BACKGROUND
Technical Field.
[0001] The disclosed subject matter relates to systems and methods of evaluating repair
of a fleet of assets.
Discussion of Art.
[0002] Operating a fleet of assets that each operate remotely, such as a fleet of vehicle
systems, requires the assets to be maintained or repaired at service centers. Vehicle
systems may enter a service center for scheduled or unscheduled maintenance or repair.
Technicians at the service center may perform unscheduled maintenance by following
instructions sent from a remote diagnostic center. When the maintenance work is completed,
the technicians may conduct tests on the vehicle system using software that is provided
on the vehicle system. If the vehicle system software indicates that the vehicle system
has been sufficiently maintained or repaired, the vehicle system may be approved to
return to operation. However, the software on the vehicle system may have limited
capability and may not be updated frequently to account for new diagnostic information
or techniques. A vehicle system that receives unscheduled maintenance may be determined
by the vehicle system software to be sufficiently maintained or repaired, but due
to the limited capability of the vehicle system software may not be sufficiently maintained
or repaired when it returns to operation.
[0003] It may be desirable to have a system and method that differs from those that are
currently available.
BRIEF DESCRIPTION
[0004] In accordance with one example or aspect, a system of one or more processors may
receive vehicle data from a vehicle system at a first location and communicate the
vehicle data from the first location to a second location. The processors may integrate
the vehicle data into a database of first diagnostic data at the second location and
identify one or more first diagnostic codes from the database that indicates whether
the vehicle data represents an expected operation of the vehicle system or an unexpected
operation of the vehicle system. The processors may determine one or more maintenance
operations to perform on the vehicle system based on the one or more first diagnostic
codes.
[0005] In accordance with one example or aspect, a method may include receiving vehicle
data from a vehicle system at a first location and communicating the vehicle data
from the first location to a second location remote from the first location. The method
may include integrating the vehicle data into a database of first diagnostic data
at the second location and identifying one or more first diagnostic codes from the
database that indicates whether the vehicle data represents an expected operation
of the vehicle system or an unexpected operation of the vehicle system. The method
may include determining one or more maintenance operations to perform on the vehicle
system based on the one or more first diagnostic codes.
[0006] In accordance with one example or aspect, a system may include one or more first
processors at a first location and one or more second processors at a second location,
the second location remote from the first location. The one or more first processors
may collect vehicle data from a vehicle system at the first location and communicate
the vehicle data to the one or more second processors. The one or more second processors
may integrate the vehicle data into a database of first diagnostic data at the second
location and identify one or more first diagnostic codes from the database that indicates
whether the vehicle data represents an expected operation of the vehicle system or
an unexpected operation of the vehicle system. The one or more second processors may
determine one or more maintenance operations to perform on the vehicle system based
on the one or more first diagnostic codes.
BRIEF DESCRIPTION OF THE DRAWINGS
[0007] The subject matter may be understood from reading the following description of non-limiting
embodiments, with reference to the attached drawings, wherein below:
FIG. 1 schematically illustrates a system according to one embodiment;
FIG. 2 schematically illustrates a system according to one embodiment;
FIG. 3 schematically illustrates a method according to one embodiment; and
FIG. 4 schematically illustrates a method according to one embodiment.
DETAILED DESCRIPTION
[0008] Embodiments of the subject matter described herein relate to systems and methods
to evaluate maintenance or repairs required for a fleet of assets that operate remotely,
such as a fleet of vehicle systems. The systems and methods also provide for an evaluation
of the effectiveness of the maintenance or repairs that are performed prior to the
vehicle systems being returned to operation. The systems and methods provide communication
between remote diagnostic personnel that review historical diagnostic data of the
fleet of vehicle systems and technicians at service centers that perform an initial
diagnosis of the vehicle system based on sensor data from the vehicle system that
is obtained during operation or at the service center. The service center technicians
may identify from the sensor data faults in components or systems of the vehicle system
that indicate the components, the systems, and/or the vehicle system are operating
unexpectedly. The service center technicians may identify one or more causes of the
unexpected operation.
