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matrix equations satisfying Ax=b, where Aisan X n
matrix, X is a column vector with n entries, and bisa
column vector with n entries, is disclosed. The method
comprises determining a linear combination of unitary
matrices that is equivalent to the matrix A; based on the
linear combination of unitary matrices, determining a col-
umn vector x that satisfies the linear matrix equation;

forming an updated matrix A based on the obtained col-

umn vector;; forming an updated column vector b based
onthe obtained column vector;; updating the coefficients
of the linear combination of unitary matrices based on
the updated column vector X; and based on the updated
linear combination of unitary matrices, determining an
updated column vector x that satisfies the updated linear
matrix equation.
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Description
Technical Field

[0001] Examples of the present disclosure relate to
methods, performed on at least one computing device
(forexample, a classical computing device, or a classical
computing device and a quantum computing device), of
determining solutions to a number of linear matrix equa-
tions satisfying AX = B, where A is a n X n matrix, Xis a
column vector with n entries, and b is a column vector
with n entries.

Background

[0002] The uses of Computational Fluid Dynamics
(CFD) range from designing widgets on a laptop, to sim-
ulating flow through gas turbines using classical super-
computers. CFD is utilized when designing most gas tur-
bine components, where it may be used to model high
performance aerodynamics and/or to model combustion
and its by-products, for example. Considering aerody-
namics as an example, CFD allows the shapes of rotor
and stator blades at a sub-system level to be optimized,
enabling target performance to be achieved in terms of
efficiency and pressure ratio for a compressor. A CFD
process such as this will typically feature many iterations
of a design, and therefore typically consumes large
amounts of supercomputing resources. Finite Element
Analysis (FEA) for stress and vibration are also key parts
of creating such designs, and also operate in a similar
way.

[0003] Typically, CFD and FEA problems such as
these are solved iteratively, in order to obtain an optimum
solution to the problem, and therefore an optimum com-
ponent design.

[0004] Whilst the equations governing CFD and FEA
are highly non-linear, many methods for solving CFD and
FEA problems utilize a two-step approach, in which a
first non-linear step is executed to linearize the equations
relating to the problem, and a second linear step is exe-
cuted to determine a solution to the linearized equations.
Typically, CFD and FEA problems solve a linearized ma-
trix, or a linearized set of matrices, in this second linear
step.

[0005] Thetwo-stepapproachisrepeated,i.e.iterated,
with the solution of the linearized equations being used
to update the non-linear variables and create new line-
arized equations which are solved as before. The se-
quence is repeated until the updates to the non-linear
equations are below a defined threshold and the non-
linear equations are considered to have been solved.
[0006] Such a linearized matrix, or a linearized set of
matrices, may be solved using a quantum computing de-
vice. However, solving a classical matrix equation (A; =
B, where A is a n X n matrix, X is a column vector with n
entries, and b is a column vector with n) on a quantum
computing device requires the matrix A to be decom-

10

15

20

25

30

35

40

45

50

55

posed into a sum of unitary matrices as follows:

n
A= Z aiUi
i=1

[0007] The unitary matrices (U;) can be implemented
on a quantum computing device using existing algo-
rithms, for example, the Harrow, Hassidim and Lloyd
(HHL) algorithm.

[0008] Figure 1 is a flowchart illustrating an example
method 100 that may be executed in order to solve a
non-linear problems using iterative techniques.

[0009] Atstep 102, the method 100 comprises reading
the input data relating to a problem. At step 104, the meth-
od 100 comprises determining an initial state for the prob-
lem based on this data, represented by the vector 70.

The initial state may comprise one or more physical var-
iables, such as an initial set of velocity vectors and/or
initial density values and/or initial pressure values. Fol-
lowing step 102, the method 100 further comprises set-
ting the value of a counter n as 1, where n represents
the number of iterations of the method 100.

[0010] At step 106, the method 100 comprises ex-
pressing one or more equations relating to the problem
(for example, one or more equations that describe how
the variables describing the initial state evolve, such as
the non-linear Navier Stokes equations) as a linearised
system that aims to solve a linear matrix equation of the
form linear matrix equations satisfying Ax = b, where A
and b depend non-linearly on X.

[0011] Atstep 108, the method 100 comprises solving
the linear matrix equation A(xﬁ)ﬁ = B(W) to obtain the
vector x™. It will be appreciated that the column vector x
represents the current solution to the problem obtained
for the current iteration of the method 100 (that is, the
solution to the problem that has been obtained on the
nth iteration of the method 100).

[0012] At step 110, the method 100 comprises deter-
mining the vectorﬁ, where ox = x"-x"1. That is, the vector
X represents the difference between the current solution
to the problem represented by the column vector F, and
the previous solution to the problem represented by the
column vector xm-1.

[0013] At step 112, the method 100 comprises deter-
mining whether a particular convergence criterion has
been met. For example, the convergence criterion may
be that the absolute value of the vector ox is below or
equal to a particular threshold ¢. If it is determined that
the particular convergence criterion has been met, the
method 100 proceeds to step 114. Otherwise, the method
100 proceeds to step 116.

[0014] At step 116, the method 100 comprises deter-
mining whether a maximum number of iterations of the
method has been exceeded. If it is determined that the
maximum number of iterations has been exceeded, the
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method 100 proceeds to step 114. Otherwise, the method
100 proceeds to step 106, and the value of the counter
n is incremented by 1. At step 106, the matrix A and the
column vector b are updated based on the obtained col-
umn vector x. That is, the solution of the linearized equa-
tions is used to update the non-linear variables, and cre-
ate new linearized equations, which are then solved in
the next iteration of the method 100 as described above.
[0015] At step 114, the updated column vector X is
saved as the solution to the problem associated with the
final linearized system Ax = b. That is, at step 114, the
non-linear equations are considered to have been
solved.

[0016] In some embodiments, step 108 of the method
100 may comprise solving the linear matrix equation
A(xﬁ)ﬁ = B(xﬁ) using a quantum computing device.
However, as noted above, solving the linear matrix equa-
tion A(xﬁ)ﬁ =B(XT'1)) using a quantum computing device
requires the matrix A be decomposed into a sum of uni-
tary matrices as follows:

A =Z Ct'iUi
i

[0017] Following this decomposition, a quantum com-
puting device may then be utilised to solve the following
linear matrix equation to obtain X:

D @t = B
i

[0018] Therefore, when utilizing a quantum computing
device inthis manner, the method 100 requires the matrix
A to decomposed into a sum of unitary matrices for each
iteration of the method 100. For small matrices, this de-
composition is relatively simple, but quickly becomes
complex and computationally expensive for larger matri-
ces. Therefore, presently, quantum computing devices
are utilized to solve problems based on either integer
valued matrices, or matrices where a small number of
real values are repeated, for example, along a diagonal,
rather the larger, more complicated matrices that are re-
quired to be solved in CFD and FEA problems.

