
Processed by Luminess, 75001 PARIS (FR)

(19)
EP

4
30

3
87

1
A

2
EP004303871A2

(11) EP 4 303 871 A2
(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
10.01.2024 Bulletin 2024/02

(21) Application number: 23210525.4

(22) Date of filing: 28.01.2019

(51) International Patent Classification (IPC):
G10L 19/00 (2013.01)

(52) Cooperative Patent Classification (CPC):
G10L 21/038; G10L 19/00; G10L 19/18

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

(30) Priority: 26.01.2018 EP 18153683

(62) Document number(s) of the earlier application(s) in
accordance with Art. 76 EPC:
22189216.9 / 4 120 261
22181854.5 / 4 099 325
21164481.0 / 3 872 809
19153875.0 / 3 518 233

(71) Applicant: Dolby International AB
Dublin, D02 VK60 (IE)

(72) Inventors:
• KJOERLING, Kristofer

113 30 Stockholm (SE)
• VILLEMOES, Lars

113 30 Stockholm (SE)
• PURNHAGEN, Heiko

113 30 Stockholm (SE)
• EKSTRAND, Per

113 30 Stockholm (SE)

(74) Representative: AWA Sweden AB
Box 5117
200 71 Malmö (SE)

Remarks:
This application was filed on 17-11-2023 as a
divisional application to the application mentioned
under INID code 62.

(54) BACKWARD-COMPATIBLE INTEGRATION OF HIGH FREQUENCY RECONSTRUCTION
TECHNIQUES FOR AUDIO SIGNALS

(57) A method for decoding an encoded audio bit-
stream is disclosed. The method includes receiving the
encoded audio bitstream and decoding the audio data to
generate a decoded lowband audio signal. The method
further includes extracting high frequency reconstruction
metadata and filtering the decoded lowband audio signal
with an analysis filterbank to generate a filtered lowband

audio signal. The method also includes extracting a flag
indicating whether either spectral translation or harmonic
transposition is to be performed on the audio data and
regenerating a highband portion of the audio signal using
the filtered lowband audio signal and the high frequency
reconstruction metadata in accordance with the flag.

EP 4 303 871 A2

2

5

10

15

20

25

30

35

40

45

50

55

Description

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application is a European divisional application of European patent application EP 22189216.9 (reference:
D17806EP04), for which EPO Form 1001 was filed 8 August 2022.

TECHNICAL FIELD

[0002] Embodiments pertain to audio signal processing, and more specifically, to encoding, decoding, or transcoding
of audio bitstreams with control data specifying that either a base form of high frequency reconstruction ("HFR") or an
enhanced form of HFR is to be performed on the audio data.

BACKGROUND OF THE INVENTION

[0003] A typical audio bitstream includes both audio data (e.g., encoded audio data) indicative of one or more channels
of audio content, and metadata indicative of at least one characteristic of the audio data or audio content. One well
known format for generating an encoded audio bitstream is the MPEG-4 Advanced Audio Coding (AAC) format, described
in the MPEG standard ISO/IEC 14496-3:2009. In the MPEG-4 standard, AAC denotes "advanced audio coding" and
HE-AAC denotes "high-efficiency advanced audio coding."
[0004] The MPEG-4 AAC standard defines several audio profiles, which determine which objects and coding tools
are present in a complaint encoder or decoder. Three of these audio profiles are (1) the AAC profile, (2) the HE-AAC
profile, and (3) the HE-AAC v2 profile. The AAC profile includes the AAC low complexity (or "AAC-LC") object type. The
AAC-LC object is the counterpart to the MPEG-2 AAC low complexity profile, with some adjustments, and includes
neither the spectral band replication ("SBR") object type nor the parametric stereo ("PS") object type. The HE-AAC
profile is a superset of the AAC profile and additionally includes the SBR object type. The HE-AAC v2 profile is a superset
of the HE-AAC profile and additionally includes the PS object type.
[0005] The SBR object type contains the spectral band replication tool, which is an important high frequency recon-
struction ("HFR") coding tool that significantly improves the compression efficiency of perceptual audio codecs. SBR
reconstructs the high frequency components of an audio signal on the receiver side (e.g., in the decoder). Thus, the
encoder needs to only encode and transmit low frequency components, allowing for a much higher audio quality at low
data rates. SBR is based on replication of the sequences of harmonics, previously truncated in order to reduce data
rate, from the available bandwidth limited signal and control data obtained from the encoder. The ratio between tonal
and noise-like components is maintained by adaptive inverse filtering as well as the optional addition of noise and
sinusoidals. In the MPEG-4 AAC standard, the SBR tool performs spectral patching (also called linear translation or
spectral translation), in which a number of consecutive Quadrature Mirror Filter (QMF) subbands are copied (or "patched"
or) from a transmitted lowband portion of an audio signal to a highband portion of the audio signal, which is generated
in the decoder.
[0006] Spectral patching or linear translation may not be ideal for certain audio types, such as musical content with
relatively low cross over frequencies. Therefore, techniques for improving spectral band replication are needed.

Brief Description of Embodiments of the Invention

[0007] A first class of embodiments relates to a method for decoding an encoded audio bitstream is disclosed. The
method includes receiving the encoded audio bitstream and decoding the audio data to generate a decoded lowband
audio signal. The method further includes extracting high frequency reconstruction metadata and filtering the decoded
lowband audio signal with an analysis filterbank to generate a filtered lowband audio signal. The method further includes
extracting a flag indicating whether either spectral translation or harmonic transposition is to be performed on the audio
data and regenerating a highband portion of the audio signal using the filtered lowband audio signal and the high
frequency reconstruction metadata in accordance with the flag. Finally, the method includes combining the filtered
lowband audio signal and the regenerated highband portion to form a wideband audio signal.
[0008] A second class of embodiments relates to an audio decoder for decoding an encoded audio bitstream. The
decoder includes an input interface for receiving the encoded audio bitstream where the encoded audio bitstream includes
audio data representing a lowband portion of an audio signal and a core decoder for decoding the audio data to generate
a decoded lowband audio signal. The decoder also includes a demultiplexer for extracting from the encoded audio
bitstream high frequency reconstruction metadata where the high frequency reconstruction metadata includes operating
parameters for a high frequency reconstruction process that linearly translates a consecutive number of subbands from
a lowband portion of the audio signal to a highband portion of the audio signal and an analysis filterbank for filtering the

EP 4 303 871 A2

3

5

10

15

20

25

30

35

40

45

50

55

decoded lowband audio signal to generate a filtered lowband audio signal. The decoder further includes a demultiplexer
for extracting from the encoded audio bitstream a flag indicating whether either linear translation or harmonic transposition
is to be performed on the audio data and a high frequency regenerator for regenerating a highband portion of the audio
signal using the filtered lowband audio signal and the high frequency reconstruction metadata in accordance with the
flag. Finally, the decoder includes a synthesis filterbank for combining the filtered lowband audio signal and the regen-
erated highband portion to form a wideband audio signal.
[0009] Other classes of embodiments relate to encoding and transcoding audio bitstreams containing metadata iden-
tifying whether enhanced spectral band replication (eSBR) processing is to be performed.

Brief Description of the Drawings

[0010]

FIG. 1 is a block diagram of an embodiment of a system which may be configured to perform an embodiment of the
inventive method.
FIG. 2 is a block diagram of an encoder which is an embodiment of the inventive audio processing unit.
FIG. 3 is a block diagram of a system including a decoder which is an embodiment of the inventive audio processing
unit, and optionally also a post-processor coupled thereto.
FIG. 4 is a block diagram of a decoder which is an embodiment of the inventive audio processing unit.
FIG. 5 is a block diagram of a decoder which is another embodiment of the inventive audio processing unit.
FIG. 6 is a block diagram of another embodiment of the inventive audio processing unit.
FIG. 7 is a diagram of a block of an MPEG-4 AAC bitstream, including segments into which it is divided.

Notation and Nomenclature

[0011] Throughout this disclosure, including in the claims, the expression performing an operation "on" a signal or
data (e.g., filtering, scaling, transforming, or applying gain to, the signal or data) is used in a broad sense to denote
performing the operation directly on the signal or data, or on a processed version of the signal or data (e.g., on a version
of the signal that has undergone preliminary filtering or pre-processing prior to performance of the operation thereon).
[0012] Throughout this disclosure, including in the claims, the expression "audio processing unit" or "audio processor"
is used in a broad sense, to denote a system, device, or apparatus, configured to process audio data. Examples of audio
processing units include, but are not limited to encoders, transcoders, decoders, codecs, pre-processing systems, post-
processing systems, and bitstream processing systems (sometimes referred to as bitstream processing tools). Virtually
all consumer electronics, such as mobile phones, televisions, laptops, and tablet computers, contain an audio processing
unit or audio processor.
[0013] Throughout this disclosure, including in the claims, the term "couples" or "coupled" is used in a broad sense
to mean either a direct or indirect connection. Thus, if a first device couples to a second device, that connection may be
through a direct connection, or through an indirect connection via other devices and connections. Moreover, components
that are integrated into or with other components are also coupled to each other.

Detailed Description of Embodiments of the Invention

[0014] The MPEG-4 AAC standard contemplates that an encoded MPEG-4 AAC bitstream includes metadata indicative
of each type of high frequency reconstruction ("HFR") processing to be applied (if any is to be applied) by a decoder to
decode audio content of the bitstream, and/or which controls such HFR processing, and/or is indicative of at least one
characteristic or parameter of at least one HFR tool to be employed to decode audio content of the bitstream. Herein,
we use the expression "SBR metadata" to denote metadata of this type which is described or mentioned in the MPEG-
4 AAC standard for use with spectral band replication ("SBR"). As appreciated by one skilled in the art, SBR is a form
of HFR.
[0015] SBR is preferably used as a dual-rate system, with the underlying codec operating at half the original sampling-
rate, while SBR operates at the original sampling rate. The SBR encoder works in parallel with the underlying core codec,
albeit at a higher sampling-rate. Although SBR is mainly a post process in the decoder, important parameters are
extracted in the encoder in order to ensure the most accurate high frequency reconstruction in the decoder. The encoder
estimates the spectral envelope of the SBR range for a time and frequency range/resolution suitable for the current input
signal segments characteristics. The spectral envelope is estimated by a complex QMF analysis and subsequent energy
calculation. The time and frequency resolutions of the spectral envelopes can be chosen with a high level of freedom,
in order to ensure the best suited time frequency resolution for the given input segment. The envelope estimation needs
to consider that a transient in the original, mainly situated in the high frequency region (for instance a high-hat), will be