[0009] The remote diagnostic center personnel may receive the vehicle system sensor data
and the one or more causes (labelled as sub-identification codes) from the service
center. The remote diagnostic center may have access to historical vehicle system
diagnostic data from the vehicle system and from other vehicle systems in the fleet.
The remote service center includes the vehicle system sensor data and the sub-identification
codes into a database of the historical vehicle system diagnostic data and identifies
one or more first level diagnostic codes from the database. The first level diagnostic
codes indicate whether the components and systems of the vehicle system are operating
in an expected manner, a possibly unexpected manner, or an unexpected manner. The
remote diagnostic center may create a review of the vehicle system and initiate communication
with the service center to discuss possible maintenance or repair. The communication
may include discussion of the initial diagnosis performed by the service center, possible
maintenance and/or repair, and resolution of the case prior, which may include maintenance
and repair operations, to releasing the vehicle system back into operation. The remote
diagnostic center may provide a score to the process based on the process from the
arrival of the vehicle system to the service center to release of the vehicle system
from the service center for reporting and/or analysis.
[0010] While one or more embodiments are described in connection with a rail vehicle system,
not all embodiments are limited to rail vehicle systems. Unless expressly disclaimed
or stated otherwise, the subject matter described herein extends to other types of
vehicle systems, such as automobiles, trucks (with or without trailers), buses, marine
vessels, aircraft, mining vehicles, agricultural vehicles, or other off-highway vehicles.
The vehicle systems described herein (rail vehicle systems or other vehicle systems
that do not travel on rails or tracks) may be formed from a single vehicle or multiple
vehicles. With respect to multi-vehicle systems, the vehicles may be mechanically
coupled with each other (e.g., by couplers) or logically coupled but not mechanically
coupled. For example, vehicles may be logically but not mechanically coupled when
the separate vehicles communicate with each other to coordinate movements of the vehicles
with each other so that the vehicles travel together (e.g., as a convoy).
[0011] Referring to FIG. 1, a system 10 is provided for evaluating repair of a fleet of
remote assets. The fleet of remote assets may include a fleet of vehicle systems such
as rail vehicles 12 and/or trucks 26. The system allows a variety of different users
to obtain information regarding each of the mobile assets. According to one embodiment,
a user 14 may include a transportation company that owns and/or operates the remote
assets. According to one embodiment, a user 24 may include a customer of a transportation
company. According to one embodiment, a user may include personnel in an asset service
center 22 (e.g., a service shop) and/or personnel in a remote diagnostic center 18.
According to one embodiment, a user may include an operator (e.g., a train engineer
or a truck driver) that operates each individual asset.
[0012] The remote diagnostic center and the service center may both be linked to a network
15 by known types of data connections. According to one embodiment, the network is
a global network, such as the Internet, and the remote diagnostic center and the service
center may each be linked to the network by computer interfaces through an internet
service provider. The network provides a means for communicating between the remote
diagnostic center and the service center. The remote diagnostic center and the service
center may also be in communication with the users, such as a transportation company,
via the network. Other users may be in communication with the remote diagnostic center
and/or the service center through links to the network.
[0013] Each mobile asset may be equipped with a position determination system 16. According
to one embodiment, the position determination system may be a Global Navigation Satellite
System (GNSS) receiver, such as a Global Positioning System (GPS) receiver or other
satellite-based or local navigation instrument for determining the geographic location
of the mobile asset. Data regarding the location of the mobile asset and operating
parameters of the mobile asset may be transferred periodically or concurrently from
the remote asset by a communication system 25 to the remote diagnostic center by a
data link 20, such as a satellite system, a cellular system, an optical or infrared
system, a hard-wired phone line, etc. The communication system of the asset may include
a transceiver for transmitting information, including position information and operating
parameters, and for receiving information from other devices and users in the system.
[0014] The service center may include a computer(s) 21 and/or a mobile device(s) 23. The
mobile device(s) may be a smartphone, a tablet, or personal digital assistant device.
