environment. When the pump assembly may stop due to normal or abnormal reasons, the water may be required to be drained out of the pump assembly to prevent the pump assembly from damage due to the freezing water. Hence, a drainage structure may be required to be included with the pump assembly.

[0003] An example of such a pump assembly is provided by the Chinese patent 2,826,032 (hereinafter referred to as '032 reference). The '032 reference provides a pump with a drain valve structure. A nut is sealed and welded on a side of a pump casing. An O-shaped sealing ring is sleeved on the drain plug. The drain plug is sealed and screwed into the nut through the O-shaped sealing circle, and an inner screw plug is screwed on the drain. The screw plug is screwed tightly (equivalent to closing the faucet and acting as a seal), unscrewed (equivalent to a part of the faucet switch being turned on, and acting as a slow drain), and unscrewed (equivalent to fully opening the faucet switch for rapid drainage). The head of the inner plug is tapered and the drain port on the wall of the water inlet cavity of the pump casing is in sealed contact. The water outlet end of the water drain plug is a groove and an O-shaped sealing ring is inlaid in the groove, and the purpose is to form a sealed contact with the inner screw plug wall to prevent leakage. However, there is still a need for a simple, quick, and easy to install drainage structure.

SUMMARY

[0004] In view of the above, it is an objective of the present invention to solve or at least reduce the drawbacks discussed above. The objective is at least partially achieved by a pump assembly. The pump assembly includes a pump housing containing an impeller arrangement driven by a drive motor, preferably arranged inside the pump housing, wherein the drive motor is adapted to drive a fluid at an entrance of the modular pump assembly to a pressure chamber upstream of the main flow direction of the fluid, and wherein. The pump housing defines an inlet opening, an outlet opening and a drainage opening therein. A drainage plug is adapted to be engaged with the drainage opening. A fluid channel, in particular a water channel, is originating from the outlet opening The pump assembly is characterized in that the drainage plug includes a first plug element having a first crosssectional area and a second plug element having a second cross-sectional area. The second plug element is coupled to the first plug element through a coupling rod. A cross-sectional area of the coupling rod is smaller than the first cross-sectional area and the second cross-sectional area. The coupling rod is located inside the fluid channel originating from the outlet opening with the fluid, in particular water, being able to flow around the coupling rod and flow past the coupling rod.

[0005] Thus, the pump assembly of the present disclosure advantageously provides a single piece drainage plug for emptying the complete pump assembly. The drainage plug is simple, quick, and easy to install in the drainage opening of the pump assembly. Due to its smaller cross-sectional area, the coupling rod even when being located inside a water channel does not restrict the flow of water too much. The water may flow around the coupling rod and flow past the coupling rod. Thus, the drainage plug does not provide a lot of hinderance to the flow of water. It is possible that the cross-sectional area of the coupling rod is even minimized that much that it just constitutes a mere rigid wire coupling the first plug with the second plug.

[0006] According to an embodiment of the present disclosure, an adapter is coupled to the drainage opening. The drainage plug is sealably coupled to the drainage opening via the adapter. The adapter further advantageously couples a pipe on a pressure side of the pump assembly with the drainage opening.

[0007] According to an embodiment of the present disclosure, a pressure tank unit is coupled to the drainage opening. The pump assembly is advantageously coupled to the pressure tank unit. The pressure tank unit may supplement the pumping operation of the pump assembly. Further, the pressure tank unit may allow the drive motor of the pump assembly to be switched OFF while still maintaining the pressure required for the execution of various domestic and industrial operations.

[0008] According to an embodiment of the present disclosure, a non-return valve is adapted to be engaged with the outlet opening. The non-return valve may serve to maintain pressure on the pressure side of the pump assembly even when the pump assembly is not operating. [0009] According to an embodiment of the present disclosure, the first cross-sectional area may be smaller than or equal to the second cross-sectional area. The flexibility with the dimensions or the cross-sections of the first plug element and the second plug element may serve to plug in the pipes or the adapters of different known dimensions without fear of leakage of water and loss in pressure especially towards the pressure side of the pump assembly.

[0010] According to an embodiment of the present disclosure, the first plug element and the second plug element include threads on their outer surfaces. The threads may allow for an easy as well as secure coupling between the drain plug and the adapter or the drain plug and the pipes of the pump assembly.

