(12)

EUROPÄISCHE PATENTANMELDUNG

- (43) Veröffentlichungstag: 06.12.2023 Patentblatt 2023/49
- (21) Anmeldenummer: 23175103.3
- (22) Anmeldetag: 24.05.2023

- (51) Internationale Patentklassifikation (IPC): **B26D 1/00** (2006.01)
- (52) Gemeinsame Patentklassifikation (CPC): B26D 1/0006; B26D 2001/0046; B26D 2001/0073; B26D 2210/02

(84) Benannte Vertragsstaaten:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

Benannte Erstreckungsstaaten:

BA

Benannte Validierungsstaaten:

KH MA MD TN

(30) Priorität: 02.06.2022 DE 102022113920

- (71) Anmelder: MULTIVAC Sepp Haggenmüller SE & Co. KG 87787 Wolfertschwenden (DE)
- (72) Erfinder: HARTMANN, Albert 87463 Dietmannsried (DE)
- (74) Vertreter: Weickmann & Weickmann PartmbB Postfach 860 820 81635 München (DE)

(54) MESSER, SCHNEIDEINHEIT SOWIE AUFSCHNEIDE-MASCHINE

Die Erfindung betrifft ein Messer (3), insbesondere Slicer-Messer, für eine Schneideinheit (7) einer Aufschneide-Maschine (1), insbesondere eines Slicers (1), zum Abschneiden von Scheiben (101) von einem Produkt-Strang (100) mit einem Messer-Grundkörper (3.1), welcher eine Rotationsachse (3') aufweist. Erfindungsgemäß weist der Messer-Grundkörper (3.1) eine Mehrzahl rinnenförmiger Vertiefungen (3.2) mit einer Verlaufsrichtung (3.2') auf, wobei die rinnenförmigen Vertiefungen (3.2) eine vorbestimmte Tiefe in axialer Richtung (10) aufweisen, und die Verlaufsrichtung (3.2') jeder der rinnenförmigen Vertiefungen (3.2) in Bezug auf die Rotationsachse (3') des Messer-Grundkörpers (3) wenigstens teilweise in nicht-radialer Richtung verläuft. Die Erfindung betrifft ferner eine Schneideinheit (7) mit einem derartigen Messer sowie eine Aufschneide-Maschine (1), welche die Schneideinheit (7) umfasst.

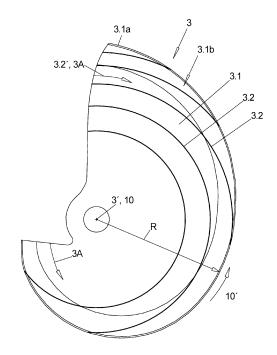


Fig. 3a

EP 4 286 117 A1

I. Anwendungsgebiet

[0001] Die Erfindung betrifft ein Messer, insbesondere ein Slicer-Messer, für eine Schneideinheit einer Aufschneide-Maschine, insbesondere eines Slicers, zum Abschneiden von Scheiben von einem Produkt-Strang. Die Erfindung betrifft ferner eine Schneideinheit mit einem derartigen Messer sowie eine Aufschneide-Maschine, insbesondere einen Slicer, mit einer derartigen Schneideinheit.

1

II. Technischer Hintergrund

[0002] Gattungsgemäße Aufschneide-Maschine sind allgemein aus der Lebensmittelindustrie bekannt und sind dazu bestimmt, Stränge eines nur geringfügig kompressiblen Produktes wie Wurst oder Käse in Scheiben aufzuschneiden.

[0003] Da diese Stränge mit einem über ihre Länge gut formhaltigen und maßhaltigen, also im Wesentlichen konstanten, Querschnitt hergestellt werden können, werden sie Kaliber oder Produkt-Kaliber genannt.

[0004] Dabei werden meist mehrere Produkt-Kaliber nebeneinander gleichzeitig aufgeschnitten, indem vom gleichen Messer, welches sich in Querrichtung zur Längsrichtung der Produkt-Kaliber bewegt, in einem Durchgang jeweils eine Scheibe abgeschnitten wird.

[0005] Die Produkt-Kaliber werden von einem Zuförderer der Aufschneide-Maschine vorwärts geschoben in Richtung Messer, meist auf einem schräg nach unten gerichteten Zuförderer, und jeweils durch die Produkt-Öffnungen einer so genannten Schneidbrille geführt, an deren vorderen Ende das darüber hinaus vorstehende Teil des Produkt-Kalibers von dem Messer unmittelbar vor der Schneidbrille als Scheibe abgetrennt wird.

[0006] Die Scheiben fallen in aller Regel auf einen Abförderer, mittels dessen sie zur Weiterverarbeitung abtransportiert werden.

[0007] Dabei wird ein Messer, insbesondere ein sogenanntes Slicer-Messer, quer zur Längsrichtung des Stranges durch dessen Querschnitt hindurch bewegt und dadurch eine Scheibe abgeschnitten, und vor dem Abschneiden der nächsten Scheibe der Strang in Längsrichtung am Messer vorbei vorwärtsgeschoben entlang einer Auflagefläche oder entlang eines Rohres oder auch Formrohres für einen hinsichtlich seines Querschnittes ungleichmäßigen Strang, entweder bis zu einem Anschlag auf der bezüglich des Hauptteiles des Stranges gegenüberliegenden Seite des Messers oder am hinteren Ende gehalten und um ein Vorschubmaß gesteuert vorwärtsgeschoben.

[0008] Dabei sind unterschiedliche Messerformen einsetzbar, beispielsweise um eine Rotationsachse rotierende Messer, wie ein sichelförmiges Messer, bei dem der Radius seiner Schneidkante zu einer Rotationsachse des Messers im Verlauf der Schneidkante zunimmt. Bei

dem Abschneiden einer jeweiligen Scheibe treten dabei zwischen der Kontaktfläche des Messers und der abzutrennenden Scheibe des Stranges Reibkräfte auf, nämlich einerseits eine in Umfangsrichtung des Stranges wirkende Reibkraft und andererseits eine in Richtung der Auflageebene des Stranges wirkende Reibkraft, deren Wirkung auch als "Hacken" des Messers bezeichnet wird.

[0009] Die in Umfangsrichtung des Stranges wirkende Reibkraft führt dabei zu einem Verdrehen der abgeschnittenen Scheibe um die Rotationsachse des Messers.

[0010] Die durch das Verdrehen bewirkte Abweichung der abgeschnittenen Scheiben muss dabei in der Regel vor einem weiteren Verarbeiten, beispielsweise einem Verpacken, der Scheiben mittels eines sogenannten Ausrichtbandes wieder korrigiert werden.

[0011] Zur Begegnung dieses Problems sind im Stand der Technik bereits Messer vorgeschlagen worden, welche mit einem sogenannten Hohlschliff auf der Scheibenseite versehen sind. Um den Messerquerschnitt nicht zu stark zu schwächen, muss dieser allerdings möglichst wenig tief ausgebildet sein, wodurch die gewünschte Wirkung jedoch meist nur in unzureichendem Maße erzielt wird.

III. Darstellung der Erfindung

a) Technische Aufgabe

[0012] Es ist daher die Aufgabe der vorliegenden Erfindung, ein Messer, insbesondere ein Slicer-Messer, der eingangs genannten Art bereitzustellen, mit welchem der Problematik des Verdrehens der Scheiben während des Schneidvorgangs begegnet werden kann.

b) Lösung der Aufgabe

[0013] Diese Aufgabe wird durch ein Messer nach Anspruch 1 gelöst. Vorteilhafte Ausführungsformen ergeben sich aus den Unteransprüchen.

[0014] Ein solches rotierendes Messer taucht zum Abschneiden einer Scheibe in Querrichtung in den Produktstrang - zurückversetzt von dessen vorderen Ende um die gewünschte Dicke einer Scheibe - ein und durchläuft den Strang vollständig, wodurch eine Scheibe abgetrennt wird.

[0015] Nach der Bewegung zurück in die Ausgangsposition kann der Strang vorwärtsgeschoben und eine weitere Scheibe abgetrennt werden.

[0016] Erfindungsgemäß umfasst das Messer eine Mehrzahl rinnenförmiger Vertiefungen, deren Verlaufsrichtung in Bezug auf die Rotationsachse des Messer-Grundkörpers wenigstens teilweise in nicht-radialer Richtung verläuft. Es ist der Verdienst des Erfinders erkannt zu haben, dass derartige Vertiefungen zu einer Reduzierung der in Umfangsrichtung während des Schneidvorgangs wirkenden Kontaktfläche und der in

Umfangsrichtung auf die Scheibe wirkenden Kraft führen, so dass ein Verdrehen der Scheiben verhindert oder zumindest deutlich reduziert werden kann, ohne dabei die Schneidwirkung des Messers in unerwünschter Weise zu beeinflussen. Eine Korrektur der Scheiben mit einem nachgelagerten Ausrichtband muss somit nur noch in geringerem Maße erfolgen und kann bestenfalls sogar ganz entfallen.

