(19) Europäisches Patentamt European Patent Office Office européen des brevets	(11) EP 4 286 544 A1
	ENT APPLICATION nce with Art. 153(4) EPC
 (43) Date of publication: 06.12.2023 Bulletin 2023/49 (21) Application number: 22807432.4 (22) Date of filing: 09.05.2022 	 (51) International Patent Classification (IPC): C21D 9/00 ^(2006.01) C22C 38/00 ^(2006.01) C21D 1/18 ^(2006.01) (52) Cooperative Patent Classification (CPC): C21D 1/18; C21D 9/00; C21D 9/46; C22C 38/00; C22C 38/60 (86) International application number: PCT/JP2022/019656 (87) International publication number: WO 2022/239731 (17.11.2022 Gazette 2022/46)
 (84) Designated Contracting States: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR Designated Extension States: BA ME Designated Validation States: KH MA MD TN (30) Priority: 13.05.2021 JP 2021081620 (71) Applicant: NIPPON STEEL CORPORATION Chiyoda-ku Tokyo 100-8071 (JP) 	 (72) Inventors: TODA, Yuri Tokyo 100-8071 (JP) MAEDA, Daisuke Tokyo 100-8071 (JP) SUZUKI, Tamaki Tokyo 100-8071 (JP) ASADA, Yuma Tokyo 100-8071 (JP) TAKAYAMA, Takuya Tokyo 100-8071 (JP) (74) Representative: Zimmermann & Partner Patentanwälte mbB Postfach 330 920 80069 München (DE)

(54) STEEL SHEET FOR HOT STAMPING AND HOT STAMPING MOLDED BODY

(57) This steel sheet for hot stamping has a predetermined chemical composition and has a microstructure in which $S_{\alpha} + S_{GB}$, which is a total of an area ratio S_{α} of ferrite and an area ratio S_{GB} of a granular bainite, is 10% or more and less than 50% and S_{GB}/S_{α} , which is a ratio between the area ratio S_{GB} of the granular bainite and the area ratio S_{α} of the ferrite, is 0.30 to 0.70. In addition, a hot-stamping formed body manufactured using this steel sheet for hot stamping has a predetermined chemical composition and a microstructure in which an average grain size of prior austenite grains is 5 to 25 μ m, and a standard deviation of grain sizes of the prior austenite grains is 0.1 to 2.0 μ m, and a tensile strength of the hot-stamping formed body is 2,200 MPa or more.

Processed by Luminess, 75001 PARIS (FR)

Description

[Technical Field of the Invention]

5 [0001] The present invention relates to a steel sheet for hot stamping and a hot-stamping formed body.
 [0002] Priority is claimed on Japanese Patent Application No. 2021-081620, filed May 13, 2021, the content of which is incorporated herein by reference.

[Background Art]

10

[0003] In the related art, from the viewpoint of global environmental problems and collision safety performance, thinning and high-strengthening of vehicle members have been required. In order to meet these demands, the number of vehicle members made of a high strength steel sheet as a material is increasing. In addition, as a forming method of a high strength steel sheet, a method called hot stamping is known. In the hot stamping, a high strength steel sheet is press-

- ¹⁵ formed in a high temperature range of 700°C or higher and quenched inside or outside a press die. According to the hot stamping, since forming is performed in a high temperature range in which the strength of the steel sheet decreases, it is possible to suppress forming defects that occur in cold pressing. In addition, since a structure having martensite as a primary phase is obtained by quenching after forming, high strength can be obtained. For this reason, hot-stamping formed bodies having a tensile strength of about 1,500 MPa are widely used worldwide.
- ²⁰ **[0004]** In order to obtain a higher effect of reducing the weight of a vehicle body from a vehicle member into which a high strength steel sheet is formed by hot stamping, it is necessary to obtain a member that has high strength and is also excellent in collision characteristics. In order to improve the collision characteristics of vehicle members, particularly, vehicle members are required to have excellent bendability.

[0005] Patent Document 1 discloses a hot-stamping formed body having a tensile strength of 1,900 MPa or more and capable of suppressing low-stress fracture and a manufacturing method thereof.

[0006] The present inventors found that, in a vehicle member having an improved tensile strength, it is necessary to further improve the bendability in order to obtain a higher effect of reducing the weight of a vehicle body.

[Prior Art Document]

[Patent Document]

- [0007] [Patent Document 1] PCT International Publication No. WO2018/134874
- 35 [Non-Patent Document]

[0008] Non-Patent Document 1: Acta Materialia, 58 (2010), 6393-6403

[Disclosure of the Invention]

40

30

[Problems to be Solved by the Invention]

[0009] The present invention has been made in view of the above-mentioned problem. An object of the present invention is to provide a hot-stamping formed body having high strength and excellent bendability, and a steel sheet for hot stamping capable of manufacturing this hot-stamping formed body.

[Means for Solving the Problem]

[0010] The gist of the present invention is as follows.

50

55

[1] A steel sheet for hot stamping according to an aspect of the present invention includes, as a chemical composition, by mass%:

C: more than 0.40% and 0.70% or less; Si: 0.010% to 1.30%; Mn: more than 0.60% and 3.00% or less; P: 0.100% or less; S: 0.0100% or less;

	N: 0.0130% or less;
	O: 0.0200% or less;
	Al: 0.0010% to 0.500%;
	Cr: 0.010% to 0.80%;
5	Nb: 0% to 0.100%;
	Ti: 0% to 0.100%;
	B: 0% to 0.0100%;
	Mo: 0% to 1.00%;
	Co: 0% to 2.00%;
10	Ni: 0% or more and less than 3.00%;
	Cu: 0% to 1.00%;
	V: 0% to 1.00%;
	W: 0% to 1.000%;
	Ca: 0% to 0.010%;
15	Mg: 0% to 1.000%;
	REM: 0% to 1.000%;
	Sb: 0% to 1.000%;
	Zr: 0% to 1.000%;
	Sn: 0% to 1.000%;
20	As: 0% to 0.100%; and
	a remainder including Fe and impurities,
	in which the steel sheet for hot stamping has a microstructure in which $S_{\alpha} + S_{GB}$, which is a total of an area
	ratio S_{α} of ferrite and an area ratio S_{GB} of a granular bainite, is 10% or more and less than 50%, and
	S_{GB}/S_{α} , which is a ratio between the area ratio S_{GB} of the granular bainite and the area ratio S_{α} of the ferrite,
25	is 0.30 to 0.70.
	[2] The steel sheet for hot stamping according to [1], in which the steel sheet for hot stamping may contain, as the
	chemical composition, by mass%, one or more selected from the group consisting of:
30	Nb: 0.001 % to 0.100%;
	Ti: 0.010% to 0.100%;
	B: 0.0015% to 0.0100%;
	Mo: 0.05% to 1.00%;
	Co: 0.05% to 2.00%;
35	Ni: 0.01% or more and less than 3.00%;
	Cu: 0.01% to 1.00%;
	V: 0.01% to 1.00%;
	W: 0.001 % to 1.000%;
	Ca: 0.001% to 0.010%;
40	Mg: 0.001% to 1.000%;
	REM: 0.001% to 1.000%;
	Sb: 0.005% to 1.000%;
	Zr: 0.001% to 1.000%;
	Sn: 0.001% to 1.000%; and
45	As: 0.001% to 0.100%.
40	AS. 0.001% 10 0.100%.
	[3] A hot-stamping formed body according to another aspect of the present invention includes, as a chemical com-
	position, by mass%:
50	C: more than 0.40% and 0.70% or less;
	Si: 0.010% to 1.30%;
	Mn: more than 0.60% and 3.00% or less;
	P: 0.100% or less;
	S: 0.0100% or less:

S: 0.0100% or less;

- N: 0.0130% or less;
- O: 0.0200% or less; Al: 0.0010% to 0.500%;
 - Cr: 0.010% to 0.80%;

	Nb: 0% to 0.100%;
	Ti: 0% to 0.100%;
	B: 0% to 0.0100%;
	Mo: 0% to 1.00%;
5	Co: 0% to 2.00%;
	Ni: 0% or more and less than 3.00%;
	Cu: 0% to 1.00%;
	V: 0% to 1.00%;
	W: 0% to 1.000%;
10	Ca: 0% to 0.010%;
	Mg: 0% to 1.000%;
	REM: 0% to 1.000%;
	Sb: 0% to 1.000%;
	Zr: 0% to 1.000%;
15	Sn: 0% to 1.000%;
	As: 0% to 0.100%; and
	a remainder including Fe and impurities,
	in which the hot-stamping formed body has a microstructure in which an average grain size of prior austenite
	grains is 5 to 25 μ m,
20	a standard deviation of grain sizes of the prior austenite grains is 0.1 to 2.0 μ m, and
	a tensile strength of the hot-stamping formed body is 2,200 MPa or more.
	[4] The hot-stamping formed body according to [3], in which the hot-stamping formed body may contain, as the
	chemical composition, by mass%, one or more selected from the group consisting of:
25	
	Nb: 0.001% to 0.100%;
	Ti: 0.010% to 0.100%;
	B: 0.0015% to 0.0100%;
	Mo: 0.05% to 1.00%;
30	Co: 0.05% to 2.00%;
	Ni: 0.01% or more and less than 3.00%;
	Cu: 0.01% to 1.00%;
	V: 0.01% to 1.00%;
	W: 0.001 % to 1.000%;
35	Ca: 0.001% to 0.010%;
	Mg: 0.001% to 1.000%;
	REM: 0.001% to 1.000%;
	Sb: 0.005% to 1.000%;
	Zr: 0.001% to 1.000%;
40	Sn: 0.001% to 1.000%; and
	As: 0.001% to 0.100%.

[5] In the hot-stamping formed body according to [3] or [4], an area ratio of the prior austenite grains having an average grain size of 0.5 to 3.0 μ m may be 60% or less.

45

50

[Effects of the Invention]

[0011] According to the above-described aspects of the present invention, it is possible to provide a hot-stamping formed body having high strength and excellent bendability, and a steel sheet for hot stamping capable of manufacturing this hot-stamping formed body.

[Embodiments of the Invention]

[0012] The present inventors examined bendability of a hot-stamping formed body. As a result, the present inventors found that in a microstructure of the hot-stamping formed body, the bendability deteriorates when a large amount of fine prior austenite grains are present. In addition, the present inventors found that, in the microstructure of the hot-stamping formed body, when prior austenite grains are set to a desired size and unevenness in the size of the prior austenite grains is suppressed, that is, the prior austenite grains are grain-sized, the bendability of the hot-stamping formed body

can be further improved.

[0013] Next, the present inventors examined a method for obtaining the above-described hot-stamping formed body. As a result, the present inventors found that the above-described hot-stamping formed body can be obtained by controlling an area ratio of ferrite and an area ratio of granular bainite so as to form a desired amount of ferrite and granular bainite in a microstructure of a steel sheet for hot stamping and to have a desired relationship.

- 5 [0014] Hereinafter, the steel sheet for hot stamping and the hot-stamping formed body according to the present embodiment made based on the above-described findings will be described. First, the reason why the chemical composition of the steel sheet for hot stamping according to the present embodiment is to be limited will be described.
- [0015] A limited numerical range described using "to" to be described below includes a lower limit and an upper limit. 10 Numerical values represented using "less than" or "more than" are not included in a numerical range. All percentages (%) related to the chemical composition mean mass%.

[0016] The steel sheet for hot stamping according to the present embodiment includes, as a chemical composition, by mass%, C: more than 0.40% and 0.70% or less, Si: 0.010% to 1.30%, Mn: more than 0.60% and 3.00% or less, P: 0.100% or less, S: 0.0100% or less, N: 0.0130% or less, O: 0.0200% or less, AI: 0.0010% to 0.500%, Cr: 0.010% to

15 0.80%, and a remainder including Fe and impurities. Each element will be described below.

C: more than 0.40% and 0.70% or less

[0017] C greatly contributes to improvement in the strength of the hot-stamping formed body. When the C content is 20 0.40% or less, it becomes difficult to obtain sufficient strength in the hot-stamping formed body. For this reason, the C content is set to more than 0.40%. The C content is preferably 0.42% or more, more preferably 0.45% or more, and still more preferably 0.47% or more.

[0018] Meanwhile, when the C content is more than 0.70%, coarse carbides are generated and the bendability of the hot-stamping formed body deteriorates. Therefore, the C content is set to 0.70% or less. The C content is preferably 0.65% or less and more preferably 0.60% or less.

Si: 0.010% to 1.30%

- [0019] Si is an element that improves distortion capability of the hot-stamping formed body by suppressing the formation 30 of an oxide which is combined with oxygen and becomes an origin of fracture. When the Si content is less than 0.010%, a coarse oxide is formed in the hot-stamping formed body, and desired bendability cannot be obtained. Therefore, the Si content is set to 0.010% or more. The Si content is preferably 0.05% or more and more preferably 0.10% or more. [0020] Meanwhile, when the Si content is more than 1.30%, a coarse oxide is formed, and the bendability of the hotstamping formed body deteriorates. For this reason, the Si content is set to 1.30% or less. The Si content is preferably 35
- less than 1.00% and more preferably 0.50% or less.

Mn: more than 0.60% and 3.00% or less

[0021] Mn stabilizes austenite and improves the hardenability of the steel sheet. When the Mn content is 0.60% or 40 less, sufficient hardenability cannot be obtained. Therefore, the Mn content is set to more than 0.60%. The Mn content is preferably 0.80% or more and more preferably 1.20% or more.

[0022] Meanwhile, when the Mn content is more than 3.00%, coarse inclusions are generated and the bendability of the hot-stamping formed body deteriorates. Therefore, the Mn content is set to 3.00% or less. The Mn content is preferably 2.20% or less and more preferably 1.80% or less.

45

50

25

P: 0.100% or less

[0023] P segregates in the grain boundaries of the steel sheet and deteriorates the bendability of the hot-stamping formed body. Therefore, the lower P content is more preferable. In particular, when the P content is more than 0.100%, the workability of the steel sheet and the bendability of the hot-stamping formed body significantly deteriorate. For this

reason, the P content is set to 0.100% or less. The P content is preferably 0.080% or less and more preferably 0.020% or less.

[0024] The lower limit of the P content is not particularly limited and may be 0%. However, when the P content is reduced to less than 0.0001%, the dephosphorization cost increases significantly, which is not preferable economically.

55 For this reason, the P content may be set to 0.0001% or more.

S: 0.0100% or less

[0025] S forms coarse inclusions and deteriorates the bendability of the hot-stamping formed body. Accordingly, the lower S content is more preferable. In particular, when the S content is more than 0.0100%, the formability of the steel sheet and the bendability of the hot-stamping formed body significantly deteriorate. Therefore, the S content is set to 0.0100% or less. The S content is preferably 0.0050% or less and more preferably 0.0010% or less.

[0026] The lower limit of the S content is not particularly limited and may be 0%. However, when the S content is reduced to less than 0.0001%, the desulfurization cost increases significantly, which is not preferable economically. For this reason, the S content may be set to 0.0001 % or more.

10

15

5

N: 0.0130% or less

[0027] N forms a coarse nitride and deteriorates the bendability of the hot-stamping formed body. Therefore, the lower N content is more preferable. In particular, when the N content is more than 0.0130%, the formability of the steel sheet significantly deteriorates. Therefore, the N content is set to 0.0130% or less. The C content is preferably 0.0100% or less or 0.0070% or less and more preferably 0.0040% or less.

[0028] The lower limit of the N content is not particularly limited and may be 0%. However, when the N content is reduced to less than 0.0001%, the denitrification cost increases significantly, which is not preferable economically. For this reason, the N content may be set to 0.0001 % or more.

20

O: 0.0200% or less

[0029] O forms a coarse oxide in steel and deteriorates the bendability of the hot-stamping formed body. Therefore, the lower O content is more preferable. In particular, when the O content is more than 0.0200%, the bendability of the hot-stamping formed body significantly deteriorates. Therefore, the O content is set to 0.0200% or less. The O content is preferably 0.0100% or less and more preferably 0.0060% or less.

[0030] The lower limit of the O content is not particularly limited and may be 0%. However, when the O content is reduced to less than 0.0001%, the manufacturing cost increases significantly, which is not preferable economically. Therefore, the O content may be set to 0.0001% or more.

30

40

25

AI: 0.0010% to 0.500%"

[0031] Al is an element that improves the distortion capability by deoxidizing molten steel to suppress the formation of oxide which becomes the origin of fracture and improves the bendability of the hot-stamping formed body. In a case where the Al content is less than 0.0010%, deoxidation is not sufficiently performed and a coarse oxide is generated. As a result, the above-mentioned effects cannot be obtained. For this reason, the Al content is set to 0.001 0% or more. The Al content is preferably 0.010% or more and more preferably 0.030% or more.

[0032] Meanwhile, when the Al content is more than 0.500%, a coarse oxide is formed in steel, and the bendability of the hot-stamping formed body deteriorates. Therefore, the Al content is set to 0.500% or less. The Al content is preferably 0.450% or less and more preferably 0.350% or less.