EP 4 303 871 A2

4

5

10

15

20

25

30

35

40

45

50

55

present to a minor extent in the SBR generated highband prior to envelope adjustment, since the highband in the decoder
is based on the low band where the transient is much less pronounced compared to the highband. This aspect imposes
different requirements for the time frequency resolution of the spectral envelope data, compared to ordinary spectral
envelope estimation as used in other audio coding algorithms.
[0016] Apart from the spectral envelope, several additional parameters are extracted representing spectral charac-
teristics of the input signal for different time and frequency regions. Since the encoder naturally has access to the original
signal as well as information on how the SBR unit in the decoder will create the high-band, given the specific set of
control parameters, it is possible for the system to handle situations where the lowband constitutes a strong harmonic
series and the highband, to be recreated, mainly constitutes random signal components, as well as situations where
strong tonal components are present in the original highband without counterparts in the lowband, upon which the
highband region is based. Furthermore, the SBR encoder works in close relation to the underlying core codec to assess
which frequency range should be covered by SBR at a given time. The SBR data is efficiently coded prior to transmission
by exploiting entropy coding as well as channel dependencies of the control data, in the case of stereo signals.
[0017] The control parameter extraction algorithms typically need to be carefully tuned to the underlying codec at a
given bitrate and a given sampling rate. This is due to the fact that a lower bitrate, usually implies a larger SBR range
compared to a high bitrate, and different sampling rates correspond to different time resolutions of the SBR frames.
[0018] An SBR decoder typically includes several different parts. It comprises a bitstream decoding module, a high
frequency reconstruction (HFR) module, an additional high frequency components module, and an envelope adjuster
module. The system is based around a complex valued QMF filterbank (for high-quality SBR) or a real-valued QMF
filterbank (for low-power SBR). Embodiments of the invention are applicable to both high-quality SBR and low-power
SBR. In the bitstream extraction module, the control data is read from the bitstream and decoded. The time frequency
grid is obtained for the current frame, prior to reading the envelope data from the bitstream. The underlying core decoder
decodes the audio signal of the current frame (albeit at the lower sampling rate) to produce time-domain audio samples.
The resulting frame of audio data is used for high frequency reconstruction by the HFR module. The decoded lowband
signal is then analyzed using a QMF filterbank. The high frequency reconstruction and envelope adjustment is subse-
quently performed on the subband samples of the QMF filterbank. The high frequencies are reconstructed from the low-
band in a flexible way, based on the given control parameters. Furthermore, the reconstructed highband is adaptively
filtered on a subband channel basis according to the control data to ensure the appropriate spectral characteristics of
the given time/frequency region.
[0019] The top level of an MPEG-4 AAC bitstream is a sequence of data blocks ("raw_data_block" elements), each
of which is a segment of data (herein referred to as a "block") that contains audio data (typically for a time period of 1024
or 960 samples) and related information and/or other data. Herein, we use the term "block" to denote a segment of an
MPEG-4 AAC bitstream comprising audio data (and corresponding metadata and optionally also other related data)
which determines or is indicative of one (but not more than one) "raw_data_block" element.
[0020] Each block of an MPEG-4 AAC bitstream can include a number of syntactic elements (each of which is also
materialized in the bitstream as a segment of data). Seven types of such syntactic elements are defined in the MPEG-
4 AAC standard. Each syntactic element is identified by a different value of the data element "id_syn_ele." Examples of
syntactic elements include a "single_channel_element()," a "channel_pair element()," and a "fill_element()." A single
channel element is a container including audio data of a single audio channel (a monophonic audio signal). A channel
pair element includes audio data of two audio channels (that is, a stereo audio signal).
[0021] A fill element is a container of information including an identifier (e.g., the value of the above-noted element
"id_syn_ele") followed by data, which is referred to as "fill data." Fill elements have historically been used to adjust the
instantaneous bit rate of bitstreams that are to be transmitted over a constant rate channel. By adding the appropriate
amount of fill data to each block, a constant data rate may be achieved.
[0022] In accordance with embodiments on the invention, the fill data may include one or more extension payloads
that extend the type of data (e.g., metadata) capable of being transmitted in a bitstream. A decoder that receives
bitstreams with fill data containing a new type of data may optionally be used by a device receiving the bitstream (e.g.,
a decoder) to extend the functionality of the device. Thus, as can be appreciated by one skilled in the art, fill elements
are a special type of data structure and are different from the data structures typically used to transmit audio data (e.g.,
audio payloads containing channel data).
[0023] In some embodiments of the invention, the identifier used to identify a fill element may consist of a three bit
unsigned integer transmitted most significant bit first ("uimsbf") having a value of 0x6. In one block, several instances
of the same type of syntactic element (e.g., several fill elements) may occur.
[0024] Another standard for encoding audio bitstreams is the MPEG Unified Speech and Audio Coding (USAC) stand-
ard (ISO/IEC 23003-3:2012). The MPEG USAC standard describes encoding and decoding of audio content using
spectral band replication processing (including SBR processing as described in the MPEG-4 AAC standard, and also
including other enhanced forms of spectral band replication processing). This processing applies spectral band replication
tools (sometimes referred to herein as "enhanced SBR tools" or "eSBR tools") of an expanded and enhanced version

EP 4 303 871 A2

5

5

10

15

20

25

30

35

40

45

50

55

of the set of SBR tools described in the MPEG-4 AAC standard. Thus, eSBR (as defined in USAC standard) is an
improvement to SBR (as defined in MPEG-4 AAC standard).
[0025] Herein, we use the expression "enhanced SBR processing" (or "eSBR processing") to denote spectral band
replication processing using at least one eSBR tool (e.g., at least one eSBR tool which is described or mentioned in the
MPEG USAC standard) which is not described or mentioned in the MPEG-4 AAC standard. Examples of such eSBR
tools are harmonic transposition and QMF-patching additional pre-processing or "pre-flattening."
[0026] A harmonic transposer of integer order T maps a sinusoid with frequency ω into a sinusoid with frequency Tω,
while preserving signal duration. Three orders, T = 2, 3, 4, are typically used in sequence to produce each part of the
desired output frequency range using the smallest possible transposition order. If output above the fourth order trans-
position range is required, it may be generated by frequency shifts. When possible, near critically sampled baseband
time domains are created for the processing to minimize computational complexity.
[0027] The harmonic transposer may either be QMF or DFT based. When using the QMF based harmonic transposer,
the bandwidth extension of the core coder time-domain signal is carried out entirely in the QMF domain, using a modified
phase-vocoder structure, performing decimation followed by time stretching for every QMF subband. Transposition using
several transpositions factors (e.g., T = 2, 3, 4) is carried out in a common QMF analysis/synthesis transform stage.
Since the QMF based harmonic transposer does not feature signal adaptive frequency domain oversampling, the cor-
responding flag in the bitstream (sbrOversamplingFlag[ch]) may be ignored.
[0028] When using the DFT based harmonic transposer, the factor 3 and 4 transposers (3rd and 4th order transposers)
are preferably integrated into the factor 2 transposer (2nd order transposer) by means of interpolation to reduce com-
plexity. For each frame (corresponding to coreCoderFrameLength core coder samples), the nominal "full size" transform
size of the transposer is first determined by the signal adaptive frequency domain oversampling flag (sbrOversampling-
Flag[ch]) in the bitstream.
[0029] When sbrPatchingMode==1, indicating that linear transposition is to be used to generate the highband, an
additional step may be introduced to avoid discontinuities in the shape of the spectral envelope of the high frequency
signal being input to the subsequent envelope adjuster. This improves the operation of the subsequent envelope ad-
justment stage, resulting in a highband signal that is perceived to be more stable. The operation of the additional
preprocessing is beneficial for signal types where the coarse spectral envelope of the low band signal being used for
high frequency reconstruction displays large variations in level. However, the value of the bitstream element may be
determined in the encoder by applying any kind of signal dependent classification. The additional pre-processing is
preferably activated through a one bit bitstream element, bs_sbr_preprocessing. When bs_sbr_preprocessing is set to
one, the additional processing is enabled. When bs_sbr_preprocessing is set to zero, the additional pre-processing is
disabled. The additional processing preferable utilizes a preGain curve that is used by the high frequency generator to
scale the lowband, XLow, for each patch. For example, the preGain curve may be calculated according to:

where k0 is the first QMF subband in the master frequency band table and lowEnvSlope is calculated using a function
that computes coefficients of a best fitting polynomial (in a least-squares sense), such as polyfit(). For example,

may be employed (using a third degree polynomial) and where

where x_lowband(k)=[0...k0-1], numTimeSlot is the number of SBR envelope time slots that exist within a frame, RATE
is a constant indicating the number of QMF subband samples per timeslot (e.g., 2), ϕk is a linear prediction filter coefficient
(potentially obtained from the covariance method) and where

[0030] A bitstream generated in accordance with the MPEG USAC standard (sometimes referred to herein as a "USAC

EP 4 303 871 A2

6

5

10

15

20

25

30

35

40

45

50

55

bitstream") includes encoded audio content and typically includes metadata indicative of each type of spectral band
replication processing to be applied by a decoder to decode audio content of the USAC bitstream, and/or metadata
which controls such spectral band replication processing and/or is indicative of at least one characteristic or parameter
of at least one SBR tool and/or eSBR tool to be employed to decode audio content of the USAC bitstream.
[0031] Herein, we use the expression "enhanced SBR metadata" (or "eSBR metadata") to denote metadata indicative
of each type of spectral band replication processing to be applied by a decoder to decode audio content of an encoded
audio bitstream (e.g., a USAC bitstream) and/or which controls such spectral band replication processing, and/or is
indicative of at least one characteristic or parameter of at least one SBR tool and/or eSBR tool to be employed to decode
such audio content, but which is not described or mentioned in the MPEG-4 AAC standard. An example of eSBR metadata
is the metadata (indicative of, or for controlling, spectral band replication processing) which is described or mentioned
in the MPEG USAC standard but not in the MPEG-4 AAC standard. Thus, eSBR metadata herein denotes metadata
which is not SBR metadata, and SBR metadata herein denotes metadata which is not eSBR metadata.
[0032] A USAC bitstream may include both SBR metadata and eSBR metadata. More specifically, a USAC bitstream
may include eSBR metadata which controls the performance of eSBR processing by a decoder, and SBR metadata
which controls the performance of SBR processing by the decoder. In accordance with typical embodiments of the
present invention, eSBR metadata (e.g., eSBR-specific configuration data) is included (in accordance with the present
invention) in an MPEG-4 AAC bitstream (e.g., in the sbr_extension() container at the end of an SBR payload).
[0033] Performance of eSBR processing, during decoding of an encoded bitstream using an eSBR tool set (comprising
at least one eSBR tool), by a decoder regenerates the high frequency band of the audio signal, based on replication of
sequences of harmonics which were truncated during encoding. Such eSBR processing typically adjusts the spectral
envelope of the generated high frequency band and applies inverse filtering, and adds noise and sinusoidal components
in order to recreate the spectral characteristics of the original audio signal.
[0034] In accordance with typical embodiments of the invention, eSBR metadata is included (e.g., a small number of
control bits which are eSBR metadata are included) in one or more of metadata segments of an encoded audio bitstream
(e.g., an MPEG-4 AAC bitstream) which also includes encoded audio data in other segments (audio data segments).
Typically, at least one such metadata segment of each block of the bitstream is (or includes) a fill element (including an
identifier indicating the start of the fill element), and the eSBR metadata is included in the fill element after the identifier.
[0035] FIG. 1 is a block diagram of an exemplary audio processing chain (an audio data processing system), in which
one or more of the elements of the system may be configured in accordance with an embodiment of the present invention.
The system includes the following elements, coupled together as shown: encoder 1, delivery subsystem 2, decoder 3,
and post-processing unit 4. In variations on the system shown, one or more of the elements are omitted, or additional
audio data processing units are included.
[0036] In some implementations, encoder 1 (which optionally includes a pre-processing unit) is configured to accept
PCM (time-domain) samples comprising audio content as input, and to output an encoded audio bitstream (having format
which is compliant with the MPEG-4 AAC standard) which is indicative of the audio content. The data of the bitstream
that are indicative of the audio content are sometimes referred to herein as "audio data" or "encoded audio data." If the
encoder is configured in accordance with a typical embodiment of the present invention, the audio bitstream output from
the encoder includes eSBR metadata (and typically also other metadata) as well as audio data.
[0037] One or more encoded audio bitstreams output from encoder 1 may be asserted to encoded audio delivery
subsystem 2. Subsystem 2 is configured to store and/or deliver each encoded bitstream output from encoder 1. An
encoded audio bitstream output from encoder 1 may be stored by subsystem 2 (e.g., in the form of a DVD or Blu ray
disc), or transmitted by subsystem 2 (which may implement a transmission link or network), or may be both stored and
transmitted by subsystem 2.
[0038] Decoder 3 is configured to decode an encoded MPEG-4 AAC audio bitstream (generated by encoder 1) which
it receives via subsystem 2. In some embodiments, decoder 3 is configured to extract eSBR metadata from each block
of the bitstream, and to decode the bitstream (including by performing eSBR processing using the extracted eSBR
metadata) to generate decoded audio data (e.g., streams of decoded PCM audio samples). In some embodiments,
decoder 3 is configured to extract SBR metadata from the bitstream (but to ignore eSBR metadata included in the
bitstream), and to decode the bitstream (including by performing SBR processing using the extracted SBR metadata)
to generate decoded audio data (e.g., streams of decoded PCM audio samples).Typically, decoder 3 includes a buffer
which stores (e.g., in a non-transitory manner) segments of the encoded audio bitstream received from subsystem 2.
[0039] Post-processing unit 4 of Fig. 1 is configured to accept a stream of decoded audio data from decoder 3 (e.g.,
decoded PCM audio samples), and to perform post processing thereon. Post-processing unit may also be configured
to render the post-processed audio content (or the decoded audio received from decoder 3) for playback by one or more
speakers.
[0040] FIG. 2 is a block diagram of an encoder (100) which is an embodiment of the inventive audio processing unit.
Any of the components or elements of encoder 100 may be implemented as one or more processes and/or one or more
circuits (e.g., ASICs, FPGAs, or other integrated circuits), in hardware, software, or a combination of hardware and