3

[0017] Die Erstreckung in nicht-radialer Richtung kann dabei derart ausgestaltet sein, dass die Verlaufsrichtung einer jeweiligen Vertiefung über wenigstens einen Abschnitt der Vertiefung in nicht-radialer Richtung verläuft. Beispielsweise kann dieser Abschnitt eine Verlaufsrichtung aufweisen, deren Richtungsvektor in Bezug auf die Rotationsachse

- sowohl eine Komponente in radialer Richtung als auch eine Komponente in Umfangsrichtung
- nur eine Komponente in Umfangsrichtung aufweist.

[0018] Die Verlaufsrichtung kann dabei die Richtung einer in Bezug auf eine Öffnung einer rinnenförmigen Vertiefung mittig verlaufenden Linie sein.

[0019] Bevorzugt ist der Messer-Grundkörper plattenförmig ausgebildet. Der Begriff plattenförmig bedeutet in diesem Zusammenhang, dass der Messer-Grundkörper bis auf den radial äußeren Bereich eine im Wesentlichen gleichbleibende Dicke aufweisen kann. Der Schneidkantenbereich kann dabei ein sich in Umfangsrichtung des Messer-Grundkörpers erstreckender Bereich sein, innerhalb welchem der Messer-Grundkörper geschliffen ausgebildet ist.

[0020] Grundsätzlich kann der oben beschriebene Effekt beispielsweise dadurch erreicht werden, dass mindestens eine der Mehrzahl rinnenförmiger Vertiefungen wenigstens einen Abschnitt aufweist, entlang welchem der Abstand der rinnenförmigen Vertiefung zu der Rotationsachse des Messer-Grundkörpers in Umfangsrichtung kontinuierlich zunimmt oder konstant ist. Dabei ist bevorzugt, dass mindestens eine Vertiefung sowohl einen Abschnitt, entlang welchem der Abstand der rinnenförmigen Vertiefung zu der Rotationsachse des Messer-Grundkörpers in Umfangsrichtung kontinuierlich zunimmt, als auch einen weiteren Abschnitt aufweist, entlang welchem der Abstand der rinnenförmigen Vertiefung zu der Rotationsachse des Messer-Grundkörpers in Umfangsrichtung konstant ist.

[0021] Um die in Umfangsrichtung wirkende Kraft während des Schneidvorgangs auf ein Minimum zu reduzieren, kann sich gemäß einem Ausführungsbeispiel der Erfindung mindestens eine der Mehrzahl von Vertiefungen entlang eines Umfangs eines Kreises erstrecken, welcher zur Rotationsachse konzentrisch ist, d.h. sich um die Rotationsachse erstreckt.

[0022] Zusätzlich oder alternativ ist es je nach gewünschter Beeinflussung der auf die Scheiben in Radialund/oder in Umfangsrichtung wirkenden Reibkraft auch denkbar, dass die Verlaufsrichtung mindestens einer rinnenförmigen Vertiefung der Mehrzahl rinnenförmiger Vertiefungen entlang eines Umfangs einer Spirale verläuft, welche einen in Umfangsrichtung zunehmenden Abstand zu der Rotationsachse des Messer-Grundkörpers aufweist. Dabei sei ausdrücklich darauf hingewiesen, dass im Sinne der vorliegenden Erfindung der Begriff der "Spirale" nicht notwendigerweise gemäß der allgemein bekannten geometrischen Definition, sondern derart auszulegen ist, dass als Spirale jegliche gekrümmte Linie zu verstehen ist, welche sich um die Rotationsachse windet und in Umfangsrichtung einen, insbesondere kontinuierlich, zunehmenden Abstand zu der Rotationsachse aufweist.

[0023] Dabei kann die Verlaufsrichtung mindestens einer der Vertiefungen in Richtung der Rotationsachse, d.h. in axialer Richtung, betrachtet entlang einer geraden oder einer gekrümmten Linie oder einer Kombination davon verlaufen. Es ist also durchaus denkbar, dass eine Vertiefung sowohl einen geraden als auch einen gekrümmten Abschnitt aufweist.

[0024] Zusätzlich oder alternativ kann mindestens eine der rinnenförmigen Vertiefungen wenigstens einen Abschnitt, welcher einen ersten Krümmungsradius, insbesondere in Bezug auf die Rotationsachse, aufweist, sowie wenigstens einen weiteren Abschnitt aufweisen, welcher einen von dem ersten Krümmungsradius verschiedenen zweiten Krümmungsradius, insbesondere in Bezug auf die Rotationsachse aufweist. Die mindestens eine Vertiefung kann also aus mehreren bogenförmigen Abschnitten zusammengesetzt sein.

[0025] Gemäß einem Ausführungsbeispiel kann sich dabei mindestens eine rinnenförmige Vertiefung der Mehrzahl rinnenförmiger Vertiefungen in Bezug auf die Rotationsachse in Umfangsrichtung über einen Winkel von wenigstens 30°, vorzugsweise von wenigstens 45°, und/oder von höchstens 360°, vorzugsweise von höchstens 270° erstreckt/erstrecken. Grundsätzlich ist es allerdings auch denkbar, dass sich die Mehrzahl rinnenförmiger Vertiefungen in Bezug auf die Rotationsachse in Umfangsrichtung über einen Winkel von mehr als 360° erstreckt.

[0026] Neben der Verlaufsrichtung der Vertiefungen bei Betrachtung in axialer Richtung, kann auch die Querschnittsform der Vertiefungen Einfluss auf das Reibungsverhalten des Messers nehmen. Dabei kann die Vertiefung, betrachtet im Querschnitt des Messer-Grundkörpers in radialer Richtung, einen im Wesentlichen bogenförmigen, insbesondere halbkreisförmigen, oder rechteckigen oder V-Förmigen, d.h. kerbenförmigen, Querschnitt aufweisen.

[0027] Je nachdem welche Art von Strang, beispielsweise Wurst oder Käse, aufgeschnitten wird, kann im Bereich des Übergangs zwischen einer jeweiligen Vertiefung und der ansonsten auf der dem Strang abgewandten Seite mit Ausnahme des radial äußeren im Wesentlichen ebenen Fläche des Messer-Grundkörpers eine Abschabwirkung auftreten. Um zu verhindern, dass

diese Abschabwirkung die in Radial- oder in Umfangsrichtung auf die Scheiben wirkende Reibkraft in unerwünschter Weise beeinflusst, ist es bevorzugt, dass, betrachtet in dem Querschnitt des Messer-Grundkörpers in radialer Richtung, Flanken des V-förmigen Querschnitts mit einer Schneid-Ebene des Messer-Grundkörpers, welche sich im Wesentlichen orthogonal zur axialen Richtung erstreckt, an der Öffnung der Vertiefung einen möglichst geringen Winkel, insbesondere einen Winkel von 45° oder weniger, einschließen. Als Folge hiervon wird ein sanfter Übergang zwischen der jeweiligen Vertiefung und dem an die Vertiefung angrenzenden Bereich des Messer-Grundkörpers geschaffen.

[0028] Gemäß einem weiteren Ausführungsbeispiel kann sich mindestens eine der rinnenförmigen Vertiefungen wenigstens teilweise in dem radial äußeren Bereich des Messerumfanges, vorzugsweise über den gesamten radial äußeren Bereich des Messerumfanges, erstrecken und/oder bis zu einer Schneidkante des Messer-Grundkörpers erstrecken. Also Folge hiervon wird eine Art "Soft-Verzahnung" geschaffen, welche zu einem gegenüber glatten Messern verbesserten Schneidverhalten führt, dabei jedoch weniger Schneidstaub als eine herkömmliche Verzahnung aufweist.

[0029] Der Messer-Grundkörper kann, betrachtet in einem Querschnitt des Messer-Grundkörpers in radialer Richtung, ausgehend von einer Schneidkante des Messer-Grundkörpers eine Schlifffläche, eine Schneidfläche und optional eine Druckfläche aufweisen, wobei sich mindestens eine der rinnenförmigen Vertiefungen wenigstens teilweise über die Schneidfläche und/oder die Schlifffläche und/oder die Druckfläche erstrecken kann. Dabei kann der Messer-Grundkörper beispielsweise nur einseitig angeschliffen sein, nämlich auf der dem Strang abgewandten Scheibenseite, so dass die dem Strang zugewandte Rückseite des Messers eine Messer-Ebene darstellt, entlang der der Abtrennvorgang durchgeführt wird. Die optional vorzusehende Druckfläche weist dabei einen gegenüber der Schneidfläche steileren Winkel gegenüber der Messer-Ebene des Messer-Grundkörpers auf, um eine abzutrennende Scheibe während des Schneidvorgangs in axialer Richtung von dem Messer-Grundkörper wegdrücken zu können.

