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Description
FIELD
[0001] Systems, methods, and computer programs

disclosed herein relate to identifying chemical com-
pounds having a desired property profile using a machine
learning model.

BACKGROUND

[0002] In the research and development departments
of the chemical industry, new chemical compounds are
constantly being synthesized and their properties char-
acterized in order to develop new drugs, crop protection
products and/or other products with improved properties.
[0003] The search for new compounds with improved
properties can proceed in several phases. In afirst phase,
a large number of existing compounds can be screened
for one or more properties (e.g., a biological activity).
Compounds that exhibit the one or more properties (e.g.,
the biological activity) can then be the starting point for
an optimization as so-called lead compound. The chem-
ical structure of a lead compound can serve as a starting
point for chemical modifications to improve efficacy, se-
lectivity, toxicity, safety, solubility, and/or other proper-
ties.

[0004] Ways to speed up the process are constantly
being sought, as the production of chemical compounds
and their characterization cost both time and money.
[0005] There are approaches to first generate new
chemical compounds in the computer (in silico) and cal-
culate their properties, and then chemically synthesize
and test promising candidates.

[0006] For example, R. Gomez-Bombarelli et al. dis-
close a method for automatic chemical design using a
deep neural network (Automatic Chemical Design Using
a Data-Driven Continuous Representation of Molecules,
ACS Cent. Sci. 2018, 4, 268-276). The deep neural net-
work comprises three units: an encoder, a decoder, and
a predictor. The encoder converts the discrete represen-
tation of a molecule into a real-valued continuous vector,
and the decoder converts such a continuous vector back
to a discrete molecular representation. The predictor es-
timates chemical properties from the latent continuous
vector representation of the molecule. The predictor is a
multi-layer perceptron and thus latent continuous vectors
are mapped to the chemical properties via a non-linear
function. Such a non-linear mapping between the latent
space representation and chemical properties makes it
difficult to identify, decode and optimize molecules with
desired properties since they could be located in multiple
locations in the latent space.

[0007] S. Mohammadi et al. therefore propose to use
linear units for property prediction (Penalized Variational
Autoencoder for Molecular Design, DOI:
10.26434/chemrxiv.7977131.v2). The linear prediction
unit can be inverted in order to map back to the latent
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space starting with a property vector, without prior knowl-
edge of a molecular structure. However, the prediction
of new chemical compounds based solely on a desired
property profile works only to a very limited extentin prac-
tice. On one hand side, such completely new chemical
compounds must first be synthesized; chemical building
blocks for generating the new chemical structures are
often not available. On the other hand side, the predicted
chemical compounds very often do not perform as hoped
(predicted) in testing.

[0008] In practice, it is more expedient to start from a
lead compound and optimize it, since chemical building
blocks are available for the lead structure and its deriv-
atives, and the property profile of the lead compound is
usually closer to the desired property profile than the
property profile of completely newly predicted substanc-
es.

[0009] For the prediction of new chemical compounds
based on existing lead compounds, neither R. Gomez-
Bombarelli et al. nor S. Mohammadi et al. provide rou-
tinely feasible guidance. They propose to perturbate the
latent vector of the lead compound in latent space in order
to generate latent vectors of new compounds. The de-
scribed procedure yields a comparatively large number
of invalid compounds and/or compounds whose proper-
ties do not match the desired property profile.

SUMMARY

[0010] These and further problems are solved by the
subject matter of the independent claims. Preferred em-
bodiments can be found in the dependent claims, the
present description, and the drawings.

[0011] Therefore, in a first aspect, the present disclo-
sure provides a computer-implemented method, the
method comprising:

- providing a trained machine learning model, the
trained machine learning model comprising an en-
coder, a decoder, and a linear transformation unit,

* wherein the encoder is configured and trained
to convert a discrete molecular representation
of a chemical compound into a vector in contin-
uous latent space,

* wherein the decoder is configured and trained
toconvertavectorinthe continuous latent space
into a discrete molecular representation of a
chemical compound,

* wherein the linear transformation unit is config-
ured and trained to map a vector in the contin-
uous latent space to a property vector represent-
ing a property profile,

- receiving a target property vector representing a tar-
get property profile,
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- mapping the target property vector to the continuous
latent space via the linear transformation unit, there-
by determining a subset in the continuous latent
space,

- receiving a molecular representation of a lead com-
pound,

- converting the molecular representation of the lead
compound to a vector representing the lead com-
pound in the continuous latent space via the encod-
er,

- projecting the vector representing the lead com-
pound in the continuous latent space onto the sub-
set, thereby generating a first vector representing a
first test compound in the continuous latent space,

- generating a discrete molecular representation of
the first test compound using the decoder,

- inputting the discrete molecular representation of the
first test compound into the encoder, thereby gener-
ating a second vector representing the first test com-
pound in the continuous latent space,

- inputting the second vector representing the first test
compound in the continuous latent space into the
linear transformation unit, thereby generating a prop-
erty vector representing a property profile of the first
test compound,

- comparing the property profile of the first test com-
pound with the target property profile,

- incase the property profile of the first test compound
has a pre-defined similarity to the target property pro-
file: outputting the discrete molecular representation
of the first test compound and/or another represen-
tation of the first test compound.

[0012] In another aspect, the present disclosure pro-
vides a computer system comprising:

a processor; and

a memory storing an application program configured
to perform, when executed by the processor, an op-
eration, the operation comprising:

- providing a trained machine learning model, the
trained machine learning model comprising an
encoder, a decoder, and a linear transformation
unit,

e wherein the encoder is configured and
trained to convert a discrete molecular rep-
resentation of a chemical compound into a
vector in continuous latent space,
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4

e wherein the decoder is configured and
trained to convert a vector in the continuous
latent space into a discrete molecular rep-
resentation of a chemical compound,

e wherein the linear transformation unit is
configured and trained to map a vector in
the continuous latent space to a property
vector representing a property profile,

receiving a target property vector representing
a target property profile,

mapping the target property vector to the con-
tinuous latent space via the linear transforma-
tion unit, thereby determining a subset in the
continuous latent space,

receiving a molecular representation of a lead
compound,

converting the molecular representation of the
lead compound to a vector representing the lead
compound in the continuous latent space via the
encoder,

projecting the vector representing the lead com-
pound in the continuous latent space onto the
subset, thereby generating a first vector repre-
senting a first test compound in the continuous
latent space,

generating a discrete molecular representation
of the first test compound using the decoder,

inputting the discrete molecular representation
of the first test compound into the encoder,
thereby generating a second vector represent-
ing the first test compound in the continuous la-
tent space,

inputting the second vector representing the first
test compound in the continuous latent space
into the linear transformation unit, thereby gen-
erating a property vector representing a property
profile of the first test compound,

comparing the property profile of the first test
compound with the target property profile,

in case the property profile of the first test com-
pound has a pre-defined similarity to the target
property profile: outputting the discrete molecu-
lar representation of the first test compound
and/or another representation of the first test
compound.