Cr: 0.010% to 0.80%

- [0033] Cr increases the strength of the hot-stamping formed body by dissolving in prior austenite grains during heating at the time of hot stamping. When the Cr content is less than 0.010%, this effect cannot be obtained. Therefore, the Cr content is set to 0.010% or more. The Cr content is preferably 0.10% or more and more preferably 0.20% or more.
 [0034] Meanwhile, when the Cr content is more than 0.80%, a coarse carbide is formed and the bendability of the hot-stamping formed body deteriorates. Therefore, the Cr content is set to 0.80% or less. The Cr content is preferably 0.60% or less and more preferably 0.40% or less.
- ⁵⁰ **[0035]** The remainder of the chemical composition of the steel sheet for hot stamping according to the present embodiment may be Fe and impurities. An example of the impurities includes an element that is unavoidably incorporated from a steel raw material or scrap and/or during a steelmaking process and is allowed in a range in which properties of the hot-stamping formed body according to the present embodiment are not inhibited.
- [0036] The steel sheet for hot stamping according to the present embodiment may contain the following elements as arbitrary elements instead of a part of Fe. The contents of the following arbitrary elements, which are obtained in a case where the following arbitrary elements are not contained, are 0%.

Nb: 0% to 0.100%

[0037] Nb forms carbonitride in steel to improve the strength of the hot-stamping formed body by precipitation hardening. In order to obtain this effect, the Nb content is preferably set to 0.001% or more.

⁵ **[0038]** Meanwhile, when the Nb content is more than 0.100%, a large amount of carbonitride is formed in steel, and the bendability of the hot-stamping formed body deteriorates. Therefore, the Nb content is set to 0.100% or less.

Ti: 0% to 0.100%

- [0039] Similar to Nb, Ti forms carbonitride in steel to improve the strength of the hot-stamping formed body by precipitation hardening. In order to obtain the effects, a Ti content is preferably set to 0.010% or more.
 [0040] Meanwhile, when the Ti content is more than 0.100%, a large amount of carbonitride is formed in steel, and the bendability of the hot-stamping formed body deteriorates. For this reason, the Ti content is set to 0.100% or less.
- ¹⁵ B: 0% to 0.0100%

[0041] B improves the hardenability of the steel and improves the strength of the hot-stamping formed body. In order to obtain the effects, the B content is preferably set to 0.0015% or more.

[0042] Meanwhile, when the B content is more than 0.0100%, a coarse carbide is generated and the bendability of the hot-stamping formed body deteriorates. Therefore, the B content is set to 0.0100% or less.

Mo: 0% to 1.00%

[0043] Mo improves the hardenability of the steel sheet and improves the strength of the hot-stamping formed body. In order to obtain the effects, the Mo content is preferably set to 0.05% or more.

[0044] Meanwhile, when the Mo content is more than 1.00%, a coarse carbide is generated and the bendability of the hot-stamping formed body deteriorates. Therefore, the Mo content is set to be 1.00% or less.

Co: 0% to 2.00%

30

[0045] Co improves the hardenability of the steel sheet and improves the strength of the hot-stamping formed body. In order to reliably exert the effects, it is preferable that the Co content is set to 0.05% or more.

[0046] Meanwhile, when the Co content is more than 2.00%, a coarse carbide is generated and the bendability of the hot-stamping formed body deteriorates. For this reason, the Co content is set to 2.00% or less.

35

Ni: 0% or more and less than 3.00%

[0047] Ni improves the hardenability of the steel sheet and improves the strength of the hot-stamping formed body. In order to obtain the effects, the Ni content is preferably set to 0.01% or more.

⁴⁰ **[0048]** Meanwhile, when the Ni content is 3.00% or more, segregation is promoted and the bendability of the hotstamping formed body deteriorates. Therefore, the Ni content is set to less than 3.00%.

Cu: 0% to 1.00%

- ⁴⁵ [0049] Similar to Ni, Cu improves the hardenability of the steel sheet and improves the strength of the hot-stamping formed body. In order to obtain the effects, the Cu content is preferably set to 0.01% or more.
 [0050] Meanwhile, when the Cu content is more than 1.00%, segregation is promoted and the bendability of the hot-stamping formed body deteriorates. Therefore, the Cu content is set to 1.00% or less.
- 50 V: 0% to 1.00%

[0051] V improves the hardenability of the steel sheet and improves the strength of the hot-stamping formed body. In order to obtain the effects, the V content is preferably set to 0.01% or more.

[0052] Meanwhile, when the V content is more than 1.00%, coarse carbides are generated and the bendability of the hot-stamping formed body deteriorates. Therefore, the V content is set to 1.00% or less.

W: 0% to 1.000%

[0053] W improves the hardenability of the steel sheet and improves the strength of the hot-stamping formed body. In order to obtain the effects, the W content is preferably set to 0.001 % or more.

⁵ **[0054]** Meanwhile, when the W content is more than 1.000%, segregation is promoted and the bendability of the hotstamping formed body deteriorates. Therefore, the W content is set to 1.000% or less.

Ca: 0% to 0.010%

¹⁰ **[0055]** Ca improves the distortion capability by suppressing the formation of an oxide which becomes the origin of fracture and improve the bendability of the hot-stamping formed body. In order to reliably obtain the effects, the Ca content is preferably set to 0.001% or more.

[0056] Meanwhile, when the Ca content is more than 0.010%, a coarse oxide is formed, and the bendability of the hot-stamping formed body deteriorates. Therefore, the Ca content is set to 0.010% or less.

15

20

Mg: 0% to 1.000%

[0057] Mg improves the distortion capability by suppressing the formation of an oxide which becomes the origin of fracture and improves the bendability of the hot-stamping formed body. In order to obtain the effects, the Mg content is preferably set to 0.001% or more.

[0058] Meanwhile, when the Mg content is more than 1.000%, a coarse oxide is generated, and the bendability of the hot-stamping formed body deteriorates. Therefore, the Mg content is set to 1.000% or less.

REM: 0% to 1.000%

25

[0059] REM improves the distortion capability by suppressing the formation of an oxide which becomes the origin of fracture and improves the bendability of the hot-stamping formed body. In order to obtain the effects, the REM content is preferably set to 0.001% or more.

[0060] Meanwhile, when the REM content is more than 1.000%, a coarse oxide is generated, and the bendability of the hot-stamping formed body deteriorates. Therefore, the REM content is set to 1.000% or less.

[0061] In the present embodiment, REM refers to a total of 17 elements that are composed of Sc, Y, and lanthanoid and the REM content refers to the total content of these elements.

Sb: 0% to 1.000%

35

30

[0062] Sb improves the distortion capability by suppressing the formation of an oxide which becomes the origin of fracture and improves the bendability of the hot-stamping formed body. In order to obtain the effects, the Sb content is preferably set to 0.005% or more.

[0063] Meanwhile, when the Sb content is more than 1.000%, a coarse oxide is generated, and the bendability of the hot-stamping formed body deteriorates. Therefore, the Sb content is set to 1.000% or less.

Zr: 0% to 1.000%

[0064] Zr improves the distortion capability by suppressing the formation of an oxide which becomes the origin of fracture and improves the bendability of the hot-stamping formed body. In order to obtain the effects, the Zr content is preferably set to 0.001% or more.

[0065] Meanwhile, when the Zr content is more than 1.000%, a coarse oxide is generated, and the bendability of the hot-stamping formed body deteriorates. Therefore, the Zr content is set to 1.000% or less.

50 Sn: 0% to 1.000%

[0066] Sn improves the distortion capability by suppressing the formation of an oxide which becomes the origin of fracture and improves the bendability of the hot-stamping formed body. In the case of reliably obtaining the effects, the Sn content is preferably set to 0.001% or more.

⁵⁵ **[0067]** Meanwhile, since the above effects are saturated even when a large amount of Sn is contained, the Sn content is set to 1.000% or less.

As: 0% to 0.100%; and

5

20

[0068] As refines the prior austenite grains by lowering an austenite single-phase formation temperature and improve the bendability of the hot-stamping formed body. In the case of reliably obtaining the effects, the As content is preferably set to 0.001% or more.

[0069] Meanwhile, since the above effects are saturated even when a large amount of As is contained, the As content is set to 0.100% or less.

[0070] The above-mentioned chemical composition of the steel sheet for hot stamping may be measured by an ordinary analysis method. For example, the chemical composition of the steel sheet for hot stamping may be measured using

- ¹⁰ inductively coupled plasma-atomic emission spectrometry (ICP-AES). C and S may be measured using a combustioninfrared absorption method, N may be measured using an inert gas fusion-thermal conductivity method, and O may be measured using an inert gas fusion-nondispersive infrared absorption method. In a case where a plating layer is provided on the surface of the steel sheet for hot stamping, the chemical composition may be analyzed after the plating layer is removed by mechanical grinding.
- ¹⁵ **[0071]** Next, the microstructure of the steel sheet for hot stamping according to the present embodiment will be described.

[0072] The steel sheet for hot stamping according to the present embodiment has a microstructure in which $S_{\alpha} + S_{GB}$, which is a total of an area ratio S_{α} of ferrite and an area ratio S_{GB} of granular bainite, is 10% or more and less than 50%, and S_{GB}/S_{α} which is a ratio between the area ratio S_{GB} of the granular bainite and the area ratio S_{α} of the ferrite is 0.30 to 0.70. Hereinafter, each specification will be described.

[0073] In addition, in the present embodiment, it should be noted that, in a sheet thickness cross section parallel to a rolling direction, the microstructure is specified at a 1/4 depth position of the sheet thickness from the surface (in a region from a 1/8 depth of the sheet thickness from the surface). The reason therefor is that the microstructure at this position indicates a typical microstructure of the steel sheet.

²⁵ **[0074]** "S_{α} + S_{GB}, which is total of area ratio S_{α} of ferrite and area ratio S_{GB} of a granular bainite, is 10% or more and less than 50%"

When $S_{\alpha} + S_{GB}$, which is the total of the area ratio S_{α} of the ferrite and the area ratio S_{GB} of the granular bainite, is less than 10%, the prior austenite grains cannot be grain-sized in the hot-stamping formed body, and as a result, it is not possible to obtain a hot-stamping formed body having excellent bendability. Since the solid solubility limits of carbon in

³⁰ ferrite and granular bainite are low, by setting $S_{\alpha} + S_{GB}$ to 10% or more and setting S_{GB}/S_{α} to be described below within a desired range, carbon diffuses into ferrite grain boundaries, and a segregation region of carbon is formed at ferrite grain boundaries. During hot stamping, the segregation region of carbon becomes the origin of the prior austenite grains, so that the prior austenite grains are uniformly dispersed and formed. As a result, it is presumed that prior austenite grains can be grain-sized in the hot-stamping formed body. $S_{\alpha} + S_{GB}$ is preferably 20% or more and more preferably 30% or more.

[0075] Meanwhile, when $S_{\alpha} + S_{GB}$ is 50% or more, segregation of carbon into ferrite grain boundaries is excessively promoted, the generation density of carbides at ferrite grain boundaries increases, and the prior austenite grains cannot be uniformly dispersed and generated after the hot stamping. $S_{\alpha} + S_{GB}$ is preferably 40% or less.

- **[0076]** "S_{GB}/S_{α} which is a ratio between area ratio S_{GB} of granular bainite and area ratio S_{α} of ferrite is 0.30 to 0.70" ⁴⁰ S_{GB}/S_{α} is set to 0.30 to 0.70. Since ferrite does not include subgrain boundaries, carbon is less likely to be segregated in the grains than granular bainite. Therefore, by controlling the area ratio of the ferrite and granular bainite to the above range, the amount of segregation of carbon at ferrite grain boundaries can increase. The subgrain boundaries contained in the grains of granular bainite can serve as the segregation origins of carbon and thus function as the origins of prior austenite during hot stamping heating. Accordingly, the average grain size of the prior austenite grains in the hot-stamping
- formed body can be controlled to 25 μ m or less. S_{GB}/S_{α} is preferably 0.40% or more. **[0077]** Meanwhile, when S_{GB}/S_{α} is more than 0.70, the segregation of carbon to subgrain boundaries is excessively promoted, and the distance between the austenite grains becomes short during hot stamping heating. Therefore, the average grain size of the prior austenite grains cannot be controlled to 5 μ m or more. Therefore, S_{GB}/S_{α} is set to 0.70 or less. S_{GB}/S_{α} is preferably 0.50 or less.
- **[0078]** In the microstructure of the steel sheet for hot stamping according to the present embodiment, the remainder in microstructure is one or more of pearlite, martensite, lower bainite, residual austenite, and tempered martensite. The area ratio of the remainder in the microstructure may be set to more than 50% and 90% or less in consideration of the relationship with $S_{\alpha} + S_{GB}$.
- ⁵⁵ Measurement method of microstructure of steel sheet for hot stamping

[0079] A sample is cut out from an arbitrary position (a position that avoids an end portion in a case where the sample cannot be collected at this position) away from an end surface of the steel sheet for hot stamping by a distance of 50

mm or more so that a sheet thickness cross section parallel to a rolling direction can be observed. The size of the sample also depends on a measurement device, but is set to a size that can be observed by about 10 mm in the rolling direction. **[0080]** The cross section of the sample is polished using silicon carbide paper having a grit of #600 to #1500, then, is finished as a mirror surface using liquid in which diamond powder having a grain size of 1 to 6 μ m is dispersed in diluted

- ⁵ solution of alcohol or the like or pure water and finish-polished by electrolytic polishing. Next, in a region that has a length of 100 μm and between the 1/8 depth of the sheet thickness from the surface and the 3/8 depth of the sheet thickness from the surface at an arbitrary position on the cross section of the sample in a longitudinal direction so that the 1/4 depth position of the sheet thickness from the surface can be observed, the structure is observed using a device including a thermal field emission type scanning electron microscope (JSM-7001F manufactured by JEOL Ltd.) and an EBSD
- ¹⁰ detector (DVC5-type detector manufactured by TSL Solutions). The scanning electron microscope used is equipped with a secondary electron detector. In a vacuum of 9.6×10^{-5} Pa or less, the sample is irradiated with an electron beam at an acceleration voltage of 15 kV and an irradiation current level of 13, and a secondary electron image is photographed with the scanning electron microscope.
- **[0081]** In the obtained photographed photograph, a region where cementite is precipitated in a lamellar shape in the grains is determined as pearlite. Lath-shaped grains are determined as lower bainite, martensite, and tempered martensite. Next, EBSD analysis is performed on the same visual field at an analysis speed of 200 to 300 points/sec using an EBSD analyzer. The area ratio S_{α} of the ferrite and the area ratio S_{GB} of the granular bainite are calculated using the "Grain Average Misorientation" function installed in the software "OIM Analysis (registered trademark)" attached to the EBSD analyzer. With this function, for grains having a body-centered structure, it is possible to calculate an orientation
- ²⁰ difference between adjacent measurement points and then obtain an average value of all measurement points in the grains. For the crystal orientation information obtained by the EBSD analysis, a region surrounded by grain boundaries having an average crystal orientation difference of 5° or more is defined as a grain, and a map is drawn by the "Grain Average Misorientation" function. In a region where regions determined to be pearlite, lower bainite, martensite, and tempered martensite are excluded from the map, a region where an average crystal orientation difference in grains is
- ²⁵ less than 0.4° is determined as ferrite, and a region where the average crystal orientation difference in grains is 0.4° or more and 3.0° or less is determined as granular bainite. An area ratio of the region determined as ferrite is calculated, so that the area ratio of ferrite is obtained. The area ratio of the granular bainite is obtained by calculating the area ratio of the region determined to be the granular bainite.
- [0082] The steel sheet for hot stamping according to the present embodiment may have a plating layer formed on the surface for the purpose of improving corrosion resistance after hot stamping. The plating layer may be any of an electroplating layer and a hot-dip plating layer. The electroplating layer includes, for example, an electrogalvanized layer, an electrolytic Zn-Ni alloy plating layer, and the like. The hot-dip plating layer includes, for example, a hot-dip galvanized layer, a hot-dip galvannealed layer, a hot-dip aluminum plating layer, a hot-dip Zn-Al-Mg alloy plating layer, a hot-dip Zn-Al-Mg-Si alloy plating layer, and the like. An adhesion amount of a plating layer is not particularly limited and may be a general adhesion amount.
- [0083] The sheet thickness of the steel sheet for hot stamping according to the present embodiment is not particularly limited, but is preferably 0.5 to 3.5 mm from the viewpoint of a reduction in the weight of the vehicle body or the like.
 [0084] Next, a hot-stamping formed body according to the present embodiment that is obtained by hot-stamping the above-described steel sheet for hot stamping will be described. The hot-stamping formed body according to the present
- 40 embodiment has the same chemical composition as the above-described steel sheet for hot stamping. A measurement method of the chemical composition may be the same as that for the steel sheet for hot stamping. In addition, in the hotstamping formed body according to the present embodiment, the prior austenite grains are grain-sized in the microstructure. That is, the hot-stamping formed body according to the present embodiment has a microstructure in which the average grain size of the prior austenite grains is 5 to 25 µm and the standard deviation of the grain sizes of the prior
- austenite grains is 0.1 to 2.0 μm.
 [0085] In addition, in the present embodiment, the microstructure is specified at the 1/4 depth position (the region from the 1/8 depth of the sheet thickness from the surface to the 3/8 depth of the sheet thickness from the surface) of the sheet thickness from the surface of the cross section perpendicular to the sheet surface. The reason therefor is that the microstructure at this position indicates a typical microstructure of the hot-stamping formed body. Hereinafter, the microstructure will be described.
- [0086]

"Average grain size of prior austenite grains is 5 to 25 μ m" "Standard deviation of grain size of prior austenite grains is 0.1 to 2.0 μ m"

55

[0087] In the microstructure of the hot-stamping formed body, by setting the average grain size of the prior austenite grains to be 5 to 25 μ m and setting the standard deviation of the grain sizes of the prior austenite grains to 0.1 to 2.0 μ m, the bendability of the hot-stamping formed body can be improved. When the average grain size of the prior austenite

grains or the standard deviation of the grain sizes of the prior austenite grains is outside the above range, it is not possible to obtain excellent bendability in the hot-stamping formed body.

