(11) **EP 4 279 487 A1**

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication: 22.11.2023 Bulletin 2023/47

(21) Application number: 22738959.0

(22) Date of filing: 10.01.2022

(51) International Patent Classification (IPC): C07D 307/87 (2006.01)

(52) Cooperative Patent Classification (CPC): C07D 307/87

(86) International application number: **PCT/CN2022/070997**

(87) International publication number: WO 2022/152078 (21.07.2022 Gazette 2022/29)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

KH MA MD TN

(30) Priority: 14.01.2021 CN 202110047911

(71) Applicants:

 Zhejiang Huahai Pharmaceutical Co., Ltd. Taizhou, Zhejiang 317024 (CN)

 Zhejiang Huahai Licheng Pharmaceutical Co., Ltd.

Taizhou, Zhejiang 317024 (CN)

(72) Inventors:

ZHANG, Jian
 Zhejiang 317024 (CN)

 WANG, Jichao Zhejiang 317024 (CN)

 HAN, Zheng Zhejiang 317024 (CN)

 XU, Yihong Zhejiang 317024 (CN)

 HU, Jiaxing Zhejiang 317024 (CN)

 HUANG, Wenfeng Zhejiang 317024 (CN)

 JIN, Yongjun Zhejiang 317024 (CN)

(74) Representative: Pfenning, Meinig & Partner mbB
Patent- und Rechtsanwälte
Theresienhöhe 11a
80339 München (DE)

(54) PURIFICATION METHOD FOR CITALOPRAM OR S-CITALOPRAM

(57) The present invention provides a purification method for citalopram or S-citalopram or salts thereof, comprising the following steps: using a washing solution to treat a solution consisting of citalopram and a water-immiscible organic solvent and carrying out separation to obtain an organic layer containing citalopram, or using a washing solution to treat a solution consisting of S-citalopram and a water-immiscible organic solvent and car-

rying out separation to obtain an organic layer containing S-citalopram; and then, taking the organic layer and carrying out further separation to obtain citalopram or S-citalopram, or adding acid to form a salt and carrying out further separation to obtain an acid salt of citalopram or S-citalopram. The purification method provided by the present invention is simple in operation and high in impurity removal rate.

15

35

Description

[0001] The present invention claims priority of Chinese Patent Application No.202110047911.X, filed before the CNIPA on January 14, 2021, titled "PURIFICATION METHOD FOR CITALOPRAM OR S-CITALOPRAM", which is incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

[0002] The present invention relates to the technical field of pharmaceutical chemistry, in particular to a purification method for citalopram or s-citalopram.

BACKGROUND OF THE INVENTION

[0003] Citalopram hydrobromide is a racemic mixture, wherein the active ingredient is mainly its levoisomer.

Formula I

[0004] 1-(3-Dimethylaminopropyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-formaldehyde (Formula II), commonly known as aldehyde impurity, is an inherent impurity in citalopram hydrobromide and escitalopram (S-citalopram) oxalate. This impurity is similar in nature to the product and is extremely difficult to remove, and generally has a content level of about 0.1% to about 0.4%. Currently, there is no relevant literature reporting the source and removal of this impurity.

Formula II

[0005] In view of the above problems regarding the impurity, it is necessary to develop a purification method for citalopram or S-citalopram.

SUMMARY

[0006] The present invention provides a purification

method for citalopram or S-citalopram or salts thereof, comprising the following steps:

- (a) treating a solution consisting of citalopram and a water-immiscible organic solvent with a washing solution, and carrying out a separation to obtain an organic layer containing citalopram; or, treating a solution consisting of S-citalopram and a water-immiscible organic solvent with a washing solution, and carrying out a separation to obtain an organic layer containing S-citalopram; and
- (b) further separating the organic layer obtained in step (a) to obtain citalopram or S-citalopram; or further adding an acid to form a salt and carrying out a separation to obtain an acid salt of citalopram or an acid salt of S-citalopram;

wherein, the washing solution as defined in step (a) is an aqueous solution comprising a washing agent, and the washing agent is selected from sulfite and thiosulfate.

[0007] In a preferred embodiment of the present invention:

the water-immiscible organic solvent as defined in step (a) is selected from the group consisting of toluene, ethyl acetate, methyl isobutyl ketone, and chlorobenzene, or any combinations thereof.