Summary

[0019] One aspectofthisdisclosure provides a method
of determining solutions to a number of linear matrix
equations satisfying AX = B, where A is a n X n matrix, X
is a column vector with n entries, and bis a column vector
with n entries. The method comprises determining a lin-
ear combination of unitary matrices that is equivalent to
the matrix A; based on the linear combination of unitary
matrices, determining a column vector x that satisfies the
linear matrix equation; forming an updated matrix A
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based on the obtained column vector ;; forming an up-
dated column vector b based on the obtained column
vector ;; updating the coefficients of the linear combina-
tion of unitary matrices based on the updated column
vector ;; and based on the updated linear combination
of unitary matrices, determining an updated column vec-
tor x that satisfies the updated linear matrix equation.
[0020] Another aspect of this disclosure provides a
method, performed on at least one computing device, of
determining solutions to a number of linear matrix equa-
tions satisfying AX = B, where A is a n X n matrix, Xisa
column vector with n entries, and b is a column vector
with n entries. The method comprises determining a lin-
ear combination of unitary matrices that is equivalent to
the matrix A; based on the linear combination of unitary
matrices, determining a column vector x that satisfies the
linear matrix equation; forming an updated matrix A
based on the obtained column vector ;; forming an up-
dated column vector b based on the obtained column
vector ;; updating the coefficients of the linear combina-
tion of unitary matrices based on the updated column
vector ;; and based on the updated linear combination
of unitary matrices, determining an updated column vec-
tor x that satisfies the updated linear matrix equation.
[0021] The step of updating the coefficients of the lin-
ear combination of unitary matrices based on the updated
column vector x may comprise: updating one or more
values of the entries of the matrix A based on the updated
column vector ;; and updating the coefficients of the lin-
ear combination of unitary matrices based on the one or
more updated values of the entries of the matrix A.
[0022] Each of the unitary matrices may have a spar-
sity pattern that corresponds to a part of a sparsity pattern
of the matrix A.

[0023] The updated matrix A, and the matrix A, may
have the same sparsity pattern.

[0024] The step of determining a linear combination of
unitary matrices that is equivalent to the matrix A may
comprise: forming one or more groups of unitary matri-
ces, such that the unitary matrices comprised within a
particular group share the same sparsity pattern; and for
each group of unitary matrices, determining the coeffi-
cients of the linear combination of the subset of unitary
matrices comprised within the group.

[0025] The step of updating the coefficients of the lin-
ear combination of unitary matrices based on the updated
column vector x may comprise: for each group of unitary
matrices, determining the updated coefficients of the lin-
ear combination of the unitary matrices for the unitary
matrices comprised within the group.

[0026] Each unitary matrix may consist of a tensor
product of one or more Pauli matrices and/or an identity
matrix.

[0027] The step of determining a linear combination of
unitary matrices that is equivalent to the matrix A may
comprise: for each group of unitary matrices: converting
each unitary matrix in the group into a column vector
comprising the non-zero entries of the respective unitary
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matrix; and forming a cluster matrix for the group, the
cluster matrix comprising each of the column vectors.
[0028] Each cluster matrix may be a unitary matrix mul-
n
tiplied by scalar factor of 22 \yhere n is the number of
Pauli products in each unitary.
[0029] The at least one computing device may com-
prise a quantum computing device, and wherein the step
of determining a column vector x that satisfies the linear
matrix equation may comprise: (i) manipulating quantum
states of qubits of the quantum computing device based
on the linear combination of unitary matrices and the vec-
tor b; (i) obtaining a measurement of one or more qubits;
(iii) repeating steps (i) and (ii) to obtain a number of meas-
urements; and (iv) based on the obtained measurements,
determining the column vector X.
[0030] Aninitial state of the qubits of the quantum com-
puting device may represent the column vector b.
[0031] Manipulating quantum states of the qubits of
the quantum computing device may comprise: applying
one or more Pauli gates to one or more qubits of the
quantum computing device, wherein each of the one or
more Pauli gates represents a respective unitary matrix
within the linear combination of unitary matrices.
[0032] Manipulating quantum states of the qubits of
the quantum computing device may comprise: applying
one or more rotation gates to one or more qubits of the
quantum computing device, wherein each of the one or
more rotation gates represents a respective unitary ma-
trix within the linear combination of unitary matrices.
[0033] The at least one computing device may com-
prise a classical computing device, and wherein the col-
umn vector x that satisfies the linear matrix equation may
be determined using the classical computing device.
[0034] The at least one computing device may further
comprise a number of classical computing cores, and
wherein the step determining a linear combination of uni-
tary matrices that is equivalent to the matrix A may be
performed in parallel on a number of classical computing
cores.
[0035] The method may comprise, for each of the
number of classical computing cores: determining a sub-
set of the unitary matrices comprised within the linear
combination of unitary matrices.
[0036] The method may comprise, for each of the
number of classical computing cores: determining a sub-
set of the coefficients of the linear combination of the
unitary matrices.
[0037] The at least one computing device may further
comprise a number of classical computing cores, and
wherein the step of updating the coefficients of the linear
combination of unitary matrices based on the updated
column vector x is performed in parallel on a number of
classical computing cores.
[0038] The method may comprise, for each of the
number of classical computing cores: determining a sub-
set of the updated coefficients of the linear combination
of the unitary matrices.
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[0039] The updated column vector X may represent a
solution to a problem associated with the linearized sys-
tem Ax = b.

[0040] The updated column vector x may represent a
solution to a computational fluid dynamics problem.
[0041] The updated column vector x may represent a
solution to a finite element analysis problem.

[0042] The method may further comprise: using the
obtained solution in a design process of a component,
sub-system or system.

[0043] An additional aspect of this disclosure provides
acomputer program comprising instructions which, when
executed on at least one processor, cause the at least
one processor to carry out a method according to any of
the preceding paragraphs of the summary.

[0044] A further aspect of this disclosure provides a
computer program product comprising non transitory
computer readable media having stored thereon a com-
puter program according to the preceding paragraph.
[0045] An additional aspect of this disclosure provides
acomputing device for determining solutions to a number
of linear matrix equations satisfying Ax =b, where Ais a
n X n matrix, X is a column vector with n entries, and b
is a column vector with n entries. The computing device
is configured to determine a linear combination of unitary
matrices that is equivalent to the matrix A; based on the
linear combination of unitary matrices, determine a col-
umn vector x that satisfies the linear matrix equation;
form an updated matrix A based on the obtained column
vector ;; form an updated column vector b based on the
obtained column vector ;; update the coefficients of the
linear combination of unitary matrices based on the up-
dated column vector ;; and based on the updated linear
combination of unitary matrices, determine an updated
column vector x that satisfies the updated linear matrix
equation.

[0046] A still further aspect of this disclosure provides
a system for determining solutions to a number of linear
matrix equations satisfying Ax=h, where Aisan X n
matrix, X is a column vector with n entries, and bis a
column vector with n entries. The system is configured
to determine a linear combination of unitary matrices that
is equivalent to the matrix A; based on the linear combi-
nation of unitary matrices, determine a column vector x
that satisfies the linear matrix equation; form an updated
matrix A based on the obtained column vector;; form an
updated column vector b based on the obtained column
vector;; update the coefficients of the linear combination
of unitary matrices based on the updated column vector
;; and based on the updated linear combination of unitary
matrices, determine an updated column vector x that sat-
isfies the updated linear matrix equation.

