# (11) EP 4 239 803 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 06.09.2023 Patentblatt 2023/36

(21) Anmeldenummer: 23159042.3

(22) Anmeldetag: 28.02.2023

(51) Internationale Patentklassifikation (IPC): **H01R 13/05** (2006.01) H01R 13/533 (2006.01)

H01R 13/533 (2006.01)

(52) Gemeinsame Patentklassifikation (CPC): H01R 13/111; H01R 4/01; H01R 11/05; H01R 13/03; H01R 13/052; H01R 13/187; H01R 13/533; H01R 2201/26

(84) Benannte Vertragsstaaten:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

Benannte Erstreckungsstaaten:

BA

Benannte Validierungsstaaten:

KH MA MD TN

(30) Priorität: 03.03.2022 DE 102022105071

(71) Anmelder: Amphenol-Tuchel Electronics GmbH 74080 Heilbronnn (DE)

(72) Erfinder:

DEIGNER, Alena
 74348 Lauffen am Neckar (DE)

 SZYMURA, Dawid 75031 Eppingen-Richen (DE)

(74) Vertreter: Staeger & Sperling
Partnerschaftsgesellschaft mbB
Sonnenstraße 19
80331 München (DE)

### (54) KRALLENPIN

(57) Die Erfindung betrifft einen Kontaktstecker zur Übertragung elektrischer Energie durch lösbare Kontaktierung mit einer Kontaktbuchse, wobei der Kontaktstecker als Krallenpin ausgebildet ist, dadurch, dass dieser

wenigstens ein krallenförmiges Element aufweist, welches sich durch Temperaturänderung verformt und eine Änderung der Kontaktnormalkraft zwischen dem Krallenpin und der Kontaktbuchse realisiert.

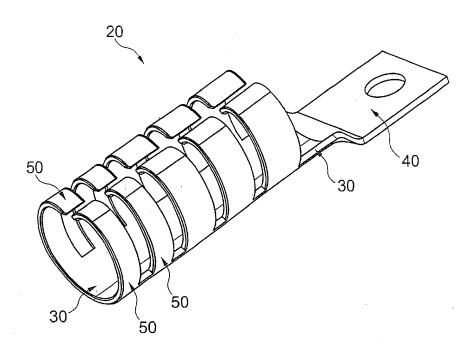



Fig. 1

15

### Beschreibung

**[0001]** Die Erfindung betrifft einen Kontaktstecker zur Übertragung elektrischer Energie durch lösbare Kontaktierung mit einer Kontaktbuchse.

1

[0002] Zur Kontaktierung oder Herstellung lösbarer elektrisch leitender Verbindungen werden Steckverbindungen, Kontaktierungselemente, Polverbinder, Steckhülsen usw. in unterschiedlichsten Ausbildungen und Varianten eingesetzt. Insbesondere, aber nicht ausschließlich bei elektrischen Kontaktierungsaufgaben im höheren Leistungsbereich sind Kontaktsysteme entwickelt worden, die auf Rundkontaktgeometrien zur Aufnahme eines Kontaktpins basieren und deren Ausgangsmaterial aus einem flächigen Kontaktgitter besteht, dass mit hyperbolischem Drall in die Rundkontaktgeometrie gebracht wird. Diese als RADSOK bekannt gewordenen Kontaktsysteme zeichnen sich durch robuste und hochdichte Kontaktherstellung infolge der erheblichen Kontaktfläche zum jeweiligen Kontaktpin aus. Alternativ sind anstelle der hyperbolischen Verdrehsituation nach innen gerichtete Lamellengeometrien bekannt, dessen Lamellenkontaktgitter radialsymmetrisch ausgerichtet ist.

**[0003]** Diese vorzugsweise als Hochstromkontaktbuchsen verwendeten Kontaktgeometrien sind folglich als Radialkontaktbuchsen oder hyperbolische Kontaktbuchsen bekannt.

[0004] RADSOK-Kontaktsysteme der vorgenannten Art werden über ihre in der Regel zylindrischen Außenkonturen in Steckverbinderbuchsenhülsen aufgenommen und realisieren die Kontaktierung außenseitig über die Zylinderflächen. Die DE 10 2007 051 266 B4 basiert auf der Grundidee, eine einzige Steckverbinderbuchsenhülse bereitzustellen, die so ausgebildet ist, dass unterschiedliche Lamellenkontaktkäfige in Form von RADSOK-Kontaktbuchsen aufgenommen werden können, welche flächig an der Innenseite der Kontakthülse zur Anlage kommt.

[0005] Einen vergleichbaren Grundaufbau zeigt die DE 20 2016 100 095 U1. Erfindungsgegenstand hier ist die Kopplung, Verbindung, Kontaktierung des zylinderförmigen Lamellenkäfigs "fliegend" innerhalb der aufnehmenden Steckverbinderbuchsenhülse dadurch, dass nur eine der die jeweils endseitigen Bunde beispielsweise durch Presspassung in der Buchse festgelegt wird. Es ist eine elektrische Steckverbinderbuchse umfassend eine zylindrische Buchsenhülse vorgesehen, welche mit einem Aufnahmeraum ausgebildet ist, in dem ein zylinderförmiger Lamellenkäfig mit einer Vielzahl von parallel verlaufenden Kontaktlamellen eingeschoben ist, wobei der Lamellenkäfig über einen ersten und zweiten endseitig umlaufenden Bundsteg verfügt, zwischen denen die Kontaktlamellen verlaufen. Der Lamellenkäfig wird an dem einen Ende zumindest axial und bevorzugt auch drehfest in der Buchsenhülse festgelegt und dadurch eingespannt bzw. befestigt und an dem anderen gegenüberliegenden Ende eine axiale und zumindest um einen gewissen Drehwinkel drehbare Gleitlagerung gegenüber

der Buchsenhülse vorgesehen ist. Vorzugsweise wird der Lamellenkäfig mit seinem einen Bundsteg mittels hülsenseitigem Befestigungsmittel an der Innenwand der Buchsenhülse befestigt.