[0030] Die Tiefe der rinnenförmigen Vertiefungen in axialer Richtung sollte so gewählt sein, dass sie einerseits mindestens so tief ist, dass die gewünschte Wirkung hinsichtlich der vorstehend beschriebenen Reibungsreduzierung erzielt wird, und andererseits höchstens so tief, dass der Messer-Grundkörper eine ausreichende Stabilität aufweist. Der Messer-Grundkörper mit einer, insbesondere reibungsmindernden, Beschichtung, beispielsweise einer Teflon-Schicht, beschichtet sein, wodurch das Verdrehen der Scheiben noch weiter reduziert oder sogar ganz verhindert werden kann, ohne dabei die Schneidwirkung des Messers in unerwünschter Weise zu beeinflussen. Die Beschichtung ist dabei vorzugsweise auch in den Vertiefungen aufgebracht. Auch ist ggf. zu berücksichtigen, dass die Tiefe der Vertiefungen in

axialer Richtung abnehmen kann, wenn das Messer nach Ausbildung der Vertiefungen zusätzlich mit der optionalen Beschichtung, insbesondere der reibungsmindernden Beschichtung, versehen wird.

[0031] Alternativ ist es allerdings auch denkbar, die Vertiefungen erst nach der Beschichtung des Messer-Grundkörpers auszubilden. Dies hat den Vorteil, dass der Beschichtungsvorgang selbst durch die Vertiefungen nicht negativ beeinflusst werden kann und eine gleichmäßige Schicht mit ausreichender Haftung, Härte und Schichtdicke an dem Messer-Grundkörper ausgebildet werden kann, ohne dass hierfür der Beschichtungsprozess an die durch die Vertiefungen teilweise veränderte Oberfläche des Messer-Grundkörpers angepasst werden muss.

[0032] Die vorbestimmte Tiefe der rinnenförmigen Vertiefungen in axialer Richtung kann dementsprechend in einem Bereich von 0,01 mm bis 2 mm, vorzugsweise von 300 μ m bis 1000 μ m, liegen.

[0033] Zusätzlich oder alternativ kann die vorbestimmte Tiefe der rinnenförmigen Vertiefungen in axialer Richtung höchstens 20 %, vorzugsweise höchstens 5 %, einer Dicke des Messer-Grundkörpers betragen.

[0034] Auch die Breite der Vertiefungen hat einen signifikanten Einfluss auf die Größe der mit den Scheiben in Kontakt stehenden Reibfläche, wobei vorschlagen wird, dass eine orthogonal zur Verlaufsrichtung der rinnenförmigen Vertiefungen gemessene Breite der rinnenförmigen Vertiefungen im Bereich von 0,1 mm bis 5 mm, vorzugsweise im Bereich von 500 μ m bis 2000 μ m liegt. [0035] In diesem Zusammenhang ist es auch denkbar eine oder mehrere Gruppen rinnenförmiger Vertiefungen vorzusehen, welche jeweils mit einem vorbestimmten Abstand orthogonal zu ihrer Verlaufsrichtung voneinander beabstandet sind. So kann beispielsweise eine Mehrzahl von Vertiefungen mit geringer Breite nebeneinander angeordnet sein und in Summe nahezu wie eine einzelne breitere Vertiefung wirken, welche in ihrer Breite der Summe der Breiten der Mehrzahl von Vertiefungen einschließlich ihrer jeweiligen Abstände entspricht. Der Abstand orthogonal zur Verlaufsrichtung zwischen benachbarten Vertiefungen kann dabei in etwa der Hälfte der Breite der rinnenförmigen Vertiefungen entsprechen und/oder in einem Bereich von 0,05 mm bis 2,5 mm, vorzugsweise im Bereich von 250 μm bis 1000 μm liegen. [0036] Gemäß einem besonders bevorzugten Ausführungsbeispiel ist das Messer als ein sichelförmiges Messer ausgebildet. Ein sichelförmiges Messer zeichnet sich in der Regel dadurch aus, dass der Radius einer Schneidkante des Messers in Bezug auf die Rotationsachse im Verlauf der Schneidkante des Messers zunimmt.

[0037] Handelt es sich bei dem Messer um ein solches sichelförmiges Messer, kann bevorzugt ein Abstand wenigstens einer der Mehrzahl rinnenförmiger Vertiefungen zu der Rotationsachse in einer Umfangsrichtung um die Rotationsachse, insbesondere kontinuierlich, zunehmen, während der Radius der Schneidkante des Messers in derselben Umfangsrichtung, insbesondere kon-

40

20

tinuierlich, abnehmen kann. Der Verlauf der Vertiefungen kann also gegenläufig zur Zunahme des Radius des sichelförmigen Messers sein.

[0038] Die Mehrzahl rinnenförmiger Vertiefungen kann durch Fräsen oder Schleifen oder mittels eines Lasers hergestellt sein. Insbesondere die Ausbildung mittels Laser hat dabei den Vorteil, dass Vertiefungen mit besonders geringer Tiefe bei gleichzeitig hoch präziser und schneller Fertigung realisiert werden können. Eine geringe Tiefe der Vertiefungen vereinfacht zudem einen nachträglichen Beschichtungsvorgang des Messers, da im Bereich der Vertiefungen und um diesen Bereich herum ein gleichmäßiges Schichtwachstum begünstig werden kann, was zu einem besseren Haften der Schicht und damit zu einer verbesserten Haltbarkeit der Schicht führen kann.

[0039] Werden die rinnenförmigen Vertiefungen erst nach Aufbringen der Beschichtung ausgebildet, so ist ebenfalls die Ausbildung mittels Laser vorteilhaft, da auch eine geringe Schichtdicke von beispielweise etwa 100 μ m bis 300 μ m noch ausreichend Spielraum für die Herstellung entsprechender Vertiefungen mit einem Laser lässt.

[0040] Ferner wird die obige Aufgabe gelöst durch eine Schneideinheit, welche ein erfindungsgemäßes Messer umfasst. Hinsichtlich der Vorteile und Wirkungen der erfindungsgemäßen Schneideinheit sei zunächst auf die vorstehenden Ausführungen zum erfindungsgemäßen Messer verwiesen.

[0041] In der Regel umfasst die Schneideinheit ein Grundgestell, an dem das Messer beweglich angeordnet ist, insbesondere drehbar um seine Rotationsachse.

[0042] Bei einem nur von einer der Hauptseiten des Messers her angeschliffenen Schneide ist die Messer-Ebene diejenige Hauptfläche des Messers, die nicht angeschliffen ist, ansonsten die lotrecht zur Rotationsachse liegende Ebene, die durch die Schneidenspitze des Querschnitts der Schneide, also die Schneidkante, verläuft.

[0043] Schließlich wird die obige Aufgabe gelöst durch eine Aufschneide-Maschine, insbesondere Slicer, zum Abschneiden von Scheiben von einem Produkt-Strang mit einer Schneideinheit und einer Steuerung, die bewegliche Teile der Aufschneide-Maschine ansteuert.

[0044] Die diesbezügliche Steuerung kann ausgebildet sein, um beispielsweise die Scheibendicke und dergleichen während des Aufschneide-Betriebes zu verstellen.

[0045] Hinsichtlich der weiteren Vorteile und Wirkungen der erfindungsgemäßen Aufschneide-Maschine wird auf die Ausführungen zum erfindungsgemäßen Messer sowie zur erfindungsgemäßen Schneideinheit verwiesen.

c) Ausführungsbeispiele

[0046] Ausführungsformen gemäß der Erfindung sind im Folgenden beispielhaft näher beschrieben. Es zeigen:

Figuren 1a, b: eine Aufschneide-Maschine in Form

eines Slicers gemäß dem Stand der Technik in unterschiedlichen perspektivischen Ansichten, mit in die Aufschneidestellung hochgeklapptem

Zufuhrband.

Figur 2a: eine vereinfachte Seitenansicht der

Aufschneide-Maschine, beladen mit

einem Produkt-Kaliber,

Figur 2b: eine Seitenansicht gemäß Figur 2a,

aber mit in die Beladestellung herabgeklapptem Zufuhrband und bis auf einen KaliberRest aufgeschnittenen

Produkt-Kaliber,

Figur 3a: eine Draufsicht auf ein erfindungsge-

mäßes Messer gemäß einem ersten

Ausführungsbeispiel,

Figur 3b: eine Draufsicht auf ein erfindungsge-

mäßes Messer gemäß einem zweiten

Ausführungsbeispiel,

Figur 4a - c: Beispiele rinnenförmiger Vertiefun-

gen in einem Querschnitt des Messer-Grundkörpers in radialer Richtung,

und

Figur 5: eine Teilquerschnittsansicht des

Messer-Grundkörpers in radialer

Richtung.

[0047] Die Figuren 1a, 1b zeigen unterschiedliche perspektivische Ansichten eines mehrspurigen Slicers 1 zum gleichzeitigen Aufschneiden von mehreren Produkt-Kalibern K auf jeweils einer Spur SP1 bis SP4 nebeneinander und Ablegen in geschindelten Portionen P aus je mehreren Scheiben S mit einer generellen Durchlaufrichtung 10* durch den Slicer 1 von rechts nach links.