[0047] The system may comprise atleastone classical
computing device, and a quantum computing device.
[0048] Thesystemmaycomprise a plurality of classical
computing devices.
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Brief Description of the Figures

[0049] For a better understanding of examples of the
present disclosure, and to show more clearly how the
examples may be carried into effect, reference will now
be made, by way of example only, to the following Figures
in which:

Figure 1is aflowchartillustrating an example method
100 that may be executed in order to solve a non-
linear problems using iterative techniques;

Figure 2 is a flow chart of an example of a method
200, performed on at least one computing device, of
determining solutions to a number of linear matrix
equations satisfying Ax= B, where Aisan X nmatrix,
Xis a column vector with n entries, and bis a column
vector with n entries;

Figure 3 is a flowchart of an example of a method
300 of solving a non-linear problem using iterative
techniques;

Figure 4 is a flow chart of an example implementation
of step 308 of Figure 3;

Figure 5 is an example of hybrid classical-quantum
method 500 for solving a non-linear problem using
iterative techniques;

Figure 6 is an example of a computing device 600
for determining solutions to a number of linear matrix
equations satisfying AX =5, where Aisan X nmatrix,
Xis a column vector with n entries, and bis a column
vector with n entries; and

Figure 7 is an example of a system 700 for deter-
mining solutions to a number of linear matrix equa-
tions satisfying AX = B, where A is a n X n matrix, x
is a column vector with n entries, and bis a column
vector with n entries.

Detailed Description

[0050] The following sets forth specific details, such as
particular embodiments or examples for purposes of ex-
planation and not limitation. It will be appreciated by one
skilled in the art that other examples may be employed
apart from these specific details. In some instances, de-
tailed descriptions of well-known methods, nodes, inter-
faces, circuits, and devices are omitted so as not obscure
the description with unnecessary detail. Those skilled in
the art will appreciate that the functions described may
be implemented in one or more nodes using hardware
circuitry (e.g., analog and/or discrete logic gates inter-
connected to perform a specialized function, ASICs,
PLAs, etc.) and/or using software programs and data in
conjunction with one or more digital microprocessors or
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general purpose computers. Nodes that communicate
using the air interface also have suitable radio commu-
nications circuitry. Moreover, where appropriate the tech-
nology can additionally be considered to be embodied
entirely within any form of computer-readable memory,
such as solid-state memory, magnetic disk, or optical disk
containing an appropriate set of computer instructions
that would cause a processor to carry out the techniques
described herein.

[0051] Hardware implementation may include or en-
compass, without limitation, digital signal processor
(DSP) hardware, a reduced instruction set processor,
hardware (e.g., digital or analogue) circuitry including but
not limited to application specific integrated circuit(s)
(ASIC) and/or field programmable gate array(s) (FP-
GA(s)), and (where appropriate) state machines capable
of performing such functions.

[0052] Certain embodiments of the present disclosure
enable a hybrid classical-quantum system to be realized
for solving non-linear problems using iterative tech-
niques, for example, CFD and FEA problems.

[0053] It is noted that a particular property of the ma-
trices that are associated with iteratively solving CFD and
FEA problems may be exploited when decomposing the
matrix A into a linear combination of unitary matrices.
[0054] Although the aforementioned first non-linear
step may be repeated several times as the problem is
iteratively solved (where this update is based on the so-
lution obtained from the previous iteration), for certain
types of problems (such as CFD and FEA problems), the
sparsity pattern of the matrix A will not change, even as
the values of the matrix A are updated. In other words,
the matrix A retains a fixed sparsity pattern as the prob-
lem is iteratively solved.

[0055] Inother words, in these examples, the matrix A
has a fixed sparsity pattern, and only the entries in the
matrix A depend on x1. As a result, in the unitary de-
composition of the matrix A, it is only the coefficients o
that depend on Xﬁ Therefore, in these examples, the
matrix equation for X7 can be written as:

> @ (U = B
i

where the unitary matrices U; are do not change as the
values of the matrix A are updated. The coefficients o

then depend non-linearly on x™7 via the matrix A.
[0056] This property may be exploited when determin-
ing the set of unitary matrices that represent the matrix
A. The set of unitary matrices may be determined (or
decomposed) such that, even if the values of the entries
of the matrix A are updated, the set of unitary matrices
will not change. Therefore, only the coefficients of the
linear combination of unitary matrices change as the en-
tries of the matrix A are updated with each iteration of
the method.
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[0057] Therefore, embodiments of the present disclo-
sure enable a more efficient method for solving non-linear
problems using iterative techniques, as only the coeffi-
cients of the unitary decomposition need to be updated
with each iteration of the method. Embodiments of the
presentdisclosure also enable the decomposition of ma-
trices with fixed sparsity patterns (which are typically as-
sociated with CFD and FEA problems) into a form suit-
able for execution using a quantum computing device.
[0058] Furthermore, embodiments of the present dis-
closure enable a more efficient method for evaluating
and the re-evaluating the coefficients in the unitary de-
composition as the matrix A is updated, through the uti-
lization of clusters of Pauli products (also known as Pauli
strings) that have a shared sparsity pattern in the unitary
decomposition.

[0059] Furthermore, in embodiments of the present
disclosure enables the unitary matrices to be simply
mapped to quantum computing gates, for example,
where the matrix A is decomposed into a linear combi-
nation of unitary matrices which are products of Pauli
matrices.

[0060] It will be appreciated that the terms quantum
circuit and quantum computing device may be used in-
terchangeably throughout the disclosure. Furthermore,
the term linear system, or linear systems of equations,
used herein refers generically to any system of equations
that can be represented by the matrix equation Ax=Dh.
[0061] Such systems may be solved for example by
solving for an update X by writing A’7'1(xﬁ> + 5) = b1
which can be written as the matrix equation An-T5x = pn-1
- An-tynd The right hand side of this linear system still
depends linearly or non-linearly on the previously updat-
ed value of ;, and is of the generic form to which the
present disclosure may be applied.

[0062] A furthercommon practice is to modify the linear
system such thatitis of the form A'Sx=h- A;, where the
matrix A’ is derived from the matrix A such that it has
some beneficial properties that make it more computa-
tionally efficient to solve the linearized equations. For ex-
ample, the matrix A’may or may not have the same spar-
sity pattern as the matrix A, but the sparsity pattern of A’
is typically fixed, as described above. These properties
of the matrix A’ may enable the inverse of the matrix A’
to be computed more simply than the inverse of the matrix
A, and enable more efficient solutions of the linear system
to be obtained via this preconditioning.