EP 4 303 871 A2

7

5

10

15

20

25

30

35

40

45

50

55

software. Encoder 100 includes encoder 105, stuffer/formatter stage 107, metadata generation stage 106, and buffer
memory 109, connected as shown. Typically also, encoder 100 includes other processing elements (not shown). Encoder
100 is configured to convert an input audio bitstream to an encoded output MPEG-4 AAC bitstream.
[0041] Metadata generator 106 is coupled and configured to generate (and/or pass through to stage 107) metadata
(including eSBR metadata and SBR metadata) to be included by stage 107 in the encoded bitstream to be output from
encoder 100.
[0042] Encoder 105 is coupled and configured to encode (e.g., by performing compression thereon) the input audio
data, and to assert the resulting encoded audio to stage 107 for inclusion in the encoded bitstream to be output from
stage 107.
[0043] Stage 107 is configured to multiplex the encoded audio from encoder 105 and the metadata (including eSBR
metadata and SBR metadata) from generator 106 to generate the encoded bitstream to be output from stage 107,
preferably so that the encoded bitstream has format as specified by one of the embodiments of the present invention.
[0044] Buffer memory 109 is configured to store (e.g., in a non-transitory manner) at least one block of the encoded
audio bitstream output from stage 107, and a sequence of the blocks of the encoded audio bitstream is then asserted
from buffer memory 109 as output from encoder 100 to a delivery system.
[0045] FIG. 3 is a block diagram of a system including decoder (200) which is an embodiment of the inventive audio
processing unit, and optionally also a post-processor (300) coupled thereto. Any of the components or elements of
decoder 200 and post-processor 300 may be implemented as one or more processes and/or one or more circuits (e.g.,
ASICs, FPGAs, or other integrated circuits), in hardware, software, or a combination of hardware and software. Decoder
200 comprises buffer memory 201, bitstream payload deformatter (parser) 205, audio decoding subsystem 202 (some-
times referred to as a "core" decoding stage or "core" decoding subsystem), eSBR processing stage 203, and control
bit generation stage 204, connected as shown. Typically also, decoder 200 includes other processing elements (not
shown).
[0046] Buffer memory (buffer) 201 stores (e.g., in a non-transitory manner) at least one block of an encoded MPEG-
4 AAC audio bitstream received by decoder 200. In operation of decoder 200, a sequence of the blocks of the bitstream
is asserted from buffer 201 to deformatter 205.
[0047] In variations on the Fig. 3 embodiment (or the Fig. 4 embodiment to be described), an APU which is not a
decoder (e.g., APU 500 of FIG. 6) includes a buffer memory (e.g., a buffer memory identical to buffer 201) which stores
(e.g., in a non-transitory manner) at least one block of an encoded audio bitstream (e.g., an MPEG-4 AAC audio bitstream)
of the same type received by buffer 201 of Fig. 3 or Fig. 4 (i.e., an encoded audio bitstream which includes eSBR metadata).
[0048] With reference again to Fig. 3, deformatter 205 is coupled and configured to demultiplex each block of the
bitstream to extract SBR metadata (including quantized envelope data) and eSBR metadata (and typically also other
metadata) therefrom, to assert at least the eSBR metadata and the SBR metadata to eSBR processing stage 203, and
typically also to assert other extracted metadata to decoding subsystem 202 (and optionally also to control bit generator
204). Deformatter 205 is also coupled and configured to extract audio data from each block of the bitstream, and to
assert the extracted audio data to decoding subsystem (decoding stage) 202.
[0049] The system of FIG. 3 optionally also includes post-processor 300. Post-processor 300 includes buffer memory
(buffer) 301 and other processing elements (not shown) including at least one processing element coupled to buffer
301. Buffer 301 stores (e.g., in a non-transitory manner) at least one block (or frame) of the decoded audio data received
by post-processor 300 from decoder 200. Processing elements of post-processor 300 are coupled and configured to
receive and adaptively process a sequence of the blocks (or frames) of the decoded audio output from buffer 301, using
metadata output from decoding subsystem 202 (and/or deformatter 205) and/or control bits output from stage 204 of
decoder 200.
[0050] Audio decoding subsystem 202 of decoder 200 is configured to decode the audio data extracted by parser 205
(such decoding may be referred to as a "core" decoding operation) to generate decoded audio data, and to assert the
decoded audio data to eSBR processing stage 203. The decoding is performed in the frequency domain and typically
includes inverse quantization followed by spectral processing. Typically, a final stage of processing in subsystem 202
applies a frequency domain-to-time domain transform to the decoded frequency domain audio data, so that the output
of subsystem is time domain, decoded audio data. Stage 203 is configured to apply SBR tools and eSBR tools indicated
by the eSBR metadata and the eSBR (extracted by parser 205) to the decoded audio data (i.e., to perform SBR and
eSBR processing on the output of decoding subsystem 202 using the SBR and eSBR metadata) to generate the fully
decoded audio data which is output (e.g., to post-processor 300) from decoder 200. Typically, decoder 200 includes a
memory (accessible by subsystem 202 and stage 203) which stores the deformatted audio data and metadata output
from deformatter 205, and stage 203 is configured to access the audio data and metadata (including SBR metadata and
eSBR metadata) as needed during SBR and eSBR processing. The SBR processing and eSBR processing in stage
203 may be considered to be post-processing on the output of core decoding subsystem 202. Optionally, decoder 200
also includes a final upmixing subsystem (which may apply parametric stereo ("PS") tools defined in the MPEG-4 AAC
standard, using PS metadata extracted by deformatter 205 and/or control bits generated in subsystem 204) which is

EP 4 303 871 A2

8

5

10

15

20

25

30

35

40

45

50

55

coupled and configured to perform upmixing on the output of stage 203 to generated fully decoded, upmixed audio which
is output from decoder 200. Alternatively, post-processor 300 is configured to perform upmixing on the output of decoder
200 (e.g., using PS metadata extracted by deformatter 205 and/or control bits generated in subsystem 204).
[0051] In response to metadata extracted by deformatter 205, control bit generator 204 may generate control data,
and the control data may be used within decoder 200 (e.g., in a final upmixing subsystem) and/or asserted as output of
decoder 200 (e.g., to post-processor 300 for use in post-processing). In response to metadata extracted from the input
bitstream (and optionally also in response to control data), stage 204 may generate (and assert to post-processor 300)
control bits indicating that decoded audio data output from eSBR processing stage 203 should undergo a specific type
of post-processing. In some implementations, decoder 200 is configured to assert metadata extracted by deformatter
205 from the input bitstream to post-processor 300, and post-processor 300 is configured to perform post-processing
on the decoded audio data output from decoder 200 using the metadata.
[0052] FIG. 4 is a block diagram of an audio processing unit ("APU") (210) which is another embodiment of the inventive
audio processing unit. APU 210 is a legacy decoder which is not configured to perform eSBR processing. Any of the
components or elements of APU 210 may be implemented as one or more processes and/or one or more circuits (e.g.,
ASICs, FPGAs, or other integrated circuits), in hardware, software, or a combination of hardware and software. APU
210 comprises buffer memory 201, bitstream payload deformatter (parser) 215, audio decoding subsystem 202 (some-
times referred to as a "core" decoding stage or "core" decoding subsystem), and SBR processing stage 213, connected
as shown. Typically also, APU 210 includes other processing elements (not shown). APU 210 may represent, for example,
an audio encoder, decoder or transcoder.
[0053] Elements 201 and 202 of APU 210 are identical to the identically numbered elements of decoder 200 (of Fig.
3) and the above description of them will not be repeated. In operation of APU 210, a sequence of blocks of an encoded
audio bitstream (an MPEG-4 AAC bitstream) received by APU 210 is asserted from buffer 201 to deformatter 215.
[0054] Deformatter 215 is coupled and configured to demultiplex each block of the bitstream to extract SBR metadata
(including quantized envelope data) and typically also other metadata therefrom, but to ignore eSBR metadata that may
be included in the bitstream in accordance with any embodiment of the present invention. Deformatter 215 is configured
to assert at least the SBR metadata to SBR processing stage 213. Deformatter 215 is also coupled and configured to
extract audio data from each block of the bitstream, and to assert the extracted audio data to decoding subsystem
(decoding stage) 202.
[0055] Audio decoding subsystem 202 of decoder 200 is configured to decode the audio data extracted by deformatter
215 (such decoding may be referred to as a "core" decoding operation) to generate decoded audio data, and to assert
the decoded audio data to SBR processing stage 213. The decoding is performed in the frequency domain. Typically,
a final stage of processing in subsystem 202 applies a frequency domain-to-time domain transform to the decoded
frequency domain audio data, so that the output of subsystem is time domain, decoded audio data. Stage 213 is configured
to apply SBR tools (but not eSBR tools) indicated by the SBR metadata (extracted by deformatter 215) to the decoded
audio data (i.e., to perform SBR processing on the output of decoding subsystem 202 using the SBR metadata) to
generate the fully decoded audio data which is output (e.g., to post-processor 300) from APU 210. Typically, APU 210
includes a memory (accessible by subsystem 202 and stage 213) which stores the deformatted audio data and metadata
output from deformatter 215, and stage 213 is configured to access the audio data and metadata (including SBR metadata)
as needed during SBR processing. The SBR processing in stage 213 may be considered to be post-processing on the
output of core decoding subsystem 202. Optionally, APU 210 also includes a final upmixing subsystem (which may apply
parametric stereo ("PS") tools defined in the MPEG-4 AAC standard, using PS metadata extracted by deformatter 215)
which is coupled and configured to perform upmixing on the output of stage 213 to generated fully decoded, upmixed
audio which is output from APU 210. Alternatively, a post-processor is configured to perform upmixing on the output of
APU 210 (e.g., using PS metadata extracted by deformatter 215 and/or control bits generated in APU 210).
[0056] Various implementations of encoder 100, decoder 200, and APU 210 are configured to perform different em-
bodiments of the inventive method.
[0057] In accordance with some embodiments, eSBR metadata is included (e.g., a small number of control bits which
are eSBR metadata are included) in an encoded audio bitstream (e.g., an MPEG-4 AAC bitstream), such that legacy
decoders (which are not configured to parse the eSBR metadata, or to use any eSBR tool to which the eSBR metadata
pertains) can ignore the eSBR metadata but nevertheless decode the bitstream to the extent possible without use of
the eSBR metadata or any eSBR tool to which the eSBR metadata pertains, typically without any significant penalty in
decoded audio quality. However, eSBR decoders configured to parse the bitstream to identify the eSBR metadata and
to use at least one eSBR tool in response to the eSBR metadata, will enjoy the benefits of using at least one such eSBR
tool. Therefore, embodiments of the invention provide a means for efficiently transmitting enhanced spectral band rep-
lication (eSBR) control data or metadata in a backward-compatible fashion.
[0058] Typically, the eSBR metadata in the bitstream is indicative of (e.g., is indicative of at least one characteristic
or parameter of) one or more of the following eSBR tools (which are described in the MPEG USAC standard, and which
may or may not have been applied by an encoder during generation of the bitstream):

EP 4 303 871 A2

9

5

10

15

20

25

30

35

40

45

50

55

• Harmonic transposition; and
• QMF-patching additional pre-processing (pre-flattening).

[0059] For example, the eSBR metadata included in the bitstream may be indicative of values of the parameters
(described in the MPEG USAC standard and in the present disclosure): sbrPatchingMode[ch], sbrOversamplingFlag[ch],
sbrPitchInBins[ch], sbrPitchInBins[ch], and bs_sbr_preprocessing.
[0060] Herein, the notation X[ch], where X is some parameter, denotes that the parameter pertains to channel ("ch")
of audio content of an encoded bitstream to be decoded. For simplicity, we sometimes omit the expression [ch], and
assume the relevant parameter pertains to a channel of audio content.
[0061] Herein, the notation X[ch][env], where X is some parameter, denotes that the parameter pertains to SBR
envelope ("env") of channel ("ch") of audio content of an encoded bitstream to be decoded. For simplicity, we sometimes
omit the expressions [env] and [ch], and assume the relevant parameter pertains to an SBR envelope of a channel of
audio content.
[0062] During decoding of an encoded bitstream, performance of harmonic transposition during an eSBR processing
stage of the decoding (for each channel, "ch", of audio content indicated by the bitstream) is controlled by the following
eSBR metadata parameters: sbrPatchingMode[ch]: sbrOversamplingFlag[ch]; sbrPitchInBinsFlag[ch]; and sbrPitchIn-
Bins[ch].
[0063] The value "sbrPatchingMode[ch]" indicates the transposer type used in eSBR: sbrPatchingMode[ch] = 1 indi-
cates linear transposition patching as described in Section 4.6.18 of the MPEG-4 AAC standard (as used with either
high-quality SBR or low-power SBR); sbrPatchingMode[ch] = 0 indicates harmonic SBR patching as described in Section
7.5.3 or 7.5.4 of the MPEG USAC standard.
[0064] The value "sbrOversamplingFlag[ch]" indicates the use of signal adaptive frequency domain oversampling in
eSBR in combination with the DFT based harmonic SBR patching as described in Section 7.5.3 of the MPEG USAC
standard. This flag controls the size of the DFTs that are utilized in the transposer: 1 indicates signal adaptive frequency
domain oversampling enabled as described in Section 7.5.3.1 of the MPEG USAC standard; 0 indicates signal adaptive
frequency domain oversampling disabled as described in Section 7.5.3.1 of the MPEG USAC standard.
[0065] The value "sbrPitchInBinsFlag[ch]" controls the interpretation of the sbrPitchInBins[ch] parameter: 1 indicates
that the value in sbrPitchInBins[ch] is valid and greater than zero; 0 indicates that the value of sbrPitchInBins[ch] is set
to zero.
[0066] The value "sbrPitchInBins[ch]" controls the addition of cross product terms in the SBR harmonic transposer.
The value sbrPitchinBins[ch] is an integer value in the range [0,127] and represents the distance measured in frequency
bins for a 1536-line DFT acting on the sampling frequency of the core coder.
[0067] In the case that an MPEG-4 AAC bitstream is indicative of an SBR channel pair whose channels are not coupled
(rather than a single SBR channel), the bitstream is indicative of two instances of the above syntax (for harmonic or non-
harmonic transposition), one for each channel of the sbr channel_pair element().
[0068] The harmonic transposition of the eSBR tool typically improves the quality of decoded musical signals at
relatively low cross over frequencies. Non-harmonic transposition (that is, legacy spectral patching) typically improves
speech signals. Hence, a starting point in the decision as to which type of transposition is preferable for encoding specific
audio content is to select the transposition method depending on speech/music detection with harmonic transposition
be employed on the musical content and spectral patching on the speed content.
[0069] Performance of pre-flattening during eSBR processing is controlled by the value of a one-bit eSBR metadata
parameter known as "bs_sbr_preprocessing", in the sense that pre-flattening is either performed or not performed
depending on the value of this single bit. When the SBR QMF-patching algorithm, as described in Section 4.6.18.6.3 of
the MPEG-4 AAC standard, is used, the step of pre-flattening may be performed (when indicated by the
"bs_sbr_preprocessing" parameter) in an effort to avoid discontinuities in the shape of the spectral envelope of a high
frequency signal being input to a subsequent envelope adjuster (the envelope adjuster performs another stage of the
eSBR processing). The pre-flattening typically improves the operation of the subsequent envelope adjustment stage,
resulting in a highband signal that is perceived to be more stable.
[0070] The overall bitrate requirement for including in an MPEG-4 AAC bitstream eSBR metadata indicative of the
above-mentioned eSBR tools (harmonic transposition and pre-flattening) is expected to be on the order of a few hundreds
of bits per second because only the differential control data needed to perform eSBR processing is transmitted in
accordance with some embodiments of the invention. Legacy decoders can ignore this information because it is included
in a backward compatible manner (as will be explained later). Therefore, the detrimental effect on bitrate associated
with of inclusion of eSBR metadata is negligible, for a number of reasons, including the following:

• The bitrate penalty (due to including the eSBR metadata) is a very small fraction of the total bitrate because only
the differential control data needed to perform eSBR processing is transmitted (and not a simulcast of the SBR
control data); and

EP 4 303 871 A2

10

5

10

15

20

25

30

35

40

45

50

55

• The tuning of SBR related control information does not typically depend of the details of the transposition. Examples
of when the control data does depend on the operation of the transposer are discussed later in this application.