[0006] Insbesondere bei Kontaktierungsaufgaben im Hochstrombereich - beispielsweise zur Aufladung von Batterien in elektrisch angetriebenen Fahrzeugen oder die elektrische Kontaktierung der Fahrzeugbatterie mit den Verbrauchern im Fahrzeug - ist es von besonderer Wichtigkeit, dass die elektrische Kontaktierung der Steckverbindungspartner sehr zuverlässig ist. Auf derartige Steckverbindungen und deren Kontaktierungselemente, die häufig aus einer oder mehrerer Paarungen, bestehend aus Steckkontaktpin und Steckkontaktbuchse aufgebaut sind können unterschiedliche Einflüsse einwirken, beispielsweise mechanische Belastungen, Vibrationen, Stöße, Alterungseinflüsse. Auch möglich sind erhebliche Temperatureinflüsse verursacht durch Umweltbedingungen oder infolge der Eigenerwärmung verursacht durch die fließende elektrische Leistung und den Eigenwiderstand der stromführenden Teile. Besonders relevant kann die Eigenerwärmung sein an den Kontaktstellen, da kontaktkraftbedingt die Kontaktflächen klein und somit ein guasi geometrisch verursachter hoher Widerstand vorliegen kann. Aus diesem Grund ist es von besonderer Wichtigkeit, dass die Kontaktkraft - genauer: die Kontaktnormalkraft - möglichst hoch und dauerhaft gleichbleibend ist, um die Kontaktpartner, meist gebildet durch Kontaktpin und Kontaktbuchse für deren elektrisch Kontaktierung an dessen Kontaktflächen aneinanderzupressen.

[0007] Die im Stand der Technik verfügbaren Kontaktbuchsen wie beispielsweise die erwähnten RADSOK-Buchsen oder auch deren Steckkontaktpartner, die Steckkontaktpins werden sowohl bildsame Formgebungsverfahren wie beispielsweise Stanzen, Rollen und geeignete Werkstoffe mit federnden Eigenschaften eingesetzt, um die erwünschten Federwirkungen durch Rückstellkräfte zu erzeugen die genutzt werden, um vorzugsweise elastische Anpresskräfte der Kontaktpartner an ihren Kontaktflächen zu erzeugen. Dabei wird die Leistungsfähigkeit der Steckkontaktverbindung durch auftretenden Temperatureinwirkungen begrenzt, dadurch, dass höheren Temperaturen ein Federkraftverlust infolge von Relaxierungsvorgängen, Materialkriechen und Eigenspannungsabbau bewirken. Dies gilt insbesondere für Kupfer und Kupferlegierungen, da Kupfer neben seiner generell niedrigen Elastizitätseigenschaft vor allen bereits bei niedrigen Temperaturen "weich" wird.

[0008] Werden die Steckkontaktpartner derart konstruiert und aus Werkstoffen wie beispielsweise Federstahl gebildet, ist es zwar möglich, auch sehr hohe Kontaktnormalkräfte zu erzeugen, welche die Kontaktflächen der Steckkontaktpartner zuverlässig aneinanderdrücken, aber es ergeben sich häufig Montageprobleme dadurch, dass das Zusammenstecken der Kontaktpartner hohe Steckkräfte erfordert, welche die Montage erschweren oder den Einsatz von Werkzeugen erfordern.

[0009] Um die Problematik der sich unter Temperatureinwirkungen verringernden Kontaktnormalkräfte zu reduzieren sind Kontaktierungslösungen entwickelt worden, bei denen sich die Kontaktierungselemente oder Zusatzbauteile infolge der Temperaturerhöhung derart verformen, dass die Steigerung der Kontaktkraft erreicht wird und gleichzeitig die Montagekraft beim Zusammenstecken der Steckverbindung bei niedrigerer Temperatur geringer ist. Die EP 2 461 427 B1 offenbart einen sich selbsttätig verformenden Hochstromkontakt basierend auf dem Ansatz, durch einerseits konstruktive Auslegung des Hochstromkontakts und andererseits Vorsehen eines sich bei steigender Temperatur selbsttätig verformenden Elementes der Steckverbindung mit niedrigen Steckkräften bei Raumtemperatur für die Montage und hoher Kontaktkraft beziehungsweise Kontaktnormalkraft während des Betriebs, insbesondere stärkerer Eigenerwärmung und bei erhöhten Umgebungstemperaturen zu erreichen.

3

[0010] Die Kontaktnormalkraft wird quasi selbstregelnd erhöht, sobald eine Temperaturerhöhung stattfindet. Der vorgeschlagene Hochstromkontakt dient zur Übertragung von Strom von einer Stromquelle zu einem elektrischen Leiter eines Stromabnehmers, so dass der Hochstromkontakt zusammen mit dem korrespondierenden Kontaktstift einerseits zur mechanischen Verbindung und andererseits zur elektrischen Kontaktierung des Stromabnehmers mit der Stromquelle über eine elektrische Kontaktfläche des Hochstromkontakts mit dem Kontaktstift dient. Indem die mechanische Verbindung bei durch Stromfluss steigender Temperatur des Hochstromkontakts durch den Hochstromkontakt bzw. die selbsttätig verformend ausgebildeten Bauteile, insbesondere einem ringförmigen Element durch die temperaturinitiierte Verformung gesteigert wird, wird die dem werkstoffbedingten Kontaktnormalkraftverlust entgegengewirkt und Kontaktkraft zumindest aufrechterhalten, teils sogar gesteigert. Gleichzeitig ist das Zusammenstecken bei niedrigen Temperaturen mit verringerter Steckkraft möglich.