[0088] The average grain size of the prior austenite grains is preferably 10 μ m or more and more preferably 15 μ m or more. The average grain size of the prior austenite grains is preferably 20 μ m or less.

⁵ **[0089]** By setting the standard deviation of the grain sizes of the prior austenite grains to 2.0 μ m or less, excellent bendability in the hot-stamping formed body can be obtained. Therefore, the standard deviation of the grain sizes of the prior austenite grains is set to 2.0 μ m or less. The standard deviation is preferably 1.2 μ m or less, more preferably 1.1 μ m or less, and still more preferably 0.4 μ m or less.

[0090] In an actual operation, since it is difficult to set the standard deviation of the grain sizes of the prior austenite grains to less than 0.1 μ m, the substantial lower limit is set to 0.1 μ m or more.

[0091] When the area ratio of the prior austenite grains having the average grain size of 0.5 to 3.0 μ m is 60% or less, more excellent bendability can be obtained in the hot-stamping formed body. Therefore, the area ratio of the prior austenite grains having the average grain size of 0.5 to 3.0 μ m may be set to 60% or less. The area ratio is more preferably 50% or less and still more preferably 40% or less.

15

Measurement method of average grain size and standard deviation of grain size of prior austenite grains

[0092] Next, the measurement method of the average grain size of the prior austenite grains will be described. A sample is cut out from an arbitrary position (a position that avoids an end portion in a case where the sample cannot be collected at this position) away from an end surface of the hot-stamping formed body by a distance of 50 mm or more so that a sheet thickness cross section parallel to a rolling direction can be observed. The size of the sample also depends on a measurement device, but is set to a size that can be observed by about 10 mm in the rolling direction. The cross section of the sample is polished using silicon carbide paper having a grit of #600 to #1500, then, is finished as a mirror surface using liquid in which diamond powder having a grain size of 1 to 6 µm is dispersed in diluted solution of alcohol or the like or pure water and finish-polished by electrolytic polishing.

- **[0093]** Next, in a region from the 1/8 depth of the sheet thickness from the surface to the 3/8 depth of the sheet thickness from the surface at an arbitrary position of the sample cross section in the longitudinal direction so that the 1/4 depth position of the sheet thickness from the surface at an arbitrary position, a sample is irradiated with an electron beam at an acceleration voltage of μ m in the sheet thickness direction, a sample is irradiated with an electron beam at an acceleration voltage of
- 30 15 kV and an irradiation current level of 13 in a vacuum of 9.6 × 10⁻⁵ Pa or less using the device including a thermal field emission type scanning electron microscope (JSM-7001F manufactured by JEOL Ltd.) and an EBSD detector (DVC5-type detector manufactured by TSL Solutions), and the EBSD analysis is performed at an analysis speed of 200 to 300 points/sec. Using the obtained crystal orientation information, the crystal orientation of the prior austenite grains is calculated from a crystal orientation relationship between the general prior austenite grains and grains having a body-
- ³⁵ centered structure after transformation, and the average grain size of the prior austenite grains is calculated using the calculated crystal orientation.

[0094] The method for calculating the crystal orientation of the prior austenite grains is not particularly limited, and for example, the calculation may be performed using the following method. First, the crystal orientation of the prior austenite grains is calculated by the method described in Non-Patent Document 1, and the crystal orientation of the prior austenite

- 40 in each coordinate of the EBSD-measured region is specified. Next, a crystal orientation map of the prior austenite grain is created using the "Inverse Pole Figure" function installed in the software "OIM Analysis (registered trademark)" attached to the EBSD analyzer. For one of the prior austenite grains included in the observed visual field, an average value of a shortest diameter and a longest diameter is calculated, and the average value is used as the grain size of the prior austenite grains. The above operation is performed on all the prior austenite grains except for the prior austenite grains
- ⁴⁵ which are not entirely included in the photographed visual fields, such as grains in an end portion of the photographed visual field, and the grain sizes of all the prior austenite grains in the photographed visual fields are obtained. The average grain size of the prior austenite grains in the photographed visual fields is obtained by calculating a value obtained by dividing the sum of the obtained grain sizes of the prior austenite grains is performed on all the photographed visual fields, and the average grain sizes are measured. This operation is performed on all the photographed visual fields, and the average grain sizes are measured.
- grain size of the prior austenite grains of all the photographed visual fields is calculated, thereby obtaining the average grain size of the prior austenite grains.
 [0095] By calculating the standard deviation from the grain sizes of the prior austenite grains, the standard deviation of the grain sizes of the prior austenite grains is obtained. At this time, in order to eliminate the influence of locally generated fine grains or coarse grains, the standard deviation is calculated by excluding the minimum value and the maximum value of the prior austenite grain sizes.
 - **[0096]** By calculating a value obtained by dividing the area of the prior austenite grains having an average grain size of 0.5 to 3.0 μ m by the area of the entire measurement visual field, the area ratio of the prior austenite grains having an average grain size of 0.5 to 3.0 μ m is obtained.

[0097] The microstructure of the hot-stamping formed body is not particularly limited as long as desired strength and desired bendability can be obtained after hot stamping. However, the microstructure may include, for example, by area%, ferrite: 0% to 50%, bainite and martensite: 0% to 100%, pearlite: 0% to 30%, and residual austenite: 0% to 5%. The microstructure of the hot-stamping formed body may be measured by the following method.

5

Measurement method of microstructure of hot-stamping formed body

[0098] A sample is cut out from an arbitrary position (a position that avoids an end portion in a case where the sample cannot be collected at this position) away from an end surface of the hot-stamping formed body by a distance of 50 mm or more so that the cross section perpendicular to the sheet surface can be observed. The cross section of the sample is polished using silicon carbide paper having a grit of #600 to #1500, then, is finished as a mirror surface using liquid in which diamond powder having a grain size of 1 to 6 µm is dispersed in diluted solution of alcohol or the like or pure water and is performed on Nital etching. In a region that has a length of 50 µm and between the 1/8 depth of the sheet thickness from the surface and the 3/8 depth of the sheet thickness from the surface at an arbitrary position on the cross

- ¹⁵ section of the sample in a longitudinal direction so that the 1/4 depth position of the sheet thickness from the surface can be observed, photographs having a plurality of visual fields are taken using a thermal field emission type scanning electron microscope (JSM-7001F manufactured by JEOL Ltd.). Evenly spaced grids are drawn in the taken photographs, and structures at grid points are identified. The number of grid points corresponding to each structure is obtained and is divided by the total number of grid points, so that the area ratio of each structure is obtained. The area ratio can be
- more accurately obtained as the total number of grid points is larger. In the present embodiment, grid spacings are set to 2 μm × 2 μm and the total number of grid points is set to 1500.
 [0099] A region where cementite is precipitated in a lamellar shape in the grains is determined as pearlite. A region in which brightness is low and no sub-microstructure is observed is determined as ferrite. A region in which the brightness
- is high and the sub-microstructure is not exposed by etching is determined as "martensite or residual austenite". A region
 that does not correspond to any of the above-described microstructures is determined as bainite.
 [0100] The area ratio of martensite is obtained by subtracting the area ratio of residual austenite obtained by EBSD analysis described later from the area ratio of martensite and residual austenite obtained from the taken photographs.
 [0101] The area ratio of residual austenite is measured using an electron backscatter diffraction method (EBSD). In the analysis by EBSD, a sample collected at the same sample collection position as in the measurement using the
- above-described taken photograph is used, and the analysis is performed on the region between the 1/8 depth of the sheet thickness from the surface and the 3/8 depth of the sheet thickness from the surface. The sample is polished using silicon carbide paper having a grit of #600 to #1500, then, finished into a mirror surface using liquid in which diamond powder having a grain size of 1 to 6 μm is dispersed in diluted solution of alcohol or the like or pure water, and then finished by electrolytic polishing for the purpose of sufficiently removing strain in a cross section to be measured. In the
- 35 electrolytic polishing, in order to remove mechanical polishing strain on the observed section, the sample may be polished a minimum of 20 μ m and polished a maximum of 50 μ m. The sample is preferably polished 30 μ m or less in consideration of rollover at the end portion.

[0102] With regard to the measurement in EBSD, an acceleration voltage is set to 15 to 25 kV, the measurement is performed at intervals of at least 0.25 μ m or less, and the crystal orientation information about each measurement point

- ⁴⁰ in a range of 150 µm or more in the sheet thickness direction and 250 µm or more in the rolling direction is obtained. In the obtained crystal structure, a measurement point at which a crystal structure is fcc is determined as residual austenite using "Phase Map" function installed in the software "OIM Analysis (registered trademark)" attached to the EBSD analyzer. The ratio of measurement points determined as the residual austenite is obtained, thereby obtaining the area ratio of the residual austenite. Here, the larger the number of the measurement points, the more preferable, and thus it is
- ⁴⁵ preferable that the measurement intervals are narrow and the measurement range is wide. However, in a case where the measurement intervals are less than 0.01 μm, adjacent points interfere with the expansion width of an electron beam. For this reason, the measurement interval is set to 0.01 μm or more. In addition, the measurement range may be set to 200 μm in the sheet thickness direction and 400 μm in the sheet width direction at a maximum. An EBSD device including a thermal field emission type scanning electron microscope (JSM-7001F manufactured by JEOL Ltd.)
- ⁵⁰ and an EBSD detector (DVC5-type detector manufactured by TSL Solutions) is used for measurement. In this case, a degree of vacuum in the device is set to 9.6×10^{-5} Pa or less, the irradiation current level is set to 13, and the irradiation level of the electron beam is set to 62.

[0103] The hot-stamping formed body according to the present embodiment may have a plating layer formed on the surface for the purpose of improving corrosion resistance after the hot stamping or the like. The plating layer may be any of an electroplating layer and a hot-dip plating layer. The electroplating layer includes, for example, an electrogal-vanized layer, an electrolytic Zn-Ni alloy plating layer, and the like. The hot-dip plating layer includes, for example, a hot-dip galvanized layer, a hot-dip galvannealed layer, a hot-dip aluminum plating layer, a hot-dip Zn-Al alloy plating layer, a hot-dip Zn-Al-Mg alloy plating layer, a hot-dip Zn-Al-Mg alloy plating layer, and the like. An adhesion amount

of a plating layer is not particularly limited and may be a general adhesion amount.

[0104] The sheet thickness of the hot-stamping formed body according to the present embodiment is not particularly limited. However, in terms of reducing the weight of a vehicle body or the like, it is preferable that the sheet thickness of the hot-stamping formed body according to the present embodiment is set to 0.5 to 3.5 mm.

- ⁵ **[0105]** The hot-stamping formed body according to the present embodiment has a tensile (maximum) strength of 2,200 MPa or more. The tensile strength is preferably 2,400 MPa or more and more preferably 2,550 MPa or more. The tensile strength is obtained according to the test method described in JIS Z 2241:2011 by producing a No. 5 test piece described in JIS Z 2241:2011 from a position as flat as possible in the hot-stamping formed body.
- [0106] In addition, in the hot-stamping formed body according to the present embodiment, the maximum bending angle that is obtained by a bending test based on the VDA standard (VDA238-100) specified by the German Association of the Automotive Industry is preferably 20° or more. The maximum bending angle is more preferably 30° or more or 40° or more. The conditions in the bending test were as described below.

Dimensions of test piece: 60 mm (rolling direction) \times 30 mm (direction parallel

to sheet width direction)

15

Test piece sheet thickness: 1.6 mm

- Bending ridge: direction parallel to sheet width direction Test method: roll support and punch pressing Roll diameter: φ 30 mm Punch shape: tip end R=0.4 mm Distance between rolls: 2.0 × sheet thickness (mm) + 0.5 mm
 Pressing speed: 20 mm/min Tester: SHIMADZU AUTOGRAPH 20 kN
 - **[0107]** Next, a manufacturing method of the steel sheet for hot stamping according to the present embodiment will be described.
- **[0108]** In the manufacturing method of the steel sheet for hot stamping according to the present embodiment, in order to obtain the steel sheet for hot stamping having the above-described microstructure, the final rolling reduction of the finish rolling in the hot rolling is preferably set to 40% to 80%. Normally, the final rolling reduction of the finish rolling is less than 10%, but in the present embodiment, it is preferable to set the final rolling reduction to be higher than a normal final rolling reduction.
- In [0109] A steel piece (steel material) to be subjected to hot rolling may be a steel piece manufactured by an ordinary method, and may be, for example, a steel piece manufactured by a general method such as a continuous cast slab or a thin slab caster. In addition, in a casting step, the steel piece after solidification may be rolled at a rolling reduction of 30% to 70% in a temperature range in which a center temperature of a slab is 1,200°C or higher and equal to or lower than a solidus temperature. As a result, the segregation of Mn is relaxed, which makes it possible to improve the bendability of the bot-stamping formed body. The solidus temperature can be obtained from Expression (1)
- bendability of the hot-stamping formed body. The solidus temperature can be obtained from Expression (1).

Solidus temperature (°C) = $1536 - (415.5 \times \%C + 12.3 \times \%Si + 6.8 \times \%Mn +$

45
$$124.5 \times \%P + 183.9 \times \%S + 4.3 \times \%Ni + 1.4 \times \%Cr + 4.1 \times \%Al) \dots (1)$$

[0110] In Expression (1), %C, %Si, %Mn, %P, %S, %Ni, %Cr, and %AI mean the content (mass%) of each element. **[0111]** In the hot rolling, rough rolling and finish rolling are performed. In the finish rolling, the slab after the rough rolling is rolled by a plurality of finishing mills. In the present embodiment, the finish rolling is preferably performed so that the rolling reduction (final rolling reduction) in the final pass of the finish rolling becomes 40% or more. When the sheet thickness before the final pass of the finish rolling is t_0 and the sheet thickness after the final pass of the finish rolling is t_1 , the final rolling reduction can be represented by $\{(t_0 - t_1)/t_0\} \times 100$ (%).

[0112] By setting the final rolling reduction of the finish rolling to 40% to 80%, the prior austenite grains are refined, and the origins of ferrite and granular bainite increase. As a result, in the microstructure of the steel sheet for hot stamping, $S_{\alpha} + S_{GB}$ and S_{GB}/S_{α} can be set within desired ranges. When the final rolling reduction of the finish rolling is less than 40%, in the microstructure of the steel sheet for hot stamping, $S_{\alpha} + S_{GB}$ and S_{GB}/S_{α} cannot be set within desired ranges. Therefore, the final rolling reduction of the finish rolling is preferably set to 40% or more. The final rolling reduction of the finish rolling is more than

80%, S_{GB}/S_{α} cannot be controlled to 0.70 or less. Therefore, the final rolling reduction of the finish rolling is preferably set to 80% or less. The final rolling reduction is more preferably less than 70%.

[0113] The heating temperature and holding time of the steel piece before hot rolling are not particularly limited, but it is preferable that the steel piece is held in a temperature range of 1,200°C or higher for 20 minutes or longer.

⁵ **[0114]** After the finish rolling, the steel sheet is preferably coiled in the temperature range of 400°C to 750°C. When the coiling temperature is higher than 750°C, ferritic transformation is excessively promoted, and $S_{GB} + S_{\alpha}$ becomes 50% or more and S_{GB}/S_{α} becomes less than 0.30. The coiling temperature is preferably 700°C or lower and more preferably 660°C or lower.

[0115] In addition, the coiling temperature is preferably 400°C or higher. When the coiling temperature is lower than 400°C, the formation of granular bainite is suppressed, and S_{GB} / S_{α} becomes less than 0.30. The coiling temperature is preferably 450°C or higher and more preferably 530°C or higher.