[0063] Again,this systemis ofthe genericformtowhich
the present disclosure may be applied. The vector x may
referto one physical variable, or any combination of phys-
ical variables present in the non-linear equations.
[0064] For simplicity, the embodiments described
herein refer to the generic form Ax = B, which should be
taken as referring to any of the modifications to the linear
systems described above, which may be implemented
when the linear system is derived from the non-linear
equations.
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[0065] An example method utilizing this fixed sparsity
pattern of matrix A when decomposing the matrix A is
now described. It will be appreciated that the methodol-
ogy herein is relevant to any application that involves
solving a matrix equation one time, or multiple times.
[0066] Figure 2is aflow chart of an example of a meth-
od 200, performed on at least one computing device, of
determining solutions to a number of linear matrix equa-
tions satisfying AX = B, where A is a n X n matrix, Xisa
column vector with n entries, and b is a column vector
with n entries. The method 200 may be executed as part
of amethod of solving a non-linear problem usingiterative
techniques, such as the method 300 described herein.
[0067] At step 202, the method 200 comprises deter-
mining a linear combination of unitary matrices that is
equivalent to the matrix A. In some embodiments, each
of the unitary matrices has a sparsity pattern that corre-
sponds to a part of a sparsity pattern of the matrix A. In
some embodiments, step 202 comprises forming one or
more groups of unitary matrices, such that the unitary
matrices comprised within a particular group share the
same sparsity pattern, and, for each group of unitary ma-
trices, determining the coefficients of the linear combi-
nation of the subset of unitary matrices comprised within
the group. In some embodiments, each unitary matrix
consists of a tensor product of one or more Pauli matrices
and/or an identity matrix.
[0068] Insome embodiments, the step 202 comprises,
for each group of unitary matrices: converting each uni-
tary matrix in the group into a column vector comprising
the non-zero entries of the respective unitary matrix, and
forming a cluster matrix for the group, the cluster matrix
comprising each of the column vectors. In some embod-
iments, each cluster matrix is a unitary matrix multiplied
n

by scalar factor of 22 where n is the number of Pauli
products in each unitary.

[0069] At step 204, the method 200 comprises, based
onthelinear combination of unitary matrices, determining
a column vector x that satisfies the linear matrix equation.
In some embodiments, wherein the at least one comput-
ing device comprises a quantum computing device, the
step 204 may comprise (i) manipulating quantum states
of qubits of the quantum computing device based on the
linear combination of unitary matrices and the vector B;
(i) obtaining a measurement of one or more qubits; (iii)
repeating steps (i) and (ii) to obtain a number of meas-
urements; and (iv) based on the obtained measurements,
determining the column vector x. In some embodiments,
an initial state of the qubits of the quantum computing
device represents the column vector b.

[0070] In some embodiments, manipulating quantum
states of the qubits of the quantum computing device
comprises, applying one or more Pauli gates to one or
more qubits of the quantum computing device, wherein
each of the one or more Pauli gates represents a respec-
tive unitary matrix within the linear combination of unitary



11 EP 4 283 535 A1 12

matrices. Alternatively, in some embodiments, manipu-
lating quantum states of the qubits of the quantum com-
puting device comprises applying one or more rotation
gates to one or more qubits of the quantum computing
device, wherein each of the one or more rotation gates
represents a respective unitary matrix within the linear
combination of unitary matrices.

[0071] Alternatively, in some embodiments, wherein
the at least one computing device comprises a classical
computing device, the column vector x that satisfies the
linear matrix equation is determined using the classical
computing device.

[0072] Insome embodiments, wherein the atleast one
computing device further comprises a number of classi-
cal computing cores, the step of determining alinear com-
bination of unitary matrices that is equivalent to the matrix
A may be performed in parallel on a number of classical
computing cores. In some embodiments, each of the
number of classical computing cores may determine a
subset of the unitary matrices comprised within the linear
combination of unitary matrices. In some embodiments,
each of the number of classical computing cores may
determine a subset of the coefficients of the linear com-
bination of the unitary matrices.

[0073] Atstep 206, the method 200 comprises forming
an updated matrix A based on the obtained column vector
X. In some embodiments, the updated matrix A, and the
matrix A, have the same sparsity pattern. In some em-
bodiments, the updated matrix A may depend non-line-
arly on X.

[0074] Atstep 208, the method 200 comprises forming
an updated column vector b based on the obtained col-
umn vector x. In some embodiments, the updated column
vector b may depend non-linearly on X.

[0075] Atstep 210, the method 200 comprises updat-
ing the coefficients of the linear combination of unitary
matrices based on the updated column vector x. In some
embodiments, step 210 may comprise updating one or
more values of the entries of the matrix A based on the
updated column vector X, and updating the coefficients
of the linear combination of unitary matrices based on
the one or more updated values of the entries of the matrix
A. In some embodiments, step 210 comprises, for each
group of unitary matrices, determining the updated coef-
ficients of the linear combination of the unitary matrices
for the unitary matrices comprised within the group.
[0076] In some embodiments, the step of determining
or updating the coefficients of the linear combination of
unitary matrices based on the updated column vector x
is performed in parallel on a number of classical comput-
ing cores. In some embodiments, each of the number of
classical computing cores may determine a subset of the
updated coefficients of the linear combination of the uni-
tary matrices.

[0077] Atstep 212, the method 200 comprises, based
on the updated linear combination of unitary matrices
and the updated column vector b, determining an updat-
ed column vector x that satisfies the updated linear matrix
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equation.

[0078] Insome embodiments, the method 200 may re-
turn to step 206 and repeat the non-linear updates until
a stopping threshold is reached.

[0079] In some embodiments, the updated column
vector X represents a solution to a computational fluid
dynamics problem. In some embodiments, the updated
column vector X represents a solution to a finite element
analysis problem. In some embodiments, the method 200
further comprises using the obtained solution in a design
process of a component, sub-system or system.

[0080] Figure 3is a flowchart of an example of a meth-
od 300 of solving a non-linear problem using iterative
techniques. Such problems may include CFD problems,
FEA problems, problems in which partial differential
equations are solved (for example, mesh generation), or
problemsin which a set or sets of simultaneous equations
are solved.

[0081] As noted above, solving non-linear problems
using iterative techniques typically involves expressing
the non-linear equations relating to the problem as a lin-
ear set of equations to be solved. This linear set of equa-
tions may then be solved using a quantum computing
device. The solution of the linear system of equations is
then returned and used to update the solution to the prob-
lem. For example, the velocities and pressures in a CFD
solution may be updated based on the solution of the
linear system of equations. Following this, a new linear-
ized system that depends on the updated solution is
formed, and the solution to this new linearized system is
then determined in the next iteration of the method.
[0082] The method 300 comprises, at step 302, read-
ing the input data relating to a problem and determining
an initial state for the problem based on the data, repre-
sented by the vector ;0. The initial state may comprise

one or more physical variables, such as an initial set of
velocity vectors and/or initial density values and/or initial
pressure values. Following step 302, the method 300 fur-
ther comprises setting the value ofacounternas 1, where
n represents the number of iterations of the method 300.
[0083] At step 304, the method 300 comprises ex-
pressing one or more equations relating to the problem
(for example, one or more equations that describe how
the variables describing the initial state evolve, such as
the non-linear Navier Stokes equations) as a linearized
system that aims to solve a linear matrix equation of the
form Ax = B, where A and b depend non-linearly on X.In
some embodiments, for example, embodiments where
the problem is a computational fluid dynamics problem,
the matrix A may correspond to a pressure correction
matrix.

[0084] Solving the matrix equation Ax = b to obtain the
vector ;, then enables the vector b to be updated.
[0085] The obtained vector X may then also be used
to update the values of the entries of the matrix A for
each new iteration of the method 300. In other words,
the functional dependency of the matrix equation is
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AG)xi = b(xnT).