[0011] Einen ähnlichen Ansatz verfolgt die DE 10 2005 032 462 A1. Gelehrt wird hier die Kontaktbuchse derart auszugestalten, dass zumindest der Bereich der Kontaktkuppen aus einem Bimetall besteht. Der mit dem Bimetall ausgestaltete Bereich verändert seine Form aufgrund eines Wärmeeinflusses. Diese Formänderung wird genutzt, die Kontaktnormalkraft zumindest konstant zu halten oder ansteigen zu lassen.

[0012] Die im Stand der Technik verfügbaren Kontaktierungslösungen mit der temperaturabhängigen Veränderung der Kontaktnormalkraft und aufgebaut durch die Kombination von Kontaktbuchse und Kontaktpin weisen teils erhebliche Nachteile auf. Häufig findet man Lösungen, welche ein oder mehrere Bauteile wie beispielsweise Ringe oder rohrförmige Bauteile aufweisen, welche die Kontaktnormalkraft infolge einer Temperaturveränderung beeinflussen. Diese Lösungen sind aufwändig, erfordern mehrteilige Kontaktierungsanordnungen, sind dadurch schwieriger zu montieren und haben erhöhtes Potential von Fehlmontagen. Daraus ergeben sich wirtschaftlich ungünstige Lösungen und begünstigen Fehlfunktionen.

[0013] Andere Kontaktierungausgestaltungen integrieren die sich unter Temperatureinwirkung verformenden Komponenten der Kontaktierung bzw. Steckverbindung in das Kontaktbuchsenbauteil. Mit derart geometrischen Ausgestaltungen können durch die temperaturabhängige Verformung nur in vergleichsweise geringem Umfang die Kontaktnormalkräfte beeinflusst und insbesondere erhöht werden. Auch kann der Erwärmungsprozess der integrativen Verformungskomponenten erhebliche Zeit beanspruchen - dies durch die Einstückigkeit mit dem Kontaktelement verursacht.

[0014] Aufgabe der Erfindung ist es, die bestehenden Kontaktierungslösungen mit sich durch Temperatureinwirkung veränderbaren Kontaktnormalkräften weiterzuentwickeln und die bestehenden Nachteile wenigstens teilweise zu reduzieren.

[0015] Zur Lösung der Aufgabe schlägt die Erfindung einen Kontaktstecker, Steckkontaktpin vor, der mit einer Kontaktbuchse zusammenwirkt und aus einem Mehrschichtmetall oder einer Formgedächtnislegierung besteht, das eine krallenartige Form aufweist. Die krallenähnliche Form wird gebildet durch wenigstens ein krallenartiges, annähernd kreisbogenförmig geformtes und sich bereichsweise in Umfangsrichtung des Steckkontaktpins teilweise erstreckendes Element vorzugsweise quer zur Steckrichtung des Steckkontaktpins in die Kontaktbuchse. Das wenigstens eine krallenartige Element erstreckt sich ausgehend von einem Basiselement, welches in Steckrichtung eine durchgängig stetige und weitgehend lineare Form mit flachem oder leicht gebogenem Querschnitt aufweist, bereichsweise aus, sodass der Kontaktpin keine geschlossene zylinderähnliche Gesamtkontur aufweist und das wenigstens eine krallenähnliche Element endseitig verformbar ist. Vorzugsweise sieht die Erfindung zwei oder mehrere krallenförmige Elemente vor. Funktional gesehen ähnelt das Basiselement in diesem Fall praktisch der Wirbelsäule des menschlichen Knochengerüstes, bei dem die Rippen (hier: krallenförmige Elemente) angeschlagen sind und sich quer zur Wirbelsäulen-Erstreckungsrichtung ausdehnen.

[0016] Die krallenförmigen Elemente mit ihrer sich in Umfangsrichtung bereichsweise erstreckenden kreisbogenähnlichen Form bilden Abschnitte einer zylinderähnlichen Aussenkontur des Kontaktpins und weisen in Umfangsrichtung einen konstanten oder einen sich verändernden Radius auf. Besonders Vorteilhaft ist ein zum Erstreckungsende der krallenartigen Elemente hin sich verkleinernder Radius, sodass sich die kreisbogenähnliche Form der krallenförmigen Elemente quasi einrollt. Auf diese Weise lässt sich das durch Temperaturänderungen ausgelöste Formänderungsverhalten des aus Mehrschichtmetall oder einer Formgedächtnislegierung bestehenden Krallenpins, Kontaktsteckers und die da-

40

durch resultierende Kontaktnormalkraft zusätzlich geometrisch beeinflussen.

[0017] Eine weitere, geometrisch bedingte Beeinflussung der temperaturänderungsinduzierten Kontaktnormalkraft durch Verformung der aus einem Mehrschichtmetall oder einer Formgedächtnislegierung bestehenden federelastischen, krallenförmigen Elemente sieht die Erfindung durch ungleiche Breitengestaltung vor. Die Breite der krallenförmigen Elemente, d. h. deren Erstreckung in Steckrichtung (Axialrichtung des Kontaktpins) und damit quer zur krallenförmigen, kreisbogenähnlichen Form, kann von dem in Steckrichtung angeordneten ersten krallenförmigen Element zu den weiteren, in Steckrichtung dahinterliegenden krallenförmigen Elementen zunehmen. Daraus resultiert ein sich breitenabhängig unterscheidendes Verformungsverhalten der krallenförmigen Elemente dadurch, dass krallenförmige Elemente mit geringerer Breite infolge der kleineren Gesamtmasse bei gleicher Wärmeenergieeinwirkung schnellerer Temperaturänderungen unterliegen. Infolge dessen wird eine Kontaktnormalkraftänderung durch die Wirkung des Mehrschichtmetallaufbaus oder der Formgedächtnislegierung und der resultierenden Verformung zeitlich voneinander abweichend bewerkstelligt.