[0116] In addition, after the finish rolling (after the completion of hot rolling), the cooling is preferably performed after 2.5 seconds or longer elapses. The cooling mentioned here is cooling that does not include air cooling and has an average cooling rate of 50 to 200 °C/s. When the time from the finish rolling to the start of cooling is shorter than 2.5 seconds, a desired amount of S_{α} + S_{GB} may not be obtained.

- ¹⁵ seconds, a desired amount of S_{α} + S_{GB} may not be obtained. **[0117]** After the coiling, cold rolling may be performed as necessary. In addition, the above-mentioned plating may be formed after finish rolling or after cold rolling. Pickling may be performed between the hot rolling and the cold rolling. In the cold rolling, a normal cumulative rolling reduction, for example, 30% to 90% may be set. In addition, temper rolling may be performed under normal conditions. In addition, for the purpose of softening the hot-rolled steel sheet, hot-rolled
- sheet annealing in which the hot-rolled steel sheet is heated to a temperature range of 730°C or lower may be performed. [0118] The steel sheet for hot stamping according to the present embodiment can be manufactured by the above method. Next, a manufacturing method of the hot-stamping formed body according to the present embodiment that can be manufactured using the above-described steel sheet for hot stamping will be described. The manufacturing method of the hot-stamping to the present embodiment is not particularly limited, and for example, the following manufacturing method may be used
- ²⁵ following manufacturing method may be used.
 [0119] First, the above-mentioned steel sheet for hot stamping is heated in a temperature range of 800°C or higher.
 When the heating temperature is lower than 800°C, there are cases where coarse carbides that are being heated remain and the bendability of the hot-stamping formed body decreases. The heating temperature is preferably 820°C or higher and more preferably 860°C or higher.
- ³⁰ **[0120]** The upper limit of the heating temperature is not particularly limited. However, when the heating temperature is too high, decarburization is promoted in the surface layer of the steel sheet, and the strength of the hot-stamping formed body decreases. Therefore, the heating temperature is preferably 1,000°C or lower, more preferably 960°C or lower, and even more preferably 930°C or lower.
- **[0121]** The holding time at the heating temperature is preferably 1.0 to 10.0 minutes. When the holding time is shorter than 1.0 minutes, there are cases where coarse carbides remain and the bendability of the hot-stamping formed body decreases. Meanwhile, when the holding time is more than 10.0 minutes, decarburization is promoted in the surface layer of the steel sheet, and the strength of the hot-stamping formed body may decrease.

[0122] In addition, the average heating rate up to the heating temperature is preferably set to 1.0 °C/s or faster. When the average heating rate is slower than 1.0 °C/s, decarburization is promoted in the surface layer of the steel sheet, and the strength of the hot-stamping formed body decreases. Although the upper limit of the average heating rate is not particularly determined, since it is difficult to set the upper limit to faster than 1,000 °C/s in actual operation, the actual upper limit is 1,000 °C/s or slower.

[0123] Hot stamping is performed after the heating and the holding described above. After the hot stamping, it is preferable to perform cooling to a temperature range of, for example, 300°C or lower at an average cooling rate of 10

⁴⁵ °C/s or faster. When the average cooling rate is slower than 10 °C/s, the strength may be insufficient. Although the upper limit of the average heating rate is not particularly determined, since it is difficult to set the upper limit to faster than 1,000 °C/s in actual operation, the actual upper limit is 1,000 °C/s or slower.

[0124] In the heating during hot stamping, it is not preferable to perform preheating, that is, to perform two-stage heating. The segregation region of carbon in the grain boundaries created in the stage of the steel sheet for hot stamping is eliminated, it is not possible to uniformly disperse and form the prior austenite grains, and as a result, the standard deviation of the prior austenite grains cannot be controlled within a desired range.

50

[0125] The hot-stamping formed body according to the present embodiment can be obtained by the preferable manufacturing method described above. After the hot stamping, a tempering treatment may be performed at 150°C to 600°C. In addition, a part of the hot-stamping formed body may be tempered by laser irradiation or the like to partially provide

⁵⁵ a softened region. Weldability improves in the softened region. For example, when spot welding is performed after softening the end portion of the hot-stamping formed body, it is possible to reduce a difference in strength between the softened end portion and the spot-welding portion of the end portion, and thus, the fracture from the interface between the end portion and the spot-welding portion can be suppressed. In addition, for example, in a case where the hot-

stamping formed body is applied to a high strength member of an automobile, it is possible to control a fracture or deformation mode of the high strength member in the time of a collision by providing a softened region in a part of the high strength member.

5 [Example]

[0126] Next, examples of the present invention will be described. Conditions in the examples are one condition example that is employed to confirm the feasibility and effects of the present invention, and the present invention is not limited to this condition example. The present invention may employ various conditions to achieve the object of the present invention without departing from the scope of the present invention.

[0127] A steel piece manufactured by casting molten steel having a chemical composition shown in Tables 1A to 1D was heated, held in a temperature range of 1,200°C or higher and lower than 1,350°C for 20 minutes or longer, and then subjected to hot rolling, cooling, and coiling under conditions shown in Tables 2A to 2F, and subjected to cold rolling, hot-rolled sheet annealing, pickling, and plating as necessary. Therefore, steel sheets for hot stamping shown

- ¹⁵ in Table 2A to Table 2F were obtained. The average cooling rate of cooling after the finish rolling to coiling was set to 50 to 200 °C/s. In addition, cooling was performed at the above-described average cooling rate after a lapse of 2.5 seconds or longer after the finish rolling. Note that, for Steel sheet No. 172 marked with "*", after the finish rolling, cooling was performed after 2.0 seconds elapsed.
- [0128] In addition, for Steel sheet No. 107, in the casting step, the steel piece after solidification was rolled with a rolling reduction of 30% to 70% in a temperature range in which the center temperature of a slab was the solidus temperature or lower.

[0129] For Steel sheet No. 108, the heating temperature before the hot rolling was set to 1,350°C.

[0130] Steel sheet No. 125 was subjected to hot-rolled sheet annealing of heating and holding in a temperature range of 730°C or lower.

25

30

35

10

For Steel sheet No. 126, the cold rolling was not performed.

- [0131] An electrogalvanized layer was formed on the surface of Steel sheet No. 127.
- [0132] An electrolytic Zn-Ni alloy plating layer was formed on the surface of Steel sheet No. 128.
- [0133] A hot-dip galvanized layer was formed on the surface of Steel sheet No. 129.
- [0134] A hot-dip galvannealed layer was formed on the surface of Steel sheet No. 130.
 - [0135] A hot-dip aluminum plating layer was formed on the surface of Steel sheet No. 131.
 - [0136] A hot-dip Zn-Al alloy plating layer was formed on the surface of Steel sheet No. 132.
- [0137] A hot-dip Zn-Al-Mg alloy plating layer was formed on the surface of Steel sheet No. 133.
- [0138] A hot-dip Zn-Al-Mg-Si alloy plating layer was formed on the surface of Steel sheet No. 134.

[0139] The obtained steel sheets for hot stamping were subjected to hot stamping under the conditions shown in Tables 3A to 3F to obtain hot-stamping formed bodies shown in Tables 3A to 3F.

[0140] For Manufacturing No. 161, a tempering treatment was performed at 150°C to 600°C after hot stamping.

[0141] For Manufacturing No. 162, a partially softened region was formed by irradiating a portion of the hot-stamping formed body with a laser and tempering the portion.

[0142] After Manufacturing No. 163 was heated to a heating temperature shown in Table 3F, Manufacturing No. 163 was cooled to a temperature range of 250°C or lower. Thereafter, Manufacturing No. 163 was heated to 900°C and hot-stamped, and then cooled at the average cooling rate in Table 3D.

- **[0143]** In the examples of the present invention shown in Tables 2A to 2F, the remainder in the microstructure was one or more of pearlite, martensite, lower bainite, residual austenite, and tempered martensite, and the total area ratio of these was more than 50% and 90% or less. In addition, in the examples of the present invention shown in Tables 3A to 3F, the microstructures included, by area%, ferrite: 0% to 50%, bainite and martensite: 0% to 100%, pearlite: 0% to 30%, and residual austenite: 0% to 5%.
- **[0144]** In addition, a method for measuring the microstructure of the steel sheet for hot stamping and a method for measuring the microstructure and mechanical properties of the hot-stamping formed body were as described above. In a case where the tensile strength of the hot-stamping formed body was 2,200 MPa or more, the hot-stamping formed body was determined to be acceptable for having high strength, and, in a case where the tensile strength of the hotstamping formed body was determined to be unacceptable for not having high strength.
- ⁵⁵ **[0145]** In addition, in a case where the maximum bending angle was 20° or more, it was determined to be acceptable for having excellent bendability, and, in a case where the maximum bending angle was less than 20°, it was determined to be unacceptable for not having excellent bendability.

[Table 1A]

			L -			1																				
	Steel						(Chemical (composi	ition (1	nass%)	remaind	er Fe and	imp	arity											
-	No.	с	Si	Mn	Р	s	N	0	Al	Cr	Nb	Ti	В	Мо	Co	Ni	Cu	/ w	Ca	Mg	REM	SP 3	Zr	Sn	As	Remark
5	1	0.46	0.43	1.27	0.007	0.0003	0.0029	0.0010	0.030	0.27	0.019	0.028	0.0021													Present invention steel
	2	0.44	0.43	1.27	0.007	0.0003	0.0029	0.0010	0.030	0.27	0.019	0.028	0.0021													Present invention steel
	3	0.46	0.43	2.00	0.007	0.0003	0.0029	0.0010	0.030	0.27	0.019	0.028	0.0021													Present invention steel
	4	0.46	0.43	0.80	0.007	0.0003	0.0029	0.0010	0.030	0.27	0.019	0.028	0.0021													Present invention steel
10	5	<u>0.36</u>	0.36	1.35	0.009	0.0005	0.0033	0.0008	0.044	0.18	0.015	0.026	0.0023													Comparative steel
	6	0.41	0.33	1.17	0.012	0.0014	0.0026	0.0014	0.035	0.29	0.022	0.033	0.0025													Present invention steel
	7	0.43	0.30	1.39	0.011	0.0019	0.0021	0.0010	0.038	0.30	0.017	0.032	0.0021													Present invention steel
	8	0.46	0.25	1.40	0.008	0.0006	0.0023	0.0009	0.043	0.22																Present invention steel
15	9	0.48	0.29	1.19	0.012	0.0006	0.0031	0.0011	0.035	0.20	0.024	0.027	0.0018													Present invention steel
	10	0.55	0.31	1.12	0.008	0.0015	0.0030	0.0014	0.033	0.27	0.021	0.033	0.0020													Present invention steel
	11	0.62	0.27	1.40	0.010	0.0020	0.0021	0.0012	0.038	0.19	0.019	0.039	0.0019													Present invention steel
	12	0.67	0.39	1.22	0.012	0.0006	0.0035	0.0011	0.030	0.25	0.025	0.037	0.0027													Present invention steel
20	13	<u>0.73</u>	0.28	1.36	0.008	0.0018	0.0016	0.0010	0.045	0.22	0.027	0.028	0.0025													Comparative steel
	14	0.44	<u>0.006</u>	1.16	0.009	0.0017	0.0015	0.0008	0.025	0.21	0.028	0.028	0.0023													Comparative steel
	15	0.44	0.02	1.28	0.011	0.0020	0.0029	0.0010	0.043	0.23	0.023	0.022	0.0024													Present invention steel
	16	0.44	0.07	1.39	0.011	0.0004	0.0019	0.0008	0.041	0.26	0.028	0.038	0.0028													Present invention steel
25	17	0.44	0.20	1.42	0.010	0.0010	0.0021	0.0011	0.045	0.21	0.016	0.029	0.0023													Present invention steel
	18	0.46	0.40	1.38	0.008	0.0021	0.0028	0.0011	0.029	0.18	0.029	0.035	0.0019													Present invention steel
	19	0.44	0.90	1.33	0.008	0.0018	0.0032	0.0012	0.032	0.29	0.020	0.036	0.0021													Present invention steel
	20	0.44	1.10	1.25	0.012	0.0016	0.0033	0.0009	0.028	0.25	0.027	0.035	0.0026													Present invention steel
30	21	0.46	<u>1.40</u>	1.32	0.009	0.0003	0.0016	0.0008	0.035	0.25	0.027	0.037	0.0023													Comparative steel
	22	0.45	0.22	<u>0.40</u>	0.009	0.0020	0.0030	0.0012	0.035	0.25	0.019	0.040	0.0018													Comparative steel
	23	0.44	0.26	0.65	0.009	0.0017	0.0032	0.0010	0.035	0.29	0.025	0.022	0.0022													Present invention steel
	24	0.44	0.35	1.00	0.010	0.0012	0.0029	0.0012	0.036	0.20	0.020	0.020	0.0024													Present invention steel
35	25	0.45	0.29	1.30	0.012	0.0020	0.0033	0.0015	0.026	0.18	0.026	0.028	0.0020													Present invention steel
	26	0.44	0.40	1.70	0.012	0.0016	0.0016	0.0011	0.039	0.19	0.020	0.034	0.0023													Present invention steel
	27	0.45	0.26	2.00	0.008	0.0021	0.0019	0.0009	0.043	0.24	0.030	0.021	0.0019									\square				Present invention steel
	28	0.45	0.23	2.70	0.009	0.0017	0.0019	0.0013	0.027	0.19	0.016	0.036	0.0025													Present invention steel
	Lindow	00.000	indianta		antaida	present i	mantion																			

Underscores indicate scope outside present invention.

[Table 1B]

				[1 1				~				,	~.														
	Steel No.	С	Si	Mn	Р	s	N	0	hemical (Al	Cr	Nb	(mase Ti	<u>%) rem</u> z B	Mo	Co	nd im Ni	purity Cu	v	w	Ca	Mg	REM	sь	Zr	Sn	As	Remark
5	29	0.46	0.40	<u>3.20</u>	0.011	0.0004	0.0019	0.0013	0.035	0.22	0.021	0.024	0.0028														Comparative steel
	30	0.46	0.24	1.30	0.150	0.0022	0.0030	0.0014	0.034	0.29	0.021	0.028	0.0024														Comparative steel
	31	0.46	0.35	1.32	0.090	0.0020	0.0028	0.0008	0.036	0.20	0.016	0.032	0.0028														Present invention
	32	0.44	0.32	1 35	0.050	0.0020	0.0018	0.0014	0.029	0.21	0.025	0.024	0.0028														steel Present invention
10									0.029																		steel Present
	33	0.44	0.29	1.26	0.010	0.0021	0.0016	0.0015	0.028	0.21	0.021	0.029	0.0021														invention steel
	34	0.47	0.38	1.44	0.009	<u>0.0150</u>	0.0016	0.0010	0.035	0.18	0.028	0.028	0.0024														Comparative steel Present
15	35	0.45	0.29	1.13	0.011	0.0080	0.0018	0.0011	0.025	0.23	0.028	0.027	0.0019														invention steel
10	36	0.47	0.32	1.41	0.008	0.0030	0.0021	0.0009	0.032	0.22	0.022	0.020	0.0028														Present invention steel
	37	0.47	0.31	1.31	0.008	0.0008	0.0030	0.0012	0.033	0.25	0.025	0.022	0.0021														Present invention steel
20	38	0.44	0.40	1.24	0.010	0.0014	<u>0.0140</u>	0.0013	0.045	0.26	0.030	0.021	0.0024														Comparative steel
	39	0.47	0.25	1.22	0.011	0.0011	0.0080	0.0008	0.034	0.25	0.030	0.021	0.0028														Present invention steel
	40	0.45	0.40	1.43	0.010	0.0003	0.0050	0.0013	0.045	0.29	0.028	0.027	0.0018														Present invention steel
25	41	0.45	0.31	1.16	0.008	0.0011	0.0030	0.0010	0.031	0.21	0.029	0.028	0.0019														Present invention steel
	42	0.47	0.23	1.19	0.010	0.0008	0.0030	<u>0.0250</u>	0.040	0.18	0.026	0.036	0.0023														Comparative steel
	43	0.46	0.29	1.29	0.008	0.0009	0.0019	0.0150	0.037	0.18	0.026	0.035	0.0026														Present invention steel
30	44	0.45	0.21	1.25	0.008	0.0017	0.0033	0.0080	0.041	0.29	0.027	0.022	0.0022														Present invention steel
	45	0.46	0.26	1.12	0.010	0.0016	0.0025	0.0030	0.041	0.26	0.020	0.036	0.0021														Present invention steel
	46	0.44	0.26	1.25	0.012	0.0008	0.0028	0.0015	<u>0.0008</u>	0.22	0.020	0.020	0.0019														Comparative steel
35	47	0.44	0.27	1.28	0.011	0.0008	0.0022	0.0011	0.005	0.29	0.018	0.032	0.0027														Present invention steel
	48	0.47	0.32	1.14	0.012	0.0016	0.0028	0.0010	0.020	0.30	0.023	0.030	0.0023														Present invention steel
	49	0.45	0.20	1.18	0.010	0.0004	0.0015	0.0014	0.040	0.20	0.018	0.030	0.0027														Present invention steel
40	50	0.44	0.35	1.37	0.012	0.0019	0.0034	0.0013	0.100	0.26	0.015	0.039	0.0025														Present invention steel
	51	0.47	0.37	1.20	0.009	0.0012	0.0024	0.0013	0.250	0.29	0.017	0.036	0.0020														Present invention steel
	52	0.47	0.32	1.32	0.010	0.0021	0.0020	0.0008	0.390	0.24	0.025	0.028	0.0019														Present invention steel
45	53	0.44	0.28	1.14	0.012	0.0015	0.0019	0.0010	<u>0.510</u>	0.29	0.030	0.031	0.0028														Comparative steel
	54	0.45	0.35	1.19	0.010	0.0016	0.0027	0.0011	0.030	0.008	0.023	0.034	0.0018														Comparative steel
	55	0.45	0.31	1.35	0.008	0.0007	0.0032	0.0008	0.035	0.012	0.016	0.039	0.0027														Present invention steel
50	56	0.46	0.26	1.22	0.010	0.0022	0.0019	0.0014	0.039	0.18	0.023	0.030	0.0019														Present invention steel

Underscores indicate scope outside present invention.