[0071] Thus, embodiments of the invention provide a means for efficiently transmitting enhanced spectral band rep-
lication (eSBR) control data or metadata in a backward-compatible fashion. This efficient transmission of the eSBR
control data reduces memory requirements in decoders, encoders, and transcoders employing aspects of the invention,
while having no tangible adverse effect on bitrate. Moreover, the complexity and processing requirements associated
with performing eSBR in accordance with embodiments of the invention are also reduced because the SBR data needs
to be processed only once and not simulcast, which would be the case if eSBR was treated as a completely separate
object type in MPEG-4 AAC instead of being integrated into the MPEG-4 AAC codec in a backward-compatible manner.
[0072] Next, with reference to FIG. 7, we describe elements of a block ("raw_data_block") of an MPEG-4 AAC bitstream
in which eSBR metadata is included in accordance with some embodiments of the present invention. FIG. 7 is a diagram
of a block (a "raw_data_block") of the MPEG-4 AAC bitstream, showing some of the segments thereof.
[0073] A block of an MPEG-4 AAC bitstream may include at least one "single_channel_element()" (e.g., the single
channel element shown in Fig. 7), and/or at least one "channel_pair_element()" (not specifically shown in Fig. 7 although
it may be present), including audio data for an audio program. The block may also include a number of "fill_elements"
(e.g., fill element 1 and/or fill element 2 of Fig. 7) including data (e.g., metadata) related to the program. Each
"single_channel_element()" includes an identifier (e.g., "ID1" of Fig. 7) indicating the start of a single channel element,
and can include audio data indicative of a different channel of a multi-channel audio program. Each "channel_pair_element
includes an identifier (not shown in Fig. 7) indicating the start of a channel pair element, and can include audio data
indicative of two channels of the program.
[0074] A fill_element (referred to herein as a fill element) of an MPEG-4 AAC bitstream includes an identifier ("ID2" of
Fig. 7) indicating the start of a fill element, and fill data after the identifier. The identifier ID2 may consist of a three bit
unsigned integer transmitted most significant bit first ("uimsbf") having a value of 0x6. The fill data can include an
extension_payload() element (sometimes referred to herein as an extension payload) whose syntax is shown in Table
4.57 of the MPEG-4 AAC standard. Several types of extension payloads exist and are identified through the
"extension_type" parameter, which is a four bit unsigned integer transmitted most significant bit first ("uimsbf").
[0075] The fill data (e.g., an extension payload thereof) can include a header or identifier (e.g., "header1" of Fig. 7)
which indicates a segment of fill data which is indicative of an SBR object (i.e., the header initializes an "SBR object"
type, referred to as sbr_extension_data() in the MPEG-4 AAC standard). For example, a spectral band replication (SBR)
extension payload is identified with the value of ’1101’ or ‘1110’ for the extension_type field in the header, with the
identifier ‘1101’ identifying an extension payload with SBR data and ‘1110’ identifying and extension payload with SBR
data with a Cyclic Redundancy Check (CRC) to verify the correctness of the SBR data..
[0076] When the header (e.g., the extension_type field) initializes an SBR object type, SBR metadata (sometimes
referred to herein as "spectral band replication data," and referred to as sbr_data() in the MPEG-4 AAC standard) follows
the header, and at least one spectral band replication extension element (e.g., the "SBR extension element" of fill element
1 of Fig. 7) can follow the SBR metadata. Such a spectral band replication extension element (a segment of the bitstream)
is referred to as an "sbr_extension()" container in the MPEG-4 AAC standard. A spectral band replication extension
element optionally includes a header (e.g., "SBR extension header" of fill element 1 of Fig. 7).
[0077] The MPEG-4 AAC standard contemplates that a spectral band replication extension element can include PS
(parametric stereo) data for audio data of a program. The MPEG-4 AAC standard contemplates that when the header
of a fill element (e.g., of an extension payload thereof) initializes an SBR object type (as does "header1" of Fig. 7) and
a spectral band replication extension element of the fill element includes PS data, the fill element (e.g., the extension
payload thereof) includes spectral band replication data, and a "bs_extension_id" parameter whose value (i.e.,
bs_extension_id = 2) indicates that PS data is included in a spectral band replication extension element of the fill element.
[0078] In accordance with some embodiments of the present invention, eSBR metadata (e.g., a flag indicative of
whether enhanced spectral band replication (eSBR) processing is to be performed on audio content of the block) is
included in a spectral band replication extension element of a fill element. For example, such a flag is indicated in fill
element 1 of Fig. 7, where the flag occurs after the header (the "SBR extension header" of fill element 1) of "SBR
extension element" of fill element 1. Optionally, such a flag and additional eSBR metadata are included in a spectral
band replication extension element after the spectral band replication extension element’s header (e.g., in the SBR
extension element of fill element 1 in Fig. 7, after the SBR extension header). In accordance with some embodiments
of the present invention, a fill element which includes eSBR metadata also includes a "bs_extension_id" parameter
whose value (e.g., bs_extension_id = 3) indicates that eSBR metadata is included in the fill element and that eSBR
processing is to be performed on audio content of the relevant block.
[0079] In accordance with some embodiments of the invention, eSBR metadata is included in a fill element (e.g., fill
element 2 of Fig. 7) of an MPEG-4 AAC bitstream other than in a spectral band replication extension element (SBR
extension element) of the fill element. This is because fill elements containing an extension_payload() with SBR data

EP 4 303 871 A2

11

5

10

15

20

25

30

35

40

45

50

55

or SBR data with a CRC do not contain any other extension payload of any other extension type. Therefore, in embod-
iments where eSBR metadata is stored its own extension payload, a separate fill element is used to store the eSBR
metadata. Such a fill element includes an identifier (e.g., "ID2" of Fig. 7) indicating the start of a fill element, and fill data
after the identifier. The fill data can include an extension_payload() element (sometimes referred to herein as an extension
payload) whose syntax is shown in Table 4.57 of the MPEG-4 AAC standard. The fill data (e.g., an extension payload
thereof) includes a header (e.g., "header2" of fill element 2 of Fig. 7) which is indicative of an eSBR object (i.e., the
header initializes an enhanced spectral band replication (eSBR) object type), and the fill data (e.g., an extension payload
thereof) includes eSBR metadata after the header. For example, fill element 2 of Fig. 7 includes such a header ("header2")
and also includes, after the header, eSBR metadata (i.e., the "flag" in fill element 2, which is indicative of whether
enhanced spectral band replication (eSBR) processing is to be performed on audio content of the block). Optionally,
additional eSBR metadata is also included in the fill data of fill element 2 of Fig. 7, after header2. In the embodiments
being described in the present paragraph, the header (e.g., header2 of Fig. 7) has an identification value which is not
one of the conventional values specified in Table 4.57 of the MPEG-4 AAC standard, and is instead indicative of an
eSBR extension payload (so that the header’s extension_type field indicates that the fill data includes eSBR metadata).
[0080] In a first class of embodiments, the invention is an audio processing unit (e.g., a decoder), comprising:

a memory (e.g., buffer 201 of Fig. 3 or 4) configured to store at least one block of an encoded audio bitstream (e.g.,
at least one block of an MPEG-4 AAC bitstream);
a bitstream payload deformatter (e.g., element 205 of Fig. 3 or element 215 of Fig. 4) coupled to the memory and
configured to demultiplex at least one portion of said block of the bitstream; and
a decoding subsystem (e.g., elements 202 and 203 of Fig. 3, or elements 202 and 213 of Fig. 4), coupled and
configured to decode at least one portion of audio content of said block of the bitstream, wherein the block includes:
a fill element, including an identifier indicating a start of the fill element (e.g., the "id_syn_ele" identifier having value
0x6, of Table 4.85 of the MPEG-4 AAC standard), and fill data after the identifier, wherein the fill data includes:
at least one flag identifying whether enhanced spectral band replication (eSBR) processing is to be performed on
audio content of the block (e.g., using spectral band replication data and eSBR metadata included in the block).

[0081] The flag is eSBR metadata, and an example of the flag is the sbrPatchingMode flag. Another example of the
flag is the harmonicSBR flag. Both of these flags indicate whether a base form of spectral band replication or an enhanced
form of spectral replication is to be performed on the audio data of the block. The base form of spectral replication is
spectral patching, and the enhanced form of spectral band replication is harmonic transposition.
[0082] In some embodiments, the fill data also includes additional eSBR metadata (i.e., eSBR metadata other than
the flag).
[0083] The memory may be a buffer memory (e.g., an implementation of buffer 201 of Fig. 4) which stores (e.g., in a
non-transitory manner) the at least one block of the encoded audio bitstream.
[0084] It is estimated that the complexity of performance of eSBR processing (using the eSBR harmonic transposition
and pre-flattening) by an eSBR decoder during decoding of an MPEG-4 AAC bitstream which includes eSBR metadata
(indicative of these eSBR tools) would be as follows (for typical decoding with the indicated parameters):

• Harmonic transposition (16 kbps, 14400/28800 Hz)

+ DFT based: 3.68 WMOPS (weighted million operations per second);
+ QMF based: 0.98 WMOPS;

• QMF-patching pre-processing (pre-flattening): 0.1 WMOPS.

It is known that DFT based transposition typically performs better than the QMF based transposition for transients.
[0085] In accordance with some embodiments of the present invention, a fill element (of an encoded audio bitstream)
which includes eSBR metadata also includes a parameter (e.g., a "bs_extension_id" parameter) whose value (e.g.,
bs_extension_id = 3) signals that eSBR metadata is included in the fill element and that eSBR processing is to be
performed on audio content of the relevant block, and/or or a parameter (e.g., the same "bs_extension_id" parameter)
whose value (e.g., bs_extension_id = 2) signals that an sbr_extension() container of the fill element includes PS data.
For example, as indicated in Table 1 below, such a parameter having the value bs_extension_id = 2 may signal that an
sbr_extension() container of the fill element includes PS data, and such a parameter having the value bs_extension_id
= 3 may signal that an sbr_extension() container of the fill element includes eSBR metadata:

EP 4 303 871 A2

12

5

10

15

20

25

30

35

40

45

50

55

[0086] In accordance with some embodiments of the invention, the syntax of each spectral band replication extension
element which includes eSBR metadata and/or PS data is as indicated in Table 2 below (in which "sbr_extension()"
denotes a container which is the spectral band replication extension element, "bs_extension_id" is as described in Table
1 above, "ps_data" denotes PS data, and "esbr_data" denotes eSBR metadata):

In an exemplary embodiment, the esbr_data() referred to in Table 2 above is indicative of values of the following metadata
parameters:

1. the one-bit metadata parameter, "bs_sbr_preprocessing"; and
2. for each channel ("ch") of audio content of the encoded bitstream to be decoded, each of the above-described
parameters: "sbrPatchingMode[ch]"; "sbrOversamplingFlag[ch]"; "sbrPitchInBinsFlag[ch]"; and "sbrPitchInBins[ch]".