[0018] An dem in Steckrichtung gegenüberliegenden Ende des Kontaktpins kann ein überkragender Abschnitt des Basiselementes als Funktionselement vorgesehen sein, dass zum Anschlagen (beispielsweise Crimpen oder Schweißen) einer elektrischen Leitung, Kabel oder als Griffstück im Sinn einer Handhabungshilfe nutzbar ist. [0019] Erfindungsgemäß ist vorgesehen, dass wenigstens die krallenförmigen Elemente oder auch des gesamte Kontaktpin aus einem Mehrschichtmetallwerkstoff bestehen, der beispielsweise als Bimetall aus zwei Werkstofftypen aufgebaut ist. Dabei ist es vorteilhaft, den äußeren Bereich der krallenförmigen Elemente bzw. des Kontaktpins mit seinen Berührflächen hin zur Kontaktbuchse aus einem Kupferwerkstoff zu bilden und den inneren Bereich, d. h. die der Kontaktbuchse abgewandten Bereiche der krallenförmigen Elemente oder des Kontaktpins auf einem Stahlwerkstoff aufzubauen. Da der Kupferwerkstoff und der Stahlwerkstoff voneinander abweichende wärmeenergieinduzierte Ausdehnungsverhalten aufweisen, verformt sich der Bimetallwerkstoff und löst eine Verformung der krallenförmigen Elemente aus, welche zur Beeinflussung der Kontaktnormalkraft herangezogen werden. Ebenfalls können Schichtaufbauten mit drei Werkstoffen realisiert werden, bei welchen die mittlere Schicht aus einem Kupferwerkstoff besteht und so sichergestellt ist, dass die Mehrschichtmetallanordnung gute elektrisch leitende Eigenschaften aufweist.

**[0020]** In einer weiteren Ausgestaltung ist vorgesehen, dass die zur Veränderung der Kontaktnormalkraft erforderliche temperaturabhängige Verformung durch die Verwendung einer Formgedächtnislegierung (auch Memorymetalle genannt) für den Kontaktpin bzw. für wenigstens seine krallenförmigen Elemente erfolgt.

[0021] Es ist erfindungsgemäß möglich, dass die wenigstens zwei krallenförmigen Elemente Bestandteil der Kontaktbuchse anstelle des Kontaktsteckers sind. Auch möglich ist, dass sowohl die Kontaktbuchse als auch der Kontaktpin, Kontaktstecker krallenartige Elemente aufweist. Die Ausführungen in der Beschreibung gelten sinngemäß auch für diese Ausgestaltungen.

[0022] Die Erfindung bietet eine Reihe von Vorteilen, vor allem sind beim Zusammenstecken der Kontaktpartner bestehend aus Krallenpin und Kontaktbuchse bei Raumtemperatur nur geringe Steckkräfte erforderlich, da die Steigerung der Kontaktnormalkraft erst durch die Erwärmung des Krallenpins und/oder der Kontaktbuchse Kontaktes erfolgt und nicht durch federelastische Vorspannung generiert werden muss. Auch erreicht die Erfindung eine erhöhte Kontaktnormalkraft bei Temperaturänderung in Form steigender Temperatur und damit sinkendem elektrischen Widerstand. Infolge der erhöhten Kontaktnormalkraft stellen sich hohe Auszugskräfte, d. h. Kräfte zum Auseinanderziehen der Steckverbindung, bei Betriebstemperatur ein mit der Folge, dass derartige Steckverbindungen weniger vibrationsanfällig sind.

[0023] Die wirtschaftliche Massenfertigung wird unterstützt dadurch, dass die geometrisch einfache Kontur des Ausgangsmaterials, Halbzeugs sehr gut geeignet ist zu Herstellung mittels eines Stanzprozesses. Im Stand der Technik verfügbare Lösungen, insbesondere die sogenannten Radsok-Buchsen sind sehr feine und eine Vielzahl von Lamellen vorhanden, die eine lange Stanzkante aufweisen und hohe Stanzkraft benötigen.

**[0024]** Die Erfindung wird im Folgenden anhand eines exemplarischen Ausführungsbeispiels in Verbindung mit den Figuren näher erläutert. Dabei zeigen:

- Fig. 1 die perspektivische Ansicht auf den Kontaktstecker, der erfindungsgemäß als Krallenpin ausgestaltet ist;
- 40 Fig. 2 die perspektivische Ansicht auf den Krallenpin in einer gegenüber Fig. 1 abweichenden Blickrichtung;
  - Fig. 3 die Seitenansicht auf den Krallenpin;
  - Fig. 4 die perspektivische Ansicht auf die Kontaktpartner für eine elektrisch leitende Steckverbindung;
  - Fig. 5 die dreidimensionale Ansicht auf die Kontaktpartner für eine elektrisch leitende Steckverbindung;
    - Fig. 6 die räumliche Darstellung des endseitig in Steckrichtung gerichteten Krallenpins.

**[0025]** Figur 1 zeigt die perspektivische Ansicht auf den Kontaktstecker, der erfindungsgemäß als Krallenpin

55

35

20 ausgestaltet ist. Der Krallenpin umfasst wenigstens zwei konstruktiv-geometrische Elemente, welche den Krallenpin 20 charakterisieren: Ein Basiselement 30 und wenigstens ein krallenförmiges Element 50. Optional kann der Krallenpin 20 ergänzt sein durch wenigstens ein Funktionselement 40.

[0026] Das Basiselement 30 bildet funktional das Rückgrat des Krallenpins 20. Es bildet einen in Steckrichtung gesehen und weitgehend parallel zur Steckachse eine durchgängig stetige und weitgehend lineare Form mit flachem oder leicht gebogenem Querschnitt, von welchem aus sich das wenigstens eine krallenförmige Element 50 in Umfangsrichtung des Krallenpins 20 und damit guer zur Steckrichtung erstreckt.

[0027] Das wenigstens eine krallenförmige Element 50 erstreckt sich in Umfangsrichtung des Krallenpins 20 und bildet einen Abschnitt der zylinderformähnlichen Kontur des Kontaktsteckers. In der axial zum Krallenpin 20 liegenden Schnittebene weist das wenigstens eine krallenförmige Element 50 einen oder mehrere unterschiedliche Krümmungsradien R, R1, R2 auf. Vorzugsweise erstrecken sich jeweils zwei auf weitgehend gleicher axialer Höhe des Krallenpins 20 liegende krallenförmige Elemente 50 in Umfangsrichtung.