[0048] Figur 2a zeigt - ohne und mit eingelegtem Kaliber K - eine Seitenansicht dieses Slicers 1 unter Weglassen für die Erfindung nicht relevanter Abdeckungen und anderer Teile, die ebenso wie alle anderen Einheiten am Grundgestell 2 befestigt sind, sodass die funktionalen Teile, vor allem die Förderbänder, besser zu erkennen sind. Die Längsrichtung 10 ist die Zufuhrrichtung der Kaliber K zur Schneideinheit 7 und damit auch die Längsrichtung der im Slicer 1 liegenden Kaliber K.

[0049] Dabei ist zu erkennen, dass der Grundaufbau eines Slicers 1 nach dem Stand der Technik darin besteht, dass einer Schneideinheit 7 mit um eine Messerachse 3'rotierenden Messer 3, etwa einem Sichelmesser 3, mehrere, in diesem Fall vier, quer zur Zufuhrrichtung 10 nebeneinander auf einem Zuförderer 4 liegende Produkt-Kaliber K mit Abstandshaltern 15 des Zuförderers 4 dazwischen von dieser Zufuhreinheit 20 zugeführt wer-

40

den, von deren vorderen Enden das rotierende Messer 3 mit seiner Schneidkante 3a jeweils in einem Arbeitsgang, also fast gleichzeitig, eine Scheibe S abtrennt.

[0050] Für das Aufschneiden der Produkt-Kaliber K befindet sich der Zuförderer 4 in der in den Figuren 1a - 2a dargestellten, in der Seitenansicht schrägen AufschneideStellung mit tiefliegendem schneidseitigem, vorderen Ende und hochliegendem, hinteren Ende, aus der er um eine in seiner Breitenrichtung, der ersten Querrichtung 11, verlaufende Schwenkachse 20', die sich in der Nähe der Schneideinheit 7 befindet, herabgeklappt werden kann in eine etwa horizontale Belade-Stellung, wie sie in Figur 2b dargestellt ist.

[0051] Das hintere Ende jedes in der Zufuhreinheit 20 liegenden Kalibers K ist gemäß Figur 2a jeweils von einem Greifer 14a - d formschlüssig mit Hilfe von Greiferklauen 16 gehalten. Diese hinsichtlich der Stellung der Greiferklauen 16 aktivierbaren und deaktivierbaren Greifer 14a - 14d sind an einem gemeinsamen Greifer-Schlitten 13 befestigt, welche entlang einer Greifer-Führung 18 in Zufuhrrichtung 10 nachgeführt werden kann.

[0052] Dabei ist sowohl der Vorschub des Greifer-Schlitten 13 als auch des Zuförderers 4 gesteuert antreibbar, wobei jedoch die konkrete Zufuhrgeschwindigkeit der Kaliber K durch eine ebenfalls gesteuert angetriebene, sogenannte obere und untere Produkt-Führung 8, 9 bewirkt wird, die an der Oberseite und Unterseite der aufzuschneidenden Kaliber K in deren vorderen Endbereichen nahe der Schneideinheit 7 angreifen:

Die vorderen Enden der Kaliber K werden jeweils durch eine sogenannte Brillen-öffnung 6a - d einer plattenförmigen Schneidbrille 5 geführt, wobei unmittelbar vor der vorderen, schräg nach unten weisenden Stirnfläche der Schneidbrille 5 die Schneidebene 3" verläuft, in der das Messer 3 mit seiner Schneidkante 3a rotiert und damit den Überstand der Kaliber K aus der Schneidbrille 5 als Scheibe S abtrennt. Die Schneidebene 3" verläuft lotrecht zum Obertrum des Zuförderers 4 und/oder wird von den beiden Querrichtungen 11, 12 zur Zufuhrrichtung 10 aufgespannt.

[0053] Dabei dient der Innenumfang der Brillenöffnungen 6a - d der Schneidkante 3a des Messers 3 als Gegenschneide.

[0054] Da beide Produktführungen 8, 9 gesteuert antreibbar sind, insbesondere unabhängig voneinander und/oder eventuell für jede Spur SP1 bis SP4 separat, bestimmen diese die - kontinuierliche oder getaktete - Vorschubgeschwindigkeit der Kaliber K durch die Schneidbrille 5.

[0055] Die obere Produktführung 8 ist in der zweiten Querrichtung 12 - die lotrecht zur Fläche des Obertrums des Zuförderers 4 verläuft - verlagerbar zur Anpassung an die Höhe H des Kalibers K in dieser Richtung. Ferner kann mindestens eine der Produktführungen 8,9 um eine ihrer Umlenkrollen verschwenkbar ausgebildet sein, um die Richtung des am Kaliber K anliegenden Trumes ihres Führungsbandes begrenzt verändern zu können.

[0056] Die bei Abtrennung schräg im Raum stehenden

Scheiben S fallen auf eine unterhalb der Schneidbrille 5 beginnende und in Durchlaufrichtung 10* verlaufende Abförder-Einheit 17, die in diesem Fall aus in Durchlaufrichtung 10* mehreren mit ihren Obertrumen etwa fluchtend hintereinander angeordneten Abförderern 17a, b, c besteht, von denen der in Durchlaufrichtung 10 erste Abförderer 17a als Portionierband 17a ausgebildet sein kann und/oder einer auch als Wiegeeinheit ausgebildet sein kann.

[0057] Die Scheiben S können einzeln und in Durchlaufrichtung 10* beabstandet zueinander auf der Abförder-Einheit 17 auftreffen oder durch entsprechende Steuerung des Portionierbandes 17a der Abförder-Einheit 17 - dessen Bewegung wie fast alle beweglichen Teile von der Steuerung 1* gesteuert wird - geschindelte oder gestapelte Portionen P bilden, durch schrittweise Vorwärtsbewegung des Portionierbandes 17a.

[0058] Unterhalb der Zuförder-Einheit 20 befindet sich meist ein etwa horizontal verlaufender Resteförderer 21, welcher mit seinem vorderen Ende unterhalb der Schneidbrille 5 und unmittelbar unter oder hinter der Abförder-Einheit 17 beginnt und mit seinem Obertrum dort darauf - mittels des Antriebes eines der Abförderer 17 entgegen der Durchlaufrichtung 10 - fallende Reste nach hinten abtransportiert.

[0059] In Figur 3a, welche eine Draufsicht auf ein erfindungsgemäßes Messer gemäß einem ersten Ausführungsbeispiel darstellt, ist das erfindungsgemäße Messer allgemein durch das Bezugszeichen 3 gekennzeichnet.

[0060] Das Messer 3 gemäß dem ersten Ausführungsbeispiel umfasst einen Messer-Grundkörper 3.1, welcher eine Rotationsachse 3' aufweist. Eine Außenkante 3.1a des Messer-Grundkörpers 3.1 ist in Richtung der Rotationsachse 3' betrachtet über einen Schneidkantenbereich 3A als Schneide 3a ausgebildet. Der Schneidkantenbereich 3A ist dabei ein in sich Umfangsrichtung 10' des Messer-Grundkörpers 3.1 erstreckender Bereich, innerhalb welchem der Messer-Grundkörper 3.1 geschliffen ausgebildet ist. Der Messer-Grundkörper 3.1 umfasst eine Mehrzahl rinnenförmiger Vertiefungen 3.2, welche jeweils eine Verlaufsrichtung 3.2' aufweisen.

[0061] Erfindungsgemäß verläuft dabei die Verlaufsrichtung 3.2' jeder der rinnenförmigen Vertiefungen 3.2 in Bezug auf die Rotationsachse 3' des Messer-Grundkörpers 3.1 wenigstens teilweise in nicht-radialer Richtung. Die Erstreckung in nicht-radialer Richtung kann dabei derart ausgestaltet sein, dass die Verlaufsrichtung 3.2' einer jeweiligen Vertiefung 3.2 über wenigstens einen Abschnitt der Vertiefung in nicht-radialer Richtung verläuft. Beispielsweise kann dieser Abschnitt eine Verlaufsrichtung 3.2' aufweisen, deren Richtungsvektor in Bezug auf die Rotationsachse 3'

- sowohl eine Komponente in radialer Richtung R als auch eine Komponente in Umfangsrichtung 10' oder
- nur eine Komponente in Umfangsrichtung 10' auf-

55

weist.