In another aspect, the present disclosure pro-
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vides a non-transitory computer readable medium having
stored thereon software instructions that, when executed
by a processor of a computer system, cause the compu-
ter system to execute the following steps:

- providing a trained machine learning model, the
trained machine learning model comprising an en-
coder, a decoder, and a linear transformation unit,

* wherein the encoder is configured and trained
to convert a discrete molecular representation
of a chemical compound into a vector in contin-
uous latent space,

e wherein the decoder is configured and trained
toconvertavectorin the continuous latent space
into a discrete molecular representation of a
chemical compound,

* wherein the linear transformation unit is config-
ured and trained to map a vector in the contin-
uous latent space to a property vector represent-
ing a property profile,

- receiving a target property vector representing a tar-
get property profile,

- mapping the target property vector to the continuous
latent space via the linear transformation unit, there-
by determining a subset in the continuous latent
space,

- receiving a molecular representation of a lead com-
pound,

- converting the molecular representation of the lead
compound to a vector representing the lead com-
pound in the continuous latent space via the encod-
er,

- projecting the vector representing the lead com-
pound in the continuous latent space onto the sub-
set, thereby generating a first vector representing a
first test compound in the continuous latent space,

- generating a discrete molecular representation of
the first test compound using the decoder,

- inputting the discrete molecular representation of the
first test compound into the encoder, thereby gener-
ating a second vector representing the first test com-
pound in the continuous latent space,

- inputting the second vector representing the first test
compound in the continuous latent space into the
linear transformation unit, thereby generating a prop-
erty vector representing a property profile of the first
test compound,

-
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- comparing the property profile of the first test com-
pound with the target property profile,

- incase the property profile of the first test compound
has a pre-defined similarity to the target property pro-
file: outputting the discrete molecular representation
of the first test compound and/or another represen-
tation of the first test compound.

BRIEF DESCRIPTION OF THE DRAWINGS
[0014]

Fig. 1 shows schematically an example of a machine
learning model of the present disclosure.

Fig. 2 shows schematically an example of training a
machine learning model of the present disclosure.

Fig. 3 shows schematically an example of projecting
avectorrepresenting alead compound onto a subset
of the continuous latent space representing a target
property profile.

Fig. 4 (a) to Fig. 4 (i) show schematically an example
of identifying a test compound using a trained ma-
chine learning model.

Fig. 5 illustrates a computer system according to
some example implementations of the present dis-
closure in more detail.

Fig. 6 shows an embodiment of the computer-imple-
mented method of predicting a test compound in the
form of a flow chart.

DETAILED DESCRIPTION

[0015] The invention will be more particularly elucidat-
ed below without distinguishing between the aspects of
the disclosure (method, computer system, computer-
readable storage medium). On the contrary, the following
elucidations are intended to apply analogously to all the
aspects of the disclosure, irrespective of in which context
(method, computer system, computer-readable storage
medium) they occur.

[0016] If steps are stated in an order in the present
description or in the claims, this does not necessarily
mean that the disclosure is restricted to the stated order.
On the contrary, it is conceivable that the steps can also
be executed in a different order or else in parallel to one
another, unless one step builds upon another step, this
absolutely requiring that the building step be executed
subsequently (this being, however, clear in the individual
case). The stated orders are thus preferred embodiments
of the invention.

[0017] As used herein, the articles "a" and "an" are
intended to include one or more items and may be used
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interchangeably with "one or more" and "at least one."
As used in the specification and the claims, the singular
formof"a","an", and "the" include plural referents, unless
the context clearly dictates otherwise. Where only one
item is intended, the term "one" or similar language is
used. Also, as used herein, the terms "has", "have", "hav-
ing", or the like are intended to be open-ended terms.
Further, the phrase "based on" is intended to mean
"based at least partially on" unless explicitly stated oth-
erwise. Further, the phrase "based on" may mean "in
response to" and be indicative of a condition for automat-
ically triggering a specified operation of an electronic de-
vice (e.g., a controller, a processor, a computing device,
etc.) as appropriately referred to herein.

[0018] Some implementations of the present disclo-
sure will be described more fully hereinafter with refer-
ence to the accompanying drawings, in which some, but
not all implementations of the disclosure are shown. In-
deed, various implementations of the disclosure may be
embodied in many different forms and should not be con-
strued as limited to the implementations set forth herein;
rather, these example implementations are provided so
that this disclosure will be thorough and complete, and
will fully convey the scope of the disclosure to those
skilled in the art.

[0019] The presentdisclosure provides means for pre-
dicting chemical compounds with desired properties
based on a lead compound.

[0020] The term "chemical compound" is understood
to mean a pure substance consisting of atoms of two or
more chemical elements, where (in contrast to mixtures)
the atomic species are in a fixed ratio to each other. A
chemical compound has a defined chemical structure
which reflects the structure at the molecular (or ionic)
level. Preferably, the chemical compound is an organic
compound. An "organic compound" is a chemical com-
pound comprising carbon-hydrogen bonds (C-H bonds).
Preferably, the chemical compound is an organic com-
pound whose molecules are composed of only the fol-
lowing elements: Carbon (C), Hydrogen (H), Oxygen (O),
Nitrogen (N), Sulfur (S), Fluorine (F), Chlorine (Cl), Bro-
mine (Br), lodine (1) and/or Phosphorus (P).

[0021] The term "lead compound" is understood to
mean a chemical compound which serves as a starting
point for chemical modifications in order to generate fur-
ther chemical compounds with desired properties.
[0022] Typically, optimization of the lead structure is
performed with respect to a plurality of properties that
define a property profile. The properties may be physical
properties, chemical properties, biological properties,
and/or other properties.

[0023] Typical properties are biological activity, selec-
tivity, toxicity, solubility, chemical stability and/or the like.
Usually, each of the properties can be measured and
specified by one or more values.

[0024] Given a lead compound and a target property
profile, one or more chemical compounds are predicted
by a machine learning model. A predicted chemical com-
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pounds is also referred to as "test compound" in this dis-
closure.

[0025] Sucha"machinelearningmodel”, asused here-
in, may be understood as a computer implemented data
processing architecture. The machine learning model
can receive input data and provide output data based on
thatinput data and on parameters of the machine learning
model. The machine learning model can learn a relation
between input data and output data through training. In
training, parameters of the machine learning model may
be adjusted in order to provide a desired output for a
given input.

[0026] The process of training a machine learning
model involves providing a machine learning algorithm
(that is the learning algorithm) with training data to learn
from. The term "trained machine learning model" refers
to the model artifact that is created by the training proc-
ess. The training data must contain the correct answer,
which is referred to as the target. The learning algorithm
finds patterns in the training data that map input data to
the target, and it outputs a trained machine learning mod-
el that captures these patterns.

[0027] In the training process, training data are input-
ted into the machine learning model and the machine
learning model generates an output. The output is com-
pared with the (known) target. Parameters of the machine
learning model are modified in order to reduce the devi-
ations between the output and the (known) target to a
(defined) minimum.

[0028] Ingeneral, a loss function can be used for train-
ing, where the loss function can quantify the deviations
between the output and the target. The loss function may
be chosen in such a way that it rewards a wanted relation
between output and target and/or penalizes an unwanted
relation between an output and a target. Such a relation
can be, e.g., a similarity, or a dissimilarity, or another
relation

[0029] The machine learning model of the present dis-
closure is now described in more detail, and it is de-
scribed how the machine learning model is trained to
perform the prediction tasks described herein. After-
wards it is described how the trained machine learning
model can be used to predict chemical compounds.
[0030] The machine learning model of the present dis-
closure comprises an encoder-decoder structure, also
referred to as autoencoder.