[0087] For example, in some embodiments, the esbr_data() may have the syntax indicated in Table 3, to indicate
these metadata parameters:

Table 1

bs_extension_id Meaning

0 Reserved

1 Reserved

2 EXTENSION_ID_PS

3 EXTENSION_ID_ESBR

Table 2

sbr_extension(bs_extension_id, num_bits_left)

{

switch (bs_extension_id) {

case EXTENSION_ID_PS:

num_bits_left -= ps_data(); Note 1

break;

case EXTENSION_ID_ESBR:

num_bits_left -= esbr_data(); Note 2

break;

default:

bs_fill_bits;

num_bits_left = 0;

break;

}

}

Note 1: ps_data() returns the number of bits read.

Note 2: esbr_data() returns the number of bits read.

Table 3

Syntax No. of bits

esbr_data(id_aac, bs_coupling)

{

EP 4 303 871 A2

13

5

10

15

20

25

30

35

40

45

50

55

(continued)

Syntax No. of bits

bs_sbr_preprocessing; 1

if (id_aac == ID_SCE) {

if (sbrPatchingMode[0] == 0) { 1

sbrOversamplingFlag[0]; 1

if (sbrPitch)nBinsFlag[0]) 1

sbrPitchInBins[0]; 7

else

sbrPitchInBins[0] = 0;

} else {

sbrOversamplingFlag[0] = 0;

sbrPitchInBins[0] = 0;

}

} else if (id_aac == ID_CPE) {

If (bs_coupling) {

if (sbrPatchingMode[0,1] == 0) { 1

sbrOversamplingFlag[0,1]; 1

if (sbrPitchInBinsFlag[0,1]) 1

sbrPitchInBins[0,1]; 7

else

sbrPitchInBins[0,1] = 0;

} else {

sbrOversamplingFlag[0,1] = 0;

sbrPitchlnBins[0,1] = 0;

}

} else { /* bs_coupling == 0 */

if (sbrPatchingMode[0] == 0) { 1

sbrOversamplingFlag[0]; 1

if (sbrPitchInBinsFlag[0]) 1

sbrPitchInBins[0]; 7

else

sbrPitchInBins[0] = 0;

} else {

sbrOversamplingFlag[0] = 0;

sbrPitchInBins[0] = 0;

}

if (sbrPatchingMode[1] == 0) { 1

sbrOversamplingFlag[1]; 1

if (sbrPitchInBinsFlag[1]) 1

EP 4 303 871 A2

14

5

10

15

20

25

30

35

40

45

50

55

[0088] The above syntax enables an efficient implementation of an enhanced form of spectral band replication, such
as harmonic transposition, as an extension to a legacy decoder. Specifically, the eSBR data of Table 3 includes only
those parameters needed to perform the enhanced form of spectral band replication that are not either already supported
in the bitstream or directly derivable from parameters already supported in the bitstream. All other parameters and
processing data needed to perform the enhanced form of spectral band replication are extracted from pre-existing
parameters in already-defined locations in the bitstream.
[0089] For example, an MPEG-4 HE-AAC or HE-AAC v2 compliant decoder may be extended to include an enhanced
form of spectral band replication, such as harmonic transposition. This enhanced form of spectral band replication is in
addition to the base form of spectral band replication already supported by the decoder. In the context of an MPEG-4
HE-AAC or HE-AAC v2 compliant decoder, this base form of spectral band replication is the QMF spectral patching SBR
tool as defined in Section 4.6.18 of the MPEG-4 AAC Standard.
[0090] When performing the enhanced form of spectral band replication, an extended HE-AAC decoder may reuse
many of the bitstream parameters already included in the SBR extension payload of the bitstream. The specific parameters
that may be reused include, for example, the various parameters that determine the master frequency band table. These
parameters include bs_start_freq (parameter that determines the start of master frequency table parameter),
bs_stop_freq (parameter that determines the stop of master frequency table), bs_freq_scale (parameter that determines
the number of frequency bands per octave), and bs_alter_scale (parameter that alters the scale of the frequency bands).
The parameters that may be reused also include parameters that determine the noise band table (bs_noise_bands) and
the limiter band table parameters (bs_limiter_bands). Accordingly, in various embodiments, at least some of the equivalent
parameters specified in the USAC standard are omitted from the bitstream, thereby reducing control overhead in the
bitstream. Typically, where a parameter specified in the AAC standard has an equivalent parameter specified in the
USAC standard, the equivalent parameter specified in the USAC standard has the same name as the parameter specified
in the AAC standard, e.g. the envelope scalefactor EOrigMapped. However, the equivalent parameter specified in the
USAC standard typically has a different value, which is "tuned" for the enhanced SBR processing defined in the USAC
standard rather than for the SBR processing defined in the AAC standard.
[0091] In order to improve the subjective quality for audio content with harmonic frequency structure and strong tonal
characteristics, in particular at low bitrates, activation of enhanced SBR is recommended. The values of the corresponding
bitstream element (i.e. esbr_data()), controlling these tools, may be determined in the encoder by applying a signal
dependent classification mechanism. Generally, the usage of the harmonic patching method (sbrPatchingMode == 1)
is preferable for coding music signals at very low bitrates, where the core codec may be considerably limited in audio
bandwidth. This is especially true if these signals include a pronounced harmonic structure. Contrarily, the usage of the
regular SBR patching method is preferred for speech and mixed signals, since it provides a better preservation of the
temporal structure in speech.
[0092] In order to improve the performance of the harmonic transposer, a pre-processing step can be activated
(bs_sbr_preprocessing == 1) that strives to avoid the introduction of spectral discontinuities of the signal going in to the

(continued)

Syntax No. of bits

sbrPitchInBins[1]; 7

else

sbrPitchlnBins[1] = 0;

} else {

sbrOversamplingFlag[1] = 0;

sbrPitchlnBins[1] = 0;

}

}

}

}

Note: bs_sbr_preprocessing is defined as described in section 6.2.12 of ISO/IEC 23003-3:2012. sbrPatchingMode
[ch], sbrOversamplingFlag[ch], sbrPitchInBinsFlag[ch] and sbrPitchInBins[ch] are defined as described in section 7.5
of ISO/IEC 23003-3:2012.

EP 4 303 871 A2

15

5

10

15

20

25

30

35

40

45

50

55

subsequent envelope adjuster. The operation of the tool is beneficial for signal types where the coarse spectral envelope
of the low band signal being used for high frequency reconstruction displays large variations in level.
[0093] In order to improve the transient response of the harmonic SBR patching, signal adaptive frequency domain
oversampling can be applied (sbrOversamplingFlag == 1). Since signal adaptive frequency domain oversampling in-
creases the computational complexity of the transposer, but only brings benefits for frames which contain transients,
the use of this tool is controlled by the bitstream element, which is transmitted once per frame and per independent SBR
channel.
[0094] A decoder operating in the proposed enhanced SBR mode typically needs to be able to switch between legacy
and enhanced SBR patching. Therefore, delay may be introduced which can be as long as the duration of one core
audio frame, depending on decoder setup. Typically, the delay for both legacy and enhanced SBR patching will be similar.
[0095] In addition to the numerous parameters, other data elements may also be reused by an extended HE-AAC
decoder when performing an enhanced form of spectral band replication in accordance with embodiments of the invention.
For example, the envelope data and noise floor data may also be extracted from the bs_data_env (envelope scalefactors)
and bs_noise_env (noise floor scalefactors) data and used during the enhanced form of spectral band replication.
[0096] In essence, these embodiments exploit the configuration parameters and envelope data already supported by
a legacy HE-AAC or HE-AAC v2 decoder in the SBR extension payload to enable an enhanced form of spectral band
replication requiring as little extra transmitted data as possible. The metadata was originally tuned for a base form of
HFR (e.g., the spectral translation operation of SBR), but in accordance with embodiments, is used for an enhanced
form of HFR (e.g., the harmonic transposition of eSBR). As previously discussed, the metadata generally represents
operating parameters (e.g., envelope scale factors, noise floor scale factors, time/frequency grid parameters, sinusoid
addition information, variable cross over frequency/band, inverse filtering mode, envelope resolution, smoothing mode,
frequency interpolation mode) tuned and intended to be used with the base form of HFR (e.g., linear spectral translation).
However, this metadata, combined with additional metadata parameters specific to the enhanced form of HFR (e.g.,
harmonic transposition), may be used to efficiently and effectively process the audio data using the enhanced form of HFR.
[0097] Accordingly, extended decoders that support an enhanced form of spectral band replication may be created
in a very efficient manner by relying on already defined bitstream elements (for example, those in the SBR extension
payload) and adding only those parameters needed to support the enhanced form of spectral band replication (in a fill
element extension payload). This data reduction feature combined with the placement of the newly added parameters
in a reserved data field, such as an extension container, substantially reduces the barriers to creating a decoder that
supports an enhanced form of spectral band replication by ensuring that the bitstream is backwards-compatible with
legacy decoder not supporting the enhanced form of spectral band replication. It will be appreciated that the reserved
data field is a backward-compatible data field, which is to say that it is a data field which is already supported by earlier
decoders, such as legacy HE-AAC or HE-AAC v2 decoders. Similarly, the extension container is backward-compatible,
which is to say that it is an extension container which is already supported by earlier decoders, such as legacy HE-AAC
or HE-AAC v2 decoders.
[0098] In Table 3, the number in the right column indicates the number of bits of the corresponding parameter in the
left column.
[0099] In some embodiments, the SBR object type defined in MPEG-4 AAC is updated to contain the SBR-Tool and
aspects of the enhanced SBR (eSBR) Tool as signaled in the SBR extension element (bs_extension_id==
EXTENSION_ID_ESBR). If a decoder detects this SBR extension element, the decoder employs the signaled aspects
of the enhanced SBR Tool.
[0100] In some embodiments, the invention is a method including a step of encoding audio data to generate an encoded
bitstream (e.g., an MPEG-4 AAC bitstream), including by including eSBR metadata in at least one segment of at least
one block of the encoded bitstream and audio data in at least one other segment of the block. In typical embodiments,
the method includes a step of multiplexing the audio data with the eSBR metadata in each block of the encoded bitstream.
In typical decoding of the encoded bitstream in an eSBR decoder, the decoder extracts the eSBR metadata from the
bitstream (including by parsing and demultiplexing the eSBR metadata and the audio data) and uses the eSBR metadata
to process the audio data to generate a stream of decoded audio data.
[0101] Another aspect of the invention is an eSBR decoder configured to perform eSBR processing (e.g., using at
least one of the eSBR tools known as harmonic transposition or pre-flattening) during decoding of an encoded audio
bitstream (e.g., an MPEG-4 AAC bitstream) which does not include eSBR metadata. An example of such a decoder will
be described with reference to Fig. 5.
[0102] The eSBR decoder (400) of Fig. 5 includes buffer memory 201 (which is identical to memory 201 of Figs. 3
and 4), bitstream payload deformatter 215 (which is identical to deformatter 215 of Fig. 4), audio decoding subsystem
202 (sometimes referred to as a "core" decoding stage or "core" decoding subsystem, and which is identical to core
decoding subsystem 202 of Fig. 3), eSBR control data generation subsystem 401, and eSBR processing stage 203
(which is identical to stage 203 of Fig. 3), connected as shown. Typically also, decoder 400 includes other processing
elements (not shown).

EP 4 303 871 A2

16

5

10

15

20

25

30

35

40

45

50

55

[0103] In operation of decoder 400, a sequence of blocks of an encoded audio bitstream (an MPEG-4 AAC bitstream)
received by decoder 400 is asserted from buffer 201 to deformatter 215.
[0104] Deformatter 215 is coupled and configured to demultiplex each block of the bitstream to extract SBR metadata
(including quantized envelope data) and typically also other metadata therefrom. Deformatter 215 is configured to assert
at least the SBR metadata to eSBR processing stage 203. Deformatter 215 is also coupled and configured to extract
audio data from each block of the bitstream, and to assert the extracted audio data to decoding subsystem (decoding
stage) 202.
[0105] Audio decoding subsystem 202 of decoder 400 is configured to decode the audio data extracted by deformatter
215 (such decoding may be referred to as a "core" decoding operation) to generate decoded audio data, and to assert
the decoded audio data to eSBR processing stage 203. The decoding is performed in the frequency domain. Typically,
a final stage of processing in subsystem 202 applies a frequency domain-to-time domain transform to the decoded
frequency domain audio data, so that the output of subsystem is time domain, decoded audio data. Stage 203 is configured
to apply SBR tools (and eSBR tools) indicated by the SBR metadata (extracted by deformatter 215) and by eSBR
metadata generated in subsystem 401, to the decoded audio data (i.e., to perform SBR and eSBR processing on the
output of decoding subsystem 202 using the SBR and eSBR metadata) to generate the fully decoded audio data which
is output from decoder 400. Typically, decoder 400 includes a memory (accessible by subsystem 202 and stage 203)
which stores the deformatted audio data and metadata output from deformatter 215 (and optionally also subsystem
401), and stage 203 is configured to access the audio data and metadata as needed during SBR and eSBR processing.
The SBR processing in stage 203 may be considered to be post-processing on the output of core decoding subsystem
202. Optionally, decoder 400 also includes a final upmixing subsystem (which may apply parametric stereo ("PS") tools
defined in the MPEG-4 AAC standard, using PS metadata extracted by deformatter 215) which is coupled and configured
to perform upmixing on the output of stage 203 to generated fully decoded, upmixed audio which is output from APU 210.
[0106] Parametric stereo is a coding tool that represents a stereo signal using a linear downmix of the left and right
channels of the stereo signal and sets of spatial parameters describing the stereo image. Parametric stereo typically
employs three types of spatial parameters: (1) inter-channel intensity differences (IID) describing the intensity differences
between the channels; (2) inter-channel phase differences (IPD) describing the phase differences between the channels;
and (3) inter-channel coherence (ICC) describing the coherence (or similarity) between the channels. The coherence
may be measured as the maximum of the cross-correlation as a function of time or phase. These three parameters
generally enable a high quality reconstruction of the stereo image. However, the IPD parameters only specify the relative
phase differences between the channels of the stereo input signal and do not indicate the distribution of these phase
differences over the left and right channels. Therefore, a fourth type of parameter describing an overall phase offset or
overall phase difference (OPD) may additionally be used. In the stereo reconstruction process, consecutive windowed
segments of both the received downmix signal, s[n], and a decorrelated version of the received downmix, d[n], are
processed together with the spatial parameters to generate the left (lk(n)) and right (rk(n)) reconstructed signals according
to:

where H11, H12, H21 and H22 are defined by the stereo parameters. The signals lk(n) and rk(n) are finally transformed
back to the time domain by means of a frequency-to-time transform.
[0107] Control data generation subsystem 401 of Fig. 5 is coupled and configured to detect at least one property of
the encoded audio bitstream to be decoded, and to generate eSBR control data (which may be or include eSBR metadata
of any of the types included in encoded audio bitstreams in accordance with other embodiments of the invention) in
response to at least one result of the detection step. The eSBR control data is asserted to stage 203 to trigger application
of individual eSBR tools or combinations of eSBR tools upon detecting a specific property (or combination of properties)
of the bitstream, and/or to control the application of such eSBR tools. For example, in order to control performance of
eSBR processing using harmonic transposition, some embodiments of control data generation subsystem 401 would
include: a music detector (e.g., a simplified version of a conventional music detector) for setting the sbrPatchingMode[ch]
parameter (and asserting the set parameter to stage 203) in response to detecting that the bitstream is or is not indicative
of music; a transient detector for setting the sbrOversamplingFlag[ch] parameter (and asserting the set parameter to
stage 203) in response to detecting the presence or absence of transients in the audio content indicated by the bitstream;
and/or a pitch detector for setting the sbrPitchInBinsFlag[ch] and sbrPitchInBins[ch] parameters (and asserting the set
parameters to stage 203) in response to detecting the pitch of audio content indicated by the bitstream. Other aspects
of the invention are audio bitstream decoding methods performed by any embodiment of the inventive decoder described

EP 4 303 871 A2

17

5

10

15

20

25

30

35

40

45

50

55

in this paragraph and the preceding paragraph.
[0108] Aspects of the invention include an encoding or decoding method of the type which any embodiment of the
inventive APU, system or device is configured (e.g., programmed) to perform. Other aspects of the invention include a
system or device configured (e.g., programmed) to perform any embodiment of the inventive method, and a computer
readable medium (e.g., a disc) which stores code (e.g., in a non-transitory manner) for implementing any embodiment
of the inventive method or steps thereof. For example, the inventive system can be or include a programmable general
purpose processor, digital signal processor, or microprocessor, programmed with software or firmware and/or otherwise
configured to perform any of a variety of operations on data, including an embodiment of the inventive method or steps
thereof. Such a general purpose processor may be or include a computer system including an input device, a memory,
and processing circuitry programmed (and/or otherwise configured) to perform an embodiment of the inventive method
(or steps thereof) in response to data asserted thereto.
[0109] Embodiments of the present invention may be implemented in hardware, firmware, or software, or a combination
of both (e.g., as a programmable logic array). Unless otherwise specified, the algorithms or processes included as part
of the invention are not inherently related to any particular computer or other apparatus. In particular, various general-
purpose machines may be used with programs written in accordance with the teachings herein, or it may be more
convenient to construct more specialized apparatus (e.g., integrated circuits) to perform the required method steps.
Thus, the invention may be implemented in one or more computer programs executing on one or more programmable
computer systems (e.g., an implementation of any of the elements of Fig. 1, or encoder 100 of Fig. 2 (or an element
thereof), or decoder 200 of Fig. 3 (or an element thereof), or decoder 210 of Fig. 4 (or an element thereof), or decoder
400 of Fig. 5 (or an element thereof)) each comprising at least one processor, at least one data storage system (including
volatile and non-volatile memory and/or storage elements), at least one input device or port, and at least one output
device or port. Program code is applied to input data to perform the functions described herein and generate output
information. The output information is applied to one or more output devices, in known fashion.
[0110] Each such program may be implemented in any desired computer language (including machine, assembly, or
high level procedural, logical, or object oriented programming languages) to communicate with a computer system. In
any case, the language may be a compiled or interpreted language.
[0111] For example, when implemented by computer software instruction sequences, various functions and steps of
embodiments of the invention may be implemented by multithreaded software instruction sequences running in suitable
digital signal processing hardware, in which case the various devices, steps, and functions of the embodiments may
correspond to portions of the software instructions.
[0112] Each such computer program is preferably stored on or downloaded to a storage media or device (e.g., solid
state memory or media, or magnetic or optical media) readable by a general or special purpose programmable computer,
for configuring and operating the computer when the storage media or device is read by the computer system to perform
the procedures described herein. The inventive system may also be implemented as a computer-readable storage
medium, configured with (i.e., storing) a computer program, where the storage medium so configured causes a computer
system to operate in a specific and predefined manner to perform the functions described herein.
[0113] A number of embodiments of the invention have been described. Nevertheless, it will be understood that various
modifications may be made without departing from the spirit and scope of the invention. Numerous modifications and
variations of the present invention are possible in light of the above teachings. For example, in order to facilitate efficient
implementations, phase-shifts may be used in combination with the complex QMF analysis and synthesis filter banks.
The analysis filterbank is responsible for filtering the time-domain lowband signal generated by the core decoder into a
plurality of subbands (e.g., QMF subbands). The synthesis filterbank is responsible for combining the regenerated
highband produced by the selected HFR technique (as indicated by the received sbrPatchingMode parameter) with the
decoded lowband to produce a wideband output audio signal. A given filterbank implementation operating in a certain
sample-rate mode, e.g., normal dual-rate operation or down-sampled SBR mode, should not, however, have phase-
shifts that are bitstream dependent. The QMF banks used in SBR are a complex-exponential extension of the theory of
cosine modulated filter banks. It can be shown that alias cancellation constraints become obsolete when extending the
cosine modulated filterbank with complex-exponential modulation. Thus, for the SBR QMF banks, both the analysis
filters, hk(n), and synthesis filters, fk(n), may be defined by:

where p0(n) is a real-valued symmetric or asymmetric prototype filter (typically, a lowpass prototype filter), M denotes
the number of channels and N is the prototype filter order. The number of channels used in the analysis filterbank may
be different than the number of channel used in the synthesis filterbank. For example, the analysis filterbank may have
32 channels and the synthesis filterbank may have 64 channels. When operating the synthesis filterbank in down-

EP 4 303 871 A2

18

5

10

15

20

25

30

35

40

45

50

55

sampled mode, the synthesis filterbank may have only 32 channels. Since the subband samples from the filter bank are
complex-valued, an additive possibly channel-dependent phase-shift step may be appended to the analysis filterbank.
These extra phase-shifts need to be compensated for before the synthesis filter bank. While the phase-shifting terms
in principle can be of arbitrary values without destroying the operation of the QMF analysis / synthesis-chain, they may
also be constrained to certain values for conformance verification. The SBR signal will be affected by the choice of the
phase factors while the low pass signal coming from the core decoder will not. The audio quality of the output signal is
not affected.
[0114] The coefficients of the prototype filter, p0(n), may be defined with a length, L, of 640, as shown in Table 4 below.

Table 4

n p0(n) n p0(n) n p0(n)

0 0.0000000000 214 0.0019765601 428 0.0117623832

1 -0.0005525286 215 -0.0032086896 429 0.0163701258

2 -0.0005617692 216 -0.0085711749 430 0.0207997072

3 -0.0004947518 217 -0.0141288827 431 0.0250307561

4 -0.0004875227 218 -0.0198834129 432 0.0290824006

5 -0.0004893791 219 -0.0258227288 433 0.0329583930

6 -0.0005040714 220 -0.0319531274 434 0.0366418116

7 -0.0005226564 221 -0.0382776572 435 0.0401458278

8 -0.0005466565 222 -0.0447806821 436 0.0434768782

9 -0.0005677802 223 -0.0514804176 437 0.0466303305

10 -0.0005870930 224 -0.0583705326 438 0.0495978676

11 -0.0006132747 225 -0.0654409853 439 0.0524093821

12 -0.0006312493 226 -0.0726943300 440 0.0550460034

13 -0.0006540333 227 -0.0801372934 441 0.0575152691

14 -0.0006777690 228 -0.0877547536 442 0.0598166570

15 -0.0006941614 229 -0.0955533352 443 0.0619602779

16 -0.0007157736 230 -0.1035329531 444 0.0639444805

17 -0.0007255043 231 -0.1116826931 445 0.0657690668

18 -0.0007440941 232 -0.1200077984 446 0.0674525021

19 -0.0007490598 233 -0.1285002850 447 0.0689664013

20 -0.0007681371 234 -0.1371551761 448 0.0703533073

21 -0.0007724848 235 -0.1459766491 449 0.0715826364

22 -0.0007834332 236 -0.1549607071 450 0.0726774642

23 -0.0007779869 237 -0.1640958855 451 0.0736406005

24 -0.0007803664 238 -0.1733808172 452 0.0744664394

25 -0.0007801449 239 -0.1828172548 453 0.0751576255

26 -0.0007757977 240 -0.1923966745 454 0.0757305756

27 -0.0007630793 241 -0.2021250176 455 0.0761748321

28 -0.0007530001 242 -0.2119735853 456 0.0765050718

29 -0.0007319357 243 -0.2219652696 457 0.0767204924

30 -0.0007215391 244 -0.2320690870 458 0.0768230011

31 -0.0006917937 245 -0.2423016884 459 0.0768173975

EP 4 303 871 A2

19

5

10

15

20

25

30

35

40

45

50

55

(continued)

n p0(n) n p0(n) n p0(n)

32 -0.0006650415 246 -0.2526480309 460 0.0767093490

33 -0.0006341594 247 -0.2631053299 461 0.0764992170

34 -0.0005946118 248 -0.2736634040 462 0.0761992479

35 -0.0005564576 249 -0.2843214189 463 0.0758008358

36 -0.0005145572 250 -0.2950716717 464 0.0753137336

37 -0.0004606325 251 -0.3059098575 465 0.0747452558

38 -0.0004095121 252 -0.3168278913 466 0.0741003642

39 -0.0003501175 253 -0.3278113727 467 0.0733620255

40 -0.0002896981 254 -0.3388722693 468 0.0725682583

41 -0.0002098337 255 -0.3499914122 469 0.0717002673

42 -0.0001446380 256 0.3611589903 470 0.0707628710

43 -0.0000617334 257 0.3723795546 471 0.0697630244

44 0.0000134949 258 0.3836350013 472 0.0687043828

45 0.0001094383 259 0.3949211761 473 0.0676075985

46 0.0002043017 260 0.4062317676 474 0.0664367512

47 0.0002949531 261 0.4175696896 475 0.0652247106

48 0.0004026540 262 0.4289119920 476 0.0639715898

49 0.0005107388 263 0.4402553754 477 0.0626857808

50 0.0006239376 264 0.4515996535 478 0.0613455171

51 0.0007458025 265 0.4629308085 479 0.0599837480

52 0.0008608443 266 0.4742453214 480 0.0585915683

53 0.0009885988 267 0.4855253091 481 0.0571616450

54 0.0011250155 268 0.4967708254 482 0.0557173648

55 0.0012577884 269 0.5079817500 483 0.0542452768

56 0.0013902494 270 0.5191234970 484 0.0527630746

57 0.0015443219 271 0.5302240895 485 0.0512556155

58 0.0016868083 272 0.5412553448 486 0.0497385755

59 0.0018348265 273 0.5522051258 487 0.0482165720

60 0.0019841140 274 0.5630789140 488 0.0466843027

61 0.0021461583 275 0.5738524131 489 0.0451488405

62 0.0023017254 276 0.5845403235 490 0.0436097542

63 0.0024625616 277 0.5951123086 491 0.0420649094

64 0.0026201758 278 0.6055783538 492 0.0405349170

65 0.0027870464 279 0.6159109932 493 0.0390053679

66 0.0029469447 280 0.6261242695 494 0.0374812850

67 0.0031125420 281 0.6361980107 495 0.0359697560

68 0.0032739613 282 0.6461269695 496 0.0344620948

69 0.0034418874 283 0.6559016302 497 0.0329754081

EP 4 303 871 A2

20

5

10

15

20

25

30

35

40

45

50

55

(continued)

n p0(n) n p0(n) n p0(n)