[0011] According to an embodiment of the present dis-

closure, the drainage plug includes a head element for inserting in and removing the drainage plug from the drainage opening. The head element may serve as a handle for gripping and moving the drainage plug in and out of the drainage opening.

[0012] Other features and aspects of this invention will be apparent from the following description and the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The invention will be described in more detail with reference to the enclosed drawings, wherein:

FIG. 1 illustrates a schematic diagram of a pump assembly with a pressure tank unit, in accordance with an aspect of the present disclosure;

FIG. 2 illustrates a cross-sectional view of a pump assembly integrated with a drainage plug, in accordance with an aspect of the present disclosure; and

FIG. 3 illustrates a cross-sectional view of a drainage plug, in accordance with an aspect of the present disclosure.

DESCRIPTION OF EMBODIMENTS

[0014] The present invention will be described more fully hereinafter with reference to the accompanying drawings, in which example embodiments of the invention incorporating one or more aspects of the present invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. For example, one or more aspects of the present invention may be utilized in other embodiments and even other types of structures and/or methods. In the drawings, like numbers refer to like elements.

[0015] Certain terminology is used herein for convenience only and is not to be taken as a limitation on the invention. For example, "upper", "lower", "front", "rear", "side", "longitudinal", "lateral", "transverse", "upwards", "downwards", "forward", "backward", "sideward", "left," "right," "horizontal," "vertical," "upward", "inner", "outer", "inward", "outward", "top", "bottom", "higher", "above", "below", "central", "middle", "intermediate", "between", "end", "adjacent", "proximate", "near", "distal", "remote", "radial", "circumferential", or the like, merely describe the configuration shown in the Figures. Indeed, the components may be oriented in any direction and the terminology, therefore, should be understood as encompassing such variations unless specified otherwise.

[0016] FIGS. 1 and 2 illustrate a pump assembly 100. The pump assembly 100 may be used for irrigation, water

supply, sewage movement among other domestic and industrial applications. The pump assembly 100 includes a pump housing 110. The pump housing 110 containing an impeller arrangement driven by a drive motor (112) arranged inside the pump housing (110), wherein the drive motor (112) is adapted to drive a fluid at an entrance of the modular pump assembly (100) to a pressure chamber upstream of the main flow direction of the fluid, and wherein. The pump housing 110 further includes an inlet opening 114, an outlet opening 116, and a drainage opening 118. The inlet opening 114 is provided on a suction side "P1" of the pump housing 110. The water from a water source (not shown) may enter the inlet opening 114 of the pump housing 110 due to a sucking action of an impeller (not shown) housed in the pump housing 110. Further, the outlet opening 116 is provided on a pressure side "P2" of the pump housing 110. The pressurized water from the pump housing 110 may be accessed for use with various domestic and industrial applications. The outlet opening 116 (as shown in FIG. 2) is extended by virtue of a first pipe "X1" and a second pipe "X2" to provide use with multiple applications simultaneously. Further, the first pipe "X1" is coupled to the outlet opening 116 using an adapter 160.

[0017] The drainage opening 118 may be used to drain the water in the event of service or decommissioning. Further, the drainage opening 118 may prevent the pump assembly 100 from damage due to the freezing water when the pump assembly 100 stops due to normal or abnormal reasons while working in a cold environment. The drainage opening 118 (as shown in FIG. 2) is extended by virtue of a third pipe "X3" and a fourth pipe "X4". The third pipe "X3" is coupled to the drainage opening 118 using an adapter 130. Further, the third pipe "X3" and the fourth pipe "X4" are interconnected to each other via a fifth pipe "X5". The fifth pipe "X5" is coupled to the first pipe "X1". The first pipe "X1", the second pipe "X2", the third pipe "X3", the fourth pipe "X4", the fifth pipe "X5" and the sixth pipe "X6" may be coupled to each other by any means known and understood in the art without limiting the scope of the present disclosure in any manner. [0018] With continued reference to FIGS. 1 and 2, a drainage plug 120 is adapted to be engaged with the drainage opening 118. The drainage plug 120 extends across the adapter 130, third pipe "X3", the fourth pipe "X4" and the fifth pipe "X5". The drainage plug 120 may prevent leakage of water from the drainage opening 118 when drainage through the pump assembly 100 is not required.