[0031] Anautoencoderis usually used to learn efficient
data encodings in an unsupervised manner. In general,
the aim of an autoencoder is to learn a representation
(encoding) for a set of data, typically for dimensionality
reduction, by training the machine learning model to ig-
nore "noise". Along with the reduction side (encoder), a
reconstructing side (decoder)is learnt, where the autoen-
coder tries to generate from the reduced encoding a rep-
resentation as close as possible to its original input.
[0032] A key feature of an autoencoder is an informa-
tion bottleneck between the encoder and the decoder.
This bottleneck, a continuous fixed-length vector, causes
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the machine learning model to learn a compressed rep-
resentation that captures the most statistically salient in-
formation in the data.

[0033] A multitude of vectors representing a variety of
different chemical compounds span a space, also known
as latent space, latent feature space or embedding
space. An important feature of latent space is that it is
continuous. With the help of the encoder, a molecular
representation of a chemical compound consisting of dis-
crete elements is converted into a continuous vector in
which the chemical compound is defined by numbers.
The decoder can convert a continuous vector back into
a discrete molecular representation

[0034] Autoencoders and their use to generate fixed-
size representations of discrete molecular representa-
tions of chemical compounds in continuous latent space
are well known and described in the prior art (see, e.g.,
R. Winter et al.: Learning continuous and data-driven mo-
lecular descriptors by translating equivalent chemical
representations, Chem, Sci., 2019, 10, 1692-1701; R.
Gomez-Bombarelli et al.: Automatic Chemical Design
Using a Data-Driven Continuous Representation of Mol-
ecules, ACS Cent. Sci. 2018, 4, 268-276; S. Mohammadi
et al.: Penalized Variational Autoencoderfor Molecular
Design, DOI: 10.26434/chemrxiv.7977131.v2).

[0035] Fig. 1 shows schematically an example of a ma-
chine learning model of the present disclosure. The ma-
chine learning model MLM comprises an encoder E, a
decoder D, and a linear transformation unit LTU.
[0036] The encoder E is configured to receive a mo-
lecularrepresentation MR,y of a chemical compound and
to generate, at least partially on the basis of the molecular
representation MR,y and model parameters MP, a vector
LV representing the chemical compound in continuous
latent space.

[0037] The decoder D is configured to receive a vector
LV representing a chemical compound in the continuous
latent space and generate a molecular representation
MRyt at least partially on the basis of the vector LV and
model parameters MP.

[0038] Thelineartransformation unitLTU is configured
toreceive avectorLV representing a chemical compound
in the continuous latent space and predict a property pro-
file PPoyT at least partially on the basis of the vector LV
and model parameters MP.

[0039] Preferably, a variational autoencoder is used
as autoencoder, as described for example in R. Gomez-
Bombarelli et al.: Automatic Chemical Design Using a
Data-Driven Continuous Representation of Molecules,
ACS Cent. Sci. 2018, 4, 268-276; or S. Mohammadi et
al.: Penalized Variational Autoencoder for Molecular De-
sign, DOI: 10.26434/chemrxiv.7977131.v2.

[0040] The autoencoder can be trained in an unsuper-
vised learning procedure. There are numerous databas-
es that store molecular representations of chemical com-
pounds that can be used to train the autoencoder, such
as PubChem (https://pubchem.ncbi.nimnihgov). Like-
wise, there are several publicly available databases in
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which properties of chemical compounds are stored such
as PubChem and ZINC (http://zinc. docking. org).
[0041] The molecular representation of the chemical
compound can, e.g., be a SMILES, InChl, CML or WIN
representation. The simplified molecular-input line-entry
system (SMILES) is a specification in the form of a line
notation for describing the structure of chemical species
using ASCII strings. The IUPAC International Chemical
Identifier (InChl) is a textual identifier for chemical sub-
stances. Chemical Markup Language (CML) is an ap-
proach to managing molecular information using tools
such as XML (Extended Markup Language) and Java.
Wiswesser line notation (WLN) was one of the first line
notations capable of precisely describing complex mol-
ecules.

[0042] The molecular representation of the chemical
compound can also be a molecular graph. A molecular
graph is a representation of the structural formula of a
chemical compound in terms of graph theory. A molec-
ular graph can be a labeled graph whose vertices corre-
spond to the atoms of the compound and edges corre-
spond to chemical bonds. Its vertices can be labeled with
the kinds of the corresponding atoms and edges can be
labeled with the types of bonds.

[0043] The molecular representation of the chemical
compound can also be the IUPAC name of the chemical
compound. In chemical nomenclature, the IUPAC no-
menclature of organic chemistry is a method of naming
organic chemical compounds as recommended by the
International Union of Pure and Applied Chemistry
(IUPAC). It is published in the Nomenclature of Organic
Chemistry. Ideally, every possible organic compound
should have a name from which an unambiguous struc-
tural formula can be created.

[0044] Further molecular representations of chemical
compounds are possible.

[0045] In a preferred embodiment, the molecular rep-
resentation is a canonical SMILES code. Typically, mul-
tiple equally valid SMILES codes can be generated for a
molecule. Therefore, algorithms have been developed
to generate the same SMILES string for a given molecule;
of the many possible strings, these algorithms select only
one (see, e.g., D. Weininger et al.: SMILES. 2nd algo-
rithm for generation of unique SMILES notation, J Chem
Inf Comp Sci 1989, 29(2):97e101). Canonical SMILES
codes are unique for each structure.

[0046] The linear transformation unit serves as prop-
erty prediction unit. It is configured to map a vector in the
continuous latent space to a property vector representing
a property profile. A linear transformation is a function
from one vector space to another that respects the un-
derlying (linear) structure of each vector space. In other
words: a linear transformation is a mapping between two
vector spaces that preserves the operations of vector
addition and scalar multiplication.

[0047] Itis possibleto trainthe machine learning model
of the present disclosure to perform two tasks simulta-
neously: a reconstruction task and a property prediction
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task. Such a training is shown schematically in Fig. 2.
[0048] Fig. 2 shows the same machine learning model
MLM as depicted in Fig. 1. The machine learning model
MLM is trained using training data TD. The training data
TD include, for each chemical compound CC of a plurality
of chemical compounds, a molecular representation
MR,y and at least one property P of the chemical com-
pound CC. The term "plurality" as it is used herein means
an integer greater than 1, usually greater than 10, pref-
erably greater than 100.

[0049] In Fig. 2, only one training data set comprising
achemical compound CC and property datarepresenting
the at least one property P of the chemical compound
CC are shown. The molecular representation MRy of
the chemical compound CC can be inputted by a user,
read from a data storage, received from another compu-
ter system and/or generated from another representation
of the chemical compound CC. The at least one property
P is usually in the form of a numerical value. In the ex-
ample shown in Fig. 2, three values are present for three
parameters A, B and C. Each parameter A, B and C rep-
resents one or more properties of the chemical com-
pound CC. Properties of chemical compounds can be
determined empirically by measurements and/or re-
trieved from databases. An example of a publicly avail-
able database is the ZINC database (see, e.g., ht-
tps://zinc.docking.org/).

[0050] A feature vector can be generated from the at
least one property of the chemical compound. In machine
learning, a feature vector is an n-dimensional vector of
numerical features that represent an object (in this case
one or more properties of a chemical compound), where-
in nis an integer greater than 0. The term "feature vector"
shall also include single values, matrices, tensors, and
the like. Examples of feature vector generation methods
can be found in various textbooks and scientific publica-
tions (see e.g. G.A Tsihrintzis, L.C. Jain: Machine Learn-
ing Paradigms: Advances in Deep Learning-based Tech-
nological Applications, in: Learning and Analytics in In-
telligent Systems Vol. 18, Springer Nature, 2020, ISBN:
9783030497248; K. Grzegorczyk: Vector representa-
tions of text data in deep learning, Doctoral Dissertation,
2018, arXiv:1901.01695v1 [cs.CL]; M. lIse et al.: Atten-
tion-based Deep Multiple Instance Learning, arXiv:
1802.04712v4 [cs.LG])).