[0008] The solution consisting of citalogram and the water-immiscible organic solvent or the solution consisting of S-citalopram and the water-immiscible organic solvent as defined in step (a) is obtained by forming a free base from an acid salt of citalopram or acid salt of Scitalopram, which is obtained by the following process: mixing the acid salt of citalopram or the acid salt of Scitalopram, water and the water-immiscible organic solvent, adding a base to obtain a free base, and carrying out a separation to obtain an organic layer; or the solution can also be derived from a reaction solution in a synthesis process of citalogram or S-citalogram, and the reaction solution can be prepared with reference to technical solutions in the prior art. Preferably, the solution is obtained by forming a free base from citalopram hydrobromide or S-citalopram oxalate.

[0009] The washing agent in the washing solution as defined in step (a) is selected from the group consisting of sodium dithionite, sodium thiosulfate, and sodium sulfite, preferably is sodium dithionite.

[0010] A molar ratio of the washing agent and citalopram or S-citalopram ranges from 0.05 to 1.5.

[0011] A mass ratio of the washing agent and water in the washing solution as defined in step (a) ranges from 1% to 30%.

[0012] In one embodiment, an inorganic base is added to the washing solution as defined in step (a), and the inorganic base is selected from the group consisting of sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, sodium hydroxide and potassium hydroxide, or any combinations thereof; pref-

30

40

erably the inorganic base is sodium bicarbonate.

[0013] A mass ratio of the inorganic base and the washing agent ranges from 5% to 30%.

[0014] The acid as defined in step (b) is selected from the group consisting of hydrochloric acid, hydrobromic acid, phosphoric acid, oxalic acid, fumaric acid, acetic acid, p-toluenesulfonic acid and methanesulfonic acid; preferably the acid is hydrobromic acid or oxalic acid.

[0015] In the present invention, the washing solution as defined in step (a) is an aqueous solution containing washing agent. The preparation process is not limited in the present application, as long as it can achieve the purpose of the present invention. Exemplarily, it is prepared in accordance with the following steps: adding the washing agent and water, and optionally the inorganic base, to a container successively, and stirring the mixture until dissolved and clarified to obtain the washing solution.

[0016] The process of stirring the washing solution as defined in step (a) is not limited in the present invention, as long as it can achieve the purpose of the present invention. Exemplarily, it can be achieved by stirring the mixture at a temperature of 40°C to 45°C for 60 min to 90 min.

[0017] The process of further separating the organic layer to obtain citalopram or S-citalopram as defined in step (b) is not limited in the present invention, as long as it can achieve the purpose of the invention. Exemplarily, the separation is performed by concentrating the organic layer to dryness under reduced pressure.

[0018] In the present invention, the process of further adding acid to form a salt as defined in step (b) is performed by dissolving the organic layer that has been concentrated to dryness in an organic solvent under a controlled temperature. In the present invention, the organic solvent is selected from the group consisting of toluene, ethyl acetate, methanol, methyl isobutyl ketone and anhydrous ethanol, or any combinations thereof; and the temperature is controlled in the range of 40°C to 60°C. Exemplarily, the organic layer is concentrated to dryness under reduced pressure, added to ethyl acetate and dissolved, and the temperature is controlled at 50°C to 60°C. [0019] The process of further adding acid to form a salt as defined in step (b) is performed by dissolving the organic layer and adding an acid dropwise to adjust pH=4±0.5 so as form the salt, and the acid salt of citalopram or acid salt of S-citalopram is obtained through separation. In the present invention, the acid is selected from the group consisting of hydrochloric acid, hydrobromic acid, phosphoric acid, oxalic acid, fumaric acid, acetic acid, p-toluenesulfonic acid, and methanesulfonic acid. Exemplarily, hydrobromic acid is added dropwise to adjust pH= 4 ± 0.5 to form a salt, and then the resultant is refluxed for 2 hours, cooled down to crystallize a crystal, which is then filtered and dried to obtain citalopram hydrobromide.

[0020] The purification method for citalopram or S-citalopram provided by the present invention is simple in

operation and high in impurity removal rate, cheap and easily available in raw and auxiliary materials, and mild in conditions, which is conducive to the simple and efficient purification of citalopram or S-citalopram.