[0086] As noted above, it is characteristic of the matrix
A that although the entries of the matrix A are updated
each time the vector x™1 is updated, the sparsity pattern
of the matrix A does not change. In this embodiment, the
matrix A comprises real values. However, it will be ap-
preciated that the embodiments herein can be modified
to apply to matrices comprising complex values.

[0087] At step 306, the method 300 comprises deter-
mining whether the value of n is equal to 1. If the value
of the n is equal to 1 (in other words, if it is determined
that this is the first iteration of the method 300), the meth-
od 300 comprises determining the sparsity pattern of the
matrix A, Sp (A(xﬁ)}. As noted above, the values of the

entries of the matrix A are dependent on the vector X1,
The method 300 then proceeds to step 308.

[0088] At step 308, the method 300 comprises deter-
mining a set of unitary matrices, where a linear combi-
nation of this set of unitary matrices is then equivalent to
the matrix A. As noted above, in order to solve alinearized
matrix equation of the form Ax=bona quantum com-
puting device, it must first be decomposed into a linear
combination of unitary matrices.

[0089] In this embodiment, step 308 comprises form-
ing one or more groups of unitary matrices, such that the
unitary matrices comprised within a particular group
share the same sparsity pattern. A particular example of
this step is described in greater detail with reference to
Figure 4.

[0090] As the set of unitary matrices is determined
based on the sparsity pattern of the matrix A, and the
sparsity pattern of the matrix A does not change even as
the entries of the matrix A are updated, the set of unitary
matrices does not have to be re-determined each time
the method 300 is repeated. Each iteration of the method
300 then only requires that the coefficients of the linear
combination of unitary matrices be updated, in accord-
ance with the solution obtained for the previous iteration
of the method.

[0091] Atstep 310, the method 300 comprises storing
the one or more groups of unitary matrices. A particular
example of this step is described in greater detail with
reference to Figure 4.

[0092] It will be appreciated that for some problems
(for example, problems in which a mesh is refined or de-
fined as the problem is being iteratively solved) may re-
quire the decomposition of the matrix A to be recalculated
for some of the repetitions of the method 300. In other
words, for certain types of problems, the steps 308 and
310 of the method 300 may be executed for more than
one iteration of the method 300 as the problem is itera-
tively solved.

[0093] At step 312, the method 300 comprises, for
each group of unitary matrices, determining the coeffi-
cients of the linear combination of the subset of unitary
matrices comprised within the group. In this illustrated
embodiment, the coefficients of the linear combination
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of the subset of unitary matrices comprised within the
group are determined based on the values of the entries
of the matrix A.

[0094] At step 314 of the method 300, the quantum
computing device (for example, the quantum computing
device 704) is designed in accordance with the deter-
mined set of unitary matrices. For example, the opera-
tions and/or gates to be applied to the quantum comput-
ing device may be determined based on the determined
set of unitary matrices. As noted above, as the set of
unitary matrices is determined based on the sparsity pat-
tern of the matrix A, and the sparsity pattern of the matrix
A does not change even as the entries of the matrix A
are updated, the set of unitary matrices does not have
to be re-determined each time the method 300 is iterated
over. Similarly, in embodiments in which the operations
and/or gates to be applied to the quantum computing
device are based on the set of unitary matrices in the
decomposition, these operations and/or gates also do
not need to be updated each time the method 300 is
iterated over.

[0095] Insome embodiments, one or more Pauli gates
may be applied to one or more qubits of the quantum
computing device, wherein each of the one or more Pauli
gates represents a respective unitary matrix within the
set of unitary matrices. For example, in embodiments
where each unitary matrix consists of a tensor product
of one or more Pauli matrices and/or an identity matrix,
each unitary matrix may then be represented by a Pauli
gate. Additionally or alternatively, one or more rotation
gates may be applied to one or more qubits of the quan-
tum computing device, wherein each of the one or more
rotation gates represents a respective unitary matrix with-
in the set of unitary matrices.

[0096] At step 316, the method 300 comprises instan-
tiating the quantum computing device, based on the de-
termined coefficients and/or the column vector b. For ex-
ample, the determined coefficients may correspond to
one or more rotation angles in a set of gates applied to
the quantum computing device. In some embodiments,
the quantum computing device is instantiated such that
an initial state of the qubits of the quantum computing
device, |lA>>, represents the column vector b.

[0097] Insomeembodiments,the gates corresponding
to the determined coefficients with values below a small
threshold may be omitted in order to reduce the number
of gates to be applied to the quantum computing device,
enabling a more efficient quantum circuit to be formed.
In this illustrated embodiment, each omitted gate is as-
sumed to have a small or negligible impact on the output
of the quantum circuit, due to the fact it corresponds to
a unitary within the determined set which has a small
coefficient in the linear combination of unitary matrices.
[0098] At step 318, the method 300 comprises solving
the following matrix equation using the quantum comput-
ing device:
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[0099] It will be appreciated that several standard al-
gorithms may be used to determine the solution to this
matrix equation using a quantum computing device. For
example, non-variational algorithms for linear systems
such as the HHL and QSVT algorithms may be used.
[0100] In some embodiments, the step 318 may com-
prise manipulating quantum states of qubits of the quan-
tum computing device based on the linear combination
of unitary matrices and the vector B, as described above.
In some embodiments, the step 318 may further com-
prise obtaining a measurement of one or more qubits of
the quantum computing device. In this illustrated embod-
iment, the quantum computing device may require that
the step 318 be executed a number of times to provide
a series of measurements that may then be processed
to provide an approximation of the column vector X1, 1t
will be appreciated that the fidelity of the approximation
may increase as the number of executions is increased.
[0101] In step 320, the method 300 comprises, based
on the obtained measurement, determining the column
vector x. In some embodiments, the column vector X
may be obtained based on a statistical distribution of a
plurality of obtained measurements, which have been
obtained following executing the step 318 on the quan-
tum computing device a number of times.

[0102] It will be appreciated that the column vector X
represents the current solution to the problem obtained
for the current iteration of the method 300 (that is, the
solution to the problem that has been obtained on the
nth iteration of the method 300).

[0103] In an alternative embodiment, rather than de-
termining a solution to the matrix equation using a quan-
tum computing device, the column vector x" that satisfies
the linear matrix equation may instead be determined
using a classical computing device.

[0104] At step 322, the method 300 comprises deter-
miningthevectorﬁ,where§=x”-x”' .Thatis, the vector
5 represents the difference between the current solution
to the problem represented by the column vector F, and
the previous solution to the problem represented by the
column vector x™1.

[0105] At step 324, the method 300 comprises deter-
mining whether a particular convergence criterion has
been met. For example, the convergence criterion may
be that the absolute value of the vector ox is below or
equal to a particular threshold ¢. If it is determined that
the particular convergence criterion has been met, the
method 300 proceeds to step 326. Otherwise, the method
300 proceeds to step 328.