[0028] Ein optionales Funktionselement 40 kann den Krallenpinaufbau ergänzen. Das Funktionselement 40 kann sich in Gegenrichtung zur Steckrichtung erstrecken und als Verlängerung des Basiselementes 30 gestaltet sein. Es kann eine Bohrung, Laschen oder andere Geometrien aufweisen, welche geeignet sind, Zusatzfunktionen bereitzustellen wie beispielsweise ein Griffstück zur Unterstützung der Handhabung beim Zusammenstecken der Kontakt- oder Steckverbindungspartner, bestehend aus Kontaktbuchse 10 und Krallenpin 20 oder zum Anschlagen eines Kabels, einer Leitung (ggf. mit einer Abschirmung) durch zum Beispiel Schweißen oder Crimpen.

**[0029]** Figur 2 umfasst die perspektivische Ansicht auf den Krallenpin 20 in einer gegenüber Figur 1 abweichenden Blickrichtung. Gezeigt wird die optionale Ausgestaltung einer Mehrzahl krallenförmiger Elemente 50, die auf einer axialen Höhe des Krallenpins 20 jeweils paarweise gegenüberliegend und zueinander spiegelsymmetrisch angeordnet sind.

[0030] Die Krallenbreite b wird hier in der qualitativ gezeigten Weise variiert dergestalt, dass die Breite der krallenförmigen Elemente 50 zueinander zwei oder mehr voneinander abweichende Werte aufweisen kann. Besonders Vorteilhaft ist es, eine Breite b des in Steckrichtung angeordneten ersten Paares der krallenförmigen Elemente 50 mit einer Breite b1 vorzusehen und eine Breite b2 des in Steckrichtung angeordneten zweiten Paares der krallenförmigen Elemente 50 zu realisieren, wobei b1 <br/>b2 ist. Das Breitenverhältnis kann beliebig variiert oder über mehrere krallenförmige Elemente 50 konstant gehalten werden.

**[0031]** Besonders Vorteilhaft ist eine Breite b1<b2<bn des oder der mehreren ersten Paare von krallenförmigen

Elementen 50, die in Steckrichtung zuerst angeordnet sind. Infolge der geringeren Masse dieser schmaleren krallenförmigen Elemente 50 gegenüber der in Steckrichtung dahinterliegenden Krallenpaare sorgt nach dem Zusammenstecken der Kontaktpartner und des elektrischen Widerstandes bei Anlegen einer elektrischen Spannung für ein schnelleres Erwärmen dieser schmaleren krallenförmigen Elemente 50. Auf diese Weise kann eine erste Kontaktnormalkrafterhöhung frühzeitig und unmittelbar nach Beginn des Stromflusses realisiert werden. Es hat sich je nach verwendetem Werkstoff -Mehrschichtmetalle in Form von Kupfer-Stahl-Kombinationen oder Formgedächtnislegierungen - gezeigt, dass das Breitenverhältnis b1/b2 der ersten Paare von krallenförmigen Elementen 50, die in Steckrichtung zuerst angeordnet sind relativ zu den in Steckrichtung dahinterliegenden Krallenpaare, besonders vorteilhaft ist in einem Bereich von 0,3<=b1/b2<=0,8 und vorzugsweise ca. 0,5. Diese Breitenverhältnisse können Paarweise oder auch über mehrere Paare von krallenförmigen Elementen 50 mit zueinander gleichen Breitenverhältnissen (Gruppen gleicher Krallenbreite) umgesetzt sein.

[0032] Figur 3 illustriert die Seitenansicht auf den Krallenpin 20 aus der Blickrichtung entgegen der Steckrichtung, d. h. auf das Kontaktsteckerende in Richtung der Kontaktbuchse 10. Ausgehend von dem Basiselement 30 erstrecken sich die hier exemplarisch dargestellten zwei krallenförmige Elemente 50 in paralleler und spiegelsymmetrischer Weise und bilden wenigstens abschnittsweise eine zylinderähnliche Kontur des Krallenpins 20 mit einer Öffnung OE gegenüber des Basiselementes 30.

[0033] Die Öffnung OE kann optional auch als Verdrehsicherung des Krallenpins 20 innerhalb der Kontaktbuchse 10 in gestecktem Zustand Verwendung finden. Dazu kann in der Kontaktbuchse eine Feder (nicht dargestellt) vorgesehen sein, welche in die Öffnung OE eingreift und auf diese Weise ein Verdrehen durch mechanischen Anschlag verhindert.

[0034] Die krallenförmigen Elemente 50 erstreckt sich in Umfangsrichtung des Krallenpins 20 und weisen eine kreisbogenähnliche Form auf. Die kreisformähnliche Krümmung dieses Ausführungsbeispiels der krallenförmigen Elemente 50 ist in der Erstreckungsrichtung ausgehend vom Basiselementes 30 nicht konstant, d. h. der Krümmungsradius R wird mit fortschreitender Erstreckung weg vom Basiselement wenigstens bereichsweise kleiner, sodass R1>R2. Die Radienverringerung kann dabei stetig fließend - wie dargestellt - verlaufen oder Radiensprünge aufweisen. Die Ausgestaltung R2<R1 ist neben der Werkstoffwahl und der Temperaturänderung eine zusätzliche und geometrisch bedingte Einflussmöglichkeit auf die Änderung und Erhöhung der Kontaktnormalkraft durch Temperaturänderungseinwirkung.