70 0.0036008268 284 0.6655139880 498 0.0315017608

71 0.0037603922 285 0.6749663190 499 0.0300502657

72 0.0039207432 286 0.6842353293 500 0.0286072173

73 0.0040819753 287 0.6933282376 501 0.0271859429

74 0.0042264269 288 0.7022388719 502 0.0257875847

75 0.0043730719 289 0.7109410426 503 0.0244160992

76 0.0045209852 290 0.7194462634 504 0.0230680169

77 0.0046606460 291 0.7277448900 505 0.0217467550

78 0.0047932560 292 0.7358211758 506 0.0204531793

79 0.0049137603 293 0.7436827863 507 0.0191872431

80 0.0050393022 294 0.7513137456 508 0.0179433381

81 0.0051407353 295 0.7587080760 509 0.0167324712

82 0.0052461166 296 0.7658674865 510 0.0155405553

83 0.0053471681 297 0.7727780881 511 0.0143904666

84 0.0054196775 298 0.7794287519 512 -0.0132718220

85 0.0054876040 299 0.7858353120 513 -0.0121849995

86 0.0055475714 300 0.7919735841 514 -0.0111315548

87 0.0055938023 301 0.7978466413 515 -0.0101150215

88 0.0056220643 302 0.8034485751 516 -0.0091325329

89 0.0056455196 303 0.8087695004 517 -0.0081798233

90 0.0056389199 304 0.8138191270 518 -0.0072615816

91 0.0056266114 305 0.8185776004 519 -0.0063792293

92 0.0055917128 306 0.8230419890 520 -0.0055337211

93 0.0055404363 307 0.8272275347 521 -0.0047222596

94 0.0054753783 308 0.8311038457 522 -0.0039401124

95 0.0053838975 309 0.8346937361 523 -0.0031933778

96 0.0052715758 310 0.8379717337 524 -0.0024826723

97 0.0051382275 311 0.8409541392 525 -0.0018039472

98 0.0049839687 312 0.8436238281 526 -0.0011568135

99 0.0048109469 313 0.8459818469 527 -0.0005464280

100 0.0046039530 314 0.8480315777 528 0.0000276045

101 0.0043801861 315 0.8497805198 529 0.0005832264

102 0.0041251642 316 0.8511971524 530 0.0010902329

103 0.0038456408 317 0.8523047035 531 0.0015784682

104 0.0035401246 318 0.8531020949 532 0.0020274176

105 0.0032091885 319 0.8535720573 533 0.0024508540

106 0.0028446757 320 0.8537385600 534 0.0028446757

107 0.0024508540 321 0.8535720573 535 0.0032091885

EP 4 303 871 A2

21

5

10

15

20

25

30

35

40

45

50

55

(continued)

n p0(n) n p0(n) n p0(n)

108 0.0020274176 322 0.8531020949 536 0.0035401246

109 0.0015784682 323 0.8523047035 537 0.0038456408

110 0.0010902329 324 0.8511971524 538 0.0041251642

111 0.0005832264 325 0.8497805198 539 0.0043801861

112 0.0000276045 326 0.8480315777 540 0.0046039530

113 -0.0005464280 327 0.8459818469 541 0.0048109469

114 -0.0011568135 328 0.8436238281 542 0.0049839687

115 -0.0018039472 329 0.8409541392 543 0.0051382275

116 -0.0024826723 330 0.8379717337 544 0.0052715758

117 -0.0031933778 331 0.8346937361 545 0.0053838975

118 -0.0039401124 332 0.8311038457 546 0.0054753783

119 -0.0047222596 333 0.8272275347 547 0.0055404363

120 -0.0055337211 334 0.8230419890 548 0.0055917128

121 -0.0063792293 335 0.8185776004 549 0.0056266114

122 -0.0072615816 336 0.8138191270 550 0.0056389199

123 -0.0081798233 337 0.8087695004 551 0.0056455196

124 -0.0091325329 338 0.8034485751 552 0.0056220643

125 -0.0101150215 339 0.7978466413 553 0.0055938023

126 -0.0111315548 340 0.7919735841 554 0.0055475714

127 -0.0121849995 341 0.7858353120 555 0.0054876040

128 0.0132718220 342 0.7794287519 556 0.0054196775

129 0.0143904666 343 0.7727780881 557 0.0053471681

130 0.0155405553 344 0.7658674865 558 0.0052461166

131 0.0167324712 345 0.7587080760 559 0.0051407353

132 0.0179433381 346 0.7513137456 560 0.0050393022

133 0.0191872431 347 0.7436827863 561 0.0049137603

134 0.0204531793 348 0.7358211758 562 0.0047932560

135 0.0217467550 349 0.7277448900 563 0.0046606460

136 0.0230680169 350 0.7194462634 564 0.0045209852

137 0.0244160992 351 0.7109410426 565 0.0043730719

138 0.0257875847 352 0.7022388719 566 0.0042264269

139 0.0271859429 353 0.6933282376 567 0.0040819753

140 0.0286072173 354 0.6842353293 568 0.0039207432

141 0.0300502657 355 0.6749663190 569 0.0037603922

142 0.0315017608 356 0.6655139880 570 0.0036008268

143 0.0329754081 357 0.6559016302 571 0.0034418874

144 0.0344620948 358 0.6461269695 572 0.0032739613

145 0.0359697560 359 0.6361980107 573 0.0031125420

EP 4 303 871 A2

22

5

10

15

20

25

30

35

40

45

50

55

(continued)

n p0(n) n p0(n) n p0(n)

146 0.0374812850 360 0.6261242695 574 0.0029469447

147 0.0390053679 361 0.6159109932 575 0.0027870464

148 0.0405349170 362 0.6055783538 576 0.0026201758

149 0.0420649094 363 0.5951123086 577 0.0024625616

150 0.0436097542 364 0.5845403235 578 0.0023017254

151 0.0451488405 365 0.5738524131 579 0.0021461583

152 0.0466843027 366 0.5630789140 580 0.0019841140

153 0.0482165720 367 0.5522051258 581 0.0018348265

154 0.0497385755 368 0.5412553448 582 0.0016868083

155 0.0512556155 369 0.5302240895 583 0.0015443219

156 0.0527630746 370 0.5191234970 584 0.0013902494

157 0.0542452768 371 0.5079817500 585 0.0012577884

158 0.0557173648 372 0.4967708254 586 0.0011250155

159 0.0571616450 373 0.4855253091 587 0.0009885988

160 0.0585915683 374 0.4742453214 588 0.0008608443

161 0.0599837480 375 0.4629308085 589 0.0007458025

162 0.0613455171 376 0.4515996535 590 0.0006239376

163 0.0626857808 377 0.4402553754 591 0.0005107388

164 0.0639715898 378 0.4289119920 592 0.0004026540

165 0.0652247106 379 0.4175696896 593 0.0002949531

166 0.0664367512 380 0.4062317676 594 0.0002043017

167 0.0676075985 381 0.3949211761 595 0.0001094383

168 0.0687043828 382 0.3836350013 596 0.0000134949

169 0.0697630244 383 0.3723795546 597 -0.0000617334

170 0.0707628710 384 -0.3611589903 598 -0.0001446380

171 0.0717002673 385 -0.3499914122 599 -0.0002098337

172 0.0725682583 386 -0.3388722693 600 -0.0002896981

173 0.0733620255 387 -0.3278113727 601 -0.0003501175

174 0.0741003642 388 -0.3168278913 602 -0.0004095121

175 0.0747452558 389 -0.3059098575 603 -0.0004606325

176 0.0753137336 390 -0.2950716717 604 -0.0005145572

177 0.0758008358 391 -0.2843214189 605 -0.0005564576

178 0.0761992479 392 -0.2736634040 606 -0.0005946118

179 0.0764992170 393 -0.2631053299 607 -0.0006341594

180 0.0767093490 394 -0.2526480309 608 -0.0006650415

181 0.0768173975 395 -0.2423016884 609 -0.0006917937

182 0.0768230011 396 -0.2320690870 610 -0.0007215391

183 0.0767204924 397 -0.2219652696 611 -0.0007319357

EP 4 303 871 A2

23

5

10

15

20

25

30

35

40

45

50

55

The prototype filter, p0(n), may also be derived from Table 4 by one or more mathematical operations such as rounding,
subsampling, interpolation, and decimation.
[0115] Although the tuning of SBR related control information does not typically depend of the details of the transposition
(as previously discussed), in some embodiments certain elements of the control data may be simulcasted in the eSBR
extension container (bs_extension_id ==EXTENSION_ID_ESBR) to improve the quality of the regenerated signal. Some
of the simulcasted elements may include the noise floor data (for example, noise floor scale factors and a parameter
indicating the direction, either in the frequency or time direction, of delta coding for each noise floor), the inverse filtering
data (for example, a parameter indicating the inverse filtering mode selected from no inverse filtering, a low level of
inverse filtering, an intermediate level of inverse filtering, and a strong level of inverse filtering), and the missing harmonics
data (for example, a parameter indicating whether a sinusoid should be added to a specific frequency band of the

(continued)

n p0(n) n p0(n) n p0(n)

184 0.0765050718 398 -0.2119735853 612 -0.0007530001

185 0.0761748321 399 -0.2021250176 613 -0.0007630793

186 0.0757305756 400 -0.1923966745 614 -0.0007757977

187 0.0751576255 401 -0.1828172548 615 -0.0007801449

188 0.0744664394 402 -0.1733808172 616 -0.0007803664

189 0.0736406005 403 -0.1640958855 617 -0.0007779869

190 0.0726774642 404 -0.1549607071 618 -0.0007834332

191 0.0715826364 405 -0.1459766491 619 -0.0007724848

192 0.0703533073 406 -0.1371551761 620 -0.0007681371

193 0.0689664013 407 -0.1285002850 621 -0.0007490598

194 0.0674525021 408 -0.1200077984 622 -0.0007440941

195 0.0657690668 409 -0.1116826931 623 -0.0007255043

196 0.0639444805 410 -0.1035329531 624 -0.0007157736

197 0.0619602779 411 -0.0955533352 625 -0.0006941614

198 0.0598166570 412 -0.0877547536 626 -0.0006777690

199 0.0575152691 413 -0.0801372934 627 -0.0006540333

200 0.0550460034 414 -0.0726943300 628 -0.0006312493

201 0.0524093821 415 -0.0654409853 629 -0.0006132747

202 0.0495978676 416 -0.0583705326 630 -0.0005870930

203 0.0466303305 417 -0.0514804176 631 -0.0005677802

204 0.0434768782 418 -0.0447806821 632 -0.0005466565

205 0.0401458278 419 -0.0382776572 633 -0.0005226564

206 0.0366418116 420 -0.0319531274 634 -0.0005040714

207 0.0329583930 421 -0.0258227288 635 -0.0004893791

208 0.0290824006 422 -0.0198834129 636 -0.0004875227

209 0.0250307561 423 -0.0141288827 637 -0.0004947518

210 0.0207997072 424 -0.0085711749 638 -0.0005617692

211 0.0163701258 425 -0.0032086896 639 -0.0005525280

212 0.0117623832 426 0.0019765601

213 0.0069636862 427 0.0069636862

EP 4 303 871 A2

24

5

10

15

20

25

30

35

40

45

50

55

regenerated highband). All of these elements rely on a synthesized emulation of the decoder’s transposer performed in
the encoder and therefore if properly tuned for the selected transposer may increase the quality of the regenerated signal.
[0116] Specifically, in some embodiments, the missing harmonics and inverse filtering control data is transmitted in
the eSBR extension container (along with the other bitstream parameters of Table 3) and tuned for the harmonic trans-
poser of eSBR. The additional bitrate required to transmit these two classes of metadata for the harmonic transposer
of eSBR is relatively low. Therefore, sending tuned missing harmonic and/or inverse filtering control data in the eSBR
extension container will increase the quality of audio produced by the transposer while only minimally affecting bitrate.
To ensure backward-compatibility with legacy decoders, the parameters tuned for the spectral translation operation of
SBR may also be sent in the bitstream as part of the SBR control data using either implicit or explicit signaling.
[0117] It is to be understood that within the scope of the appended claims, the invention may be practiced otherwise
than as specifically described herein. Any reference numerals contained in the following claims are for illustrative purposes
only and should not be used to construe or limit the claims in any manner whatsoever. Various aspects of the present
disclosure will be appreciated from the following enumerated example embodiments (A-EEEs AND B-EEEs):

A-EEE1. A method for performing high frequency reconstruction of an audio signal, the method comprising:

receiving an encoded audio bitstream, the encoded audio bitstream including audio data representing a lowband
portion of the audio signal and high frequency reconstruction metadata;
decoding the audio data to generate a decoded lowband audio signal;
extracting from the encoded audio bitstream the high frequency reconstruction metadata, the high frequency
reconstruction metadata including operating parameters for a high frequency reconstruction process, the op-
erating parameters including a patching mode parameter located in a extension container of the encoded audio
bitstream, wherein a first value of the patching mode parameter indicates spectral translation and a second
value of the patching mode parameter indicates harmonic transposition by phase-vocoder frequency spreading;
filtering the decoded lowband audio signal to generate a filtered lowband audio signal;
regenerating a highband portion of the audio signal using the filtered lowband audio signal and the high frequency
reconstruction metadata, wherein the regenerating includes spectral translation if the patching mode parameter
is the first value and the regenerating includes harmonic transposition by phase-vocoder frequency spreading
if the patching mode parameter is the second value; and
combining the filtered lowband audio signal with the regenerated highband portion to form a wideband audio
signal.