The service center computer(s) and the mobile device(s) may be connected to the network,
for example through an internet service provider or a cellular service provider. The
computer(s) and/or the mobile device(s) may communicate with each asset, other devices
or users of the system, and/or the remote diagnostic center through the data links.
[0015] The service center may perform scheduled maintenance on a vehicle system and/or may
perform unscheduled maintenance on a vehicle system that arrives at the service center.
The vehicles system may arrive at the service center on a scheduled basis or may arrive
at the service center on an unscheduled basis. The vehicle system may arrive on an
unscheduled basis due to an operator of the vehicle system determining that the vehicle
system is operating in an unexpected manner. For example, a sensor may provide a notification
to the operator that an operating parameter of the vehicle system indicates that the
vehicle system is not operating in an expected manner. The maintenance operation performed
may include replacement of a part and/or a system of the vehicle system that are scheduled
for replacement due to an age and/or use of the part and/or system. The maintenance
operation performed may include a repair operation to replace a part and/or a system
that has been damaged and/or failed. The repair operation may include a repair of
the part and/or system or a replacement of the part and/or system.
[0016] Referring to FIG. 2, each vehicle system may be equipped with a sensor system 32
including a plurality of sensors for monitoring a plurality of operating parameters
representative of the condition of the vehicle system and the efficiency of operation
of the vehicle system. The sensors may include temperature sensors to sense a temperature
of a part, a component, and/or a system of the vehicle system. The temperature sensors
may sense a temperature of a fluid, such as a lubricant, of the vehicle system. The
sensors may include a pressure sensor to sense a pressure. For example, a pressure
sensor may sense a pressure of a brake fluid of a brake system. The sensors may include
a voltage sensor and/or a current sensor to sense a voltage and/or a current of the
vehicle system. For example, a sensor or sensors may determine a voltage and/or a
current supplied by a battery or bank of batteries of the vehicle system. As used
herein, the term "sensor" may include any sensor that senses or detects any characteristic
or operating parameter of the vehicle system and the term "sensor system" may include
any sensor or one or more sensor systems that sense or detect characteristics or operating
parameters of the vehicle system.
[0017] The vehicle system sensor system may sense characteristics and operating parameters
of the vehicle system as the vehicle system operates outside of the service center.
The vehicle system may include a memory that stores sensor readings as the vehicle
system operates, for example within a transportation network. The vehicle system may
include a control system or controller 28 that controls operation of the vehicle system.
The controller may execute one or more feedback control loops to operate the vehicle
system within one or more operating parameters. The controller may generate diagnostic
data that indicates that one or more operating parameters exceeds one or more threshold
values. The diagnostic data of the vehicle system may be stored in the memory of the
vehicle system. According to one embodiment, the controller executes the one or more
feedback control loops at one or more throttle settings of the vehicle system and
generates and stores diagnostic data at the one or more throttle settings.
[0018] The service center may include a sensor system 34 that may be provided to the vehicle
system when the vehicle system arrives at the service center. The service center sensor
system may be provided to vehicle systems that are at the service center and do not
include sensors for sensing some characteristics or operating parameters of the vehicle
system. For example, the service center sensor system may include a plurality of sensors
that are connected together, for example by a wire harness, and placed on the vehicle
system to sense or detect characteristics or operating parameters of the vehicle system
at locations or for components or systems that are not sensed or detected by the vehicle
system sensor system. The service center sensor system may obtain sensor data from
the vehicle system while the vehicle system is idling in the service center. The service
center sensor system may obtain sensor data from the vehicle system at other operating
levels of the vehicle system while it is in the service center.
[0019] The service center may include one or more processors 36. The one or more processors
may be provided in the service center computer and/or mobile device. The service center
computer and/or mobile device may include a display 38 and an input 40 that service
center personnel may use to cause the one or more processors to execute instructions
stored in a memory 42.
[0020] When a vehicle system arrives at the service center sensor data from the vehicle
system sensor system and/or the vehicle system sensor system may be transmitted or
communicated to the computer and/or the mobile device of the service center. The sensor
data may be communicated or transmitted wirelessly, for example through the network
links or the data links. The sensor data may also be transmitted to the computer and/or
the handheld device by a wired connection. The computer and/or the handheld device
may store the sensor data in the memory of the computer and/or the handheld device.