DETAILED DESCRIPTION

[0021] The invention is further described in detail by specific examples below. All raw materials used in the examples are commercially available.

Example 1

[0022] In a beaker, 2.5 g of sodium dithionite and 50 mL of drinking water were added successively, and the mixture was stirred until dissolved and clarified to obtain a washing solution.

[0023] In a three-necked flask, 25 g of citalogram hydrobromide (containing 0.364% aldehyde impurity), 200 mL of toluene and 100 mL of drinking water were added successively. The temperature was raised to 45°C. Ionexchange membrane liquid caustic soda was slowly added dropwise to adjust pH of the aqueous solution to 12. The resultant was stirred until dissolved and clarified, and allowed to stand and layer. An organic layer was obtained by separation, and was added with the washing solution. Under a controlled temperature of 40°C to 45°C, the mixture was stirred for 60 min and allowed to stand and layer. An organic layer was obtained by separation, and was concentrated to dryness under reduced pressure, which was then dissolved by 120 mL of ethyl acetate. Under a controlled temperature of 50°C to 60°C, hydrobromic acid was added dropwise to adjust pH= 4 ± 0.5 to form a salt, and the resultant was then refluxed for 2 hours and cooled down to crystallize a crystal, which was then filtered and dried to obtain citalopram hydrobromide. Yield: 90%; purity: 99.7%; aldehyde impurity: 0.04%; impurity removal rate: 89.0%.

Example 2

[0024] In a beaker, 2.5 g of sodium dithionite, 50 mL of drinking water and 0.25 g of sodium bicarbonate were added successively, and the mixture was stirred until dissolved and clarified to obtain a washing solution.

[0025] In a three-necked flask, 25 g of citalopram hydrobromide (containing 0.470% aldehyde impurity), 200 mL of toluene and 100 mL of drinking water were added successively. The temperature was raised to 45°C. Ionexchange membrane liquid caustic soda was slowly added dropwise to adjust pH of the aqueous solution to 12. The resultant was stirred until dissolved and clarified, and allowed to stand and layer. An organic layer was obtained by separation, and was added with the washing solution. Under a controlled temperature of 40°C to 45°C, the mixture was stirred for 60 min and allowed to stand and layer. An organic layer was obtained by separation, and was concentrated to dryness under reduced pressure, which

was then dissolved by 120 mL of ethyl acetate. Under a controlled temperature of 50°C to 60°C , hydrobromic acid was added dropwise to adjust pH= 4 ± 0.5 to form a salt, and the resultant was then refluxed for 2 hours and cooled down to crystallize a crystal, which was then filtered and dried to obtain citalopram hydrobromide. Yield: 91%; purity: 99.8%; aldehyde impurity: 0.029%; impurity removal rate: 93.8%.

Example 3

[0026] In a beaker, 0.5 g of sodium dithionite, 50 mL of drinking water and 0.05 g of sodium bicarbonate were added successively, and the mixture was stirred until dissolved and clarified to obtain a washing solution.

[0027] In a three-necked flask, 25 g of S-citalopram oxalate (containing 0.364% aldehyde impurity), 200 mL of methyl isobutyl ketone and 100 mL of drinking water were added successively. The temperature was raised to 45°C. 30% potassium hydroxide solution was slowly added dropwise to adjust pH of the aqueous solution to 12. The resultant was stirred until dissolved and clarified, and allowed to stand and layer. An organic layer was obtained by separation, and was added with the washing solution. Under a controlled temperature of 40°C to 45°C, the mixture was stirred for 60 min and allowed to stand and layer. An organic layer was obtained by separation, and was concentrated to dryness under reduced pressure, which was then added with 48 mL of anhydrous ethanol. The resultant was stirred until dissolved and clarified, and under a controlled temperature of 40°C to 50°C, 9.1g of oxalic acid was added. The mixture was stirred for 2 hours and cooled down to crystallize a crystal, which was then filtered and dried to obtain S-citalopram oxalate. Yield: 88%; purity: 99.9%; aldehyde impurity: 0.033%; impurity removal rate: 90.9%.

Example 4

[0028] In a beaker, 2.3 g of sodium thiosulfate, 50 mL of drinking water and 0.23 g of sodium carbonate were added successively, and the mixture was stirred until dissolved and clarified to obtain a washing solution.