[0106] At step 328, the method 300 comprises deter-
mining whether a maximum number of iterations of the
method has been exceeded. If it is determined that the
maximum number of iterations has been exceeded, the
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method 300 proceeds to step 326. Otherwise, the method
300 proceeds to step 304, and the value of the counter
n is incremented by 1. At step 304, the matrix A and the
column vector b are updated based on the obtained col-
umn vector x. That is, the solution of the linearized equa-
tions is used to update the non-linear variables, and cre-
ate new linearized equations, which are then solved in
the next iteration of the method 100 as described above.
[0107] At step 326, the updated column vector X7 is
saved as the solution to the problem associated with the
final linearized system Ax = b. That is, at step 326, the
non-linear equations are considered to have been
solved. It will be appreciated that, in some embodiments,
X may represent a solution to a computational fluid dy-
namics problem. In other embodiments, X may repre-
sent a solution to a finite element analysis problem. In
some embodiments, the obtained solution may then be
used in a design process of a component, sub-system
or system.

[0108] As noted above, each iteration of the method
300 solves an updated linear matrix equation (where this
update is based on the previously obtained solution).
However, the sparsity pattern of the matrix A does not
change despite this updating, enabling the same set of
unitary matrices to be used in further iterations of the
method 300. The coefficients of the linear combination
of unitary matrices are then updated at step 314, based
on the updated values of the entries of the matrix A.
[0109] Itwill be appreciated that the steps of either de-
termining or updating the coefficients of the linear com-
bination of unitary matrices may be performed in parallel
on a number of classical computing cores. For example,
each of the number of classical computing cores may
determine or update a subset of the coefficients of the
linear combination of the unitary matrices.

[0110] Figure 4 is a flow chart of an example imple-
mentation of step 308 of Figure 3. That is, Figure 4 is a
flow chart of an example method determining a set of
unitary matrices, where a linear combination of the set
of unitary matrices is then equivalent to the matrix A, that
depends on the sparsity pattern of the matrix A being
fixed.

[0111] At step 402, the matrix A is obtained. As noted
above, the entries of the matrix A are based on the value
of the vector xﬁ, which represents the current solution
to the problem that is being solved.

[0112] Atstep 404, the method 400 comprises extract-
ing the sparsity pattern of matrix A. In this embodiment,
step 404 further comprises setting the variables i, j and
cto 1, wherei,j represents an entry comprised within the
sparsity pattern, and where ¢ represents the cluster
number (as will be explained in greater detail below). In
this embodiment, the method 400 begins iterating over
the sparsity pattern beginning at the entry i,j=1,1. How-
ever, itwillbe appreciated that the method 400 may begin
iterating over any entry in the sparsity pattern. Addition-
ally, although the method 400 iterates over the entries of
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the sparsity pattern of matrix A, it will be appreciated that
the method 400 may be modified to instead iterate over
the unitary matrices. In this embodiment, each of the uni-
tary matrices consists of a tensor product of one or more
Pauli matrices and/or an identity matrix. That is, each of
the unitary matrices are formed by a tensor product of
the X, Y, Z and identity, I, matrices, to form a Pauli prod-
uct. Each Pauli product will comprise n matrices, where
N=2" is the number of rows (the rank) in the matrix A. If
the rank of the matrix A is not equal to a power of 2, then
the matrix A may be extended with an identity block in
the lower right corner. That is, in this illustrated embod-
iment, each of the unitary matrices is a Pauli product (or
a Pauli string).

[0113] At step 406, for the first entry in the sparsity
matrix, S44, the method 400 comprises determining a
subset of unitary matrices which have sparsity patterns
which overlap with the first entry in the sparsity matrix S 4.
[0114] As the method 400 is iterated over, step 406
will comprise determining which of the unitary matrices
comprise an entry at the corresponding location i,j of the
sparsity patten. Each of the determined unitary matrices
will therefore have a sparsity pattern that corresponds to
a part of a sparsity pattern of the matrix A.

[0115] The aforementioned Pauli products will form
clusters, where for each cluster, all of the members of
that particular cluster will share the same sparsity pattern.
Each Pauli product is uniquely a member of one of these
formed clusters, and to which cluster each Pauli product
belongs may be determined by determining whether the
Pauli product has a sparsity pattern which overlaps an
entry in the sparsity pattern of the matrix A. It is noted
that, due to the high degree of sparsity in matrices typi-
cally associated with problems such as CFD and FEA
problems, many unitary (or Pauli product) clusters will
not overlap with the entries in the matrix A.

[0116] It will be appreciated that, in this embodiment,
as each unitary matrix comprises a single entry in each
row and column, that the sparse matrices may be stored
in a compressed row or a compressed column format,
as the rows after i, or the columns after j, do not need to
be searched over.

[0117] Following step 406, at step 408, the determined
set of unitary matrices are grouped. In some embodi-
ments, each unitary matrix in the group may be converted
into a column vector comprising the non-zero entries of
the respective unitary matrix, and a cluster matrix may
then be formed for the group of unitary matrices, com-
prising each of these column vectors.

[0118] Atstep 410, the sparsity pattern of the matrix A
is augmented with zero-entries in order to create a com-
mon sparsity pattern with the sum of the group of unitary
matrices. The sparsity pattern of the group of unitary ma-
trices (the cluster) may include elements of the matrix
that are not part of the sparsity pattern of the matrix A.
That is, the unitary matrices in the cluster may comprise
a non-zero entry where the equivalent entry in the matrix
A is always zero. These entries are then added to the
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sparsity pattern of the matrix A, as it is necessary that
the calculation of the unitary coefficients ensures that the
value of these entries is zero.
[0119] At step 412, the cluster matrix is inverted. It is
noted thatthe inverse of each cluster matrix thatis formed
in this manner is equal to its transpose, when the matrix
A consists of real-valued entries. Each cluster matrix is
E
aunitary matrix multiplied by a scalar factorof 22 | where
n is the number of Pauli products in each unitary matrix.
[0120] Therefore, the transpose of each of these clus-
ter matrices can be determined without a computationally
expensive matrix inversion step.
[0121] At step 414, it is then determined whether any
further elements of the sparsity pattern share the sparsity
pattern of the formed cluster. If so, these entries of the
sparsity pattern are associated with the cluster marked
c=1. The method 400 then marks these entries of the
sparsity pattern as complete, such that the method 400
will not iterate over them if the method 400 is repeated.
[0122] Atstep 416, the method 400 determines wheth-
er there are any entries in the sparsity pattern that have
not been marked as complete (in other words, whether
there are any entries in the sparsity pattern that have not
been associated with a formed cluster). If there are en-
tries in the sparsity pattern that have not been marked
as complete, the values of iand j are updated to represent
the next entry in the sparsity matrix that is not associated
with a cluster, and the value of ¢ is incremented by 1 to
represent a new cluster. The method 400 then returns to
step 406 for the next relevant entry in the sparsity matrix.
[0123] Ifallthe entriesin the sparsity pattern have been
marked as complete, the set of transposed cluster ma-
trices are stored at step 418, as is the case in step 310
of the method 300. It will be appreciated that storing the
transposed cluster matrix for each group of unitary ma-
trices enables the coefficients of the unitary decomposi-
tion to be quickly recomputed each time the linearized
matrix system is updated (for example, at step 314 of the
method 300).
[0124] Itis noted that all the entries in each transposed
cluster matrix are =1, which minimizes the storage re-
quired to store the transposed cluster matrices. For ex-
ample, the transposed cluster matrices may be stored
using a single byte using a standard programming type,
or may be stored using a single bit using a custom pro-
gramming type.
[0125] The sparsity pattern of each cluster matrix is
also stored. This may be optimized by storing the sparsity
pattern of each cluster once for the cluster, rather than
with every unitary in the cluster (as each unitary in the
cluster shares the same sparsity pattern).
[0126] Insomeembodiments, this method of determin-
ing the set of unitary matrices A may be performed in
parallel on a number of classical computing cores. For
example, in some embodiments, each of the number of
classical computing cores may determine a subset of the
unitary matrices comprised within the linear combination
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of unitary matrices. For example, each of the number of
classical computing cores may execute the step 406 de-
scribed above for one or more unitary matrices.