The one or more processors of the computer and/or handheld device may execute or run
a software program that reviews the sensor data and determines if any of the sensor
data indicates that a fault may exist. For example, the sensor data may indicate that
one or more components or systems of the vehicle system is faulty or not operating
within expected parameters. The one or more processors may determine one or more sub-identifications
of the fault from the sensor data. The one or more sub-identifications may identify
one or more causes of the fault. The sensor data and the fault data including any
sub-identifications may form vehicle diagnostic data that may be used to determine
if the vehicle system requires any maintenance or repair.
[0021] The computer and/or handheld device of the service center may transmit or communicate
the vehicle diagnostic data to the remote diagnostic center. The remote diagnostic
center may include a memory 46 and one or more processors 44. The memory may include
instructions executable by the one or more processors to implement the methods or
portions of the methods disclosed herein. The memory may store the vehicle diagnostic
data of the vehicle system transmitted or communicated from the service center.
[0022] The remote service center may include a database 52 of historical diagnostic data.
The historical diagnostic data may include sensor data and fault data from previous
service operations on the vehicle system and other vehicle systems from the service
center and/or from other service centers. The historical diagnostic data may include
data regarding maintenance and/or repairs done to vehicle system previously and/or
to other vehicles by the service center and/or other service centers. The one or more
processors of the remote diagnostic center may integrate the vehicle diagnostic data
stored in the memory into the historic diagnostic database.
[0023] The one or more processors may insert into the vehicle diagnostic data one or more
diagnostic codes that indicates the vehicle system is operating in an expected manner,
in a possibly expected manner, or in an unexpected manner. The one or more processors
may, for example, determine that a component or system of the vehicle system may be
operating in an unexpected manner, but the vehicle system is operating in an expected
manner. As another example, the one or more processors of the remote diagnostic center
may determine that one or more components or systems of the vehicle system are operating
in a possibly unexpected manner and/or an unexpected manner and the vehicle system
is operating in a possibly unexpected manner or an unexpected manner.
[0024] The one or more processors of the remote diagnostic center may determine, based on
the vehicle diagnostic data and the one or more diagnostic codes from the historical
diagnostic data that the maintenance of the vehicle system requires review by the
service center and the remote diagnostic center. Personnel at the remote diagnostic
center may, during the review, review the sensor data from the vehicle system and
the diagnostic review of the vehicle sensor data performed at the service center.
The one or more processors of the remote diagnostic center may initiate a communication
with the service center to provide a discussion between personnel of the remote diagnostic
center and the service center. The communication may be, for example, a chat function
between a computer and/or handheld device of the remote diagnostic center and a computer
and/or handheld device of the service center that provides for written communication
between the remote diagnostic center and the service center. The communication may
be, for example, a video conference between the remote diagnostic center and the service
center.
[0025] Referring to FIG. 3, a method 300 according to one embodiment may include a step
310 of uploading vehicle data from a vehicle system to a computing device, such as
a computer handheld device, at a service center. The vehicle data may include sensor
data obtained during operation of the vehicle system prior to arriving at the service
center or from operation of the vehicle system in the service center. The sensor data
may be obtained from sensors that are provided on the vehicle system during operation
prior to arrival or sensors that are provided on the vehicle system after arrival
at the service center. The method may include a step 320 of determining from the vehicle
data one or more faults in the operation of one or more components or systems of the
vehicle system and one or more sub-identifications of possible causes of the one or
more faults.
[0026] The method may include a step 330 of integrating the vehicle data and the sub-identifications
into a database of diagnostic data at a remote diagnostic center that is remote from
the service center. The database of diagnostic data may include vehicle data from
vehicle systems that have previously been at the service center, including the vehicle
system currently at the service center. The method may include a step 340 of identifying
from the vehicle data and sub-identifications diagnostic codes and inserting the diagnostic
codes into the database. The diagnostic codes indicate whether the vehicle data represents
that the vehicle system is operating in an expected manner, a possibly unexpected
manner, or an unexpected manner.