[0029] In a three-necked flask, 25 g of citalopram hydrobromide (containing 0.470% aldehyde impurity), 200 mL of ethyl acetate and 100 mL of drinking water were added successively. The temperature was raised to 45°C. Ion-exchange membrane liquid caustic soda was slowly added dropwise to adjust pH of the aqueous solution to 12. The resultant was stirred until dissolved and clarified, and allowed to stand and layer. An organic layer was obtained by separation, and was added with the washing solution. Under a controlled temperature of 40°C to 45°C, the mixture was stirred for 60 min and allowed to stand and layer. An organic layer was obtained by separation, and was concentrated to dryness under reduced pressure, which was then dissolved by 120 mL of ethyl acetate. Under a controlled temperature of 50°C to

 60° C, hydrobromic acid was added dropwise to adjust pH= 4 ± 0.5 to form a salt, and the resultant was refluxed for 2 hours and cooled down to crystallize a crystal, which was then filtered and dried to obtain citalopram hydrobromide. Yield: 92%; purity: 99.8%; aldehyde impurity: 0.06%; impurity removal rate: 87.2%.

Example 5

[0030] In a beaker, 1.8 g of sodium sulfite, 50 mL of drinking water and 0.54 g of potassium bicarbonate were added successively, and the mixture was stirred until dissolved and clarified to obtain a washing solution.

[0031] In a three-necked flask, 25 g of citalogram hydrobromide (containing 0.303% aldehyde impurity), 200 mL of chlorobenzene and 100 mL of drinking water were added successively. The temperature was raised to 45°C. Ion-exchange membrane liquid caustic soda was slowly added dropwise to adjust pH of the aqueous solution to 12. The resultant was stirred until dissolved and clarified, and allowed to stand and layer. An organic layer was obtained by separation, and was added with the washing solution. Under a controlled temperature of 40°C to 45°C, the mixture was stirred for 60 min and allowed to stand and layer. An organic layer was obtained by separation, and was concentrated to dryness under reduced pressure, which was then dissolved by 120 mL of ethyl acetate. Under a controlled temperature of 50°C to 60°C, hydrobromic acid was added dropwise to adjust pH=4±0.5 to form a salt, and the resultant was refluxed for 2 hours and cooled down to crystallize a crystal, which was then filtered and dried to obtain citalopram hydrobromide. Yield: 91%; purity: 99.7%; aldehyde impurity: 0.023%; impurity removal rate: 92.4%.

Example 6

[0032] In a beaker, 15 g of sodium dithionite, 50 mL of drinking water and 0.75 g of potassium carbonate were added successively, and the mixture was stirred until dissolved and clarified to obtain a washing solution.

[0033] In a three-necked flask, 25 g of citalopram hydrobromide (containing 0.303% aldehyde impurity), 200 mL of toluene and 100 mL of drinking water were added successively. The temperature was raised to 45°C. Ionexchange membrane liquid caustic soda was slowly added dropwise to adjust pH of the aqueous solution to 12. The resultant was stirred until dissolved and clarified, and allowed to stand and layer. An organic layer was obtained by separation, and was added with the washing solution. Under a controlled temperature of 40°C to 45°C, the mixture was stirred for 60 min and allowed to stand and layer. An organic layer was obtained by separation, and was concentrated to dryness under reduced pressure, which was then dissolved by 120 mL of ethyl acetate. Under a controlled temperature of 50°C to 60°C, hydrobromic acid was added dropwise to adjust pH= 4 ± 0.5 to form a salt, and the resultant was refluxed for 2 hours and cooled

15

20

25

30

35

down to crystallize a crystal, which was then filtered and dried to obtain citalopram hydrobromide. Yield: 90%; purity: 99.8%; aldehyde impurity: 0.041%; impurity removal rate: 86.5%.

Example 7

[0034] In a beaker, 2.5 g of sodium dithionite, 50 mL of drinking water and 0.25 g of sodium hydroxide were added successively, and the mixture was stirred until dissolved and clarified to obtain a washing solution.