[0035] Infolge der Radienänderung lässt sich das durch Temperaturänderungen ausgelöste Formänderungsverhalten des aus Mehrschichtmetall oder einer Formgedächtnislegierung bestehenden Krallenpins 20

15

20

25

30

35

40

45

50

55

zusätzlich geometrisch beeinflussen und die lokal unterschiedliche Verformung der krallenförmigen Elemente 50 gezielt zur Einstellung und Erhöhung der resultierenden Kontaktnormalkraft einsetzen. Besonders Vorteilhaft sowohl bei Mehrschichtmetallen und insbesondere einem Bimetallaufbaus sowie Formgedächtnislegierungen ist ein Radienverhältnis 1,1<=R1/R2<=3.

**[0036]** Figur 4 zeigt die perspektivische Ansicht auf die Kontaktpartner 1 für eine elektrisch leitende Steckverbindung, hier bestehend aus einem Krallenpin 20, der wenigstens Bereichsweise eingebracht ist in eine Kontaktbuchse 20. Durch die temperaturänderungsbedingte Erhöhung der Kontaktnormalkraft muss die Kontaktnormalkraft nicht oder nur mit reduziertem Betrag durch die elastische Verformung der Kontaktpartner vor der Temperatureinwirkung erzeugt werden. Dadurch ist das Einschieben des Krallenpins 20 in die Kontaktbuchse 10 einfacher und montagefreundlich.

[0037] Figur 5 zeigt die dreidimensionale Ansicht auf die Kontaktpartner 1 für eine elektrisch leitende Steckverbindung in Steckrichtung. Die krallenförmigen Elemente 50 sind an ihrem Erstreckungsende und angrenzend an die Öffnung OE bei Montagetemperatur, welche vorzugsweise gleich der Umgebungstemperatur ist, mit deutlichem Spiel gegenüber der Kontaktbuchse ausgebildet und erleichtert auf diese Weise die Montage.

**[0038]** Figur 6 zeigt die räumliche Darstellung des endseitig in Steckrichtung gerichteten Krallenpins 20. Diese Detailansicht zeigt die optional und wahlweise ein einem oder mehreren krallenförmigen Elementen 50 realisierten Abschrägung oder Fase F. Die Fase F ist hier auf der Steckrichtungsseite seitlich und endseitig der krallenförmigen Elemente 50 vorgesehen. Dadurch wird die Montage, d. h. das Zusammenstecken der Kontaktpartner 1 durch Einbringen des Krallenpins 20 in die Kontaktbuchse 10 nochmals erleichtert, weil einem quasi-Festhaken bei der Einschubbewegung entgegengewirkt wird.

### Bezugszeichen

#### [0039]

| 1             | Kontaktpartner für eine elektrisch leiten- |
|---------------|--------------------------------------------|
|               | de Steckverbindung                         |
| 10            | Kontaktbuchse                              |
| 20            | Kontaktstecker, Krallenpin                 |
| 30            | Basiselement                               |
| 40            | Funktionselement                           |
| 50            | krallenförmiges Element                    |
| b, b1, b2, bn | Krallenbreite, Breite des krallenförmi-    |
|               | gen Elementes                              |
| F             | Fase, Abschrägung                          |
| OE            | Öffnung                                    |
| R, R1, R2     | Krümmungsradius krallenförmiges Ele-       |
|               | ment                                       |

#### **Patentansprüche**

- Kontaktstecker (20) zur Übertragung elektrischer Energie durch lösbare Kontaktierung mit einer Kontaktbuchse (10), dadurch gekennzeichnet, dass der Kontaktstecker als Krallenpin (20) ausgebildet ist, dadurch, dass dieser wenigstens ein krallenförmiges Element (50) aufweist, welches sich durch Temperaturänderung verformt und eine Änderung der Kontaktnormalkraft zwischen dem Krallenpin (20) und der Kontaktbuchse (10) realisiert.
- Krallenpin (20) nach Anspruch 1, dadurch gekennzeichnet, dass sich das wenigstens ein krallenförmiges Element (50) von einem Basiselement (30) aus kreisbogenförmig mit einem Krümmungsradius R in Umfangsrichtung des Krallenpins (20) erstreckt.
- 3. Krallenpin (20) nach Anspruch 2, dadurch gekennzeichnet, dass das wenigstens ein krallenförmiges Element (50) in Erstreckungsrichtung ausgehend von dem Basiselement (30) einen ersten Krümmungsradius R1 und am Erstreckungsende einen zweiten Krümmungsradius R2 aufweist.
- 4. Krallenpin (20) nach Anspruch 3, dadurch gekennzeichnet, dass der Krümmungsradius R1 größer ist als der Krümmungsradius R2 und das Radienverhältnis in einem Bereich 1,1<=R1/R2<=3 liegt.</p>
- 5. Krallenpin (20) nach Anspruch 1, dadurch gekennzeichnet, dass das wenigstens ein krallenförmiges Element (50) am Erstreckungsende eine Abschrägung in Form einer Fase F aufweist.
- 6. Krallenpin (20) nach Anspruch 2, dadurch gekennzeichnet, dass sich wenigstens ein zweites krallenförmiges Element (50) von dem Basiselement (30) aus kreisbogenförmig erstreckt und derart angeordnet ist, dass es in Axialrichtung des Krallenpins (20) parallel und spiegelsymmetrisch zum ersten krallenförmigen Element (50) angeordnet ist, sodass ein Krallenpaar gebildet ist, welches Abschnittsweise eine zylinderformähnliche Außenkontur des Krallenpins (20) bildet.
- Krallenpin (20) nach Anspruch 6, dadurch gekennzeichnet, dass das Krallenpaar eine Öffnung OE aufweist.
- 8. Krallenpin (20) nach Anspruch 1, dadurch gekennzeichnet, dass in axialer Richtung des Krallenpins (20) eine Mehrzahl von krallenförmigen Elementen (50) angeordnet sind.
- Krallenpin (20) nach Anspruch 8, dadurch gekennzeichnet, dass die Mehrzahl der krallenförmigen Elemente (50) eine oder mehrere unterschiedliche

Krallenbreiten b aufweisen.