[0051] InFig.2,thefeature vectoris shown as the prop-
erty vector PV. For example, it is possible that each di-
mension of the feature vector (property vector) repre-
sents one of the parameters A, B, and C, and the vector
elements represent the values for A, B, and C, respec-
tively.

[0052] The molecular representation MRy is fed to the
encoder E as input data. The encoder E is configured
and trained to generate, at least partially on the basis of
the molecular representation MR,y and model parame-
ters MP, a vector LV representing the chemical com-
pound CC in continuous latent space. The decoder D is
configured and trained to reconstruct, at least partially
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on the basis of the vector LV and model parameters MP,
the molecularrepresentation. In other words, the decoder
D is configured and trained to generate and output, at
least partially on the basis of the vector LV and model
parameters MP, a molecular representation MRq 1 of
the chemical compound which comes as close as pos-
sible to the molecular representation MR . Simultane-
ously, the linear transformation unit LTU is configured
and trained to predict, at least partially on the basis of
the vector LV and model parameters MP, the atleastone
property P. In other words, the linear transformation unit
LTU is configured to generate and output a property vec-
tor PVt which comes as close as possible to the prop-
erty vector PV.

[0053] The deviations between i) the target molecular
representation MRy and the outputted molecular repre-
sentation MR 1, and ii) the target property vector PV
and the outputted property vector PV ;1 can be quanti-
fied using a loss function LF. Typically, the loss function
LF comprises two terms, a first term that quantifies the
deviations between the target molecular representation
MR,y and the outputted molecular representation
MRqy1, and a second term that quantifies the deviations
between the target property vector PV and the outputted
property vector PVt In the loss function, the two terms
can be added. In the loss function, the two terms may
have different weights. The weights may also vary during
training.

[0054] An examples of loss functions for the recon-
struction task (first term) is cross-entropy loss. Examples
of a loss function for the prediction task (second term)
are: L1 loss and/or mean squared error.

[0055] It is possible to first train the autoencoder (re-
construction task) alone and then train the linear trans-
formation unit (prediction task) or then train the linear
transformation unit together with the autoencoder (com-
bined reconstruction and prediction task).

[0056] The loss values calculated using the loss func-
tion can be used to modify model parameters to increase
the accuracy with which the machine learning model re-
constructs the molecular representation and/or predicts
the at least one property. For example, a high loss value
may mean that one or more model parameters need to
be modified to a high degree.

[0057] Usually, an optimization procedure such as a
gradient descent procedure is used to modify the model
parameters in a way that leads to a reduction of loss
values.

[0058] The machine learning model can be trained
based on the training data until a predefined accuracy
has been achieved (until the loss values have reached
a pre-defined minimum).

[0059] A cross-validation method can be employed to
split the training data into a training dataset and a vali-
dation dataset. The training dataset can be used in the
training of the machine learning model. The validation
datasetcan be used to verify that the results of the trained
machine learning are generalizable.



13 EP 4 261 831 A1 14

[0060] Once the machine learning model is trained, it
can be used for prediction purposes.

[0061] According to the present disclosure, the trained
machine learning model is used to propose (predict) one
or more test compounds with a desired property profile
based on a lead compound.

[0062] So, alead compound is identified, and a target
property profile is defined.

[0063] Lead compound and target property profile can
be specified by a user. Lead compound and target prop-
erty profile can be entered into the computer system of
the present disclosure by the user or stored in a data
memory and read out by the computer system of the
present disclosure.

[0064] If a molecular representation of the lead com-
pound is not yet available, one can be generated from
another representation according to the usual proce-
dures described in the prior art.

[0065] Analogously, a target property vector repre-
senting the target property profile can be generated from
a target property profile that is, for example, available in
the form of a table.

[0066] The linear transformation unit of the trained ma-
chine learning model is used to map the target property
vector representing the target property profile to the con-
tinuous latent space.

[0067] As described above, the linear transformation
unit represents a linear function that maps a vector in
continuous latent space to a property vector. An inverse
function can be determined for the linear function, and
this inverse function can be used to map the target prop-
erty vector to the continuous latent space.

[0068] Since there are usually many chemical com-
pounds that satisfy the target property profile, a subset
of latent space is determined by the mapping procedure.
All points that lie in this subset are representations of
potential chemical compounds that satisfy the target
property profile.

[0069] In a next step, one or more representations of
those chemical compounds that show structural similarity
to the lead compound are identified in the subset.
[0070] This is achieved by generating the vector in the
continuous latent space of the lead compound by means
of the encoder and projecting the vector onto the subset.
In other words, the molecular representation represent-
ing the lead compound is inputted into the encoder of the
trained machine learning model, and the encoder gen-
erates a vector representing the lead compound in the
continuous latent space. Then, the vector representing
the lead compound in the continuous latent space is pro-
jected onto the subset representing the target property
profile in the continuous latent space.

[0071] The result of the projection is a first vector rep-
resenting a first test compound in the continuous latent
space.

[0072] The projection of the vector representing the

lead compound onto the subset of the continuous latent
space representing the target property profile is sche-
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matically shown in Fig. 3.

[0073] In the example shown in Fig. 3, the continuous
latent space comprises only three dimensions. Usually,
it contains a lot more dimension, such as 100 or 512, or
another number. The three dimensions form a Cartesian
coordinate system with the axes d1, d2and d3. The plane
shown in the coordinate system is the subset of the con-
tinuous latent space representing the target profile.
[0074] A first vector LV represents the lead com-
pound in the continuous latent space. This vector LV, o
is projected onto the plane (subset). The result of the
projection is the vector LV1¢. The vector LV represents
a first test compound in the continuous latent space.
[0075] In a next step, the molecular structure of the
first test compound can be determined. This can be done
by inputting the vector representing the first test com-
pound in the continuous latent space into the decoder of
the trained machine learning model. The decoder outputs
the molecular representation of the first test compound.
[0076] In a next step, it can be checked whether the
molecular representation is a valid molecular represen-
tation, i. e., a representation of a chemical structure of a
chemical compound that can actually exist, i. e., can be
synthesized.

[0077] If the molecular representation is a SMILES
code, this SMILES code can be validated, for example,
using the freely available open-source cheminformatics
software RDKit (see, e.g., http://www.rdkit.org).

[0078] Invalid molecular representations may be dis-
carded.
[0079] Inanextstep,itis checked whetherthe property

profile of the first test compound matches the target prop-
erty profile. The (optionally validated) molecular repre-
sentation of the first test compound is inputted into the
encoder of the trained machine learning model. The en-
coder generates a vector representing the first test com-
pound in the continuous latent space. The vector repre-
senting the first test compound in the continuous latent
space is then inputted into the linear transformation unit
in order to predict the property profile of the first test com-
pound. The linear transformation unit outputs a property
vector representing the property profile of the first test
compound. The property vector of the first test compound
can then be compared with the target property vector
representing the target property profile.