[0035] In a three-necked flask, 25 g of citalogram hydrobromide (containing 0.522% aldehyde impurity), 200 mL of methyl isobutyl ketone and 100 mL of drinking water were added successively. The temperature was raised to 45°C. Ion-exchange membrane liquid caustic soda was slowly added dropwise to adjust pH of the aqueous solution to 12. The resultant was stirred until dissolved and clarified, and allowed to stand and layer. An organic layer was obtained by separation, and was added with the washing solution. Under a controlled temperature of 40°C to 45°C, the mixture was stirred for 60 min and allowed to stand and layer. An organic layer was obtained by separation, and was concentrated to dryness under reduced pressure, which was then dissolved by 120 mL of ethyl acetate. Under a controlled temperature of 50°C to 60°C, hydrobromic acid was added dropwise to adjust pH=4±0.5 to form a salt, and the resultant was refluxed for 2 hours and cooled down to crystallize a crystal, which was then filtered and dried to obtain citalopram hydrobromide. Yield: 93%; purity: 99.8%; aldehyde impurity: 0.04%; impurity removal rate: 92.3%.

[0036] The above mentioned examples are only preferred examples of the present invention, and are not used to limit the invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principles of the invention, shall be included within the protection scope of the invention.

Claims

- 1. A purification method for citalopram or S-citalopram or salts thereof, comprising the following steps:
 - (a) treating a solution consisting of citalopram and a water-immiscible organic solvent with a washing solution, and carrying out a separation to obtain an organic layer containing citalopram; or, treating a solution consisting of S-citalopram and a water-immiscible organic solvent with a washing solution, and carrying out a separation to obtain an organic layer containing S-citalopram; and
 - (b) further separating the organic layer obtained in step (a) to obtain citalopram or S-citalopram; or further adding an acid to form a salt and carrying out a separation to obtain an acid salt of

citalopram or an acid salt of S-citalopram;

wherein, the washing solution in step (a) is an aqueous solution comprising a washing agent, and the washing agent is selected from sulfite and thiosulfate.

- 2. The purification method according to claim 1, wherein the water-immiscible organic solvent in step (a) is
 selected from the group consisting of toluene, ethyl
 acetate, methyl isobutyl ketone, and chlorobenzene,
 or any combinations thereof.
- 3. The purification method according to claim 1, wherein the washing agent is selected from the group consisting of sodium dithionite, sodium thiosulfate, and sodium sulfite, preferably is sodium dithionite.
- 4. The purification method according to claim 1, wherein a mass ratio of the washing agent and water in the washing solution of step (a) ranges from 1% to 30%.
- **5.** The purification method according to claim 1 or 3, wherein a molar ratio of the washing agent and citalopram or S-citalopram ranges from 0.05 to 1.5.
- **6.** The purification method according to claim 1, wherein an inorganic base is added to the washing solution of step (a).
- 7. The purification method according to claim 6, wherein the inorganic base is selected from the group consisting of sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, sodium hydroxide and potassium hydroxide, or any combinations thereof; preferably the inorganic base is sodium bicarbonate.
- 40 **8.** The purification method according to claim 6, wherein a mass ratio of the inorganic base and the washing agent ranges from 5% to 30%.
- 9. The method according to claim 1, wherein the acid in step (b) is selected from the group consisting of hydrochloric acid, hydrobromic acid, phosphoric acid, oxalic acid, fumaric acid, acetic acid, p-toluenesulfonic acid and methanesulfonic acid, preferably the acid is hydrobromic acid or oxalic acid.
 - 10. The purification method according to claim 1, wherein the solution consisting of citalopram and the waterimmiscible organic solvent or the solution consisting of S-citalopram and the water-immiscible organic solvent in step (a) is obtained by: mixing citalopram hydrobromide or S-citalopram oxalate, water, and the water-immiscible organic solvent, adding a base to obtain a free base of citalopram or S-citalopram,

50

and carrying out a separation to obtain an organic layer.