- **10.** Krallenpin (20) nach Anspruch 9, **dadurch gekennzeichnet**, **dass** die unterschiedlichen Krallenbreiten b zwischen zwei Krallenbreiten b1, b2 in einem Verhältnis von 0,3<=b1/b2<=0,8 liegen.
- 11. Krallenpin (20) nach Anspruch 1, dadurch gekennzeichnet, dass wenigstens ein krallenförmiges Element (50) aus einem Mehrschichtmaterial oder einer Formgedächtnislegierung gebildet sind mit der Eigenschaft, durch Temperaturänderung eine Formänderung zu vollziehen.
- **12.** Krallenpin (20) nach Anspruch 2, **dadurch gekennzeichnet**, **dass** das Basiselement (30) endseitig entgegen der Steckrichtung des Krallenpins (20) ein Funktionselement (40) aufweist.
- **13.** Kontaktpartner (1) für eine elektrisch leitende Steckverbindung, bestehend aus einer Kontaktbuchse (10) und einem Krallenpin (20) nach einem der vorgehenden Ansprüche.

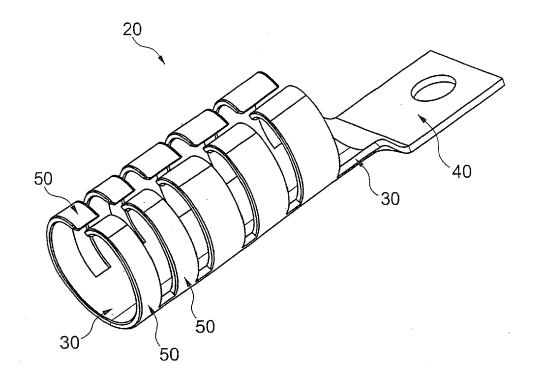



Fig. 1

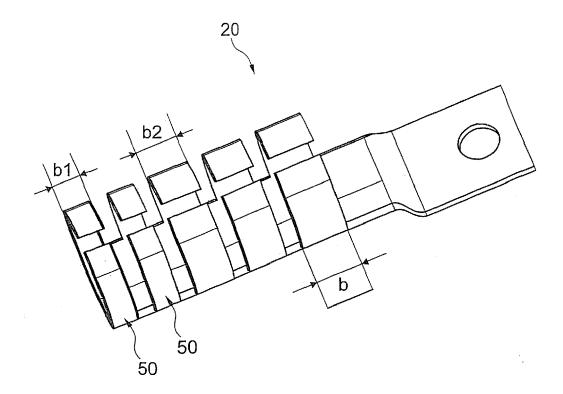
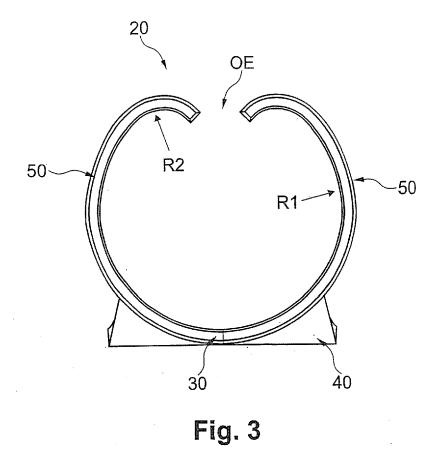




Fig. 2



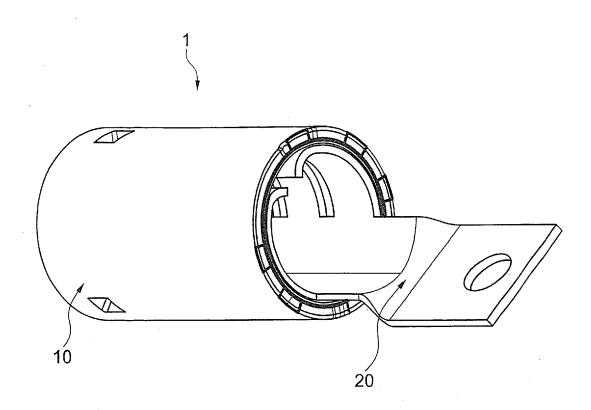



Fig. 4

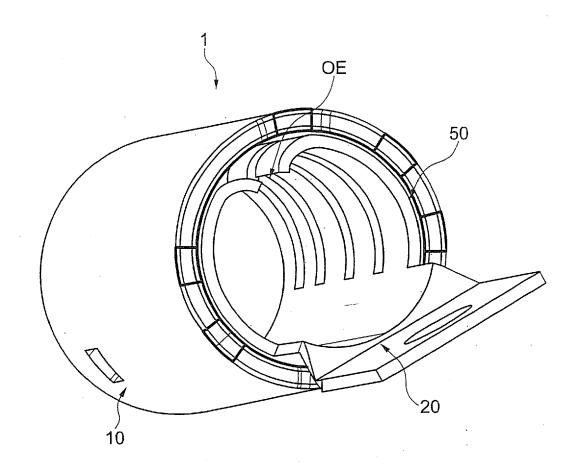



Fig. 5

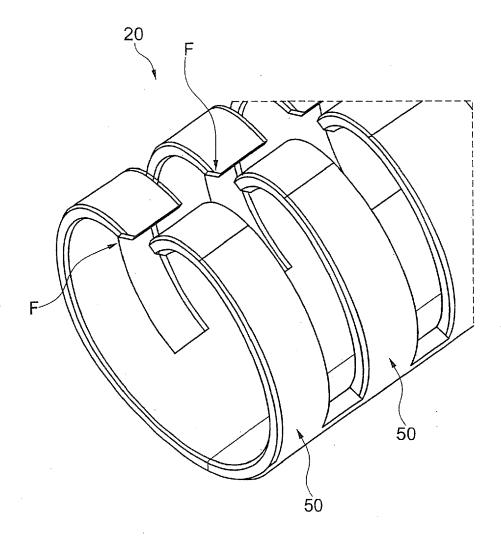



Fig. 6



# **EUROPÄISCHER RECHERCHENBERICHT**

Nummer der Anmeldung

EP 23 15 9042

| 5  |  |
|----|--|
| 10 |  |
| 15 |  |
| 20 |  |
| 25 |  |
| 30 |  |
| 35 |  |
| 40 |  |
| 45 |  |
| 50 |  |