EP 4	4 28	6 54 ⁽	4 A1
------	------	-------------------	------

				[Ta	ble	1C]																				
	Steel No.	с	Si	Mn	Р	s	N	C O	<u> </u>	al co Cr	mposit Nb	ion (1 Ti	nass%) re B	emainc Mo		e and i Ni	mpuri Cu	ity V	w	Ca	м.	REM	651-	Zr	Sn	As	Remark
5	57	0.46	0.20				0.0020							MO	0	INI	Cu	v	**		Mg	KEW	30	21	31	As	Present invention
																											steel Present
	58	0.46	0.25	1.35	0.011	0.0008	0.0026	0.0009	0.044	0.34	0.027	0.026	0.0025														invention steel Present
10	59	0.47	0.29	1.36	0.008	0.0021	0.0031	0.0014	0.038	0.55	0.019	0.027	0.0027														invention steel
	60	0.45	0.29	1.13	0.012	0.0019	0.0034	0.0014	0.044	0.67	0.022	0.033	0.0020														Present invention steel
	61	0.47	0.28	1.12	0.009	0.0018	0.0029	0.0008	0.028	0.85	0.021	0.038	0.0026														Comparative steel
	62	0.44	0.33	1.41	0.008	0.0017	0.0017	0.0010	0.043	0.28	<u>0.130</u>	0.028	0.0025														Comparative steel
15	63	0.45	0.22	1.12	0.011	0.0015	0.0031	0.0013	0.036	0.29	0.080	0.036	0.0022														Present invention steel
	64	0.47	0.39	1.19	0.008	0.0008	0.0022	0.0010	0.028	0.21	0.019	0.039	0.0020														Present invention steel
	65	0.46	0.36	1.32	0.012	0.0015	0.0015	0.0009	0.034	0.24		0.028	0.0026														Present invention
20	66	0.44	0.34	1.39	0.010	0.0022	0.0026	0.0009	0.030	0.19	0.015	0.150	0.0020														steel Comparative steel
	67	0.47	0.34	1.25	0.012	0.0007	0.0022	0.0015	0.036	0.25	0.024	0.090	0.0020														Present invention
	68	0.46	0.37	1.12	0.011	0.0021	0.0022	0.0008	0.029	0.27	0.027	0.028	0.0026														steel Present invention
25	69	0.46	0.21	1 32	0.010	0 0005	0.0033	0.0011	0.033	0.28	0.025		0.0025														steel Present invention
	70	0.46					0.0032					0.020															steel Comparative
	71	0.40	0.30				0.0034																				steel Present invention
30		0.44	0.50	1.17	0.011	0.0017	0.0054	0.0009	0.039	0.22	0.015	0.037	0.0090														steel Present
	72	0.47	0.35	1.40	0.010	0.0014	0.0026	0.0015	0.026	0.18	0.018	0.024	0.0020														invention steel Present
	73	0.45	0.20	1.16	0.011	0.0015	0.0034	0.0008	0.041	0.28	0.021	0.038															invention steel
	74	0.45	0.28	1.33	0.012	0.0009	0.0035	0.0013	0.032	0.27	0.022	0.038	0.0019	<u>1.20</u>													Comparative steel
35	75	0.45	0.29	1.41	0.010	0.0007	0.0024	0.0015	0.041	0.28	0.018	0.037	0.0022	0.88													Present invention steel
	76	0.45	0.39	1.25	0.008	0.0014	0.0032	0.0015	0.033	0.26	0.015	0.039	0.0021	0.10													Present invention steel
	77	0.47	0.38	1.23	0.012	0.0017	0.0028	0.0009	0.040	0.26	0.018	0.032	0.0027		<u>2.20</u>												Comparative steel
40	78	0.46	0.38	1.31	0.009	0.0022	0.0028	0.0012	0.030	0.26	0.028	0.023	0.0024		1.87												Present invention steel
	79	0.45	0.23	1.36	0.008	0.0022	0.0020	0.0011	0.042	0.18	0.026	0.040	0.0025		0.20												Present invention
	80	0.46	0.37	1.43	0.009	0.0006	0.0029	0.0010	0.038	0.22	0.026	0.025	0.0026			<u>3.20</u>											steel Comparative steel
45	81	0.46	0.40	1.43	0.008	0.0014	0.0017	0.0012	0.042	0.20	0.024	0.025	0.0027			2.77											Present invention steel
	82	0.47	0.36	1.20	0.010	0.0005	0.0026	0.0012	0.037	0.24	0.029	0.028	0.0028			0.20											Present invention
	83	0.46	0.20	1.26	0.012	0.0004	0.0015	0.0012	0.034	0.22	0.026	0.037	0.0026				<u>1.30</u>										steel Comparative steel
	<u> </u>											•			· · · · ·		•										

Underscores indicate scope outside present invention.

				[Ta	able	e 1E)]																				
	Steel								Chem	ical co	mpos	ition (mass%)	remair	nder F	'e a	nd im	purity									
	No.	С	Si	Mn	Р	s	Ν	0	Λl	Cr	Nb	Ti	в	Mo	Co	Ni	Cu	v	w	Са	Mg	REM	Sb	Zr	Sn	Λs	Remark
5	84	0.47	0.25	1.21	0.009	0.0018	0.0027	0.0013	0.025	0.28	0.020	0.022	0.0020				0.85										Present invention steel
	85	0.45	0.39	1.42	0.010	0.0004	0.0033	0.0011	0.028	0.23	0.028	0.036	0.0018				0.10										Present invention steel
	86	0.45	0.36	1.11	0.012	0.0005	0.0019	0.0011	0.029	0.20	0.030	0.032	0.0025					<u>1.10</u>									Comparative steel
	87	0.44	0.37	1.42	0.009	0.0012	0.0029	0.0010	0.035	0.23	0.020	0.026	0.0028					0.79									Present invention steel
10	88	0.46	0.33	1.16	0.009	0.0021	0.0021	0.0014	0.039	0.22	0.015	0.027	0.0023					0.05									Present invention steel
	89	0.46	0.24	1.12	0.012	0.0018	0.0024	0.0011	0.043	0.20	0.028	0.021	0.0027						1.300								Comparative steel
	90	0.45	0.26	1.20	0.008	0.0014	0.0018	0.0008	0.039	0.20	0.022	0.028	0.0026						0.910								Present invention steel
	91	0.45	0.20	1.18	0.010	0.0010	0.0023	0.0013	0.040	0.26	0.015	0.037	0.0027						0.006								Present invention steel
15	92	0.46	0.34	1.12	0.011	0.0004	0.0029	0.0010	0.044	0.28	0.030	0.039	0.0025							0.016							Comparative steel
	93	0.44	0.35	1.36	0.008	0.0003	0.0034	0.0012	0.039	0.30	0.022	0.035	0.0022							0.001							Present invention steel
	94	0.46	0.38	1.35	0.011	0.0008	0.0027	0.0008	0.026	0.29	0.015	0.034	0.0025							0.003							Present invention steel
	95	0.44	0.29	1.45	0.011	0.0017	0.0025	0.0008	0.034	0.28	0.016	0.031	0.0019								1.300						Comparative steel
20	96	0.45	0.32	1.34	0.009	0.0022	0.0033	0.0013	0.031	0.25	0.025	0.035	0.0024								0.950						Present invention steel
	97	0.47	0.34	1.43	0.011	0.0017	0.0030	0.0009	0.032	0.18	0.025	0.027	0.0025								0.005						Present invention steel
	98	0.44	0.24	1.32	0.008	0.0019	0.0030	0.0012	0.039	0.22	0.028	0.020	0.0026									1.300					Comparative steel
	99	0.47	0.25	1.38	0.012	0.0011	0.0024	0.0012	0.036	0.24	0.015	0.022	0.0018									0.860					Present invention steel
25	100	0.44	0.22	1.20	0.008	0.0009	0.0023	0.0015	0.029	0.30	0.028	0.039	0.0025									0.003					Present invention steel
	101	0.45	0.26	1.12	0.008	0.0013	0.0033	0.0010	0.027	0.22	0.023	0.036	0.0021										1.300				Comparative steel
	102	0.44	0.40	1.32	0.009	0.0006	0.0035	0.0008	0.043	0.21	0.028	0.037	0.0021										0.920				Present invention steel
	103	0.47	0.32	1.44	0.011	0.0010	0.0016	0.0008	0.032	0.21	0.030	0.024	0.0018										0.010				Present invention steel
30	104	0.44	0.24	1.35	0.010	0.0022	0.0015	0.0011	0.026	0.29	0.021	0.034	0.0018											1.200			Comparative steel
	105	0.47	0.29	1.45	0.009	0.0015	0.0018	0.0015	0.043	0.22	0.021	0.023	0.0020											0.890			Present invention steel
	106	0.47	0.38	1.21	0.009	0.0012	0.0028	0.0015	0.039	0.19	0.015	0.029	0.0022											0.020			Present invention steel
	107	0.46	0.43	2.90	0.007	0.0003	0.0029	0.0010	0.030	0.27	0.019	0.028	0.0021														Present invention steel
35	108	0.44	0.43	2.92	0.007	0.0003	0.0029	0.0010	0.030	0.27	0.019	0.028	0.0021														Present invention steel
	109	0.45	0.43	2.91	0.007	0.0003	0.0029	0.0010	0.030	0.27	0.019	0.028	0.0021														Present invention steel
	110	0.47	0.24	1.21	0.011	0.0011	0.0081	0.0008	0.034	0.25	0.030	0.021	0.0028														Present invention steel
	111	0.46	0.32	1.42	0.010	0.0010	0.0017	0.0008	0.032	0.21	0.028	0.024	0.0017												0.100		Present invention steel
40	112	0.46	0.39	1.21	0.009	0.0012	0.0028	0.0015	0.039	0.19	0.015	0.029	0.0022													0.011	Present invention steel

Underscores indicate scope outside present invention.

[Table 2A] 45 Finish rolling Steel sheet for hot stamping Coiling Steel Steel Final rolling Coiling sheet Remark S_{α} (area%) S_{α} + S_{GB} (area%) S_{GB} No. reduction temperature S_{GB}/S_{α} No. (area%) (%) (°C) 50 Present 1 1 43 631 13 9 22 0.43 invention example Present 2 2 45 637 19 15 34 0.44 invention 55 example

			Einiala an Uir			a al ak+ f		-	
	Steel	<u>.</u>	Finish rolling	Coiling	SI	eei sneet fo	r hot stampin	g	
5	sheet No.	Steel No.	Final rolling reduction (%)	Coiling temperature (°C)	S _α (area%)	S _{GB} (area%)	S _α + S _{GB} (area%)	S_{GB}/S_{α}	Remark
10	3	3	54	593	12	11	23	0.48	Present invention example
	4	4	55	569	17	16	33	0.47	Present invention example
15	5	5	45	551	10	4	14	0.32	Comparative example
	6	6	42	585	6	4	10	0.36	Present invention example
20	7	7	45	565	9	5	14	0.33	Present invention example
25	8	8	54	630	10	6	16	0.37	Present invention example
30	9	9	46	659	11	6	17	0.35	Present invention example
	10	10	45	570	12	6	18	0.33	Present invention example
35	11	11	46	565	10	5	15	0.36	Present invention example
40	12	12	45	540	8	4	12	0.33	Present invention example
	13	<u>13</u>	49	608	10	4	14	0.32	Comparative example
45	14	14	47	597	11	7	18	0.37	Comparative example
	15	15	50	590	7	4	11	0.36	Present invention example
50	16	16	53	591	6	4	10	0.38	Present invention example
	17	17	54	617	8	5	13	0.39	Present invention

(continued)

55

example

					(continued	1)			
	Steel		Finish rolling	Coiling	St	eel sheet fo	r hot stampin	g	
5	Steel sheet No.	Steel No.	Final rolling reduction (%)	Coiling temperature (°C)	S _α (area%)	S _{GB} (area%)	S _α + S _{GB} (area%)	S_{GB}/S_{α}	Remark
0	18	18	42	556	12	7	19	0.38	Present invention example
	19	19	55	570	10	6	16	0.35	Present invention example
5	20	20	49	597	9	5	14	0.37	Present invention example
	21	<u>21</u>	55	599	12	6	18	0.34	Comparative example
20	22	22	46	549	8	5	13	0.36	Comparative example
5	23	23	56	544	13	7	20	0.37	Present invention example
	24	14	50	581	10	6	16	0.38	Present invention example
0	25	25	44	646	8	4	12	0.32	Present invention example
5	26	26	53	622	12	6	18	0.31	Present invention example
	27	27	51	545	11	7	18	0.38	Present invention example
0	28	28	45	623	9	5	14	0.33	Present invention example
5	29	29	52	542	10	6	16	0.36	Comparative example
	30	<u>30</u>	56	548	8	4	12	0.31	Comparative example
	Underso	cores ind	icate scope outs	ide present inven	tion and indi	cate that ma	anufacturing c	onditions a	re not preferable

(continued)

					[Table 2B	J			
	Ctool		Finish rolling	Coiling	St	eel sheeL fo	or hot stampir	ıg	
5	Steel sheet No.	Steel No.	Final rolling reduction (%)	Coiling temperature (°C)	S _α (area%)	S _{GB} (area%)	S_{α} + S_{GB} (area%)	S_{GB}/S_{α}	Remark
10	31	31	44	565	7	4	11	0.35	Present invention example
	32	32	52	647	11	6	17	0.38	Present invention example
15	33	33	46	604	7	4	11	0.35	Present invention example
20	34	34	43	614	7	4	11	0.34	Comparative example
	35	35	56	582	7	4	11	0.34	Present invention example
25	36	36	47	567	7	3	10	0.32	Present invention example
30	37	37	42	586	8	5	13	0.38	Present invention example
	38	<u>38</u>	44	637	11	6	17	0.37	Comparative example
35	39	39	46	632	7	5	12	0.39	Present invention example
40	40	40	53	628	11	6	17	0.33	Present invention example
40	41	41	54	615	10	4	14	0.32	Present invention example
45	42	42	51	566	7	3	10	0.33	Comparative example
	43	43	55	544	7	3	10	0.33	Present invention example
50	44	44	44	656	12	7	19	0.39	Present invention example
55	45	45	55	555	8	4	12	0.35	Present invention example
	46	<u>46</u>	47	652	7	4	11	0.34	Comparative example

[Table 2B]

					(continued	,			
	Chaol		Finish rolling	Coiling	St	eel sheeL fo	or hot stampir	g	
	Steel sheet No.	Steel No.	Final rolling reduction (%)	Coiling temperature (°C)	S _α (area%)	S _{GB} (area%)	S _α + S _{GB} (area%)	S_{GB}/S_{α}	Remark
1	47	47	42	541	13	7	20	0.34	Present invention example
	48	48	44	627	12	8	20	0.38	Present invention example
	49	49	46	594	8	4	12	0.37	Present invention example
	50	50	43	564	10	5	15	0.31	Present invention example
	51	51	54	617	12	8	20	0.38	Present invention example
	52	52	49	554	12	6	18	0.31	Present invention example
	53	53	52	563	11	6	17	0.34	Comparative example
	54	<u>54</u>	54	654	13	6	19	0.32	Comparative example
	55	55	53	656	7	4	11	0.36	Present invention example
	56	56	48	595	8	5	13	0.35	Present invention example
	57	57	52	621	7	4	10	0.35	Present invention example
	58	58	47	621	11	6	17	0.34	Present invention example
	59	59	54	593	9	6	15	0.37	Present invention example
	60	60	49	654	9	5	14	0.33	Present invention example

(continued)