[0027] The method may include a stop 350 initiating at the remote diagnostic center a case
for review with a technician of the service center. The method may include a step
360 of reviewing the vehicle data uploaded at the service center and the sub-identifications
that may determine the cause of one or more faults in the operation of one or more
components or systems of the vehicle system. The method may include a step 370 of
initiating a communication between the remote diagnostic center and the service center.
The communication may include discussion of the vehicle data and the determination
of any faults and their sub-identifications determined at the service center. The
communication may include discussion of maintenance and repair operations to be performed
on the vehicle system.
[0028] The method may include a step 380 of resolving the release of the vehicle system
from the service center. The resolution of the release may include documentation of
the communication between the service center and the remote diagnostic center. The
resolution may include a determination of any maintenance or repair operations performed
on the vehicle system, and the effectiveness of the maintenance or repair. The method
may include a step 390 of scoring the process to document the resolution of the release
of the vehicle system from the service center. The score may be reported to the vehicle
system owner or user to report the release and to allow analysis of the process from
the arrival of the vehicle system to the service center to release from the service
center.
[0029] Referring to FIG. 4, a method 400 according to one embodiment may include a step
410 of collecting vehicle data from a vehicle system at a first location and a step
420 of communicating the vehicle data from the first location to a second location
remote from the first location. The method may include a step 430 of integrating the
vehicle data into a database of first diagnostic data at the second location and a
step 440 identifying one or more first diagnostic codes from the database that indicates
whether the vehicle data represents an expected operation of the vehicle system or
an unexpected operation of the vehicle system. The method may include a step 450 of
determining one or more maintenance operations to perform on the vehicle system based
on the one or more first diagnostic codes.
[0030] According to one embodiment, a method may include performing one or more of repair
operation or a replacement operation on a vehicle system based on one or more of the
sub-identifications identified from the vehicle system data collected during operation
of the vehicle system during operation and/or during operation in the service center.
The repair and/or replacement operation may be based on one or more of the diagnostic
codes from the database of diagnostic data. The repair and/or replacement operation
may be based on the score of the release of the vehicle system from the service center.
For example, according to one embodiment a component or system, such as a pump, a
sensor, a valve, a circuit, or parts of a brake system or throttle system may be repaired.
According to one embodiment, a component or system may be replaced.
[0031] Integrating the vehicle data and the fault sub-identification(s) into the database
improves the ability of the system to determine a diagnostic code(s) that correctly
identifies the required maintenance and/or repair. The database may include data of
similar vehicle systems with similar fault sub-identifications that provide a more
accurate determination of the required maintenance or repair or replacement for the
vehicle system at the service center. The use of artificial intelligence (AI) and/or
machine learning (ML) techniques may allow the processors to identify a required maintenance
or repair or replacement faster than currently available methods and systems. Review
of the upload of the vehicle system data at the service center and the determination
of the fault sub-identification(s) by the processor(s) of the remote diagnostic center
allows for review of the parametric data of the vehicle system data at the remote
diagnostic center which may improve the identification and insertion of the diagnostic
code(s). Determining a score of the release of the vehicle system from the service
center may provide improved diagnostics and result in less repeat failures of the
vehicle system.
[0032] A system may include one or more processors to receive vehicle data from a vehicle
system at a first location and communicate the vehicle data from the first location
to a second location. The one or more processors may integrate the vehicle data into
a database of first diagnostic data at the second location and identify one or more
first diagnostic codes from the database that indicates whether the vehicle data represents
an expected operation of the vehicle system or an unexpected operation of the vehicle
system. The one or more processors may determine one or more maintenance operations
to perform on the vehicle system based on the one or more first diagnostic codes.
[0033] The vehicle data may include sensor data collected from sensors during operation
of the vehicle system.
[0034] The sensor data may be collected during idling of the vehicle system.
[0035] The sensor data may be collected at a designated throttle setting of the vehicle
system.
[0036] The vehicle data may be second diagnostic data from the vehicle system.
[0037] The second diagnostic data may be obtained from a feedback loop of a control system
of the vehicle system.