[0019] The drainage plug 120 (as shown in FIGS. 2 and 3) includes a first plug element 120A having a first cross-sectional area "A1" and a second plug element 120B having a second cross-sectional area "A2". The second plug element 120B is coupled to the first plug element 120A through a coupling rod 120C. A cross-sectional area "A3" of the coupling rod 120C is smaller than the first cross-sectional area "A1" and the second cross-sectional area "A2".

[0020] In some embodiments, as shown in FIGS. 2 and 3, the first cross-sectional area "A1" may be smaller than the second cross-sectional area "A2". In some embodiments, the first cross-sectional area "A1" may be equal to the second cross-sectional area "A2". The flexibility with the dimensions or the cross-sections "A1, A2" of the first plug element 120A and the second plug element 120B respectively may in general serve to plug in the pipes or the adapters of different known dimensions without fear of leakage of water and loss in pressure especially in the pressure side "P2" of the pump assembly 100. [0021] Further, the drainage plug 120 includes a head element 120D for inserting in and removing the drainage plug 120 from the drainage opening 118, which extends across the adapter 130, third pipe "X3", the fourth pipe "X4" and the fifth pipe "X5". The head element 120D may serve as a handle for gripping and moving the drainage plug 120 in and out of the drainage opening 118. Further, a cross-sectional area "A4" of the head element 120D is greater than the cross-sectional area of the fourth pipe "X4". The head element 120D stays outside the fourth pipe "X4" and can be easily accessed as the handle for gripping and moving the drainage plug 120.

[0022] Further, due to the smaller cross-sectional area, the coupling rod 120C does not restrict the flow of water too much. The water flowing from a sixth pipe "X6" may flow around the coupling rod 120C. The water may flow around the coupling rod 120C and flow through to the fifth pipe X5 from the sixth pipe X6. The coupling rod **120C** does not provide a lot of hinderance to the flow of water and allows the water to flow easily from the sixth pipe X6 to the fifth pipe X5. Thus, the shape of the drainage plug 120 allows for efficient fluid coupling between the fifth pipe X5 and the sixth pipe X6 as per usage requirements even when the drainage plug 120 is in place. [0023] The drainage plug 120 when fully or partly moved out of the drainage opening 118 by gripping the head element 120D, connects the suction side "P1" and the pressure side "P2" of the pump assembly 100 via outlet opening 116 and the drainage opening 118. Further, in this position, the drainage plug 120 allows drainage of water from the pump assembly 100.

[0024] The drainage plug 120 that includes the first plug element 120A, the second plug element 120B, the coupling rod 120C and the head element 120D is formed as a single piece drain plug 120. In some embodiments, the elements of the drain plug 120 may be manufactured separately and then coupled to each other by adhesives, or any other means known in the art before being operatively inserted in the drain opening 118. In some embodiments, the drain plug 120 is manufactured in a molding process as one complete element. Further, the first plug element 120A, the second plug element 120B, the coupling rod 120C and the head element 120D of the drain plug **120** may be formed with any suitable material known in the art. In some embodiments, the material of the first plug element 120A, the second plug element 120B, the coupling rod 120C and the head element 120D

may be same. In some embodiments, the material of the first plug element **120A**, the second plug element **120B**, the coupling rod **120C** and the head element **120D** may be different.

[0025] Further, as illustrated in FIG. 2, the first plug element 120A is sealably coupled with the adapter 130 and the second plug element 120B is sealably coupled with the fourth pipe "X4" by virtue of grooves (not shown) on the respective outer surfaces of the first plug element 120A and the second plug element 120B. The sealable coupling between the first plug element 120A and the adapter 130 may be achieved by virtue of a sealing element 170. Similarly, the sealable coupling between the second plug element 120B and the fourth pipe "X4" may be achieved by virtue of a sealing element 170'. The sealing elements 170, 170' may be selected from one or more of an O-ring, a gasket, or any other similar sealing element suitable for usage with various aspects of the present disclosure. Further, the sealing elements 170, 170' may be same or different as per the application requirement of the present disclosure.