[0080] In such a comparison, a measure of similarity
of the two vectors can be determined. A measure of the
similarity of two vectors can be, for example, a similarity
value, such as the cosine similarity, or a distance meas-
ure, such as the Euclidean distance, the Manhattan dis-
tance, Chebyshev distance, Minkowski distance, weight-
ed Minkowski distance, Mahalanobis distance, Hamming
distance, Canberra distance, Bray Curtis distance, or a
combination thereof.

[0081] A distance d(TPV, PV¢) between a target pro-
pety vector TPV and a property vector PV representing
the properties of a test compound can be converted into
a similarity value s(TPV, PV1c), e.g., by the following
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equation:
(TPV, PVi) .
SV ) = T ACTPY, PVpg)
[0082] The similarity value (or the distance value or

any other measure of the similarity of the two vectors
TPV and PVic) can be compared with apre-defined
threshold. This is explained by the example of a similarity
value which is always positive and takes the value 1 (or
100%) if two vectors are identical and takes the value 0
if two vectors have no similarity. For example, the pre-
defined threshold may be 0.8 or 0.85 or 0.9 or 0.91 or
0.95 or 0.99 or some other value.

[0083] If the similarity value is smaller than the pre-
defined threshold, it may mean that the property profile
of the first test compound is so far away from the target
profile that the test compound is not a promising candi-
date for further investigation and can be discarded.
[0084] If the similarity value is equal to or greater than
the pre-defined threshold, it may mean that the property
profile of the first test compound is so close to the target
profile that the test compound should be investigated fur-
ther. The molecular representation of the first test com-
pound can be outputted. For example, the molecular rep-
resentation of the first test compound can be displayed
on a monitor, printed on a printer, stored on a data stor-
age, or transmitted to a separate computer system.
[0085] If the property profile of the first test compound
has a predefined similarity to the target property profile,
e.g., if a similarity value between the two vectors is equal
to or greater than a pre-defined threshold, measures for
synthesis and/or characterization (testing of properties)
of the first test compound can also be initiated.

[0086] ‘"Initiating synthesis and/or characterization"
may mean: identifying chemical compounds for synthe-
sis of the first test compound, ordering chemical com-
pounds for synthesis of the first test compound, reserving
laboratory space and/or equipment for synthesis of the
first test compound, ordering laboratory personnel for
synthesis of the first test compound, ordering character-
ization of the first test compound (e. g., to confirm the
predicted property profile of the first test compound), re-
serving laboratory space and/or equipment for charac-
terization of the first test compound, ordering equipment
for characterization of the test compound. Said actions
may be performed by the computer system of the present
disclosure, for example, by transmitting a corresponding
message to one or more persons, creating calendar en-
tries, initiating orders, and/or the like. It is also possible
that the computer system of the present disclosure is in
communication with a synthesis robot and can cause the
synthesis robot to synthesize the first test compound. It
is also possible that the computer system of the present
disclosure is in communication with a device for charac-
terizing the first test compound and can cause the device
to perform a characterization of the first test compound
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(e.g., in an assay to determine biological activity of the
first test compound).

[0087] In the event that the first test compound is not
a valid chemical compound and/or the properties of the
first test compound do not match the desired properties
(the target property profile), a second test compound can
be predicted by the machine learning model. There are
several possibilities for the prediction of a second test
compound. Three examples are given below.

[0088] For example, a new lead compound can be se-
lected. A molecular representation of the new lead com-
pound can be inputted into the encoder of the trained
machine learning model in order to generate a vector
representing the new lead compound in the continuous
latent space. The vector can then be projected onto the
subset representing the target property profile in the con-
tinuous latent space. The result of the projection is a vec-
tor representing a second test compound in the contin-
uous latent space. The second test compound can then
be treated in the same way as the first test compound
and as described herein.

[0089] For example, the target property profile can be
modified. Often, it is not necessary for a test compound
to have a specific value of a parameter; it is sufficient if
the value of the parameter is within a predefined range.
Thus, it is easy to change one or more values of param-
eters defining one or more target properties without de-
teriorating the quality of test compounds predicted on the
basis of the changed target property profile. A feature
vector (target property vector) can then be generated
from the modified target property profile. The feature vec-
tor (target property vector) can be mapped to the contin-
uous latent space via the linear transformation unit. The
resultis a new subset of the latent space that represents
the modified target property profile in the latent space.
The vector representing the lead compound can be pro-
jected to the new subset. The result of the projection is
avectorrepresenting a second test compound in the con-
tinuous latent space. The second test compound can
then be treated in the same way as the firsttest compound
and as described herein.

[0090] For example, on the basis of the vector repre-
senting the first test compound in the continuous latent
space (the first vector), a vector representing a second
test compound can be generated (the second vector) by
moving away from the endpoint of the first vector by a
pre-defined distance in a pre-defined direction within the
continuous latent space. The point one will get to, is the
endpoint of the second vector (the other point of the sec-
ond vector is the origin). When starting from the endpoint
of the first vector, one can move within the subset or
outside the subset representing the target property pro-
file. The further one moves away from the first vector,
the more one or more properties of the second test com-
pound may change and/or the more the chemical struc-
ture of the second test compound may change (com-
pared to the first test compound), depending on which
property/properties and/or structural feature(s) is/are
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represented by the direction in which one moves.
[0091] Combinations of the examples given above are
also possible.

[0092] A preferred embodiment of the method accord-
ing to the present disclosure is shown schematically in
Fig. 4 (a) to Fig. 4 (i).

[0093] Fig. 4 (a) shows the step of generating a target
property vector TPV representing a target property profile
TPP from the target property profile TPP.

[0094] Fig.4 (b)showsthe step of determining a subset
of the continuous latent space representing the target
property profile in the continuous latent space from the
target property vector TPV. The subset is determined by
mapping the target property vector TPV to the continuous
latent space via the linear transformation unit LTU*. The
asterisk * indicates that the linear function represented
by the linear transformation unit LTU has been replaced
by its inverse function.

[0095] Fig. 4 (c) shows the step of generating a mo-
lecularrepresentation MR ¢ from the lead compound LC.
[0096] Fig. 4 (d) shows the step of generating a vector
LV ¢ representing the lead compound in the continuous
latent space from the molecular representation MR ..
The molecular representation MR, is inputted into the
encoder E of the trained machine learning model and the
encoder outputs the vector LV .

[0097] Fig. 4 (e) shows the step of projecting the vector
LV ¢ onto the subset representing the target property
profile in the continuous latent space. The result of the
projection is a vector LV representing a first test com-
pound in the continuous latent space.