INTERNATIONAL SEARCH REPORT International application No. PCT/CN2022/070997 CLASSIFICATION OF SUBJECT MATTER 5 C07D 307/87(2006.01)i According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED 10 Minimum documentation searched (classification system followed by classification symbols) C07D Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched 15 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CNKI; VEN; CNTXT; CNABS; WOTXT; STN CAPLUS; REGISTRY; EPTXT; USTXT; 万方: 西酞普兰, 依西普兰, 依地 普仑, 依他普仑, 亚硫酸盐, 硫代硫酸盐, 连二亚硫酸钠, 提纯, 除杂, 精制, 纯化, citalopram, celexa, escitalopram, impurity, purificat+, refin+, edulcoration, sulphite, thiosulfate, thiosulphate, hyposulphite C. DOCUMENTS CONSIDERED TO BE RELEVANT 20 Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. CN 1688565 A (ESTEVE QUIMICA SA) 26 October 2005 (2005-10-26) 1-10 see entire document, in particular claim 1 description, embodiment 2 A CN 101492436 A (H LUNDBECK AS) 29 July 2009 (2009-07-29) 1-10 see entire document 25 WO 0102383 A2 (VIS FARMACEUTICI S P A et al.) 11 January 2001 (2001-01-11) 1-10 Α see entire document CN 101309924 A (H LUNDBECK AS) 19 November 2008 (2008-11-19) 1-10 Α entire document WO 0248133 A2 (C D FARMASINT S R L et al.) 20 June 2002 (2002-06-20) 1-10 Α 30 see entire document CN 104829571 A (LIANYUNGANG HENGYUN MEDICAL TECHNOLOGY CO., LTD.) 12 1-10 Α August 2015 (2015-08-12) see entire document CN 1366525 A (LUNDBECK & CO. AS H.) 28 August 2002 (2002-08-28) 1-10 35 Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document defining the general state of the art which is not considered to be of particular relevance 40 earlier application or patent but published on or after the international filing date document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document published prior to the international filing date but later than the priority date claimed document member of the same patent family 45 Date of the actual completion of the international search Date of mailing of the international search report 14 April 2022 07 April 2022 Name and mailing address of the ISA/CN Authorized officer 50 China National Intellectual Property Administration (ISA/

Facsimile No. (86-10)62019451
Form PCT/ISA/210 (second sheet) (January 2015)

100088, China

55

No. 6, Xitucheng Road, Jimenqiao, Haidian District, Beijing

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No. PCT/CN2022/070997 5 DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. CN 1359382 A (LUNDBECK & CO. AS H.) 17 July 2002 (2002-07-17) 1-10 Α see entire document 聂延君等 (NIE, Yanjun et al.). "草酸艾司西酞普兰片有关物质及其影响因素的研究 10 1-10 (Study on Related Substances of Escitalopram Oxalate Tablets and its Influencing Factors)" 药学研究 (Journal of Pharmaceutical Research), Vol. 38, No. 1, 31 January 2019 (2019-01-31), pages 30-33, 45 15 20 25 30 35 40 45 50

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT International application No. Information on patent family members PCT/CN2022/070997 Patent document Publication date Publication date Patent family member(s) cited in search report (day/month/year) (day/month/year) CN 1688565 26 October 2005 2003208722 02 September 2003 A ΑU **A**1 ZA 200405441 08 July 2005 Α ES 2194597 16 November 2003 A1HR P20040622 A2 30 April 2005 WO 03062218 31 July 2003 A1 CA 2474323 Α1 31 July 2003 US 2003144534 A1 31 July 2003 IN 960KOLNP2004 05 May 2006 Α NO 20043568 D025 August 2004 PL371199 A113 June 2005 EP 1479673 A124 November 2004 JP 2005522419 A 28 July 2005 MX PA04007156 A 29 October 2004 IL162848 D020 November 2005 CN 101492436 29 July 2009 PE 20051162 **A**1 16 January 2006 Α 20060126587 07 December 2006 KR A MY 142756 31 December 2010 A TW 200605916 A 16 February 2006 ZA 200607382 A 28 May 2008 047749 15 February 2006 AR **A**1 CN 1925844 07 March 2007 Α CN 101492435 29 July 2009 A SG 159504 30 March 2010 **A**1 177504 D010 December 2006 Π L WO 06 July 1999 0102383 A2 11 January 2001 ITMI991486 D0IN INPCT2002347CHE 03 April 2009 Α 22 January 2001 6432800 AU A CN 101309924 19 November 2008 JP 2009515840 A 16 April 2009 WO 2007054105 A2 18 May 2007 EP 1951726 A2 06 August 2008 US 2009247772 01 October 2009 20 June 2002 WO 0248133 IT 12 June 2002 A2 MI20002674 A1AU 2002229648 A8 24 June 2002 24 June 2002 ΑU 2964802 A CN 104829571 12 August 2015 A None 25 July 2002 CN 1366525 A 28 August 2002 DE 10112829 C1 27 February 2002 ΕP 1181713 A2 US 2002120005 29 August 2002 A1 CZ2001890 14 August 2002 A3 030056 13 August 2003 AR A1 ES 2228824 16 April 2005 Т3 SK 286283 06 June 2008 B6 SI 1181713 T1 28 February 2005 1013213 BE A6 02 October 2001 15 July 2002 UA 71634 C2 PA01013151 MX 12 August 2002 Α