[0062] Die Verlaufsrichtung ist dabei in dem dargestellten Ausführungsbeispiel die Richtung einer in Bezug auf eine Öffnung einer rinnenförmigen Vertiefung mittig verlaufenden Linie M (siehe beispielsweise **Figuren 4a - 4c).**

[0063] In Figur 3a sind die rinnenförmigen Vertiefungen 3.2 dabei derart hergestellt, dass ein Abstand zwischen einer jeweiligen rinnenförmigen Vertiefung 3.2 und der Rotationsachse 3' des Messer-Grundkörpers 3.1 in Umfangsrichtung 10' konstant ist. In dem in Figur 3a dargestellten Ausführungsbeispiel erstrecken sich die rinnenförmigen Vertiefungen 3.2 dabei jeweils entlang eines Umfangs eines Kreises, welcher mit der Rotationsachse 3' konzentrisch ist.

[0064] Wie in Figur 3a ebenfalls zu erkennen ist, sind die Vertiefungen 3.2 kontinuierlich ausgebildet, d.h. sie erstrecken sich jeweils in Umfangsrichtung 10' über den gesamten Umfang des Messer-Grundkörpers 3.1. Dies ist jedoch nicht zwingend erforderlich. Alternativ ist es nämlich auch denkbar, die Vertiefungen 3.2 derart herzustellen, dass sie lediglich in dem radial äußeren Bereich 3.1b des MesserGrundkörpers 3, jedoch nicht außerhalb hiervon verlaufen. Auch müssen die Vertiefungen 3.2 dann nicht über den gesamten radial äußeren Bereich 3.1b ausgebildet sein, sondern können sich auch nur über einen Teilbereich des radial äu-ßeren Bereichs 3.1b erstrecken.

[0065] In Figur 3b ist eine Draufsicht auf ein erfindungsgemäßes Messer 3 gemäß einem zweiten Ausführungsbeispiel dargestellt. Wie das Messer gemäß dem ersten Ausführungsbeispiel umfasst das Messer 3 gemäß dem zweiten Ausführungsbeispiel einen Messer-Grundkörper 3.1 und ist mit Ausnahme der Gestaltung der rinnenförmigen Vertiefungen 3.2 wie das Messer gemäß dem ersten Ausführungsbeispiel ausgebildet.

[0066] Die rinnenförmigen Vertiefungen 3.2 gemäß dem zweiten Ausführungsbeispiel sind derart ausgebildet, dass deren Verlaufsrichtung 3.2' jeweils entlang eines Umfangs einer Spirale verläuft, welche einen in Umfangsrichtung 10' zunehmenden Abstand zu der Rotationsachse 3' aufweist. Dabei ist zu beachten, dass der Begriff "Spirale" nicht notwendigerweise gemäß der allgemein bekannten geometrischen Definition, sondern derart auszulegen ist, dass als Spirale jegliche gekrümmte Linie zu verstehen ist, welche sich um die Rotationsachse 3' windet und in Umfangsrichtung 10' einen, insbesondere kontinuierlich, zunehmenden Abstand zu der Rotationsachse 3' aufweist.

[0067] In Figur 3b sind die rinnenförmigen Vertiefungen 3.2 dabei nur in dem radial äu-ßeren Bereich 3.1b des Messer-Grundkörpers 3.1 ausgebildet. Alternativ ist es analog zu Figur 3a auch möglich, dass sie in Umfangsrichtung 10' kontinuierlich ausgebildet sind, d.h. sie sich jeweils ausgehend von dem radial äußeren Bereich 3.1b über den Messer-Grundkörper 3.1 entlang einer in Figur 3b strichliert angedeuteten Linie erstrecken.

[0068] Mit Bezug auf beide Ausführungsbeispiele der **Figuren 3a** und **3b** sei angemerkt, dass sich die rinnenförmigen Vertiefungen 3.2 bis zu einer Außenkante 3.1a, insbesondere der Schneidkante 3a, des Messergrundkörpers 3.1 erstrecken können.

[0069] Die Figuren Figur 4a - c zeigen Beispiele rinnenförmiger Vertiefungen 3.2 in einem Querschnitt des Messer-Grundkörpers 3.1 in radialer Richtung R.

[0070] Wie in Figur 4a dargestellt, können die Mehrzahl von Vertiefungen 3.2 betrachtet in dem Querschnitt des Messer-Grundkörper 3.1 in radialer Richtung R einen im Wesentlichen V-förmigen Querschnitt 3.2a aufweisen. Dabei können betrachtet in diesem Querschnitt Flanken des V-förmigen Querschnitts 3.2a an der Öffnung der jeweiligen Vertiefung 3.2 mit der Schneid-Ebene 3" des Messer-Grundkörpers 3.1 einen Winkel α , insbesondere von 70° oder weniger, einschließen. Dabei können die rinnenförmigen Vertiefungen 3.2 in axialer Richtung 10 eine vorbestimmte Tiefe T sowie eine orthogonal zur Verlaufsrichtung 3.2' gemessene vorbestimmte Breite B aufweisen.

[0071] Um ein Verdrehen der Scheiben S noch weiter reduzieren oder sogar ganz verhindern zu können, ohne dabei die Schneidwirkung des Messers 3 in unerwünschter Weise zu beeinflussen, kann der Messer-Grundkörper 3.1 mit einer reibungsmindernden Beschichtung 3.3 beschichtet sein, welche vorzugsweise auch in der Vertiefung 3.2 aufgebracht sein kann, wie in **Figur 4a** dargestellt.

[0072] Figur 4b zeigt ein Beispiel einer Vertiefung 3.2, welche einen rechteckigen Querschnitt 3.2b aufweist, während Figur 4c ein Beispiel einer Vertiefung mit einem bogenförmigen Querschnitt 3.2c aufweist.

[0073] Wie der V-förmige Querschnitt 3.2a gemäß Figur 4a kann auch der rechteckigen Querschnitt 3.2b gemäß Figur 4b und/oder der bogenförmige Querschnitt 3.2c gemäß Figur 4c eine vorbestimmte Tiefe T und/oder eine vorbestimmte Breite B und/oder eine reibungsmindernde Beschichtung 3.3 (in Figuren 4b und 4c nicht dargestellt) aufweisen.

[0074] Die Flanken des bogenförmigen Querschnitts 3.2b können dabei ebenfalls einen vorbestimmten Winkel α , insbesondere von 70° oder weniger, mit der Schneid-Ebene 3" einschließen.

[0075] Figur 5 zeigt eine Teilquerschnittsansicht des Messer-Grundkörpers 3.1 in radialer Richtung. 10'. Wie in dieser Teilquerschnittsansicht erkennbar, weist das Messer 3 in diesem Ausführungsbeispiel ausgehend von der Schneidkante 3a eine Schlifffläche 3.4, eine Schneidfläche 3.5 und eine Druckfläche 3.6 auf.

[0076] Der Messer-Grundkörper 3.1 ist dabei beispielsweise nur einseitig angeschliffen, nämlich auf der dem Produkt-Kaliber K abgewandten Scheibenseite, so dass die dem Produkt-Kaliber K zugewandte Rückseite des Messers 3 die Messer-Ebene 3" darstellt, entlang der der Abtrennvorgang durchgeführt wird. Die Druckfläche 3.6 weist dabei einen gegenüber der Schneidfläche 3.5 steileren Winkel gegenüber der Messer-Ebene 3" des

Scheibe S v Richtung 10 v cken zu könn [0077] Wie in dem darge mige Vertief Schneidfläch jedoch nicht Vertiefung 3. nur über eine der Schliffflä	ebenfalls Figur 5 erkennbar, erstreckt sich stellten Ausführungsbeispiel die rinnenförung 3.2 über die Schlifffläche 3.4, die e 3.5 und die Druckfläche 3.6. Auch dies ist zwingend erforderlich. Die rinnenförmige 2 kann sich abweichend von Figur 5 auch oder zwei, insbesondere benachbarte, aus che 3.4, der Schneidfläche 3.5 und der 3.6 erstrecken.	5 10	15' 15' 16 17	14 a - d	Vertikale Greifer-Einheit, Greifer-Schlitten Greifer Quersteg Auflagefläche Greifer-Klaue Abförder-Einheit Portionier-Band, Abförder-Band U. Greifer-Führung Höhen-Sensor Zufuhreinheit Reststück-Förderer Spreiz-Band Waage Wiege-Band Ausrichte-Band	
[0078]			26		Zeilen-Band	
1 1* 2 3 3.1	Aufschneide-Maschine, Slicer Steuerung Grundgestell Messer Messer-Grundkörper	20	30 40 40. 40.	1 - 40.6	e-Zufuhreinheit, Einlege-Linie Puffer Puffer-Band, Etage Etagenabstand Puffer	
3.1a 3.1b 3.2	Außenkante radial äußerer Bereich des Messer-Umfangs rinnenförmige Vertiefung	25	414	1 - 41.3 \	Hubvorrichtung, Führung Puffer-Einlegeeinheit Einlege-Band Etagenabstand Einlegeeinheit	
3.2a 3.2' 3.3	V-förmiger Querschnitt Verlaufsrichtung reibungsmindernde Beschichtung	30	41F 42	ł 1,42.2	Hubvorrichtung, Führung Puffer-Entnahmeeinheit Entnahme-Band	
3.4 3.5 3.6 3'	Schlifffläche Schneidfläche Druckfläche Rotationsachse	00	42A 42H 43	`	Etagenabstand Entnahmeeinheit Hubvorrichtung, Führung Einlege-Band	
3" 3A 3a 4	Schneidebene, Messer-Ebene Schneidkantenbereich Schneidkante Zuförderer, Zufuhr-Band	35	A F K KR		ıt, Formatsatz kt, Produkt-Kaliber	
5 6a - d 7	Schneidbrille Brillen-Öffnung Schneideinheit	40	S P	Scheik Portio		
8.1	obere Produktführung, oberes Führungs- band Kontakt-Trum, Unter-Trum		Patentansprüche			
8a 8b 9	Brillen-seitige Umlenkrolle Brillen-abgewandte Umlenkrolle untere Produktführung, unteres Führungsband Kontakt-Trum, Ober-Trum	45	1. Messer (3), insbesondere Slicer-Messer, für eine Schneideinheit (7) einer Aufschneide-Maschine (1), insbesondere eines Slicers (1), zum Abschneiden von Scheiben (101) von einem Produkt-Strang (100) mit			
9a 9b 10	Brillen-seitige Umlenkrolle Brillen-abgewandte Umlenkrolle Transportrichtung, Längsrichtung, axiale Richtung	50		- eir ser-(achs	nem, insbesondere plattenförmigen, Mes- Grundkörper (3.1), welcher eine Rotations- te (3') aufweist,	
10* 10' R 11 12	Durchlaufrichtung durch Maschine Umfangsrichtung radiale Richtung 1. Querrichtung (Breite Slicer) 2. Querrichtung (Höhen-Richtung Kaliber)	55		Grur achs tet, i	bei eine Außenkante (3.1a) des Messerndkörpers (3.1), in Richtung der Rotationse (3'), d.h. in axialer Richtung (10), betrachüber einen Schneidkantenbereich (3A) als neide (3a) ausgebildet ist,	