[0127] Such parallelization may be realized by dividing
the unitary matrices between the available classical com-
puting cores, noting that each unitary matrix is independ-
ent of the others. For example, if there are N unitary ma-
trices to be analyzed, and M computing cores available,
then each core may process N/M unitary matrices. The
unitary matrices may be indexed such that they may be
processed without repetition. The indices may be
mapped to unitary matrices using base 4 numbers, as
there are 4 options available for each Pauli product (I, X,
Y, Z). For example, for an index n= 114, the base 4 value
is 1302 = 1x64 + 3x16 + 0x4 + 2 and the corresponding
unitary is U=X ® Z ®I®Y. For each index n, the corre-
sponding unitary will then be unique.

[0128] Figure 5is an example of hybrid classical-quan-
tum method 500 for solving a non-linear problem using
iterative techniques. The system executing the method
500 comprises a classical computing device 502, a hybrid
interface 504, and a quantum computing device 506.
[0129] In this illustrated embodiment, the hybrid inter-
face 504 is a classical computing device. In some em-
bodiments, the classical computing device 502 compris-
es the hybrid interface 504. In some embodiments, the
hybrid interface 504 is a separate classical computing
device from the classical computing device 502. In these
embodiments, the hybrid interface 504 may be designed
for communicating between classical computing devices
and quantum computing devices. For example, the hy-
brid interface 504 may be configured to rapidly process
repeated executions of step 516 to construct an approx-
imation of x.

[0130] Atstep 508, the method 500 comprises reading
the input data relating to a problem and determining an
initial state for the problem based on this data. For ex-
ample, step 508 may correspond to step 302 of Figure 3.
[0131] Atsteps 510 and 512, the method 500 compris-
es expressing one or more equations relating to the prob-
lem as a linearized system that aims to solve a linear
matrix equation of the form Ax=b, where Aand Bdepend
non-linearly on x. For example, steps 510 and 512 may
correspond to step 304 of Figure 3.

[0132] Atstep 514, the classical computing device 502
transmits the matrix A and the column vector b to the
hybrid interface 504. The hybrid interface 504 then de-
termines a linear combination of unitary matrices that is
equivalent to the matrix A, and determines an initial state
for the quantum computing device 506. For example,
step 514 may correspond to steps 308, 310, 312, 314
and 316 of Figure 3.

[0133] Atstep 516, the quantum computing device re-
ceives the linear combination of unitary matrices that is
equivalent to the matrix A and an initial state for the quan-
tum computing device 506, and then solves the following
matrix equation:
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[0134] For example, step 516 may correspond to step
318 of Figure 3.

[0135] A measurement of the output state of the quan-
tum computing device 506, |)A(>, is then returned to the
hybrid interface 504.

[0136] Atstep 518, the hybrid interface 504 processes
the measurement to determine the column vector x. The
determined column vector x is then returned to the clas-
sical computing device 502. For example, step 518 may
correspond to step 320 of Figure 3.

[0137] Inthisillustrated embodiment, step 516 may re-
peated a number of times to create statistical distribution
of measurements of |)A(> that are then used in step 518 to
construct an approximation of the column vector X.
[0138] Atstep 520, the classical computing device 502
updates the variables of the linearized equations. For
example, step 520 may comprise determining the vector
5, where x = x7 - X1, That is, the vector ox represents
the difference between the current solution represented
by the column vector F, and the previous solution rep-
resented by the column vector X,

[0139] Atstep 522, the classical computing device 502
determines whether the solution to the non-linear prob-
lem has converged. For example, step 522 may corre-
spond to steps 324 and/or 328 of the method 300.
[0140] If it is determined that the solution has con-
verged, the updated column vector x is saved as the so-
lution to the problem at step 524. If it is determined that
the solution has not converged, the method 500 returns
to step 510, and the linearized system of equations are
updated so as to solve for an updated column vector X.
[0141] Figure 6 is a schematic of an example of a com-
puting device 600 for determining solutions to a number
of linear matrix equations satisfying Ax=b, where Ais a
n X n matrix, X is a column vector with n entries, and b
is a column vector with n entries. The computing device
600 comprises processing circuitry 602 (e.g. one or more
processors) and a memory 604 in communication with
the processing circuitry 602. The memory 604 contains
instructions executable by the processing circuitry 602.
In one embodiment, the memory 604 contains instruc-
tions executable by the processing circuitry 602 such that
the computing device 600 is operable to determine a lin-
ear combination of unitary matrices that is equivalent to
the matrix A; based on the linear combination of unitary
matrices, determine a column vector x that satisfies the
linear matrix equation; form an updated matrix A based
on the obtained column vector;; form an updated column
vector b based on the obtained column vector ;; update
the coefficients of the linear combination of unitary ma-
trices based on the updated column vector;; and based
on the updated linear combination of unitary matrices,
determine an updated column vector x that satisfies the
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updated linear matrix equation. In some examples, the
memory 604 contains instructions executable by the
processing circuitry 602 such that the computing device
600 is operable to carry out the methods 200, 300 and
400 described above.

[0142] Figure 7 is a schematic of an example of a sys-
tem 700 for determining solutions to a number of linear
matrix equations satisfying Ax=Db, where Aisan x n
matrix, X is a column vector with n entries, and bisa
column vector with n entries. The system 700 comprises
at least one classical computing device 702, and a quan-
tum computing device 704. The at least one classical
computing device 702 may be configured to determine
a linear combination of unitary matrices that is equivalent
to the matrix A. The quantum computing device 704 may
be configured to, based on the linear combination of uni-
tary matrices, determine a measurement that represents
a column vector x that satisfies the linear matrix equation.
In this illustrated embodiment, the determined measure-
ment comprises a series of measurements of an output
state of the quantum computing device 704, where each
measurement within the series of measurements is ob-
tained following a respective execution of the quantum
computing device 704. The at least one classical com-
puting device 702 may be further configured to, based
on the determined measurement, obtain the column vec-
tor ;; form an updated matrix A based on the obtained
column vector;; form an updated column vector b based
on the obtained column vector;; update the coefficients
of the linear combination of unitary matrices based on
the updated column vector X. The quantum computing
device 704 may be further configured to, based on the
updated linear combination of unitary matrices, deter-
mine a further measurement that represents an updated
column vector x that satisfies the updated linear matrix
equation. Therefore, in some examples, the system 700
is operable to carry out the methods 200, 300 and 400
described above. In some examples, the at least one
classical computing device 702 is operable to carry out
at least part of the methods 200, 300 and 400 described
above. In some examples, the quantum computing de-
vice 704 is operable to carry out at least part of the meth-
ods 200 and 300 described above. In some embodi-
ments, the at least one classical computing device 702
may comprise the classical computing device 502 de-
scribed above. In some embodiments, at least one clas-
sical computing device 702 may comprise the classical
computing device 502 and the hybrid interface 504 de-
scribed above.