|                                                    | EINSCHLÄGIGE                                                                                                                                                                                                                | DOKUMENTE         |                                                                                       |                                                                        |                                       |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------|
| Kategorie                                          | Kennzeichnung des Dokun<br>der maßgeblich                                                                                                                                                                                   |                   | t erforderlich,                                                                       | Betrifft<br>Anspruch                                                   | KLASSIFIKATION DER<br>ANMELDUNG (IPC) |
| ĸ                                                  | WO 2011/098102 A1 (DE]; LANGHOFF WOLF 18. August 2011 (20 * Abbildung 3 *                                                                                                                                                   | GANG [DE] ET A    |                                                                                       | 1,2,6,7,<br>11-13                                                      | H01R13/05                             |
| κ                                                  | GB 2 570 929 A (HYP<br>14. August 2019 (20<br>* Abbildung 2 *                                                                                                                                                               |                   |                                                                                       | 1-8,13                                                                 | H01R13/03<br>H01R13/533               |
| <b>c</b>                                           | DE 10 2006 001102 A<br>GMBH [DE]) 12. Juli<br>* Abbildung 1 *                                                                                                                                                               | •                 |                                                                                       | 1-3,<br>5-10,12                                                        |                                       |
|                                                    |                                                                                                                                                                                                                             |                   |                                                                                       |                                                                        |                                       |
|                                                    |                                                                                                                                                                                                                             |                   |                                                                                       |                                                                        | RECHERCHIERTE<br>SACHGEBIETE (IPC)    |
|                                                    |                                                                                                                                                                                                                             |                   |                                                                                       |                                                                        | H01R                                  |
|                                                    |                                                                                                                                                                                                                             |                   |                                                                                       |                                                                        |                                       |
|                                                    |                                                                                                                                                                                                                             |                   |                                                                                       |                                                                        |                                       |
|                                                    |                                                                                                                                                                                                                             |                   |                                                                                       |                                                                        |                                       |
| Der vo                                             | rliegende Recherchenbericht wu                                                                                                                                                                                              |                   |                                                                                       |                                                                        |                                       |
|                                                    | Recherchenort                                                                                                                                                                                                               | Abschlußdatum     | der Recherche                                                                         |                                                                        | Prüfer                                |
|                                                    | Den Haag                                                                                                                                                                                                                    | 3. Juli           | 2023                                                                                  | Esm                                                                    | iol, Marc-Olivier                     |
| X : von<br>Y : von<br>ande<br>A : tech<br>O : nich | ATEGORIE DER GENANNTEN DOK<br>besonderer Bedeutung allein betrach<br>besonderer Bedeutung in Verbindung<br>eren Veröffentlichung derselben Kater<br>nologischer Hintergrund<br>itschriftliche Offenbarung<br>schenliteratur | tet E gorie D L : | : älteres Patentdoku<br>nach dem Anmelde<br>: in der Anmeldung a<br>aus anderen Gründ | ment, das jedoo<br>datum veröffen<br>angeführtes Dol<br>en angeführtes | tlicht worden ist<br>kument           |

EPO FORM 1503 03.82 (P04C03)

55

## EP 4 239 803 A1

# ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

5

10

15

20

25

30

35

40

45

50

55

EP 23 15 9042

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten

Patentdokumente angegeben.

Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

03-07-2023

|                | Im Recherchenbericht<br>angeführtes Patentdokument |            | Datum der<br>Veröffentlichung | Mitglied(er) der<br>Patentfamilie |          |                       | Datum der<br>Veröffentlichung |                                        |
|----------------|----------------------------------------------------|------------|-------------------------------|-----------------------------------|----------|-----------------------|-------------------------------|----------------------------------------|
|                | WO                                                 | 2011098102 | <b>A</b> 1                    | 18-08-2011                        | EP<br>WO |                       | A1<br>A1                      | 18-08-2011<br>26-12-2012<br>18-08-2011 |
|                |                                                    |            |                               | 14-08-2019                        | GB<br>WO | 2570929<br>2019155232 | A<br>A1                       |                                        |
|                |                                                    |            | A1                            | 12-07-2007                        | KE       | INE                   |                               |                                        |
|                |                                                    |            |                               |                                   |          |                       |                               |                                        |
|                |                                                    |            |                               |                                   |          |                       |                               |                                        |
|                |                                                    |            |                               |                                   |          |                       |                               |                                        |
|                |                                                    |            |                               |                                   |          |                       |                               |                                        |
|                |                                                    |            |                               |                                   |          |                       |                               |                                        |
|                |                                                    |            |                               |                                   |          |                       |                               |                                        |
|                |                                                    |            |                               |                                   |          |                       |                               |                                        |
|                |                                                    |            |                               |                                   |          |                       |                               |                                        |
|                |                                                    |            |                               |                                   |          |                       |                               |                                        |
|                |                                                    |            |                               |                                   |          |                       |                               |                                        |
|                |                                                    |            |                               |                                   |          |                       |                               |                                        |
|                |                                                    |            |                               |                                   |          |                       |                               |                                        |
| IM P0461       |                                                    |            |                               |                                   |          |                       |                               |                                        |
| EPO FORM P0461 |                                                    |            |                               |                                   |          |                       |                               |                                        |

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

## EP 4 239 803 A1

### IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

## In der Beschreibung aufgeführte Patentdokumente

- DE 102007051266 B4 [0004]
- DE 202016100095 U1 [0005]

- EP 2461427 B1 **[0009]**
- DE 102005032462 A1 [0011]