[0098] Fig. 4 (f) shows the step of generating a molec-
ular representation MRy of the first test compound from
the vector LV¢. The vector LV is inputted into the de-
coder D of the trained machine learning model and the
decoder D outputs the molecular representation MR+¢.
[0099] Fig. 4 (g) shows the step of generating a vector
LV*1c representing the first test compound in the contin-
uous latent space from the molecular representation
MR¢ of the first test compound. The molecular repre-
sentation MR+ is inputted into the encoder E of the
trained machine learning model and the encoder E out-
puts the vector LV*1¢. The asterisk * serves to distinguish
the vector LV*1¢ in Fig. 4 (g) and Fig. 4 (h) from the vector
LVtcin Fig. 4 (e) and (f). Both vectors, LVc and LV*1¢,
represent the first test compound in the continuous latent
space. One might assume that the vectors should be the
same. However, due to the probabilistic nature of the
machine learning model, the vectors usually differ. LV*¢
refers to the vector generated from the molecular repre-
sentation MR of the first test compound using the en-
coder E of the trained machine learning model; LV re-
fers to the vector generated by projecting the vector LV
of the lead compound onto the subset representing the
target property profile in the continuous latent space.
[0100] Fig. 4 (h) shows the step of generating a prop-
erty vector PVt representing the properties of the first
test compound from the vector LV*;¢ representing the
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first test compound in the continuous latent space. The
vector LV*1¢ is inputted into the linear transformation unit
LTU of the trained machine learning model and the linear
transformation unit LTU outputs the property vector
PVic

[0101] Fig. 4 (i) shows the step of comparing the prop-
erties of the first test compound represented by the prop-
erty vector PV with the target property profile repre-
sented by the target property vector TPV ("s(PV1¢, TPV)
> T?"). In the example shown in Fig. 4 (i), a similarity
values is calculated, the similarity value s quantifying the
similarity between the vector PV¢. and the vector TPV.
[0102] Ifthe similarity value s is equal to or greater than
a pre-defined threshold T ("y"), the first test compound
is selected for further investigation; the molecular repre-
sentation MRy of the first test compound and/or any
other representation of the first test compound can be
outputted, e.g., on a monitor. If the similarity value s is
smaller than the pre-defined threshold T ("n"), a second
test compound is identified by (A) changing the lead com-
pound LC and/or (B) by modifying the target property
profile PP and/or (C) by moving away from the vector
LV1¢ in the continuous latent space.

[0103] The approach described herein effectively and
efficiently leads to new candidates for lead structure op-
timization, wherein the new candidates (predicted test
compounds) represent valid chemical compounds and
exhibit properties that match the target property profile.
[0104] The operations in accordance with the teach-
ings herein may be performed by at least one computer
system specially constructed for the desired purposes or
general-purpose computer specially configured for the
desired purpose by atleast one computer program stored
in a typically non-transitory computer readable storage
medium.

[0105] The term "non-transitory" is used herein to ex-
clude transitory, propagating signals or waves, but to oth-
erwise include any volatile or non-volatile computer
memory technology suitable to the application The term
"computer" / "computer system" should be broadly con-
strued to cover any kind of electronic device with data
processing capabilities, including, by way of non-limiting
example, personal computers, servers, embedded
cores, computing system, communication devices, proc-
essors (e.g., digital signal processor (DSP)), microcon-
trollers, field programmable gate array (FPGA), applica-
tion specific integrated circuit (ASIC), etc.) and other
electronic computing devices.

[0106] The term "process" as used above is intended
to include any type of computation or manipulation or
transformation of data represented as physical, e.g.,
electronic, phenomena which may occur or reside e. g.,
within registers and/or memories of at least one computer
or processor. The term processor includes a single
processing unit or a plurality of distributed or remote such
units.

[0107] Fig. 5illustrates a computer system (1) accord-
ing to some example implementations of the present dis-
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closure in more detail. The computer system (1) may
include one or more of each of a number of components
such as, for example, processing unit (20) connected to
a memory (50) (e.g., storage device).

[0108] The processing unit (20) may be composed of
one or more processors alone or in combination with one
or more memories. The processing unit is generally any
piece of computer hardware thatis capable of processing
information such as, for example, data, computer pro-
grams and/or other suitable electronic information. The
processing unit is composed of a collection of electronic
circuits some of which may be packaged as an integrated
circuit or multiple interconnected integrated circuits (an
integrated circuit at times more commonly referred to as
a "chip"). The processing unit may be configured to ex-
ecute computer programs, which may be stored onboard
the processing unit or otherwise stored in the memory
(50) of the same or another computer.

[0109] The processing unit (20) may be a number of
processors, a multi-core processor or some other type
of processor, depending on the particular implementa-
tion. Further, the processing unit may be implemented
using a number of heterogeneous processor systems in
which a main processor is present with one or more sec-
ondary processors on a single chip. As another illustra-
tive example, the processing unit may be a symmetric
multi-processor system containing multiple processors
of the same type. In yet another example, the processing
unit may be embodied as or otherwise include one or
more ASICs, FPGAs or the like. Thus, although the
processing unit may be capable of executing a computer
program to perform one or more functions, the process-
ing unit of various examples may be capable of perform-
ing one or more functions without the aid of a computer
program. In either instance, the processing unit may be
appropriately programmed to perform functions or oper-
ations according to example implementations of the
present disclosure.

[0110] The memory (50)is generally any piece of com-
puter hardware thatis capable of storing information such
as, for example, data, computer programs (e. g., com-
puter-readable program code (60)) and/or other suitable
information either on a temporary basis and/or a perma-
nentbasis. The memory may include volatile and/or non-
volatile memory, and may be fixed or removable. Exam-
ples of suitable memory include random access memory
(RAM), read-only memory (ROM), a hard drive, a flash
memory, a thumb drive, a removable computer diskette,
an optical disk, a magnetic tape or some combination of
the above. Optical disks may include compact disk - read
only memory (CD-ROM), compact disk - read/write (CD-
R/W), DVD, Blu-ray disk or the like. In various instances,
the memory may be referred to as a computer-readable
storage medium. The computer-readable storage medi-
um is a non-transitory device capable of storing informa-
tion, and is distinguishable from computer-readable
transmission media such as electronic transitory signals
capable of carrying information from one location to an-
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other. Computer-readable medium as described herein
may generally refer to a computer-readable storage me-
dium or computer-readable transmission medium.
[0111] In addition to the memory (50), the processing
unit (20) may also be connected to one or more interfaces
for displaying, transmitting and/or receiving information.
The interfaces may include one or more communications
interfaces and/or one or more user interfaces. The com-
munications interface(s) may be configured to transmit
and/or receive information, such as to and/or from other
computer(s), network(s), database(s) or the like. The
communications interface may be configured to transmit
and/or receive information by physical (wired) and/or
wireless communications links. The communications in-
terface(s) may include interface(s) (41) to connect to a
network, such as using technologies such as cellular tel-
ephone, Wi-Fi, satellite, cable, digital subscriber line
(DSL), fiber optics and the like. In some examples, the
communications interface(s) may include one or more
short-range communications interfaces (42) configured
to connect devices using short-range communications
technologies such as NFC, RFID, Bluetooth, Bluetooth
LE, ZigBee, infrared (e.g., IrDA) or the like.

[0112] The user interfaces may include a display (30).
The display may be configured to present or otherwise
display information to a user, suitable examples of which
include a liquid crystal display (LCD), lightemitting diode
display (LED), plasma display panel (PDP) or the like.
The user inputinterface(s) (11) may be wired or wireless,
and may be configured to receive information from a user
into the computer system (1), such as for processing,
storage and/or display. Suitable examples of user input
interfaces include a microphone, image or video capture
device, keyboard or keypad, joystick, touch-sensitive
surface (separate from or integrated into a touchscreen)
or the like. In some examples, the user interfaces may
include automatic identification and data capture (AIDC)
technology (12) for machine-readable information. This
may include barcode, radio frequency identification
(RFID), magnetic stripes, optical character recognition
(OCR), integrated circuit card (ICC), and the like. The
user interfaces may further include one or more interfac-
es for communicating with peripherals such as printers
and the like.