35

40

45

50

55

dadurch gekennzeichnet, dass

- der Messer-Grundkörper (3.1) eine Mehrzahl rinnenförmiger Vertiefungen (3.2) mit einer Verlaufsrichtung (3.2') aufweist, wobei die rinnenförmigen Vertiefungen (3.2) eine vorbestimmte Tiefe in axialer Richtung (10) aufweisen,
- wobei die Verlaufsrichtung (3.2') jeder der rinnenförmigen Vertiefungen (3.2) in Bezug auf die Rotationsachse (3') des Messer-Grundkörpers (3) wenigstens teilweise in nicht-radialer Richtung verläuft.
- 2. Messer nach Anspruch 1,

dadurch gekennzeichnet, dass

mindestens eine der Mehrzahl rinnenförmiger Vertiefungen (3.2)

- wenigstens einen Abschnitt aufweist, entlang welchem der Abstand der rinnenförmigen Vertiefung zu der Rotationsachse (3') des Messer-Grundkörpers (3.1) in Umfangsrichtung (10') kontinuierlich zunimmt oder konstant ist, insbesondere
- sowohl einen Abschnitt, entlang welchem der Abstand der rinnenförmigen Vertiefung (3.2) zu der Rotationsachse (3') des Messer-Grundkörpers (3.1) in Umfangsrichtung (10') kontinuierlich zunimmt, als auch einen weiteren Abschnitt aufweist, entlang welchem der Abstand der rinnenförmigen Vertiefung (3.2) zu der Rotationsachse (3') des Messer-Grundkörpers (3.1) in Umfangsrichtung (10') konstant ist.
- Messer nach einem der vorhergehenden Ansprüche

dadurch gekennzeichnet, dass

- sich mindestens eine der Mehrzahl von Vertiefungen (3.2) entlang eines Umfangs eines Kreises erstreckt, welcher insbesondere mit der Rotationsachse (3') konzentrisch ist, und/oder
- mindestens eine der Mehrzahl von Vertiefungen (3.2) nicht-parallel zur Schneidkante (3a) verläuft.
- Messer nach einem der vorhergehenden Ansprüche.

dadurch gekennzeichnet, dass

die Verlaufsrichtung (3.2') mindestens einer rinnenförmigen Vertiefung (3.2) der Mehrzahl rinnenförmiger Vertiefungen entlang eines Umfangs einer Spirale verläuft, welche einen in Umfangsrichtung (10') zunehmenden Abstand zu der Rotationsachse (3') des Messer-Grundkörpers (3.1) aufweist.

5. Messer nach einem der vorhergehenden Ansprü-

che.

dadurch gekennzeichnet, dass

- die Verlaufsrichtung mindestens einer der rinnenförmigen Vertiefungen (3.2) in Richtung der Rotationsachse (3'), d.h. in axialer Richtung (10), betrachtet entlang einer geraden oder einer gekrümmten Linie oder einer Kombination davon verläuft,

und/oder

- mindestens eine der rinnenförmigen Vertiefungen wenigstens einen Abschnitt, welcher einen ersten Krümmungsradius, insbesondere in Bezug auf die Rotationsachse (3'), aufweist, sowie wenigstens einen weiteren Abschnitt (3') aufweist, welcher einen von dem ersten Krümmungsradius verschiedenen zweiten Krümmungsradius, insbesondere in Bezug auf die Rotationsachse (3'), aufweist.
- Messer nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet, dass

sich mindestens eine rinnenförmige Vertiefung (3.2) der Mehrzahl rinnenförmiger Vertiefungen in Bezug auf die Rotationsachse (3') in Umfangsrichtung (10') über einen Winkel von wenigstens 30°, vorzugsweise von wenigstens 45°, und/oder von höchstens 360°, vorzugsweise von höchstens 270° erstreckt/erstrecken.

Messer nach einem der vorhergehenden Ansprüche

dadurch gekennzeichnet, dass

- die Mehrzahl von Vertiefungen (3.2), betrachtet in einem Querschnitt des Messer-Grundkörpers in radialer Richtung (R), einen im Wesentlichen V-förmigen (3.2a) oder rechteckigen (3.2b) oder bogenförmigen, insbesondere halbkreisförmigen (3.2c), Querschnitt aufweisen, wobei insbesondere
- betrachtet in dem Querschnitt des Messer-Grundkörpers in radialer Richtung (R) Flanken des V-förmigen oder bogenförmigen Querschnitts (3.2a) an der Öffnung der Vertiefung (3.2) mit einer Schneid-Ebene (3") des Messer-Grundkörpers (3), welche sich im Wesentlichen orthogonal zur axialen Richtung (10) erstreckt, einen Winkel (α) von 70° oder weniger einschließen.
- 8. Messer nach einem der vorhergehenden Ansprü-

dadurch gekennzeichnet, dass

sich mindestens eine der rinnenförmigen Vertiefungen (3.2)

25

35

40

- wenigstens teilweise einem radial äußeren Bereich (3.1b) des Messerumfanges, vorzugsweise über den gesamten radial äußeren Bereich (3.1b), erstreckt und/oder

- bis zu einer Außenkante (3.1a), insbesondere der Schneidkannte (3a), des Messer-Grundkörpers (3.1) erstreckt.
- Messer nach einem der vorhergehenden Ansprüche

dadurch gekennzeichnet, dass

der Messer-Grundkörper (3.1) betrachtet in einem Querschnitt des Messer-Grundkörpers (3.1) in radialer Richtung (R), ausgehend von einer Außenkante (3.1a) des Messer-Grundkörpers eine Schlifffläche (3.4), eine Schneidfläche (3.5) und optional eine Druckfläche (3.6) aufweist, wobei sich mindestens eine der rinnenförmigen Vertiefungen (3.2) wenigstens teilweise über die Schneidfläche (3.4) und/oder die Schlifffläche (3.5) und/oder die Druckfläche (3.6) erstreckt.