[0026] In some embodiments, the first plug element 120A and the second plug element 120B of the drain plug 120 may include threads (not shown) on respective outer surfaces. The threads may allow for an easy as well as secure coupling between the drain plug 120 and the adapter 130 or the drain plug 120 and the fourth pipe "X4"

[0027] With continued reference to FIGS. 1 and 2, a pressure tank unit 140 is coupled to the drainage opening 118. The pressure tank unit 140 includes a pressure tank 142 and a pressure sensor 144. The pressure tank unit 140 is coupled to the drainage opening 118 via a water channel formed by the third pipe "X3", the fifth pipe"X5 and the sixth pipe "X6". Whereby the third pipe "X3" is mechanically coupled the drainage opening 118 while the drainage plug 120 is sealing fixed with the pump and is mechanically and fluidly coupled with the drainage opening 118 when the drainage plug 120 fully or partly moved out of the drainage opening 118. Further the third pipe "X3" is mechanically and fluidly coupled with the fifth pipe "X5" and the sixth pipe "X6". The pressure sensor 140 may be a pressure switch or any other pressure sensor 140 known and understood in the art without restricting the scope of the present disclosure in any manner. The pressure tank unit 140 may supplement the pumping operation of the pump assembly 100. Further, the pressure tank unit 140 may allow the drive motor 112 of the pump assembly 100 to be switched OFF while still maintaining the pressure required for the execution of various domestic and industrial operations.

[0028] Further, a non-return valve 150 is adapted to be engaged with the outlet opening 116. The non-return valve 150 advantageously extends from the adapter 160 towards the first pipe "X1". The non-return valve 150 prevents the emptying of the pressure tank 142 when the drive motor 112 of the pump assembly 100 is switched OFF. The non-return valve 150 may serve to maintain

20

25

30

the pressure on the pressure side "P2" of the pump assembly **100** even when the pump assembly **100** is not operating.

[0029] Thus, the pump assembly 100 of the present disclosure advantageously provides a single piece drainage plug 120 for emptying the complete pump assembly 100. The drainage plug 120 is simple, quick, and easy to install in the drainage opening 118 of the pump assembly 100.

[0030] In the drawings and specification, there have been disclosed preferred embodiments and examples of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation of the scope of the invention being set forth in the following claims.

LIST OF ELEMENTS

[0031]

100	Pump Assembly
110	Pump Housing
112	Drive Motor
114	Inlet Opening
116	Outlet Opening
118	Drainage Opening
120	Drainage Plug
120A	First Plug Element
120B	Second Plug Element
120C	Coupling Rod
120D	Head Element
130	Adapter
140	Pressure Tank Unit
142	Pressure Tank
144	Pressure Sensor
150	Non-Return Valve
160	Adapter
170, 170'	Sealing Element
A1	First Cross-Sectional Area
A2	Second Cross-Sectional Area
A3	Cross-Sectional Area
A4	Cross-Sectional Area
P1	Suction Side
P2	Pressure Side
X1	First Pipe
X2	Second Pipe
X3	Third Pipe
X4	Fourth Pipe
X5	Fifth Pipe
X6	Sixth Pipe

Claims

1. A pump assembly (100) comprising:

a pump housing (110) containing an impeller arrangement driven by a drive motor (112), pref-

erably arranged inside the pump housing (110), wherein the drive motor (112) is adapted to drive a fluid at an entrance of the modular pump assembly (100) to a pressure chamber upstream of the main flow direction of the fluid, and wherein

the pump housing (110) defining an inlet opening (114), an outlet opening (116) and a drainage opening (118) therein;

a drainage plug (120) adapted to be engaged with the drainage opening (118);