[0113] As indicated above, program code instructions
may be stored in memory, and executed by processing
unit that is thereby programmed, to implement functions
of the systems, subsystems, tools and their respective
elements described herein. As will be appreciated, any
suitable program code instructions may be loaded onto
a computer or other programmable apparatus from a
computer-readable storage medium to produce a partic-
ular machine, such that the particular machine becomes
a means for implementing the functions specified herein.
These program code instructions may also be stored in
a computer-readable storage medium that can direct a
computer, processing unit or other programmable appa-
ratus to function in a particular manner to thereby gen-
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erate a particular machine or particular article of manu-
facture. The instructions stored in the computer-readable
storage medium may produce an article of manufacture,
where the article of manufacture becomes a means for
implementing functions described herein. The program
code instructions may be retrieved from a computer-
readable storage medium and loaded into a computer,
processing unit or other programmable apparatus to con-
figure the computer, processing unit or other program-
mable apparatus to execute operations to be performed
on or by the computer, processing unit or other program-
mable apparatus.

[0114] Retrieval, loading and execution of the program
code instructions may be performed sequentially such
that one instruction is retrieved, loaded and executed at
atime. Insome example implementations, retrieval, load-
ing and/or execution may be performed in parallel such
that multiple instructions are retrieved, loaded, and/or ex-
ecuted together. Execution of the program code instruc-
tions may produce a computer-implemented process
such that the instructions executed by the computer,
processing circuitry or other programmable apparatus
provide operations for implementing functions described
herein.

[0115] Execution of instructions by processing unit, or
storage of instructions in a computer-readable storage
medium, supports combinations of operations for per-
forming the specified functions. In this manner, a com-
puter system (1) may include processing unit (20) and a
computer-readable storage medium or memory (50) cou-
pled to the processing circuitry, where the processing
circuitry is configured to execute computer-readable pro-
gram code (60) stored in the memory. It will also be un-
derstood that one or more functions, and combinations
of functions, may be implemented by special purpose
hardware-based computer systems and/or processing
circuitry which perform the specified functions, or com-
binations of special purpose hardware and program code
instructions.

[0116] Fig. 6 shows a preferred embodiment of the
computer-implemented method of predicting a first test
compound. The method (100) comprises the steps:

(101) providing a trained machine learning model,
the trained machine learning model comprising an
encoder, a decoder, and a linear transformation unit,

* wherein the encoder is configured to convert a
discrete molecular representation of a chemical
compound into a vector in continuous latent
space,

* wherein the decoder is configured to convert a
vector in the continuous latent space into a dis-
crete molecular representation of a chemical
compound,

* wherein the linear transformation unit is config-
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ured to map a vector in the continuous latent
space to a property vector representing a prop-
erty profile,

(102) receiving a target property vector representing
a target property profile,

(103) mapping the target property vector to the con-
tinuous latent space via the linear transformation
unit, thereby determining a subset in the continuous
latent space,

(104) receiving a molecular representation of a lead
compound,

(105) converting the molecular representation of the
lead compound to a vector representing the lead
compound in the continuous latent space via the en-
coder,

(106) projecting the vector representing the lead
compound in the continuous latent space onto the
subset, thereby receiving a first vector representing
the first test compound in the continuous latent
space,

(107) generating a discrete molecular representation
of the first test compound using the decoder,

(108) inputting the discrete molecular representation
of the first test compound into the encoder, thereby
generating a second vector representing the first test
compound in the continuous latent space,

(109) inputting the second vector representing the
first test compound in the continuous latent space
into the linear transformation unit, thereby generat-
ing a property vector representing a property profile
of the first test compound,

(110) comparing the property profile of the first test
compound with the target property profile,

(111) in case the property profile of the first test com-
pound has a pre-defined similarity to the target prop-
erty profile: outputting the discrete molecular repre-
sentation of the first test compound and/or another
representation of the first test compound.

Claims

1. A computer-implemented method, the method com-
prising:

- providing a trained machine learning model
(MLM), the trained machine learning model
(MLM) comprising an encoder (E), a decoder
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(D), and a linear transformation unit (LTU,
LTU®),

» wherein the encoder (E) is configured and
trained to convert a discrete molecular rep-
resentation (MR,y) of a chemical compound
(CC) into a vector (LV) in continuous latent
space,

» wherein the decoder (D) is configured and
trained to convert a vector (LV) in the con-
tinuous latent space into a discrete molec-
ular representation (MR 1) of a chemical
compound (CC),

» wherein the linear transformation unit
(LTU, LTU*) is configured and trained to
map a vector (LV) in the continuous latent
space to a property vector (PVq 1) repre-
senting a property profile,

- receiving a target property vector (TPV) repre-
senting a target property profile (TPP),

- mapping the target property vector (TPV) to
the continuous latent space via the linear trans-
formation unit (LTU*), thereby determining a
subset in the continuous latent space,

- receiving a molecular representation (MR ¢)
of a lead compound (LC),

- converting the molecular representation
(MR ¢) of the lead compound (LC) to a vector
(LV| ¢) representing the lead compound (LC) in
the continuous latent space via the encoder (E),
- projecting the vector (LV| ) representing the
lead compound (LC) in the continuous latent
space onto the subset, thereby generating a first
vector (LV1¢) representing a first test compound
in the continuous latent space,

- inputting the first vector (LVt¢) representing
the first test compound in the continuous latent
space into the decoder (D), thereby generating
a discrete molecular representation (MRy¢) of
the first test compound,

- inputting the discrete molecular representation
(MRqc) of the first test compound into the en-
coder (E), thereby generating a second vector
(LV*1c) representing the first test compound in
the continuous latent space,

- inputting the second vector (LV*;¢) represent-
ing the first test compound in the continuous la-
tent space into the linear transformation unit
(LTU), thereby generating a property vector
(PV1c) representing a property profile of the first
test compound,

- comparing the property profile of the first test
compound with the target property profile (TPP),
- in case the property profile of the first test com-
pound has a pre-defined similarity to the target
property profile (TPP): outputting the discrete
molecular representation (MRt¢) of the first test
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compound and/or another representation of the
first test compound.

The method according to claim 1, wherein the target
property profile (TPP) comprises one or more target
values of one of more of the following properties:
biological activity, selectivity, toxicity, solubility,
chemical stability.

The method according to claim 1 or 2, wherein the
encoder (E) and the decoder (D) are parts of a var-
iational autoencoder.

The method according to any one of claims 1 to 3,
wherein the molecular representation (MR ¢) of the
lead compound and the molecular representation
(MR+¢) of thefirsttest compound are SMILES codes,
preferably canonical SMILES codes.

The method according to any one of claims 1 to 4,
wherein the trained machine learning model (MLM)
was trained on training data (TD), the training data
(TD) comprising, for each chemical compound (CC)
of a plurality of chemical compounds, a molecular
representation (MRy) of the chemical compound
(CC) and at least one property (P) representing a
property profile of the chemical compound (CC).

The method according claim 5, wherein training of
the machine learning model (MLM) comprises:

- for each chemical compound (CC) of the plu-
rality of chemical compounds:

o inputting the molecular representation
(MRy) of the chemical compound (CC) into
the encoder (E),

o receiving from the decoder (D) an output
molecular representation (MRgy1),

o quantifying the differences between the in-
putted molecularrepresentation (MR y) and
the output molecular representation
(MRgyT) using a first loss term,

o receiving from the linear transformation
unit (LTU) a predicted property profile
(PVour),

o quantifying the differences between the
property profile and the predicted property
profile (PVqyt) Using a second loss term,
ocomputing aloss using aloss function (LF),
the loss function (LF) comprising the first
loss term and the second loss term,

o modifying parameters of the machine
learning model (MLM) based on the com-
puted loss.