[0038] The second diagnostic data may indicate if one or more operating parameters of the
vehicle system exceeds a threshold value.
[0039] The one or more processors may include an algorithm configured to identify the one
or more first diagnostic codes.
[0040] The algorithm may be configured to determine the one or more maintenance operations.
[0041] The one or more processors may initiate communication between the first location
and the second location.
[0042] The one or more processors may receive from the second location a score based on
one or more of second diagnostic data determined at the first location, the communication
between the first location and the second location, the determination of the one or
more maintenance operations, or a completion of the one or more maintenance operations.
[0043] A method may include receiving vehicle data from a vehicle system at a first location
and communicating the vehicle data from the first location to a second location remote
from the first location. The method may include integrating the vehicle data into
a database of first diagnostic data at the second location and identifying one or
more first diagnostic codes from the database that indicates whether the vehicle data
represents an expected operation of the vehicle system or an unexpected operation
of the vehicle system. The method may include determining one or more maintenance
operations to perform on the vehicle system based on the one or more first diagnostic
codes.
[0044] The vehicle data may include sensor data collected from sensors during operation
of the vehicle system.
[0045] The sensor data may be collected during idling of the vehicle system.
[0046] The sensor data may be collected at a designated throttle setting of the vehicle
system.
[0047] The vehicle data may be second diagnostic data from the vehicle system.
[0048] The second diagnostic data may be obtained from a feedback loop of a control system
of the vehicle system.
[0049] The second diagnostic data may indicate if one or more operating parameters of the
vehicle system exceeds a threshold value.
[0050] The method may include implementing an algorithm configured to identify the one or
more first diagnostic codes.
[0051] The algorithm may determine the one or more maintenance operations.
[0052] The method may include the first location initiating communication with one or more
of the vehicle system or the second location.
[0053] The method may include receiving from the second location a score based on one or
more of second diagnostic data determined at the first location, the communication
between the first location and the second location, the determination of the one or
more maintenance operations, or a completion of the one or more maintenance operations.
[0054] A system may include one or more first processors at a first location and one or
more second processors at a second location. The second location may be remote from
the first location. The one or more first processors may receive vehicle data from
a vehicle system at the first location and communicate the vehicle data to the one
or more second processors. The one or more second processors may integrate the vehicle
data into a database of first diagnostic data at the second location and identify
one or more first diagnostic codes from the database that indicates whether the vehicle
data represents an expected operation of the vehicle system or an unexpected operation
of the vehicle system. The one or more second processors may determine one or more
maintenance operations to perform on the vehicle system based on the one or more first
diagnostic codes.
[0055] The vehicle data may include sensor data collected from sensors during operation
of the vehicle system.
[0056] The one or more first processors may determine second diagnostic data from the vehicle
system.
[0057] The second diagnostic data may be obtained from a feedback loop of a control system
of the vehicle system.
[0058] The second diagnostic data may indicate if one or more operating parameters of the
vehicle system exceeds a threshold value.
[0059] The one or more second processors may include an algorithm to identify the one or
more first diagnostic codes.
[0060] The algorithm may determine the one or more maintenance operations.
[0061] The one or more second processors are configured to initiate communication with the
one or more first processors.
[0062] The one or more second processors may receive from the second location a score based
on one or more of second diagnostic data determined by the one or more first processors,
the communication between the one or more first processors and the one or more second
processors, the determination of the one or more maintenance operations, or a completion
of the one or more maintenance operations.
[0063] In one embodiment, the controllers or systems described herein may have a local data
collection system deployed and may use machine learning to enable derivation-based
learning outcomes. The controllers may learn from and make decisions on a set of data
(including data provided by the various sensors), by making data-driven predictions
and adapting according to the set of data. In embodiments, machine learning may involve
performing a plurality of machine learning tasks by machine learning systems, such
as supervised learning, unsupervised learning, and reinforcement learning. Supervised
learning may include presenting a set of example inputs and desired outputs to the
machine learning systems. Unsupervised learning may include the learning algorithm
structuring its input by methods such as pattern detection and/or feature learning.