10. Messer nach einem der vorhergehenden Ansprü-

dadurch gekennzeichnet, dass

- die vorbestimmte Tiefe (T) der rinnenförmigen Vertiefungen (3.2) in axialer Richtung (10) in einem Bereich von 0,01 mm bis 2 mm, vorzugsweise von 300 μm bis 1000 μm , liegt, und/oder
- die vorbestimmte Tiefe (T) der rinnenförmigen Vertiefungen (3.2) in axialer Richtung (10) höchstens 20 %, vorzugsweise höchstens 5 %, einer Dicke des Messer-Grundkörpers (3.1) in axialer Richtung (10) beträgt, und/oder
- eine orthogonal zur Verlaufsrichtung (3.2') der rinnenförmigen Vertiefungen (3.2) gemessene Breite (B) der rinnenförmigen Vertiefungen (3.2) im Bereich von 0,1 mm bis 5 mm, vorzugsweise im Bereich von 500 μ m bis 2000 μ m liegt.
- Messer nach einem der vorhergehenden Ansprüche.

dadurch gekennzeichnet, dass

- wobei das Messer (3) als ein sichelförmiges Messer (3) ausgebildet ist, bei welchem insbesondere der Radius einer Schneidkante (3a) des Messers (3) in Bezug auf die Rotationsachse (3') im Verlauf der Schneidkante (3a) des Messers (3) zunimmt,

wobei insbesondere

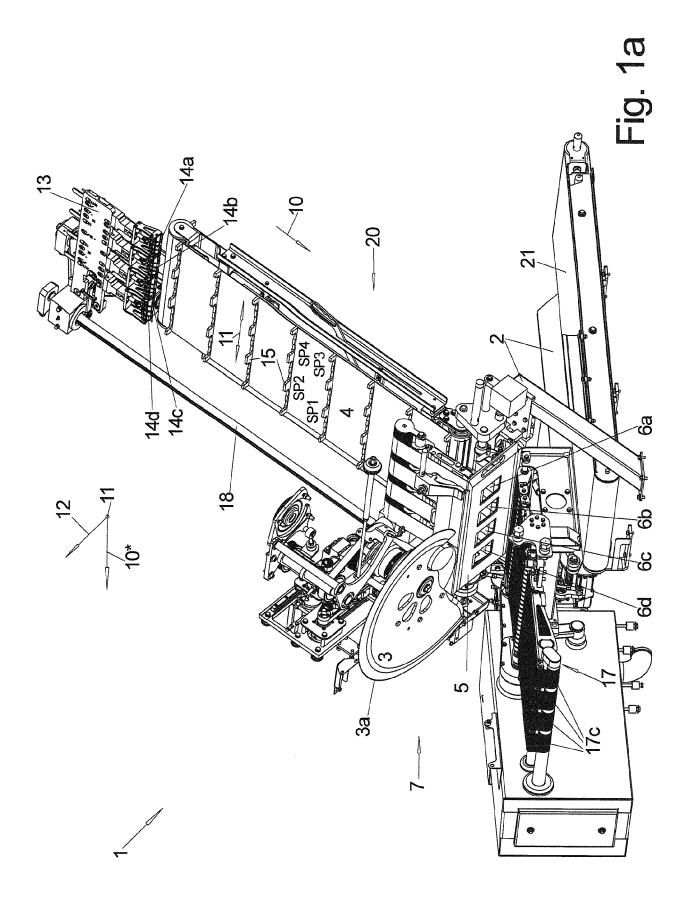
- ein Abstand wenigstens einer der Mehrzahl rinnenförmiger Vertiefungen (3.2) zu der Rotationsachse (3') in einer Rotationsrichtung um die Rotationsachse (3'), insbesondere kontinuierlich, zunimmt, während der Radius der Schneidkante (3a) des Messers (3) in derselben Rotationsrichtung abnimmt.

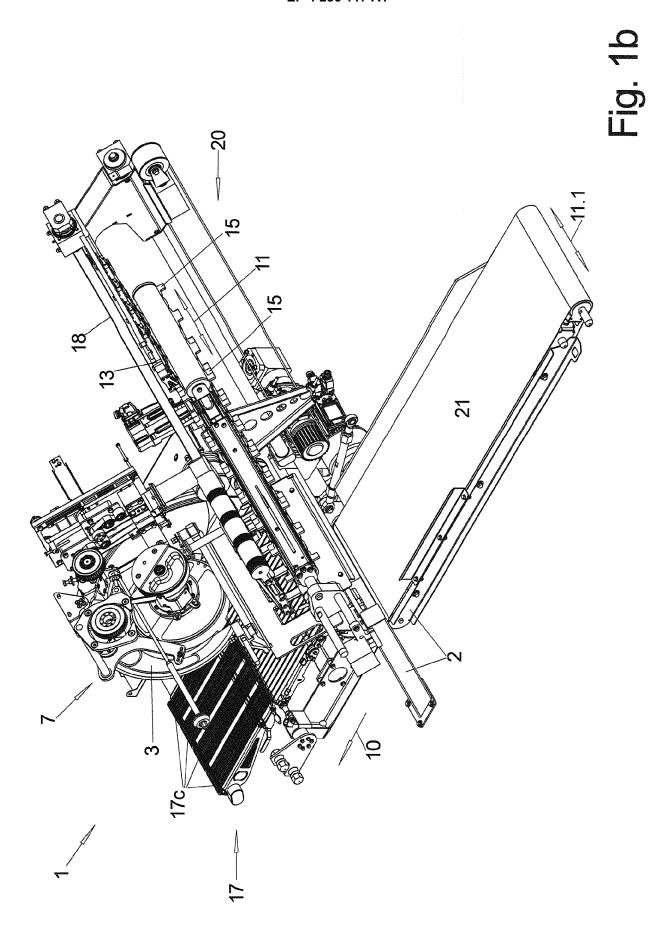
Messer nach einem der vorhergehenden Ansprüche.

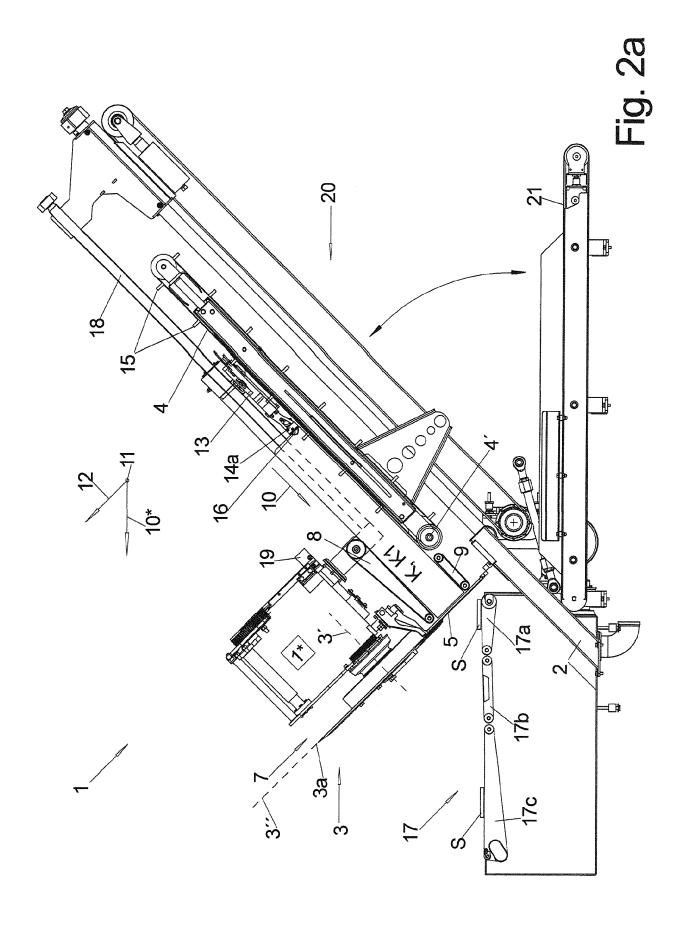
dadurch gekennzeichnet, dass

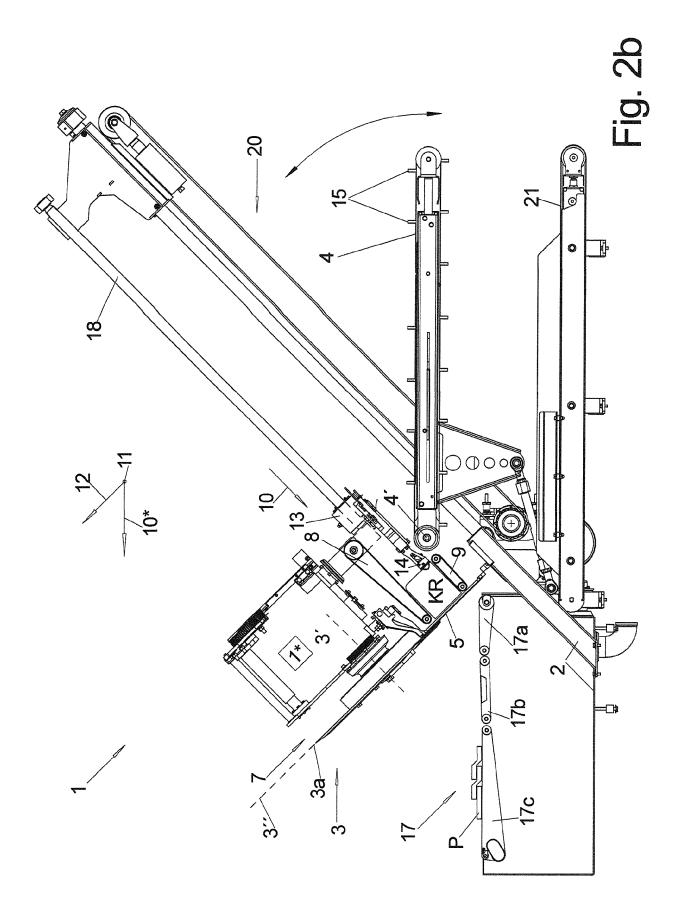
- der Messer-Grundkörper (3) mit einer, insbesondere reibungsmindernden, Beschichtung (3.3) beschichtet ist,