7. The method according to any one of claims 1 to 6,

the property profile of the first test compound and
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the target property profile (TPP) are represented by
feature vectors (PV1¢, TPV).

8. The method according claim 7, wherein the step
comparing the property profile of the first test com-
pound with the target property profile (TPP), com-
prises:

- computing a similarity value (s), the similarity
value (s) quantifying the similarity between the
feature vector (PV1¢) representing the property
profile of the first test compound and the feature
vector (TPV) representing the target property
profile (TPP),

- comparing the similarity value with a pre-de-
fined threshold (T).

9. The method according to any one of claims 1 to 8,
further comprising the steps:

- modifying the target property profile (TPP),

- mapping the modified target property vector to
the continuous latent space via the linear trans-
formation unit (LTU*), thereby determining a
modified subset in the continuous latent space,
- projecting the vector (LV () representing the
lead compound (LC) in the continuous latent
space onto the modified subset, thereby receiv-
ing a second vector representing a second test
compound in the continuous latent space,

- generating a discrete molecular representation
of the second test compound using the decoder,
- inputting the discrete molecular representation
of the second test compound into the encoder
and determining a property profile for the second
test compound via the linear transformation unit
(LTU),

- comparing the property profile of the second
test compound with the target property profile,
- in case the property profile of the second test
compound has a pre-defined similarity to the tar-
get property profile: outputting the discrete mo-
lecular representation of the second test com-
pound and/or another representation of the sec-
ond test compound.

10. The method according to any one of claims 1to 9,
further comprising the steps:

- moving a pre-defined distance in a pre-defined
direction from a point representing the first test
compound in the continuous latent, thereby de-
fining a second vector representing a second
test compound in the continuous latent space,
- generating a discrete molecular representation
of the second test compound using the decoder
(D),

- inputting the discrete molecular representation

10

20

25

30

35

40

45

50

55

14

26

of the second test compound into the encoder
(E) and determining a property profile for the
second test compound via the linear transfor-
mation unit (LTU),

- comparing the property profile of the second
test compound with the target property profile
(TPP),

- in case the property profile of the second test
compound has a pre-defined similarity to the tar-
get property profile (TPP): outputting the dis-
crete molecular representation of the second
test compound and/or another representation of
the second test compound.

11. The method according to any one of claims 1 to 10,
further comprising:

- initiating synthesis and/or characterization of
the first test compound.

12. A computer system comprising:

a processing unit (20); and

a memory (50) storing an application program
configured to perform, when executed by the
processing unit (20), an operation, the operation
comprising:

- providing a trained machine learning mod-
el (MLM), the trained machine learning
model (MLM) comprising an encoder (E), a
decoder (D), and a linear transformation
unit (LTU, LTU¥),

» wherein the encoder (E) is configured
and trained to convert a discrete mo-
lecular representation (MRjy) of a
chemical compound (CC) into a vector
(LV) in continuous latent space,

» wherein the decoder (D) is configured
and trained to convert a vector (LV) in
the continuous latent space into a dis-
crete molecular representation
(MRgyt) of a chemical compound
(CC),

» wherein the linear transformation unit
(LTU, LTU*) is configured and trained
to map a vector (LV) in the continuous
latent space to a property vector
(PVour) representing a property pro-
file,

- receiving a target property vector (TPV)
representing a target property profile (TPP),
- mapping the target property vector (TPV)
to the continuous latent space via the linear
transformation unit (LTU*), thereby deter-
mining a subset in the continuous latent
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space,

- receiving a molecular representation
(MR ¢) of a lead compound (LC),

- converting the molecular representation
(MR ¢) of the lead compound (LC) to a vec-
tor (LV| ¢) representing the lead compound
(LC) in the continuous latent space via the
encoder (E),

- projecting the vector (LV| ) representing
the lead compound (LC) in the continuous
latent space onto the subset, thereby gen-
erating a first vector (LV1¢) representing a
first test compound in the continuous latent
space,

- inputting the first vector (LV1¢) represent-
ing the firsttest compound in the continuous
latent space into the decoder (D), thereby
generating a discrete molecular represen-
tation (MR1) of the first test compound,

- inputting the discrete molecular represen-
tation (MRt¢) of the first test compound into
the encoder (E), thereby generating a sec-
ond vector (LV*;¢) representing the first test
compound in the continuous latent space,
- inputting the second vector (LV*1¢) repre-
senting the first test compound in the con-
tinuous latent space into the linear transfor-
mation unit (LTU), thereby generating a
property vector (PV1¢) representing a prop-
erty profile of the first test compound,

- comparing the property profile of the first
test compound with the target property pro-
file (TPP),

- in case the property profile of the first test
compound has a pre-defined similarity to
the target property profile (TPP): outputting
the discrete molecular representation
(MR1¢) of the first test compound and/or an-
other representation of the first test com-
pound.

13. A non-transitory computer readable medium having
stored thereon software instructions that, when ex-
ecuted by a processing unit (20) of a computer sys-
tem (1), cause the computer system (1) to execute
the following steps:

- providing a trained machine learning model
(MLM), the trained machine learning model
(MLM) comprising an encoder (E), a decoder
(D), and a linear transformation unit (LTU,
LTU*),

» wherein the encoder (E) is configured and
trained to convert a discrete molecular rep-
resentation (MR, ) of a chemical compound
(CC) into a vector (LV) in continuous latent
space,
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» wherein the decoder (D) is configured and
trained to convert a vector (LV) in the con-
tinuous latent space into a discrete molec-
ular representation (MRgyT) of a chemical
compound (CC),

« wherein the linear transformation unit
(LTU, LTU*) is configured and trained to
map a vector (LV) in the continuous latent
space to a property vector (PVqyt) repre-
senting a property profile,

- receiving a target property vector (TPV) repre-
senting a target property profile (TPP),

- mapping the target property vector (TPV) to
the continuous latent space via the linear trans-
formation unit (LTU*), thereby determining a
subset in the continuous latent space,

- receiving a molecular representation (MR )
of a lead compound (LC),

- converting the molecular representation
(MR ¢) of the lead compound (LC) to a vector
(LV| ) representing the lead compound (LC) in
the continuous latent space via the encoder (E),
- projecting the vector (LV| () representing the
lead compound (LC) in the continuous latent
space onto the subset, thereby generating a first
vector (LV1¢) representing a first test compound
in the continuous latent space,

- inputting the first vector (LV1¢) representing
the first test compound in the continuous latent
space into the decoder (D), thereby generating
a discrete molecular representation (MRt¢) of
the first test compound,

- inputting the discrete molecular representation
(MR+¢) of the first test compound into the en-
coder (E), thereby generating a second vector
(LV*1c) representing the first test compound in
the continuous latent space,

- inputting the second vector (LV*1¢) represent-
ing the first test compound in the continuous la-
tent space into the linear transformation unit
(LTU), thereby generating a property vector
(PV1¢) representing a property profile of the first
test compound,

- comparing the property profile of the first test
compound with the target property profile (TPP),
- in case the property profile of the first test com-
pound has a pre-defined similarity to the target
property profile (TPP): outputting the discrete
molecular representation (MRt¢) of the first test
compound and/or another representation of the
first test compound.
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