					[Table 2C	J			
	Steel		Finish rolling	Coiling	St	eel sheet fo	r hot stampin	g	
5	sheet No.	Steel No.	Final rolling reduction (%)	Coiling temperature (°C)	S _α (area%)	S _{GB} (arca%)	S _α + S _{GB} (area%)	S _{GB} /S _α	Remark
10	61	21	44	565	12	5	17	0.31	Comparative example
10	62	62	43	554	13	7	20	0.37	Comparative example
15	63	63	56	615	9	5	14	0.38	Present invention example
	64	64	42	638	12	6	18	0.35	Present invention example
20	65	65	49	606	13	6	19	0.32	Present invention example
25	66	66	42	545	9	6	15	0.39	Comparative example
	67	67	56	596	11	6	17	0.35	Present invention example
30	68	68	45	587	10	5	15	0.31	Present invention example
35	69	69	42	583	12	6	18	0.33	Present invention example
	70	<u>70</u>	47	580	8	3	11	0.31	Comparative example
40	71	71	42	605	12	7	19	0.39	Present invention example
	72	72	49	616	8	4	12	0.31	Present invention example
45	73	73	43	541	8	4	12	0.36	Present invention example
50	74	74	53	595	8	4	12	0.32	Comparative example
	75	75	45	642	12	6	18	0.32	Present invention example
55	76	76	48	594	7	4	11	0.34	Present invention example

[Table 2C]

					(continued	1)			
	Stool		Finish rolling	Coiling	St	eel sheet fo	or hot stampin	g	
5	Steel sheet No.	Steel No.	Final rolling reduction (%)	Coiling temperature (°C)	S _α (area%)	S _{GB} (arca%)	S _α + S _{GB} (area%)	S_{GB}/S_{α}	Remark
	77	12	53	568	13	7	20	0.37	Comparative example
10	78	78	52	540	12	8	20	0.38	Present invention example
15	79	79	53	540	11	6	17	0.34	Present invention example
	80	<u>80</u>	42	635	10	6	16	0.36	Comparative example
20	81	81	52	643	10	6	16	0.37	Present invention example
25	82	82	49	561	11	7	18	0.39	Present invention example
	as	<u>83</u>	47	585	9	6	15	0.37	Comparative example
30	84	84	42	570	7	4	11	0.35	Present invention example
35	85	85	54	652	7	4	11	0.35	Present invention example
35	86	86	44	584	8	3	11	0.31	Comparative example
40	87	87	43	560	10	6	16	0.39	Present invention example
	88	88	54	631	8	4	12	0.32	Present invention example
45	89	89	44	651	8	3	11	0.31	Comparative example
50	90	90	50	645	7	5	12	0.39	Present invention example
	Underso	cores indi	cate scope outs	ide present invent	tion and indi	cate that ma	anufacturing c	conditions a	re not preferable.

(continued)

г					[Table 2D	-			
	Steel		Finish rolling	Coiling	St	eel sheet fo	r hot stampin	g	
5	sheet No.	Steel No.	Final rolling reduction (%)	Coiling temperature (°C)	S _α (area%)	S _{GB} (arca%)	S _α + S _{GB} (area%)	S_{GB}/S_{α}	Remark
10	91	91	55	624	8	4	12	0.34	Present invention example
	92	<u>92</u>	52	598	8	5	13	0.37	Comparative example
15	93	93	50	648	8	4	12	0.37	Present invention example
20	94	94	49	555	8	5	13	0.38	Present invention example
	95	<u>95</u>	51	557	12	8	20	0.39	Comparative example
25	96	96	48	578	12	7	19	0.35	Present invention example
	97	97	44	611	10	6	16	0.35	Present invention example
30	98	<u>98</u>	51	570	13	7	20	0.35	Comparative example
35	99	99	52	556	7	3	10	0.33	Present invention example
	100	100	47	545	12	5	17	0.32	Present invention example
40	101	<u>101</u>	50	560	12	6	18	0.35	Comparative example
45	102	102	50	579	10	5	15	0.32	Present invention example
45	103	103	49	594	7	4	10	0.35	Present invention example
50	104	<u>104</u>	51	619	11	5	16	0.31	Comparative example
	105	105	56	631	10	5	15	0.36	Present invention example
55	106	106	55	628	10	6	16	0.38	Present invention example

[Table 2D]

					(continued	1)			
	Chaol		Finish rolling	Coiling	St	eel sheet fo	r hot stampin	g	
5	Steel sheet No.	Steel No.	Final rolling reduction (%)	Coiling temperature (°C)	S _α (area%)	S _{GB} (arca%)	S _α + S _{GB} (area%)	S_{GB}/S_{α}	Remark
10	107	1	43	589	7	4	10	0.35	Present invention example
	108	1	45	614	12	7	19	0.39	Present invention example
15	109	1	<u>84</u>	550	3	40	43	<u>0.94</u>	Comparative example
	110	1	75	629	19	27	46	0.59	Present invention example
20	111	1	62	638	21	23	44	0.53	Present invention example
25	112	1	58	640	19	15	34	0.43	Present invention example
30	113	1	51	549	12	9	21	0.41	Present invention example
	114	1	46	586	12	8	20	0.39	Present invention example
35	115	1	42	659	8	4	12	0.32	Present invention example
	116	1	<u>35</u>	640	6	2	<u>8</u>	<u>0.21</u>	Comparative example
40	117	1	46	770	43	17	<u>60</u>	<u>0.29</u>	Comparative example
45	118	1	50	741	31	16	47	0.35	Present invention example
	119	1	54	678	30	15	45	0.33	Present invention example
50	120	1	43	641	13	13	26	0.49	Present invention example
	Underso	cores indi	cate scope outs	ide present inven	tion and indi	cate that ma	anufacturing o	conditions a	re not preferable.

(continued)

					[Table 2E	:]			
	Steel		Finish rolling	Coiling	S	teel sheet foi	hot stampin	g	
5	Steel sheet No.	Steel No.	Final rolling reduction (%)	Coiling temperature (°C)	S _α (area%)	S _{GB} (arcao/c)	S _α + S _{GB} (arca%)	S_{GB}/S_{α}	Remark
10	121	1	46	556	18	13	31	0.43	Present invention example
	122	1	46	473	4	7	11	0.66	Present invention example
15	123	1	52	411	4	6	10	0.58	Present invention example
20	124	1	44	<u>376</u>	14	3	17	<u>0.20</u>	Comparative example
	125	1	50	624	11	6	17	0.33	Present invention example
25	126	1	55	550	8	5	13	0.36	Present invention example
30	127	1	45	594	8	5	13	0.35	Present invention example
	128	1	46	564	8	4	12	0.35	Present invention example
35	129	1	48	586	8	5	13	0.38	Present invention example
40	130	1	51	649	12	7	19	0.38	Present invention example
	131	1	43	631	12	5	17	0.32	Present invention example
45	132	1	43	630	13	6	19	0.33	Present invention example
50	133	1	53	558	7	4	11	0.33	Present invention example
	134	1	54	547	12	8	an	0.39	Present invention example
55	135	1	50	597	10	5	15	0.35	Present invention example

[Table 2E]

	Steel		Finish rolling	Coiling	S	teel sheet for	hot stamping	g	
5	sheet No.	Steel No.	Final rolling reduction (%)	Coiling temperature (°C)	S _α (area%)	S _{GB} (arcao/c)	S _α + S _{GB} (arca%)	S_{GB}/S_{α}	Remark
10	136	1	44	577	7	3	10	0.33	Present invention example
	137	1	42	600	7	3	10	0.33	Present invention example
15	138	1	48	549	9	5	14	0.34	Present invention example
20	139	1	52	607	11	6	17	0.37	Present invention example
	140	1	47	656	6	4	10	0.37	Present invention example
25	141	1	44	625	9	4	13	0.32	Present invention example
30	142	I	43	590	8	4	12	0.35	Present invention example
	143	1	45	646	8	4	12	0.31	Present invention example
35	144	1	45	633	8	5	13	0.34	Present invention example
40	145	1	51	565	8	4	12	0.36	Present invention example
45	116	1	42	650	11	6	17	0.38	Present invention example
70	147	1	50	621	7	4	11	0.32	Present invention example
50	148	1	47	644	12	5	17	0.31	Present invention example
55	149	1	52	638	12	7	19	0.36	Present invention example

(continued)

(continued)	
۰.	contantaca,	

	Steel		Finish rolling	Coiling	S	teel sheet for	hot stamping	g	
5	sheet No.	Steel No.	Final rolling reduction (%)	Coiling temperature (°C)	S _α (area%)	S _{GB} (arcao/c)	S _α + S _{GB} (arca%)	S_{GB}/S_{α}	Remark
10	150	1	49	637	11	6	17	0.33	Present invention example
	Underso	cores indi	icate scope outs	ide present inven	tion and ind	icate that ma	nufacturing c	onditions a	re not preferable.

15					[Table 2F]			
	<u></u>		Finish rolling	Coiling	St	eel sheet fo	r hot slampin	g	
20	Steel sheet No.	Steel No.	Final rolling reduction (%)	Coiling temperature (°C)	S _α (area%)	S _{GB} (area%)	S_{α} + S_{GB} (area%)	S_{GB}/S_{α}	Remark
20	151	1	56	626	10	5	15	0.34	Present invention example
25	152	1	50	622	11	6	17	0.35	Present invention example
30	153	1	42	652	7	3	10	0.34	Present invention example
	154	1	53	542	9	4	13	0.31	Present invention example
35	155	1	48	628	13	6	19	0.31	Present invention example
40	156	1	42	635	13	7	20	0.33	Present invention example
	157	1	44	659	8	5	13	0.37	Present invention example
45	158	1	55	659	6	4	10	0.38	Present invention example
50	159	1	45	575	6	4	10	0.37	Present invention example
	160	1	49	627	12	6	18	0.36	Present invention example
55	161	1	52	553	11	6	17	0.35	Present invention example

				(continued	1)			
Steel		Finish rolling	Coiling	St	teel sheet fo	or hot slampin	g	
Steel sheet No.	Steel No.	Final rolling reduction (%)	Coiling temperature (°C)	S _α (area%)	S _{GB} (area%)	S_{α} + S_{GB} (area%)	S_{GB}/S_{α}	Remark
162	1	51	596	9	5	14	0.34	Present invention example
163	1	53	631	10	5	15	0.31	Present invention example
164	1	44	622	13	7	20	0.35	Present invention example
165	107	48	652	13	7	20	0.35	Present invention example
166	108	56	621	9	4	13	0.31	Present invention example
167	109	52	633	12	7	19	0.36	Present invention example
168	110	44	627	7	4	11	0.55	Present invention example
169	111	44	590	8	4	12	0.44	Present invention example
170	112	51	630	9	5	14	0.56	Present invention example
171	1	22	636	7	3	<u>6</u>	<u>0.18</u>	Comparative example
172*	1	24	640	8	2	<u>10</u>	0.21	Comparative example

(continued)

5			Remark	Present invention example	Present invention example	Present invention example	Present invention example	Comparative example	Present invention example	Present invention example	Present invention example												
10			Maximum bending angle (°)	31	39	47	34	44	41	37	34												
15		d body	Tensile strength (MPa)	2558	2572	2561	2630	2149	2402	2569	2481												
		Hot-stamping formed	Hot-stamping formed	Hot-stamping formed	Hot-stamping formed body	Hot-stamping formec	Hot-stamping formed	Hot-stamping forme	Hot-stamping forme	Hot-stamping forme	amping forme	amping forme	amping forme	amping forme	Prior γ grains having average grain size of 0.5 to 30 μ.m (area%)	39	35	32	31	55	56	56	51
20											Standard deviation of grain sizes of prior y grains (µ.m)	0.4	0.3	0.2	0.3	1.4	1.4	1.4	1.5				
25	ľ		Average grain size of prior γ grains (um)	5	9	5	7	24	22	24	25												
30	[Table 3A]		Average cooling rate (°C/s)	258	195	188	267	349	367	250	474												
35		stamping	Holding time (minutes)	4.5	4.6	3.7	3.9	4.6	3.9	4.1	3.5												
40		Hot star					Healing temperature (°C)	892	906	894	898	917	806	915	910								
45			Average heating rate (°C/s)	2	2	2	8	9	8	9	10												
			Steel No.		5	ю	4	5	9	7	ω												
50		Steel sheet No.		Ļ	2	£	4	2	9	7	ω												
55		Manufacturing No.		~	2	С	4	5	Q	7	ω												

5			Remark	Present invention example	Present invention example	Present invention example	Present invention example	Comparative example	Comparative example	Present invention example	Present invention example					
10			Maximum bending angle (°)	35	0£	21	25	<u>16</u>	<u>12</u>	22	45					
15		amping formed body	amping formed body	amping formed body	amping formed body	Hot-stamping formed body	body	Tensile strength (MPa)	2598	2583	2556	2640	2630	2592	2586	2567
20							Prior γ grains having average grain size of 0.5 to 30 μm (area%)	54	59	58	50	59	55	51	57	
		Hot-st	Standard deviation of grain sizes of prior y grains (µ,m)	1.8	1.8	1.3	1.6	1.5	1.5	1.4	1.4					
25	()		Average grain size of prior γ grains (um)	24	25	23	25	22	21	23	22					
30	(continued)		Average cooling rate (°C/s)	217	280	465	175	456	290	398	481					
35		Hot stamping	Holding time (minutes)	3.8	4.5	4.4	4.3	4.1	3.7	43	5.0					
40			Hot star	Hot star	Healing temperature (°C)	895	920	894	913	890	917	913	898			
45			Average heating rate (°C/s)	6	5	10	8	5	2	7	Q					
50			Steel No.	6	10	11	12	<u>13</u>	<u>14</u>	15	16					
50		Steel sheet No.		6	10	11	12	<u>13</u>	14	15	16					
55			Manufacturing No.	o	10	11	12	13	14	15	16					

5			Remark	Present invention example	Present invention example	Present invention example	Present invention example	Comparative example	Comparative example	Present invention example	Present invention example							
10			Maximum bending angle (°)	46	44	32	23	<u>17</u>	47	43	46							
15		Hot-stamping formed body	amping formed body	Imping formed body	Imping formed body	Tensile strength (MPa)	2589	2555	2586	2561	2565	2005	2467	2564				
20						amping formec	amping formed	amping forme	amping forme	amping forme	amping formed	amping formed	amping formed	Prior γ grains having average grain size of 0.5 to 30 μ.m (area%)	57	25	56	58
		Hot-st	Standard deviation of grain sizes of prior y grains (µm)	1.8	1.3	1.4	1.7	1.4	1.6	1.8	1.5							
25	1)		Average grain size of prior γ grains (um)	21	23	21	21	22	22	24	25							
30	(continued)		Average cooling rate (°C/s)	241	442	311	335	203	389	163	217							
35		ping	Holding time (minutes)	4.9	4.8	4.4	3.7	4.2	4.9	4.7	4.9							
40		Hot stamping	Healing temperature (°C)	905	916	904	891	917	902	895	918							
45			Average heating rate (°C/s)	6	2	10	2	5	6	2	Ŋ							
50			Steel No.	17	18	19	20	21	22	23	24							
50		Steel sheet No.		17	18	19	20	21	22	23	24							
55		Manufacturing No.		17	18	19	20	21	22	23	24							

5			Remark	Present invention example	Present invention example	Present in vention example	Present invention example	Comparative example						
10			Maximum bending angle (°)	47	33	39	29	15						
15		Hot-stamping formed body	Tensile strength (MPa)	2598	2602	2642	2649	2625						
			nping formed	mping forme	mping forme	mping forme	mping forme	Prior γ grains having average grain size of 0.5 to 30 μ.m (area%)	58	55	54	55	52	e.
20			Standard deviation of grain sizes of prior y grains (µm)	1.7	1.7	1.3	1.5	1.9	indicate that manufacturing conditions are not preferable					
25	(Average grain size of prior γ grains (um)	24	24	21	24	23	nditions are					
30	(continued)		Average cooling rate (°C/s)	266	383	463	259	395	ufacturing co					
35		Hot stamping	Holding time (minutes)	3.7	4.2	3.6	4.7	4.4	ate that man					
40					Healing temperature (°C)	912	206	892	896	606				
45			Average heating rate (°C/s)	5	8	2	10	5	e present inv					
			Steel No.	25	26	27	28	29	e outsid					
50			Steel sheet No.	25	26	27	28	29	licate scop					
55		Manufacturing No.		25	26	27	28	29	Underscores indicate scope outside present invention and					