wobei die Beschichtung (3.3) vorzugsweise


- auch in den Vertiefungen (3.2) aufgebracht ist und/oder
- vor oder nach einer Ausbildung der rinnenförmigen Vertiefungen (3.2) auf dem Messer-Grundkörper (3.1) aufgebracht wird.
- Messer nach einem der vorhergehenden Ansprüche


dadurch gekennzeichnet, dass


- die Mehrzahl rinnenförmiger Vertiefungen (3.2) durch Fräsen oder Schleifen oder mittels eines Lasers ausgebildet sind.
- **14.** Schneideinheit (7) zum Abschneiden von Scheiben (101) von einem Produkt-Strang (100) mit
 - einem Messer (3) nach einem der vorhergehenden Ansprüche, und
 - einer Antriebseinheit zum rotierenden Antreiben des Messers um die Rotationsachse (3').
- Aufschneide-Maschine (1), insbesondere Slicer (1), zum Abschneiden von Scheiben (101) von einem Produkt-Strang (100) mit
 - einer Schneideinheit (7) nach Anspruch 14 und - einer Steuerung (1*), die zumindest bewegli-
 - che Teile der Aufschneide-Maschine ansteuert.


10

55

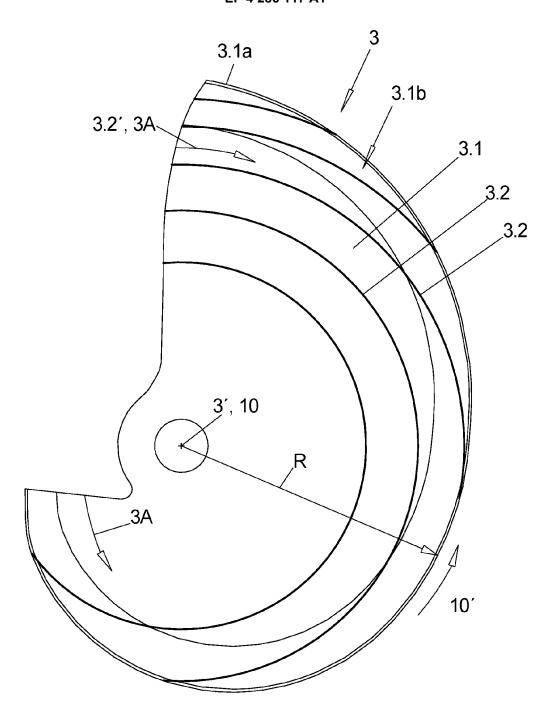


Fig. 3a

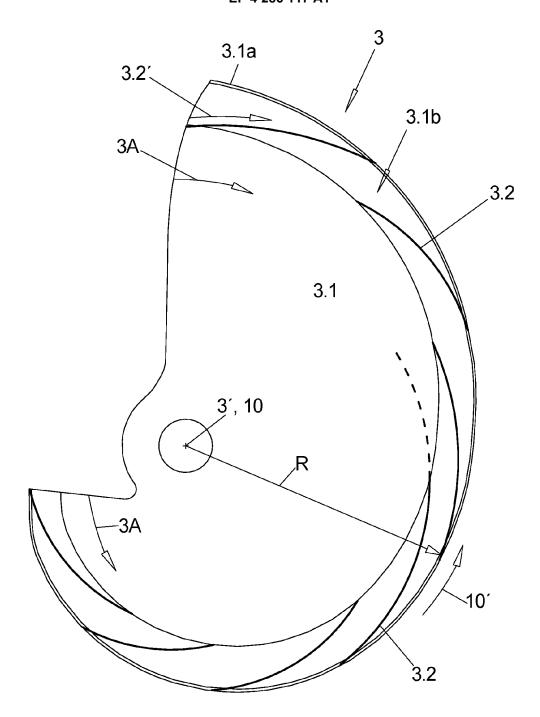


Fig. 3b

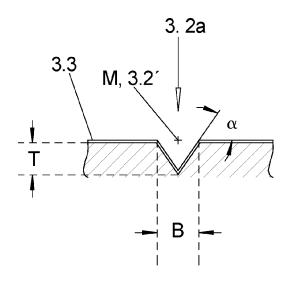


Fig. 4a

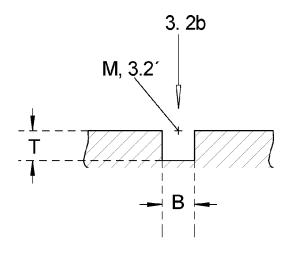


Fig. 4b

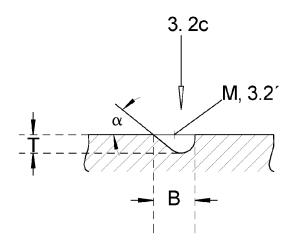
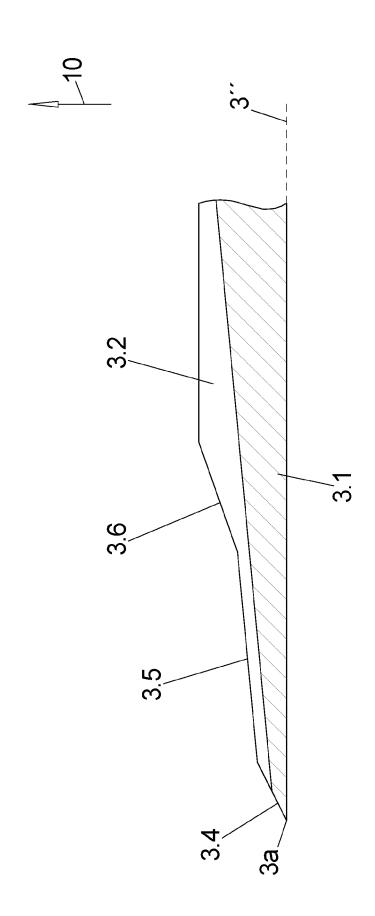



Fig. 4c

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 23 17 5103

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

	EINSCHLÄGIGE DOKI	UMENTE		
Kategorie	Kennzeichnung des Dokuments mit der maßgeblichen Teile	Angabe, soweit erforderlich,	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (IPC)
x	DE 40 31 671 A1 (NATEC RI CO KG [DE]) 9. April 199		1-3,5-8, 10,12-15	INV. B26D1/00
A	* Spalte 4, Zeile 62 - Ze 8; Abbildungen *	•		,
x	EP 1 627 713 A1 (DICK FR [DE]) 22. Februar 2006 (1,2,5,7, 8,10, 12-15	
A	* Absatz [0009] - Absatz 4; Abbildungen *	[0012]; Anspruch	3,4,6,9, 11	
x	DE 29 52 569 A1 (BALKE K 1. Oktober 1981 (1981-10	•	1-3,5, 7-10, 12-15	
A	* das ganze Dokument *	_	4,6,11	
x	DE 10 2007 026321 A1 (ASSCHNEIDWERKZEUGE GMBH [D: 6. November 2008 (2008-1	E])	1-15	
_	* das ganze Dokument *	1	RECHERCHIERTE SACHGEBIETE (IPC)	
A	DE 10 2012 007250 A1 (WE: [DE]) 17. Oktober 2013 (* Ansprüche 1,14; Abbild:		B26D	
Der vo	rliegende Recherchenbericht wurde für all	<u> </u>		
	Recherchenort München	Abschlußdatum der Recherche 17. Oktober 2023		Prüfer
X : von Y : von ande A : tech O : nich	ATEGORIE DER GENANNTEN DOKUMENTE besonderer Bedeutung allein betrachtet besonderer Bedeutung in Verbindung mit einer eren Veröffentlichung derselben Kategorie nologischer Hintergrund tischriftliche Offenbarung schenliteratur	T : der Erfindung z E : älteres Patentd nach dem Anm D : in der Anmeldu L : aus anderen Gr	ugrunde liegende T okument, das jedoc eldedatum veröffen ng angeführtes Dol ünden angeführtes	tlicht worden ist kument

EPO FORM 1503 03.82 (P04C03)

55

1

EP 4 286 117 A1

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

5

10

15

20

25

30

35

40

45

50

55

EP 23 17 5103

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten

Patentdokumente angegeben.

Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

17-10-2023

	Recherchenbericht Ihrtes Patentdokumen	t	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
DE	4031671	A 1	09-04-1992	KEINE	
			22-02-2006	EP 1627713 A1	09-03-200 22-02-200
DE	2952569	A1			
DE	102007026321	A1	06-11-2008	KEINE	
	102012007250	A1	17-10-2013	DE 102012007250 A1 EP 2836340 A1 US 2015135926 A1 WO 2013152842 A1	17-10-201 18-02-201 21-05-201 17-10-201
				WO 2013152842 A1 	

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82