Form PCT/ISA/210 (patent family annex) (January 2015)

5

10

15

20

25

30

35

40

45

50

55

NO

DK

HK

20011271

1181713

1048812

D0

T3

13 March 2001

31 January 2005

17 April 2003

INTERNATIONAL SEARCH REPORT

5

10

15

20

25

30

35

40

45

50

55

International application No. Information on patent family members PCT/CN2022/070997 Patent document Publication date Publication date Patent family member(s) cited in search report (day/month/year) (day/month/year) UA 71634 C2 15 December 2004 200200018 EΑ A125 April 2002 ES 2170732 A1 01 August 2002 EP 1462447 A2 29 September 2004 KR 20020065345 13 August 2002 A PT 1181713 Е 28 February 2005 ΙE S20010254 A2 06 March 2002 CH691535 A5 15 August 2001 ${\rm HU}$ 0102817 D028 September 2001 GR 1003874 В 24 April 2002 HR P20020004 A2 30 April 2003 SG 167655 **A**1 28 January 2011 ΑT 4367 U1 25 June 2001 ΙE 20010254 A2 06 March 2002 NL1017525 C126 April 2001 FR 2812877 **A**1 15 February 2002 $_{\rm FI}$ 20011577 A026 July 2001 $\mathbf{A}\mathbf{U}$ 3920101 A 03 July 2001 $\mathbf{A}\mathbf{U}$ 2001100405 A4 01 November 2001 DE 60105926 D104 November 2004 IL147226 D014 August 2002 JP 2003517484 Α $27~\mathrm{May}~2003$ PL17 November 2003 353398 A1GB 0105983 D002 May 2001 FI 13 March 2001 20010500 A0 28 June 2001 CA 2360303 **A**1 20 June 2001 IS 5883 Α SK 18482001 A3 09 May 2002 NZ 20 December 2002 516298 Α IT MI20010602 D022 March 2001 ZA 200110179 В 11 December 2002 BR 0106272 15 June 2004 A BE 1013212 02 October 2001 A6 0103045 14 September 2001 SE D0HU 0101029 28 May 2001 D0CN 1359382 17 July 2002 US 2002040153 A104 April 2002 Π 145615 D030 June 2002 NO 20015017 D015 October 2001 EA 200101081 A125 April 2002 Т AT 237604 15 May 2003 20010112421 20 December 2001 KR Α HU A2 29 July 2002 0200678 DE 69907037 D122 May 2003 TR T2 21 December 2004 200102957 ES Т3 01 December 2003 2195554 US 2005124817 09 June 2005 A1 EP 23 January 2002 A2 1173431 CZ20013693 A3 13 February 2002 WO 9930548 A2 24 June 1999 HK 1048122 **A**1 21 March 2003

Form PCT/ISA/210 (patent family annex) (January 2015)

INTERNATIONAL SEARCH REPORT International application No. Information on patent family members PCT/CN2022/070997 5 Patent document Publication date Publication date Patent family member(s) cited in search report (day/month/year) (day/month/year) 2002509864 JP A 02 April 2002 AR 018204 **A**1 31 October 2001 SK 14402001 A3 04 April 2002 SI1173431 T1 31 August 2003 10 IS 6091 Α 28 September 2001 $\mathsf{C}\mathsf{A}$ 2291129 **A**1 24 June 1999 BR9917346 Α 26 February 2002 AU 3137899 Α 05 July 1999 ITMI991580 D015 July 1999 15 30 September 2003 PT1173431Ε ${\rm PL}$ 350803 A110 February 2003 NZ 31 October 2003 514671 Α DK 1173431T3 04 August 2003 MXPA01010134 A 15 April 2002 20 25 30 35 40 45 50

Form PCT/ISA/210 (patent family annex) (January 2015)

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• CN 202110047911X [0001]