EP 4 286 544 A1

Comparative Comparative Comparative Present invention Present example invention example example example example invention example example invention example example invention invention Remark Present Present Present Present 5 bending angle (°) Maximum 9 45 10 2 23 40 37 50 27 10 Tensile strength (MPa) 2556 2598 2590 2596 2586 2590 2553 2561 2581 Hot-stamping formed body 15 grain size of 0.5 to 30 Prior γ grains having average µm (area%) 59 59 53 53 54 57 54 56 53 20 deviation of grain sizes of Standard prior γ grains (mJ) 1.5 1.5 4. 4 <u>۲</u>. 1.8 <u>۲</u>. 1.5 <u>ں</u> 1.7 25 Average grain size of prior γ grains (μm) 5 25 25 23 22 5 23 3 3 [Table 3B] Average cooling rate (°C/s) 405 340 414 30 190 402 471 331 299 351 time (minutes) Holding 4.6 3.7 4.5 3.8 3.8 . 3.5 3.5 5.0 43 35 Hot stamping temperature Healing () 0 915 895 899 892 890 902 890 897 911 40 Average heating rate (°C/s) 9 თ ဖ ß \sim ω ß \sim \sim 45 Steel No. 35 33 32 33 8 36 38 3 37 50 Steel sheet . No 8 32 33 8 35 36 37 38 3 Manufacturing 55 . No 30 3 32 33 34 35 36 37 38

5			Remark	Present invention example	Present invention example	Present invention example	Comparative example	Present invention example	Present invention example	Present invention example	Comparative example
10			Maximum bending angle (°)	27	37	50	14	28	38	47	<u>15</u>
15		d body	Tensile strength (MPa)	2587	2566	2578	2594	2573	2584	2597	2557
20		Hot-stamping formed body	Prior γ grains having average grain size of 0.5 to 30 μ m (area%)	51	51	54	53	52	54	50	58
		Hot-st	Standard deviation of grain sizes of prior γ grains (µm)	1.3	1.4	1.9	1.6	1.9	1.4	1.4	1.7
25	(1		Average grain size of prior γ grains (µ.m)	21	21	22	21	25	22	24	22
30	(continued)		Average cooling rate (°C/s)	477	321	251	395	394	340	296	350
35		ping	Holding time (minutes)	3.6	5.0	3.9	3.8	3.6	4.9	3.5	4.5
40		Hot stamping	Healing temperature (°C)	920	906	913	894	914	899	896	896
45			Average heating rate (°C/s)	2	2	8	10	2	10	2	2
50			Steel No.	6£	40	41	42	43	44	45	<u>46</u>
50			Steel sheet No.	39	40	41	<u>42</u>	43	44	45	<u>46</u>
55			Manufacturing No.	39	40	41	42	43	44	45	46

5			Remark	Present invention example	Present invention example	Present invention example	Present invention example	Present invention example	Present invention example	Comparative example	Comparative example
10			Maximum bending angle (°)	24	97	42	47	34	30	18	47
15		d body	Tensile strength (MPa)	2553	2555	2571	2593	2590	2579	2569	2188
20		Hot-stamping formed body	Prior γ grains having average grain size of 0.5 to 30 μm (area%)	53	99	58	59	54	57	58	52
		Hot-st	Standard deviation of grain sizes of prior γ grains (μ.m)	1.5	1.8	1.6	1.7	1.6	1.7	1.3	1.4
25	(Average grain size of prior γ grains (μ.m)	24	22	25	22	22	24	25	25
30	(continued)		Average cooling rate (°C/s)	227	187	279	399	286	340	448	437
35		ping	Holding time (minutes)	4.5	4.1	4.3	3.9	4.0	3.7	4.6	4.0
40		Hot stamping	Healing temperature (°C)	895	901	890	006	606	894	903	006
45			Average heating rate (°C/s)	8	8	10	7	0	5	5	Q
50			Steel No.	47	48	49	50	51	52	53	54
50			Steel sheet No.	47	48	49	50	51	52	53	54
55			Manufacturing No.	47	48	49	50	51	52	53	54

5			Remark	Present invention example	Present invention example	Present invention example	Present invention example	
10			Maximum bending angle (°)	74	42	48	37	
15		d body	Tensile strength (MPa)	2523	2571	2599	2609	
		Hot-stamping formed body	Prior γ grains having average grain size of 0.5 to 30 μ.m (area%)	56	57	52	53	a
20		Hot-sta	Standard deviation of grain sizes of prior γ grains (μm)	1.3	1.4	1.8	1.8	indicate that manufacturing conditions are not preferable.
25			Average grain size of prior γ grains (μμ)	22	21	24	23	nditions are
30	(continued)		Average cooling rate (°C/s)	429	472	418	321	ufacturing co
35		stamping	Holding time (minutes)	4.5	4.6	4.5	4.1	ate that man
40		Hot star	Healing temperature (°C)	901	897	268	920	vention and indic
45			Average heating rate (°C/s)	5	Q	2	ω	e present inv
			Steel No.	55	56	57	58	e outsid
50			Steel sheet No.	55	56	57	58	licate scop
55			Manufacturing No.	55	56	57	58	Underscores indicate scope outside present invention and

EP 4 286 544 A1

5			Remark	Present invention example	Present invention example	Comparative example	Comparative example	Present invention example	Present invention example	Present invention example	Comparative example	Present invention example
10			Maximum bending angle (°)	32	25	<u>12</u>	<u>17</u>	27	35	40	<u>13</u>	21
15		d body	Tensile strength (MPa)	2620	2630	2629	2602	2609	2638	2490	2603	2649
		Hot-stamping formed body	Prior γ grains having average grain size of 0.5 to 30 μ.m (area%)	52	59	59	58	50	58	51	54	53
20		Hot-sta	Standard deviation of grain sizes of prior γ grains (μm)	1.6	1.3	1.3	1.7	1.6	1.8	1.4	1.5	1.8
25	1		Average grain size of prior γ grains (μ.m)	25	23	21	21	21	24	25	24	25
30	[Table 3C]		Average cooling rate (°C/s)	285	418	412	325	424	196	388	371	486
35		stamping	Holding time (minutes)	4.4	4.0	3.5	4.4	4.8	4.6	5.0	4.8	4.6
40		Hot stan	Healing temperature (°C)	806	894	913	894	893	890	890	607	897
45			Average heating rate (°C/s)	5	5	5	6	£	ø	5	7	œ
			Steel No.	59	60	21	<u>62</u>	63	64	65	<u> 99</u>	67
50			Steel sheet No.	59	60	<u>61</u>	<u>62</u>	63	64	65	<u>99</u>	67
55			Manufacturing No.	59	60	61	62	63	64	65	66	67

5			Remark	Present invention example	Present invention example	Comparative example	Present invention example	Present invention example	Present invention example	Comparative example	Present invention example
10			Maximum bending angle (°)	96	32	<u>15</u>	24	40	32	<u>13</u>	23
15		d body	Tensile strength (MPa)	2634	2410	2615	2602	2639	2441	2620	2623
20		Hot-stamping formed body	Prior γ grains having average grain size of 0.5 to 30 μ m (area%)	53	15	52	59	53	50	55	59
		Hot-st	Standard deviation of grain sizes of prior γ grains (µm)	1.5	1.7	1.6	1.7	1.8	1.7	1.5	1.6
25	()		Average grain size of prior γ grains (μm)	23	12	53	24	23	21	25	25
30	(continued)		Average cooling rate (°C/s)	255	429	199	268	395	324	402	307
35		ping	Holding time (minutes)	4.6	3.7	4.4	3.7	4.6	3.7	3.7	4.7
40		Hot stamping	Healing temperature (°C)	895	902	913	907	914	890	901	915
45			Average heating rate (°C/s)	5	6	5	7	5	6	6	o
50			Steel No.	89	69	02	71	72	73	74	75
50			Steel sheet No.	89	69	02	71	72	73	74	75
55			Manufacturing No.	68	69	70	71	72	73	74	75

41

5			Remark	Present invention example	Comparative example	Present invention example	Present invention example	Comparative example	Present invention example	Present invention example	Comparative example	Present invention example
10			Maximum bending angle (°)	39	12	23	34	<u>16</u>	23	38	<u>19</u>	30
15		d body	Tensile strength (MPa)	2636	2627	2602	2630	2619	2618	2606	2618	2627
20		Hot-stamping formed body	Prior γ grains having average grain size of 0.5 to 30 μ m (area%)	50	55	20	54	51	52	20	58	51
		Hot-st	Standard deviation of grain sizes of prior γ grains (µm)	1.3	1.4	1.8	1.5	1.9	1.8	7'1	1.8	1.3
25	(p		Average grain size of prior γ grains (μm)	21	22	22	24	23	25	22	24	25
30	(continued)		Average cooling rate (°C/s)	237	213	466	352	247	304	277	190	478
35		: stamping	Holding time (minutes)	4.3	3.5	3.8	4.6	4.5	3.5	4.5	4.8	4.9
40		Hot stan	Healing temperature (°C)	904	897	906	901	901	899	919	898	898
45			Average heating rate (°C/s)	8	10	2	5	10	5	2	10	ω
50			Steel No.	76	<u>77</u>	78	79	<u>80</u>	81	82	<u>83</u>	84
50			Steel sheet No.	76	11	82	74	80	81	82	83	84
55			Manufacturing No.	76	77	78	79	80	81	82	83	84

Comparative invention example example invention example Remark Present Present 5 bending angle (°) Maximum 39 15 29 10 Tensile strength (MPa) 2616 2620 2642 Hot-stamping formed body 15 grain size of 0.5 to 30 average Prior γ grains having (area%) шIJ 55 54 56 Underscores indicate scope outside present invention and indicate that manufacturing conditions are not preferable. 20 deviation of grain sizes of Standard prior γ grains (μm) 1.9 4. 4 1.8 25 Average grain size of prior γ grains (µ,m) 25 25 22 (continued) Average cooling rate (°C/s) 460 325 309 30 Holding (minutes) time 5.0 4.1 3.9 35 Hot stamping temperature Healing (°) 916 897 891 40 Average heating rate (°C/s) ω ß ~ 45 Steel . No 85 80 87 50 Steel sheet . N 85 86 87 Manufacturing 55 . No 85 86 87

5			Remark	Present invention example	Comparative example	Present invention example	Present invention example	Comparative example	Present invention example	Present invention example	Comparative example	Present invention example
10			Maximum bending angle (")	34	<u>15</u>	30	38	<u>13</u>	25	40	<u>18</u>	28
15		d body	Tensile strength (MPa)	2623	2604	2613	2631	2636	2613	2631	2629	2633
		Hot-stamping formed body	Prior γ grains having average grain size of0.5to3.0 μ.m (area%)	51	55	55	58	58	51	53	52	54
20		Hot-st	Standard deviation of grain sizes of prior γ grains (µ.m)	1.8	1.9	1.5	1.4	1.6	1.7	1.3	1.8	1.8
25	_		Average grain size ofprior _Y grains (µ.m)	25	22	22	25	21	22	24	24	22
30	[Table 3D]		Average cooling rate (°C/s)	288	345	296	434	307	288	358	228	426
35		ping	Holding lime (minutes)	4.2	3.6	3.6	4.1	3.9	4.4	5.0	4.8	4.0
40		Hot stamping	Heating temperature (°C)	890	912	898	905	915	917	914	894	915
45			Average healing rate (°C/s)	6	5	6	6	8	10	5	2	<u>б</u>
			Steel No.	88	<u>89</u>	90	91	<u>92</u>	93	94	<u>95</u>	96
50			Steel sheet No.	88	89	06	91	<u>92</u>	93	94	<u>95</u>	96
55			Manufacturing No.	88	89	06	91	92	93	94	95	96

5			Remark	Present invention example	Comparative example	Present invention example	Present invention example	Comparative example	Present invention example	Present invention example	Comparative example	Present invention example
10			Maximum bending angle (")	35	<u>17</u>	21	33	<u>17</u>	27	31	<u>15</u>	26
15		d body	Tensile strength (MPa)	2628	2642	2604	2630	2634	2643	2612	2630	2607
20		Hot-stamping formed body	Prior γ grains having average grain size of0.5 to 3.0 μ m (area%)	59	59	52	52	57	56	56	53	54
		Hot-st	Standard deviation of grain sizes of prior γ grains (µm)	1.6	1.5	1.3	1.9	1.6	1.3	1.7	1.3	1.3
25	()		Average grain size ofprior γ grains (μm)	24	25	55	25	24	22	25	25	23
30	(continued)		Average cooling rate (°C/s)	300	285	310	362	355	261	480	457	210
35		stamping	Holding lime (minutes)	3.5	5.0	3.5	3.6	4.8	4.8	4.9	3.6	4.7
40		Hot stan	Heating temperature (°C)	905	891	903	920	904	920	895	901	908
45			Average healing rate (°C/s)	8	7	7	9	5	6	8	6	8
50			Steel No.	97	<u>98</u>	66	100	101	102	103	104	105
50			Steel sheet No.	26	<u> </u>	66	100	101	102	103	104	105
55			Manufacturing No.	67	98	66	100	101	102	103	104	105

5			Remark	Present invention example	Present invention example	Present invention example	Comparative example	Present invention example	Present invention example	Present invention example	Present invention example
10			Maximum bending angle (")	28	67	74	<u>13</u>	40	20	48	49
15		d body	Tensile strength (MPa)	2650	2561	2582	2578	2582	2571	2558	2554
20		Hot-stamping formed body	Prior γ grains having average grain size of0.5 to 3.0 μ m (area%)	7 5	29	65	77	44	67	33	34
25		Hot-st	Standard deviation of grain sizes of prior γ grains (µm)	1.4	1.7	1.5	0.5	0.8	0.6	0.3	0.2
25	(j		Average grain size ofprior γ grains (μm)	24	21	22	2	17	19	5	ъ
30	(continued)		Average cooling rate (°C/s)	418	191	298	287	468	355	408	323
35		ıping	Holding lime (minutes)	4.3	4.0	4,4	4.9	5.0	4.1	3.8	4.8
40		Hot stamping	Heating temperature (°C)	893	901	914	919	904	606	915	915
45			Average healing rate (°C/s)	6	6	10	10	9	2	8	2
50			Steel No.	106	F	Ļ	٢	٢	F	Ł	~
50			Steel sheet No.	106	107	108	109	110	111	112	113
55			Manufacturing No.	106	107	108	109	110	111	112	113

5			Remark	Present invention example	Present invention example	Comparative example	
10			Maximum bending angle (")	28	26	14	
15		d body	Tensile strength (MPa)	2553	2550	2571	
		Hot-stamping formed body	Prior γ grains having average grain size of0.5to3.0 μ.m (area%)	54	51	85	aj
20		Hot-sta	Standard deviation of grain sizes of prior γ grains (μm)	1.8	1.7	2.0	ndicate that manufacturing conditions are not preferable
25	()		Average grain size ofprior _Y grains (µ.m)	25	23	36	nditions are
30	(continued)		Average cooling rate (°C/s)	471	249	446	ufacturing co
35		stamping	Holding lime (minutes)	3.9	4.4	3.8	ate that man
40		Hot stan	Heating temperature (°C)	897	668	913	
45			Average healing rate (°C/s)	8	9	6	e present inv
			Steel No.	1	1	1	oe outsid
50			Steel sheet No.	114	115	116	cate scop
55			Manufacturing No.	114	115	116	Underscores indicate scope outside present invention and

Comparative Comparative example invention Present invention invention invention example invention example example example example example invention example Remark Present Present Present Present Present 5 bending angle (°) Maximum 12 45 4 44 32 24 27 33 10 Tensile strength (MPa) 2575 2568 2585 2586 2558 2554 2566 2586 Hot-stamping formed body 15 grain size of 0.5 to 30 average Prior γ grains having µm (area%) 48 59 6 4 33 38 52 57 20 deviation of grain sizes of Standard prior γ grains (mJ) 0.5 0.9 0.2 1.8 1.3 1.5 2.3 0.4 25 Average grain size of prior γ grains (μm) 35 23 72 17 29 2 \sim ß [Table 3E] Average cooling rate (°C/s) 172 302 217 30 402 280 194 164 494 time (minutes) Holding 4.7 4.9 4.8 3.9 4.5 3.5 4.3 4.1 35 Hot stamping temperature Healing () 0 905 904 893 895 898 894 897 907 40 Average heating rate (°C/s) 9 ശ ശ ശ ശ ശ თ ß 45 Steel . N ~ ~ ~ ~ ~ <u>_</u> ~ 50 Steel sheet . No 118 119 117 120 122 123 124 121 Manufacturing 55 117 118 119 . No 120 122 123 124 121

5			Remark	Present invention example							
10			Maximum bending angle (°)	39	35	40	39	34	33	35	36
15		d body	Tensile strength (MPa)	2582	2571	2566	2591	2593	2551	2561	2569
20		Hot-stamping formed body	Prior γ grains having average grain size of 0.5 to 30 μm (area%)	55	56	58	52	52	57	56	55
		Hot-st	Standard deviation of grain sizes of prior γ grains (μ.m)	1.9	1.3	1.7	1.9	1.5	1.5	1.4	1.9
25	(1		Average grain size of prior γ grains (μm)	24	25	21	21	25	24	24	23
30	(continued)		Average cooling rate (°C/s)	318	478	434	344	302	168	491	208
35		ping	Holding time (minutes)	4.8	4.8	3.9	3.5	4.5	4.8	3.9	5.0
40		Hot stamping	Healing temperature (°C)	912	606	919	903	911	901	890	897
45			Average heating rate (°C/s)	8	9	5	8	9	9	8	Q
50			Steel No.		-	-	-	-	-	-	~
JU			Steel sheet No.	125	126	127	128	129	130	131	132
55			Manufacturing No.	125	126	127	128	129	130	131	132