[0143] Althoughthe embodiments described herein re-
late to solving matrix equations where the matrices are
real valued, it will be appreciated that these methods may
also be extended to solve matrix equations wherein the
matrices are complex valued.

[0144] As indicated above, in some examples, the
sparsity pattern of the matrix A does not change despite
the update of the coefficients, enabling the same set of
unitary matrices to be used in further iterations. There-

10

15

20

25

30

35

40

45

50

55

12

fore, the set of unitary matrices do not have to be recal-
culated for each iteration, only the coefficients need to
be updated.

[0145] Also indicated above, in some examples, the
steps of either determining or updating the coefficients
of the linear combination of unitary matrices may be per-
formed in parallel on a number of classical computing
cores. For example, each of the number of classical com-
puting cores may determine or update a subset of the
coefficients of the linear combination of the unitary ma-
trices. Additionally or alternatively, for example, each of
the number of classical computing cores may determine
or update the coefficients in a subset of the unitary ma-
trices. For example, each cluster may be processed us-
ing one core (or the processing of the matrices in a cluster
may be split among multiple cores).

[0146] The general advantages of the proposed solu-
tions in some examples are that the methods enable the
decomposition of an arbitrary matrix into a form that may
be suitably executed on a quantum computing device,
including the larger and more complex matrices associ-
ated with CFD and FEA problems. Furthermore, the de-
composition may be utilized with non-variational algo-
rithms for linear systems such as the HHL and QSVT
algorithms. Embodiments of the present disclosure also
involve only a one-time computationally expensive de-
composition step, that is performed only on the first iter-
ation of the method, in which the set of unitary matrices
of the linear combination of unitary matrices is deter-
mined, which are then re-used for each further iteration
of the method.

[0147] Itshould be noted thatthe above-mentioned ex-
amples illustrate rather than limit the invention, and that
those skilled in the art will be able to design many alter-
native examples without departing from the scope of the
appended statements. The word "comprising" does not
exclude the presence of elements or steps other than
those listed in a claim, "a" or "an" does not exclude a
plurality, and a single processor or other unit may fulfil
the functions of several units recited in the statements
below. Where the terms, "first", "second" etc. are used
they are to be understood merely as labels for the con-
venient identification of a particular feature. In particular,
they are not to be interpreted as describing the first or
the second feature of a plurality of such features (i.e., the
first or second of such features to occur in time or space)
unless explicitly stated otherwise. Steps in the methods
disclosed herein may be carried out in any order unless
expressly otherwise stated. Any reference signs in the
statements shall not be construed so as to limit their
scope.

Claims
1. A method, performed on at least one computing de-

vice, of determining solutions to a number of linear
matrix equations satisfying Ax=b, where Ais an X
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n matrix, x is a column vector with n entries, and b
is a column vector with n entries, the method com-
prising:

determining a linear combination of unitary ma-
trices that is equivalent to the matrix A;

based on the linear combination of unitary ma-
trices, determining a column vector x that satis-
fies the linear matrix equation;

forming an updated matrix A based on the ob-
tained column vector ;;

forming an updated column vector b based on
the obtained column vector ;;

updating the coefficients of the linear combina-
tion of unitary matrices based on the updated
column vector ;; and

based on the updated linear combination of uni-
tary matrices, determining an updated column
vector x that satisfies the updated linear matrix
equation.

The method accordingto claim 1, wherein the atleast
one computing device comprises a quantum com-
puting device, and wherein the step of determining
a column vector x that satisfies the linear matrix
equation comprises:

(i) manipulating quantum states of qubits of the
quantum computing device based on the linear
combination of unitary matrices and the vectorB;
(i) obtaining a measurement of one or more
qubits;

(iii) repeating steps (i) and (ii) to obtain a number
of measurements; and

(iv) based on the obtained measurements, de-
termining the column vector X.

The method according to claim 2, wherein an initial
state of the qubits of the quantum computing device
represents the column vector b.

The method according to claim 2 or 3, wherein ma-
nipulating quantum states of the qubits of the quan-
tum computing device comprises:

applying one or more Pauli gates to one or more
qubits of the quantum computing device, where-
in each of the one or more Pauli gates represents
arespective unitary matrix within the linear com-
bination of unitary matrices; or

applying one or more rotation gates to one or
more qubits of the quantum computing device,
wherein each of the one or more rotation gates
represents a respective unitary matrix within the
linear combination of unitary matrices.

The method accordingto claim 1, wherein the atleast
one computing device comprises a classical com-
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puting device, and wherein the column vector x that
satisfies the linear matrix equation is determined us-
ing the classical computing device.

The method according to any preceding claim,
wherein the at least one computing device further
comprises a number of classical computing cores,
and wherein the step determining a linear combina-
tion of unitary matrices thatis equivalent to the matrix
A is performed in parallel on a number of classical
computing cores.

The method according to claim 6, the method com-
prising, for each of the number of classical computing
cores:

determining a subset of the unitary matrices com-
prised within the linear combination of unitary matri-
ces.

The method according to claim 6 or 7, the method
comprising, for each of the number of classical com-
puting cores:

determining a subset of the coefficients of the linear
combination of the unitary matrices.

The method according to any preceding claim,
wherein the at least one computing device further
comprises a number of classical computing cores,
and wherein the step of updating the coefficients of
the linear combination of unitary matrices based on
the updated column vector x is performed in parallel
on a number of classical computing cores.

The method according to claim 9, the method com-
prising, for each of the number of classical computing
cores:

determining a subset of the updated coefficients of
the linear combination of the unitary matrices.

The method according to any preceding claim,
wherein the updated column vector x represents a
solution to a problem associated with the linearized
system Ax=Db.

The method according to claim 11, wherein the up-
dated column vector x represents a solution to acom-
putational fluid dynamics problem, or wherein the
updated column vector x represents a solution to a
finite element analysis problem.

The method according to claim 11 or 12, the method
further comprising:

using the obtained solution in a design process of a
component, sub-system or system.

A system for determining solutions to a number of
linear matrix equations satisfying Ax = b, where A is
a n X n matrix, x is a column vector with n entries,
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and b is a column vector with n entries, the system
configured to:

determine a linear combination of unitary matri-

ces that is equivalent to the matrix A; 5
based on the linear combination of unitary ma-
trices, determine a column vector x that satisfies

the linear matrix equation;

form an updated matrix A based on the obtained
column vector ;; 10
form an updated column vector b based on the
obtained column vector ;;

update the coefficients of the linear combination
ofunitary matrices based on the updated column
vector ;; and 15
based on the updated linear combination of uni-

tary matrices, determine an updated column
vector x that satisfies the updated linear matrix

equation.
20
15. The system according to claim 14, wherein the sys-
tem comprises at least one classical computing de-
vice, and a quantum computing device.
25
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