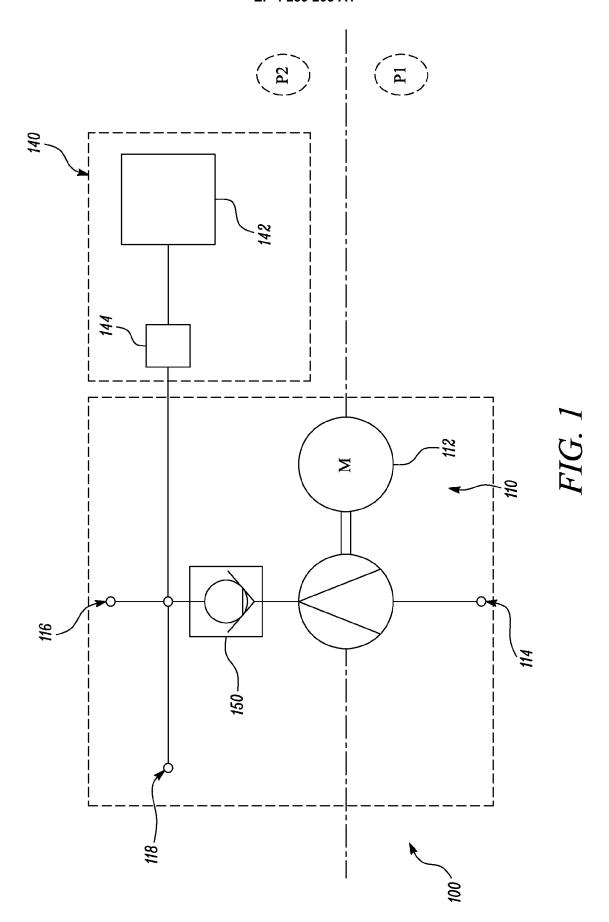
and a fluid channel (X3, X5, X6), in particular a water channel, originating from the outlet opening (116):

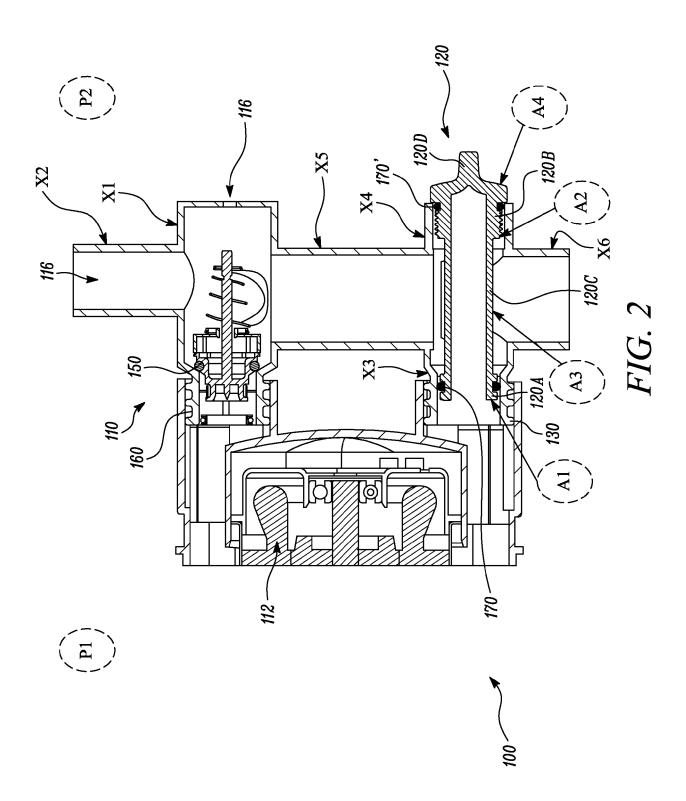
characterized in that:

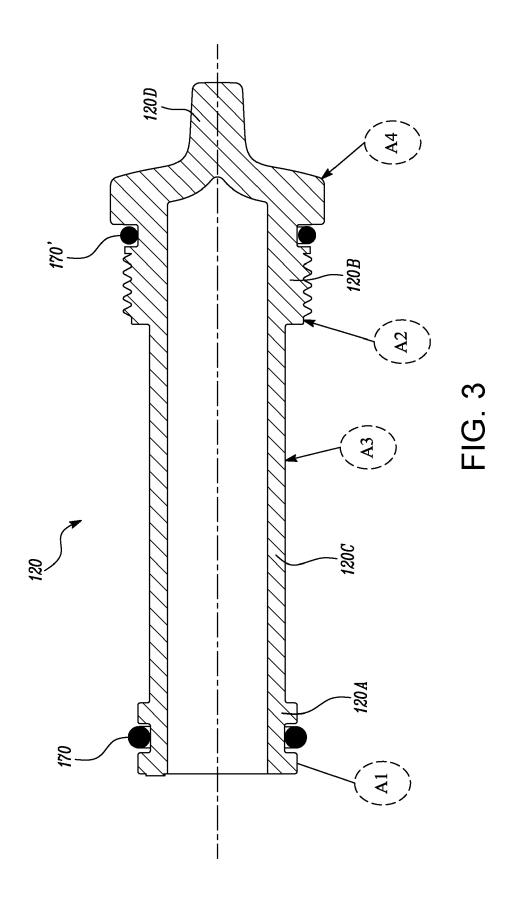
the drainage plug (120) comprises:

a first plug element (120A) having a first cross-sectional area (A1),

a second plug element (120B) having a second cross-sectional area (A2), wherein the second plug element (120B) is coupled to the first plug element (120A) through a coupling rod (120C), and


wherein a cross-sectional area (A3) of the coupling rod (120C) is smaller than the first cross-sectional area (A1) and the second cross-sectional area (A2);


whereby the coupling rod (120C) is located inside the fluid channel (X5, X6) with the fluid, in particular water, being able to flow around the coupling rod (120C) and flow past the coupling rod (120C).


- 5 2. The pump assembly (100) of any one of the preceding claims, wherein an adapter (130) is coupled to the drainage opening (118).
- The pump assembly (100) of claim 1, wherein a pressure tank unit (140) is mechanically coupled to the drainage opening (118) via the water channel (X3, X5, X6).
- 4. The pump assembly (100) of any one of the preceding claims, wherein a non-return valve (150) is adapted to be engaged with the outlet opening (116).
 - 5. The pump assembly (100) of any one of the preceding claims, wherein the first cross-sectional area (A1) is smaller than the second cross-sectional area (A2).
 - 6. The pump assembly (100) of any one of the preceding claims, wherein the first cross-sectional area (A1) is equal to the second cross-sectional area (A2).
 - The pump assembly (100) of any one of the preceding claims, wherein the first plug element (120A) and the second plug element (120B) include threads.

50

8. The pump assembly (100) of any one of the preceding claims, wherein drainage plug (120) includes a head element (120D) for inserting in and removing from the drainage opening (118).

DOCUMENTS CONSIDERED TO BE RELEVANT

DE 199 23 350 A1 (GARDENA KRESS & KASTNER

Citation of document with indication, where appropriate,

GMBH [DE]) 13 April 2000 (2000-04-13)

DE 102 41 478 A1 (DAIMLER CHRYSLER AG

[DE]) 25 March 2004 (2004-03-25)

of relevant passages

* paragraph [0026] *

* paragraph [0045] *

* figures 2, 8 *

Category

Х

Х

EUROPEAN SEARCH REPORT

Application Number

EP 23 15 4893

CLASSIFICATION OF THE APPLICATION (IPC)

INV.

F04D29/62

F04D13/16

F04D29/42

F04D29/70

F04B53/04

Relevant

to claim

1-8

1-5,8

10	

5

15

20

25

30

35

40

45

50

	The present search report has been	n drawn up for all claims Date of completion of the search		Examiner
	* paragraph [0060] * * paragraph [0076] * * figures 1, 3, 5, 6			TECHNICAL FIELDS SEARCHED (IPC) F04D F04B
A	* figures 1-6 *	= = -	1-8	
X A	US 3 319 928 A (ANDER 16 May 1967 (1967-05- * column 2, line 10 -	16)	1-6,8 7	
	* paragraph [0026] - : * figures 1, 3 *	paragraph [0018] * paragraph [0029] *	6,7	

EP 4 239 203 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 23 15 4893

5

55

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

26-06-2023

10	Patent document cited in search repor	t	Publication date		Patent family member(s)		Publication date
15	DE 19923350	A1	13-04-2000	AT DE DE DE DE DE	470074 19923349 19923350 19923351 19923357 29925019	A1 A1 A1 A1	15-06-2010 20-04-2000 13-04-2000 13-04-2000 13-04-2000 12-03-2009
20	DE 10241478	A1		NONE			
	US 3319928	A	16-05-1967	NONE			
	WO 2019123504		27-06-2019	EP WO	3676500 2019123504	A1 A1	08-07-2020 27-06-2019
25							
30							
35							
40							
45							
50							
50							
	RM P0459						

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

EP 4 239 203 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• CN 2826032 [0003]