Reinforcement learning may include the machine learning systems performing in a dynamic
environment and then providing feedback about correct and incorrect decisions. In
examples, machine learning may include a plurality of other tasks based on an output
of the machine learning system. In examples, the tasks may be machine learning problems
such as classification, regression, clustering, density estimation, dimensionality
reduction, anomaly detection, and the like. In examples, machine learning may include
a plurality of mathematical and statistical techniques. In examples, the many types
of machine learning algorithms may include decision tree based learning, association
rule learning, deep learning, artificial neural networks, genetic learning algorithms,
inductive logic programming, support vector machines (SVMs), Bayesian network, reinforcement
learning, representation learning, rule-based machine learning, sparse dictionary
learning, similarity and metric learning, learning classifier systems (LCS), logistic
regression, random forest, K-Means, gradient boost, K-nearest neighbors (KNN), a priori
algorithms, and the like. In embodiments, certain machine learning algorithms may
be used (e.g., for solving both constrained and unconstrained optimization problems
that may be based on natural selection). In an example, the algorithm may be used
to address problems of mixed integer programming, where some components restricted
to being integer-valued. Algorithms and machine learning techniques and systems may
be used in computational intelligence systems, computer vision, Natural Language Processing
(NLP), recommender systems, reinforcement learning, building graphical models, and
the like. In an example, machine learning may be used making determinations, calculations,
comparisons and behavior analytics, and the like.
[0064] In one embodiment, the controllers may include a policy engine that may apply one
or more policies. These policies may be based at least in part on characteristics
of a given item of equipment or environment. With respect to control policies, a neural
network can receive input of a number of environmental and task-related parameters.
These parameters may include, for example, operational input regarding operating equipment,
data from various sensors, location and/or position data, and the like. The neural
network can be trained to generate an output based on these inputs, with the output
representing an action or sequence of actions that the equipment or system should
take to accomplish the goal of the operation. During operation of one embodiment,
a determination can occur by processing the inputs through the parameters of the neural
network to generate a value at the output node designating that action as the desired
action. This action may translate into a signal that causes the vehicle to operate.
This may be accomplished via back-propagation, feed forward processes, closed loop
feedback, or open loop feedback. Alternatively, rather than using backpropagation,
the machine learning system of the controller may use evolution strategies techniques
to tune various parameters of the artificial neural network. The controller may use
neural network architectures with functions that may not always be solvable using
backpropagation, for example functions that are non-convex. In one embodiment, the
neural network has a set of parameters representing weights of its node connections.
A number of copies of this network are generated and then different adjustments to
the parameters are made, and simulations are done. Once the output from the various
models are obtained, they may be evaluated on their performance using a determined
success metric. The best model is selected, and the vehicle controller executes that
plan to achieve the desired input data to mirror the predicted best outcome scenario.
Additionally, the success metric may be a combination of the optimized outcomes, which
may be weighed relative to each other.
[0065] As used herein, an element or step recited in the singular and proceeded with the
word "a" or "an" do not exclude the plural of said elements or operations, unless
such exclusion is explicitly stated. Furthermore, references to "one embodiment" of
the invention do not exclude the existence of additional embodiments that incorporate
the recited features. Moreover, unless explicitly stated to the contrary, embodiments
"comprising," "comprises," "including," "includes," "having," or "has" an element
or a plurality of elements having a particular property may include additional such
elements not having that property. In the appended claims, the terms "including" and
"in which" are used as the plain-English equivalents of the respective terms "comprising"
and "wherein." Moreover, in the following claims, the terms "first," "second," and
"third," etc. are used merely as labels, and do not impose numerical requirements
on their objects. Further, the limitations of the following claims are not written
in means-plus-function format and are not intended to be interpreted based on 35 U.S.C.
§ 112(f), unless and until such claim limitations expressly use the phrase "means
for" followed by a statement of function devoid of further structure.