5			Remark	Present invention example							
10			Maximum bending angle (°)	34	33	31	35	36	32	36	32
15		d body	Tensile strength (MPa)	2579	2585	2611	2640	2560	2558	2596	2429
20		Hot-stamping formed body	Prior γ grains having average grain size of 0.5 to 30 μ m (area%)	53	20	53	58	25	26	50	58
		Hot-st	Standard deviation of grain sizes of prior γ grains (μm)	1.3	1.6	1.3	1.9	1.5	1.5	1.4	1 . 4.
25	()		Average grain size of prior γ grains (μm)	23	55	22	23	25	24	21	25
30	(continued)		Average cooling rate (°C/s)	404	210	176	311	324	298	261	203
35		stamping	Holding time (minutes)	4.9	4.3	3.8	3.9	4.7	4.7	5.0	4.2
40		Hot stan	Healing temperature (°C)	904	915	911	910	904	919	904	603
45			Average heating rate (°C/s)	9	10	950	500	120	50	10	4
50			Steel No.		1	1	1	1		1	-
50			Steel sheet No.	133	134	135	136	137	138	139	140
55			Manufacturing No.	133	134	135	136	137	138	139	140

Comparative Comparative Present invention example example example example Remark invention Present 5 bending angle (°) Maximum 49 39 38 44 10 Tensile strength (MPa) 2578 2099 2439 2009 Hot-stamping formed body 15 grain size of 0.5 to 30 average Prior γ grains having (area%) щη 53 51 55 54 Underscores indicate scope outside present invention and indicate that manufacturing conditions are not preferable. 20 deviation of grain sizes of Standard prior γ grains (mJ) 1.9 1.6 1.6 1.7 25 Average grain size of prior γ grains (µ,m) 25 22 25 23 (continued) Average cooling rate (°C/s) 472 456 30 354 289 (minutes) Holding time 3.5 4.8 4.6 4.2 35 Hot stamping temperature Healing (°C) 1022 905 971 997 40 Average heating rate (°C/s) 0.5 ß ß o 45 Steel . No ~ ~ ~ ~ 50 Steel sheet . N 144 142 143 4 Manufacturing 55 . N 142 143 144 141

5			Remark	Present invention example	Present invention example	Present invention example	Present invention example	Present invention example	Comparative example	Present invention example	Present invention example
10			Maximum bending angle (°)	41	42	50	33	30	47	48	48
15		d body	Tensile strength (MPa)	2567	2566	2594	2586	2560	2038	2407	2564
		Hot-stamping formed body	Prior γ grains having average grain size of0.5to3.0 μ.m (area%)	57	53	52	55	55	50	56	57
20		Hot-st	Standard deviation of grain sizes of prior γ grains (μ.m)	1.6	1.8	1.3	1.4	1.5	1.8	1.3	1.5
25	_		Average grain size of prior γ grains (μ.m)	23	23	24	24	23	22	22	25
30	[Table 3F]		Average cooling rate (°C/s)	402	383	229	188	386	405	325	290
35		ping	Holding Lime (minutes)	4.9	46	4.3	4.9	4.9	11.0	8.5	7.8
40		Hot stamping	Heating temperature (°C)	938	905	870	831	810	902	919	896
45			Average healing rate (°C/s)	9	9	8	10	7	5	6	10
			Steel No.	1	1	1	1	1	1	1	٢
50			Steel sheet No.	145	146	147	148	149	150	151	152
55			Manufacturing No.	145	146	147	148	149	150	151	152

5			Remark	Present invention example											
10			Maximum bending angle (°)	46	47	35	30	36	39	39	30				
15		d body	Tensile strength (MPa)	2642	2649	2555	2551	2638	2608	2552	2471				
20		Hot-stamping formed body	Prior γ grains having average grain size of0.5 to 3.0 μm (area%)	22	22	55	51	22	52	59	20				
		Hot-st	Standard deviation of grain sizes of prior γ grains (µm)	1.3	1.8	1.4	1.6	1.4	1.9	1.9	1.8				
25			Average grain size of prior γ grains (μm)	24	25	23	25	23	24	24	23				
30	(continued)		Average cooling rate (°C/s)	443	321	312	276	980	560	120	18				
35		Hot stamping	Hot stamping	Hot stamping	Holding Lime (minutes)	6.2	4.1	23	1.5	3.6	4.4	4,2	3.8		
40					Hot star	Hot sta	Hot sta	Hot sta	Hot star	Heating temperature (°C)	913	919	894	891	897
45			Average healing rate (°C/s)	6	10	8	9	2	2	5	ω				
50			Steel No.	Ļ	٢	٢	٢	٢	Ļ	٢	-				
50			Steel sheet No.	153	154	155	156	157	158	159	160				
55			Manufacturing No.	153	154	155	156	157	158	159	160				

5			Remark	Comparative example	Present invention example	Present invention example	Comparative example	Present invention example	Present invention example	Present invention example	Present invention example
10			Maximum bending angle (°)	66	34	31	18	23	25	24	26
15		l body	Tensile strength (MPa)	2188	2576	2580	2559	2610	2601	2598	2577
20		Hot-stamping formed body	Prior γ grains having average grain size of0.5 to 3.0 μ.m (area%)	52	20	25	12	12	17	81	55
		Hot-st	Standard deviation of grain sizes of prior γ grains (µm)	1.9	1.7	1.6	3.3	1.8	1.7	1.8	1.2
25	()		Average grain size of prior γ grains (μm)	24	22	25	24	25	23	25	22
30	(continued)		Average cooling rate (°C/s)	4	330	344	371	402	345	321	460
35		ping	Holding Lime (minutes)	4.1	4.0	4.4	4.1	4.2	4.9	7.8	3.7
40		Hot stamping	Heating temperature (°C)	919	895	902	895	870	919	891	921
45			Average healing rate (°C/s)	2	10	2	2	9	7	5	7
50			Steel No.	٢	Ļ	Ļ	٢	107	108	109	110
50			Steel sheet No.	161	162	163	164	165	166	167	168
55			Manufacturing No.	161	162	163	164	165	166	167	168

5			Remark	Present invention example	Present invention example	Comparative example	Comparative example									
10			Maximum bending angle (°)	30	34	<u>13</u>	14									
15		d body	Tensile strength (MPa)	2613	2644	2566	2566									
10		Hot-stamping formed body	Prior γ grains having average grain size of0.5to3.0 μ m (area%)	56	51	77	80									
20		Hot-sta	Hot-sta	Standard deviation of grain sizes of prior γ grains (µ.m)	1.7	1.3	1.9	1.9	ndicate that manufacturing conditions are not preferable.							
25	(Average grain size of prior γ grains (μ.m)	25	24	33	34	nditions are r								
30	(continued)		Average cooling rate (°C/s)	477	420	437	444	ufacturing col								
35		Hot stamping			Holding Lime (minutes)	4.9	4.1	3.6	3.8	ate that man						
40											Heating temperature (°C)	006	899	206	006	
45										Average healing rate (°C/s)	8	6	10	6	e present inv	
			Steel No.	111	112	٦	1	e outsid								
50			Steel sheet No.	169	170	171	172*	icate scop								
55			Manufacturing No.	169	170	171	172	Underscores indicate scope outside present invention and								

55

[0146] From Table 3A to Table 3F, it is found that the hot-stamping formed bodies according to the examples of the present invention have high strength and excellent bendability. Meanwhile, it can be seen that in the hot-stamping formed bodies according to comparative examples, one of the properties deteriorated.

5 [Industrial Applicability]

[0147] According to the above-described aspects of the present invention, it is possible to provide a hot-stamping formed body having high strength and excellent bendability, and a steel sheet for hot stamping capable of manufacturing this hot-stamping formed body.

10

Claims

1. A steel sheet for hot stamping consisting of, as a chemical composition, by mass%:

15		
		C: more than 0.40% and 0.70% or less;
		Si: 0.010% to 1.30%;
		Mn: more than 0.60% and 3.00% or less;
		P: 0.100% or less;
20		S: 0.0100% or less;
		N: 0.0130% or less;
		O: 0.0200% or less;
		AI: 0.0010% to 0.500%;
		Cr: 0.010% to 0.80%;
25		Nb: 0% to 0.100%;
		Ti: 0% to 0.100%;
		B: 0% to 0.0100%;
		Mo: 0% to 1.00%;
		Co: 0% to 2.00%;
30		Ni: 0% or more and less than 3.00%;
		Cu: 0% to 1.00%;
		V: 0% to 1.00%;
		W: 0% to 1.000%;
		Ca: 0% to 0.010%;
35		Mg: 0% to 1.000%;
		REM: 0% to 1.000%;
		Sb: 0% to 1.000%;
		Zr: 0% to 1.000%;
		Sn: 0% to 1.000%;
40		As: 0% to 0.100%; and
		a remainder of Fe and impurities,
		wherein the steel sheet for hot stamping has a microstructure in which S_{α} + S_{GB} , which is a total of an area
		ratio S $_{ m lpha}$ of ferrite and an area ratio S $_{ m GB}$ of a granular bainite, is 10% or more and less than 50%, and
		S_{GB}/S_{α} , which is a ratio between the area ratio S_{GB} of the granular bainite and the area ratio S_{α} of the ferrite,
45		is 0.30 to 0.70.
	2.	The steel sheet for hot stamping according to claim 1, wherein the steel sheet for hot stamping contains, as the
		chemical composition, by mass%, one or more selected from the group consisting of:
50		Nb: 0.001 % to 0.100%:

50 Nb: 0.001 % to 0.100%; Ti: 0.010% to 0.100%; B: 0.0015% to 0.0100%; Mo: 0.05% to 1.00%; Co: 0.05% to 2.00%;
55 Ni: 0.01% or more and less than 3.00%; Cu: 0.01% to 1.00%; V: 0.01% to 1.00%; W: 0.001% to 1.000%;

		Ca: 0.001% to 0.010%;
		Mg: 0.001% to 1.000%;
		REM: 0.001% to 1.000%;
		Sb: 0.005% to 1.000%;
5		Zr: 0.001% to 1.000%;
		Sn: 0.001% to 1.000%; and
		As: 0.001% to 0.100%.
	3.	A hot-stamping formed body consisting of, as a chemical composition, by mass%:
10		
		C: more than 0.40% and 0.70% or less;
		Si: 0.010% to 1.30%;
		Mn: more than 0.60% and 3.00% or less;
		P: 0.100% or less;
15		S: 0.0100% or less;
		N: 0.0130% or less;
		O: 0.0200% or less;
		Al: 0.0010% to 0.500%;
		Cr: 0.010% to 0.80%;
20		Nb: 0% to 0.100%;
		Ti: 0% to 0.100%;
		B: 0% to 0.0100%;
		Mo: 0% to 1.00%;
		Co: 0% to 2.00%;
25		Ni: 0% or more and less than 3.00%;
		Cu: 0% to 1.00%;
		V: 0% to 1.00%;
		W: 0% to 1.000%;
		Ca: 0% to 0.010%;
30		Mg: 0% to 1.000%;
		REM: 0% to 1.000%;
		Sb: 0% to 1.000%;
		Zr: 0% to 1.000%;
		Sn: 0% to 1.000%;
35		As: 0% to 0.100%; and
		a remainder of Fe and impurities,
		wherein the hot-stamping formed body has a microstructure in which an average grain size of prior austenite
		grains is 5 to 25 μ m,
		a standard deviation of grain sizes of the prior austenite grains is 0.1 to 2.0 μm , and
40		a tensile strength of the hot-stamping formed body is 2,200 MPa or more.
	4.	The hot-stamping formed body according to claim 3, wherein the hot-stamping formed body contains, as the chemical
		composition, by mass%, one or more selected from the group consisting of:
45		Nb: 0.001% to 0.100%;
		Ti: 0.010% to 0.100%;
		B: 0.0015% to 0.0100%;
		Mo: 0.05% to 1.00%;
		Co: 0.05% to 2.00%;
50		Ni: 0.01% or more and less than 3.00%;
		Cu: 0.01% to 1.00%;
		V: 0.01% to 1.00%;
		W: 0.001% to 1.000%;
		Ca: 0.001% to 0.010%;
55		Mg: 0.001% to 1.000%;
		REM: 0.001% to 1.000%;
		Sb: 0.005% to 1.000%;

Zr: 0.001% to 1.000%;

Sn: 0.001% to 1.000%; and As: 0.001% to 0.100%.

5. The hot-stamping formed body according to claim 3 or 4, wherein an area ratio of the prior austenite grains having
 5 an average grain size of 0.5 to 3.0 μm is 60% or less.

10			
15			
20			
25			
30			
35			
40			
45			
50			
55			

INTERNATIONAL SEARCH REPORT

CLASSIFICATION OF SUBJECT MATTER

International application No. PCT/JP2022/019656

10

5

A.

	 CLASSIFICATION OF SUBJECT MATTER C21D 9/00(2006.01)i; C21D 9/46(2006.01)i; C22C 38/00(2006.01)i; C22C 38/60(2006.01)i; C21D 1/18(2006.01)i FI: C22C38/00 301S; C22C38/00 301W; C22C38/00 301Z; C22C38/60; C21D9/46 G; C21D9/46 T; C21D9/00 A; C21D1/18 C; C21D9/46 J; C21D9/46 U 						
10	According to International Patent Classification (IPC) or to both national classifi	cation and IPC					
10	B. FIELDS SEARCHED						
	Minimum documentation searched (classification system followed by classificat C21D9/00; C21D9/46; C22C38/00-38/60; C21D1/18	ion symbols)					
15	Documentation searched other than minimum documentation to the extent that s Published examined utility model applications of Japan 1922-1996 Published unexamined utility model applications of Japan 1971-2022 Registered utility model specifications of Japan 1996-2022 Published registered utility model applications of Japan 1994-2022 Electronic data base consulted during the international search (name of data base						
20	C. DOCUMENTS CONSIDERED TO BE RELEVANT						
	Category* Citation of document, with indication, where appropriate, o	f the relevant passages Relevant to claim No.					
25	A WO 2020/195012 A1 (NIPPON STEEL CORPORATION) 01 Oc entire text	· /					
	A WO 2020/241764 A1 (NIPPON STEEL CORPORATION) 03 De entire text	1					
30	A JP 2014-118613 A (NIPPON STEEL & SUMITOMO METAL C (2014-06-30) entire text	DRP) 30 June 2014 1-5					
	A WO 2020/189767 A1 (NIPPON STEEL CORPORATION) 24 Se entire text						
	A JP 2007-262469 A (JFE STEEL KK) 11 October 2007 (2007-10- entire text	I					
35							
	Further documents are listed in the continuation of Box C. See pat	ent family annex.					
40	 "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is 	cument published after the international filing date or priority not in conflict with the application but cited to understand the e or theory underlying the invention not of particular relevance; the claimed invention cannot be red novel or cannot be considered to involve an inventive step e document is taken alone					
45	special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means	nt of particular relevance; the claimed invention cannot be red to involve an inventive step when the document is ad with one or more other such documents, such combination ovious to a person skilled in the art nt member of the same patent family					
	Date of the actual completion of the international search Date of mail	ing of the international search report					
50	06 July 2022	19 July 2022					
	Name and mailing address of the ISA/JP Authorized of Japan Patent Office (ISA/JP) 3-4-3 Kasumigaseki, Chiyoda-ku, Tokyo 100-8915 Japan Telephone N Telephone N						

⁵⁵

Form PCT/ISA/210 (second sheet) (January 2015)

		INTERNA' Informati	FIONA ion on p	AL SEARCH REPORT patent family members	r .		application No. C T/JP2022/019656
5	Pat cited	ent document in search report		Publication date (day/month/year)	Patent family mem	nber(s)	Publication date (day/month/year)
	WO	2020/195012	Al	01 October 2020	(Family: none)		
10	WO	2020/241764	A1	03 December 2020	CN 11390615 entire text KR 10-2021-015193		
	JP	2014-118613	Α	30 June 2014	(Family: none)		
15	WO	2020/189767	A1	24 September 2020	US 2022/011992 entire text EP 394362 KR 10-2021-012723	23 A1 35 A	
		2007 2(24/0		11.0-4-12007	CN 11359747	74 A	
20	JP	2007-262469	A	11 October 2007	(Family: none)		
25							
30							
35							
40							
45							
50							
55	Form PCT/ISA	/210 (patent family	annex)	(January 2015)			

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• JP 2021081620 A [0002]

• WO 2018134874 A [0007]

Non-patent literature cited in the description

• Acta Materialia, 2010, vol. 58, 6393-6403 [0008]