[0066] The above description is illustrative, and not restrictive. For example, the above-described
embodiments (and/or aspects thereof) may be used in combination with each other. In
addition, many modifications may be made to adapt a particular situation or material
to the teachings of the subject matter without departing from its scope. While the
dimensions and types of materials described herein define the parameters of the subject
matter, they are exemplary embodiments. Other embodiments will be apparent to one
of ordinary skill in the art upon reviewing the above description. The scope of the
subject matter should, therefore, be determined with reference to the appended clauses,
along with the full scope of equivalents to which such claims are entitled.
[0067] This written description uses examples to disclose several embodiments of the subject
matter, including the best mode, and to enable one of ordinary skill in the art to
practice the embodiments of subject matter, including making and using any devices
or systems and performing any incorporated methods. The patentable scope of the subject
matter is defined by the claims, and may include other examples that occur to one
of ordinary skill in the art. Such other examples are intended to be within the scope
of the claims if they have structural elements that do not differ from the literal
language of the claims, or if they include equivalent structural elements with insubstantial
differences from the literal languages of the claims.
[0068] A reference herein to a patent document or any other matter identified as prior art,
is not to be taken as an admission that the document or other matter was known or
that the information it contains was part of the common general knowledge as at the
priority date of any of the claims.
1. A system (10) comprising:
one or more processors (36) configured to:
receive vehicle data from a vehicle system (12, 26) at a first location;
communicate the vehicle data from the first location to a second location;
integrate the vehicle data into a database (52) of first diagnostic data at the second
location;
identify one or more first diagnostic codes from the database (52) that indicates
whether the vehicle data represents an expected operation of the vehicle system (12,
26) or an unexpected operation of the vehicle system (12, 26); and
determine one or more maintenance operations to perform on the vehicle system (12,
26) based on the one or more first diagnostic codes.
2. The system (10) of claim 1, wherein the vehicle data comprises sensor data received
from sensors (36) during operation of the vehicle system (12, 26).
3. The system (10) of claim 2, wherein the sensor data is received from the sensors (36)
during idling of the vehicle system (12, 26).
4. The system (10) of claim 2, wherein the sensor data is received from the sensors (36)
at a designated throttle setting of the vehicle system (12, 26).
5. The system (10) of claim 1, wherein the vehicle data is second diagnostic data from
the vehicle system (12, 26), the second diagnostic data being received from a feedback
loop of a control system (28) of the vehicle system (12, 26).
6. The system (10) of claim 5, wherein the second diagnostic data indicates if one or
more operating parameters of the vehicle system (12, 26) exceeds a threshold value.
7. The system (10) of claim 1, wherein the one or more processors (36) comprise an algorithm
configured to identify the one or more first diagnostic codes.
8. The system (10) of claim 7, wherein the algorithm is configured to determine the one
or more maintenance operations.
9. The system (10) of claim 1, wherein the one or more processors (36) are configured
to initiate communication between the first location and the second location.
10. The system (10) of claim 9, wherein the one or more processors (36) are configured
to receive from the second location a score based on one or more of second diagnostic
data determined at the first location, the communication between the first location
and the second location, the determination of the one or more maintenance operations,
or a completion of the one or more maintenance operations.
11. A method comprising:
receiving vehicle data from a vehicle system (12, 26) at a first location;
communicating the vehicle data from the first location to a second location remote
from the first location;
integrating the vehicle data into a database (52) of first diagnostic data at the
second location; and
identifying one or more first diagnostic codes from the database (52) that indicates
whether the vehicle data represents an expected operation of the vehicle system (12,
26) or an unexpected operation of the vehicle system (12, 26); and
determining one or more maintenance operations to perform on the vehicle system (12,
26) based on the one or more first diagnostic codes.
12. The method of claim 11, wherein the vehicle data comprises sensor data received from
sensors (36) during operation of the vehicle system (12, 26).
13. The method of claim 12, wherein the sensor data is received from the sensors (36)
during idling of the vehicle system (12, 26).
14. The method of claim 12, wherein the sensor data is received from the sensors (36)
at a designated throttle setting of the vehicle system (12, 26).
15. The method of claim 11, wherein the vehicle data is second diagnostic data from the
vehicle system (12, 26).