A-EEE2. The method of A-EEE 1 wherein the extension container includes inverse filtering control data to be used
when the patching mode parameter equals the second value.
A-EEE3. The method of any one of A-EEEs 1-2 wherein the extension container further includes missing harmonic
control data to be used when the patching mode parameter equals the second value.
A-EEE4. The method of any preceding A-EEE wherein the encoded audio bitstream further includes a fill element
with an identifier indicating a start of the fill element and fill data after the identifier, wherein the fill data includes the
extension container.
A-EEE5. The method of A-EEE 4 wherein the identifier is a three bit unsigned integer transmitted most significant
bit first and having a value of 0x6.
A-EEE6. The method of A-EEE 4 or A-EEE 5, wherein the fill data includes an extension payload, the extension
payload includes spectral band replication extension data, and the extension payload is identified with a four bit
unsigned integer transmitted most significant bit first and having a value of ‘1101’ or ‘1110’, and, optionally,
wherein the spectral band replication extension data includes:

an optional spectral band replication header,
spectral band replication data after the header, and
a spectral band replication extension element after the spectral band replication data, and wherein the flag is
included in the spectral band replication extension element.

A-EEE7. The method of any one of A-EEEs 1-6 wherein the high frequency reconstruction metadata includes
envelope scale factors, noise floor scale factors, time/frequency grid information, or a parameter indicating a cross-
over frequency.
A-EEE8. The method of any one of A-EEEs 1-7 wherein the filtering is performed by an analysis filterbank that
includes analysis filters, hk(n), that are modulated versions of a prototype filter, p0(n), according to:

EP 4 303 871 A2

25

5

10

15

20

25

30

35

40

45

50

55

where p0(n) is a real-valued symmetric or asymmetric prototype filter, M is a number of channels in the analysis
filterbank and N is an order of the prototype filter.
A-EEE9. The method of A-EEE 8 wherein the prototype filter, p0(n), is derived from coefficients of Table 4 herein.
A-EEE10. The method of A-EEE 8 wherein the prototype filter, p0(n), is derived from coefficients of Table 4 herein
by one or more mathematical operations selected from the group consisting of rounding, subsampling, interpolation,
or decimation.
A-EEE11. The method of any one of A-EEEs 1-10 wherein a phase shift is added to the filtered lowband audio signal
after the filtering and compensated for before the combining to reduce a complexity of the method.
A-EEE12. The method of any preceding A-EEE wherein the extension container further includes a flag indicating
whether additional preprocessing is used to avoid discontinuities in a shape of a spectral envelope of the highband
portion when the patching mode parameter equals the first value, wherein a first value of the flag enables the
additional preprocessing and a second value of the flag disables the additional preprocessing.
A-EEE13. The method of A-EEE 12 wherein the additional preprocessing includes calculating a pre-gain curve using
a linear prediction filter coefficient.
A-EEE14. The method of any one of A-EEEs 1-13 wherein the extension container is a backward-compatible
extension container.
A-EEE15. The method of any one of A-EEEs 1-14 wherein the encoded audio stream is encoded according to a
format, and wherein the extension container is an extension container which is defined in at least one legacy version
of said format.
A-EEE16. A non-transitory computer readable medium containing instructions that when executed by a processor
perform the method of any one of A-EEEs 1 to 15.
A-EEE17. An audio processing unit for performing high frequency reconstruction of an audio signal, the audio
processing unit being configured to perform the method of any one of A-EEEs 1-15.
B-EEE1. A method for performing high frequency reconstruction of an audio signal, the method comprising:

receiving an encoded audio bitstream, the encoded audio bitstream including audio data representing a lowband
portion of the audio signal and high frequency reconstruction metadata;
decoding the audio data to generate a decoded lowband audio signal;
extracting from the encoded audio bitstream the high frequency reconstruction metadata, the high frequency
reconstruction metadata including operating parameters for a high frequency reconstruction process, the op-
erating parameters including a patching mode parameter located in a backward-compatible extension container
of the encoded audio bitstream, wherein a first value of the patching mode parameter indicates spectral trans-
lation and a second value of the patching mode parameter indicates harmonic transposition by phase-vocoder
frequency spreading;
filtering the decoded lowband audio signal to generate a filtered lowband audio signal;
regenerating a highband portion of the audio signal using the filtered lowband audio signal and the high frequency
reconstruction metadata, wherein the regenerating includes spectral translation if the patching mode parameter
is the first value and the regenerating includes harmonic transposition by phase-vocoder frequency spreading
if the patching mode parameter is the second value; and
combining the filtered lowband audio signal with the regenerated highband portion to form a wideband audio
signal.

B-EEE2. The method of B-EEE 1 wherein the backward-compatible extension container includes inverse filtering
control data to be used when the patching mode parameter equals the second value.
B-EEE3. The method of any one of B-EEEs 1-2 wherein the backward-compatible extension container further
includes missing harmonic control data to be used when the patching mode parameter equals the second value.
B-EEE4. The method of any preceding B-EEE wherein the encoded audio bitstream further includes a fill element
with an identifier indicating a start of the fill element and fill data after the identifier, wherein the fill data includes the
backward-compatible extension container.
B-EEE5. The method of B-EEE 4 wherein the identifier is a three bit unsigned integer transmitted most significant
bit first and having a value of 0x6.
B-EEE6. The method of B-EEE 4 or B-EEE 5, wherein the fill data includes an extension payload, the extension
payload includes spectral band replication extension data, and the extension payload is identified with a four bit
unsigned integer transmitted most significant bit first and having a value of ‘1101’ or ‘1110’, and, optionally,

EP 4 303 871 A2

26

5

10

15

20

25

30

35

40

45

50

55

wherein the spectral band replication extension data includes:

an optional spectral band replication header,
spectral band replication data after the header, and
a spectral band replication extension element after the spectral band replication data, and wherein the flag is
included in the spectral band replication extension element.

B-EEE7. The method of any one of B-EEEs 1-6 wherein the high frequency reconstruction metadata includes
envelope scale factors, noise floor scale factors, time/frequency grid information, or a parameter indicating a cross-
over frequency.
B-EEE8. The method of any one of B-EEEs 1-7 wherein the filtering is performed by an analysis filterbank that
includes analysis filters, hk(n), that are modulated versions of a prototype filter, p0(n), according to:

where p0(n) is a real-valued symmetric or asymmetric prototype filter, M is a number of channels in the analysis
filterbank and N is an order of the prototype filter.
B-EEE9. The method of B-EEE 8 wherein the prototype filter, p0(n), is derived from coefficients of Table 4 herein.
B-EEE10. The method of B-EEE 8 wherein the prototype filter, p0(n), is derived from coefficients of Table 4 herein
by one or more mathematical operations selected from the group consisting of rounding, subsampling, interpolation,
or decimation.
B-EEE11. The method of any one of B-EEEs 1-10 wherein a phase shift is added to the filtered lowband audio signal
after the filtering and compensated for before the combining to reduce a complexity of the method.
B-EEE12. The method of any preceding B-EEE wherein the backward-compatible extension container further in-
cludes a flag indicating whether additional preprocessing is used to avoid discontinuities in a shape of a spectral
envelope of the highband portion when the patching mode parameter equals the first value, wherein a first value of
the flag enables the additional preprocessing and a second value of the flag disables the additional preprocessing.
B-EEE13. The method of B-EEE 12 wherein the additional preprocessing includes calculating a pre-gain curve using
a linear prediction filter coefficient.
B-EEE14. A non-transitory computer readable medium containing instructions that when executed by a processor
perform the method of any one of B-EEEs 1 to 13.
B-EEE15. An audio processing unit for performing high frequency reconstruction of an audio signal, the audio
processing unit comprising:

an input interface for receiving an encoded audio bitstream, the encoded audio bitstream including audio data
representing a lowband portion of the audio signal and high frequency reconstruction metadata;
a core audio decoder for decoding the audio data to generate a decoded lowband audio signal;
a deformatter for extracting from the encoded audio bitstream the high frequency reconstruction metadata, the
high frequency reconstruction metadata including operating parameters for a high frequency reconstruction
process, the operating parameters including a patching mode parameter located in a backward-compatible
extension container of the encoded audio bitstream, wherein a first value of the patching mode parameter
indicates spectral translation and a second value of the patching mode parameter indicates harmonic transpo-
sition by phase-vocoder frequency spreading;
an analysis filterbank for filtering the decoded lowband audio signal to generate a filtered lowband audio signal;
a high frequency regenerator for reconstructing a highband portion of the audio signal using the filtered lowband
audio signal and the high frequency reconstruction metadata, wherein the reconstructing includes a spectral
translation if the patching mode parameter is the first value and the reconstructing includes harmonic transpo-
sition by phase-vocoder frequency spreading if the patching mode parameter is the second value; and
a synthesis filterbank for combining the filtered lowband audio signal with the regenerated highband portion to
form a wideband audio signal.

Claims

1. A method for performing high frequency reconstruction of an audio signal, the method comprising:

EP 4 303 871 A2

27

5

10

15

20

25

30

35

40

45

50

55

receiving an encoded audio bitstream, the encoded audio bitstream including audio data representing a lowband
portion of the audio signal and high frequency reconstruction metadata;
decoding the audio data to generate a decoded lowband audio signal;
extracting from the encoded audio bitstream the high frequency reconstruction metadata, the high frequency
reconstruction metadata including operating parameters for a high frequency reconstruction process, the op-
erating parameters including a patching mode parameter located in a backward-compatible extension container
of the encoded audio bitstream, wherein a first value of the patching mode parameter indicates spectral trans-
lation and a second value of the patching mode parameter indicates harmonic transposition by phase-vocoder
frequency spreading, and the high frequency reconstruction metadata including time/frequency grid information;
filtering the decoded lowband audio signal to generate a filtered lowband audio signal;
regenerating a highband portion of the audio signal using the filtered lowband audio signal and the high frequency
reconstruction metadata, wherein the regenerating includes spectral translation if the patching mode parameter
is the first value and the regenerating includes harmonic transposition by phase-vocoder frequency spreading
if the patching mode parameter is the second value;
combining the filtered lowband audio signal with the regenerated highband portion to form a wideband audio
signal; and
wherein the encoded audio bitstream further includes a fill element with an identifier indicating a start of the fill
element and fill data after the identifier, wherein the fill data includes the backward-compatible extension con-
tainer, wherein the fill data includes an extension payload, the extension payload includes spectral band repli-
cation extension data, and the extension payload is identified with a four bit unsigned integer transmitted most
significant bit first and having a value of ‘1101’ or ’1110’.

2. The method of claim 1, wherein the filtering is performed by an analysis filterbank that includes analysis filters, hk(n),
that are modulated versions of a prototype filter, p0(n), according to:

where p0(n) is a real-valued symmetric or asymmetric prototype filter, M is a number of channels in the analysis
filterbank and N is an order of the prototype filter.

3. The method of claim 2, wherein the prototype filter, p0(n), is derived from coefficients of Table 4 herein.

4. The method of claim 2, wherein the prototype filter, p0(n), is derived from coefficients of Table 4 herein by one or
more mathematical operations selected from the group consisting of rounding, subsampling, interpolation, or dec-
imation.

5. The method of any one of claims 1-4, wherein a phase shift is added to the filtered lowband audio signal after the
filtering and compensated for before the combining to reduce a complexity of the method.

6. A non-transitory computer readable medium containing instructions that when executed by a processor perform the
method of any one of claims 1 to 5.

7. An audio processing unit for performing high frequency reconstruction of an audio signal, the audio processing unit
comprising:

an input interface for receiving an encoded audio bitstream, the encoded audio bitstream including audio data
representing a lowband portion of the audio signal and high frequency reconstruction metadata;
a core audio decoder (202) for decoding the audio data to generate a decoded lowband audio signal;
a deformatter (205, 215) for extracting from the encoded audio bitstream the high frequency reconstruction
metadata, the high frequency reconstruction metadata including operating parameters for a high frequency
reconstruction process, the operating parameters including a patching mode parameter located in a backward-
compatible extension container of the encoded audio bitstream, wherein a first value of the patching mode
parameter indicates spectral translation and a second value of the patching mode parameter indicates harmonic
transposition by phase-vocoder frequency spreading, and the high frequency reconstruction metadata including
time/frequency grid information;
an analysis filterbank (203, 213) for filtering the decoded lowband audio signal to generate a filtered lowband

EP 4 303 871 A2

28

5

10

15

20

25

30

35

40

45

50

55

audio signal;
a high frequency regenerator (203, 213) for reconstructing a highband portion of the audio signal using the
filtered lowband audio signal and the high frequency reconstruction metadata, wherein the reconstructing in-
cludes a spectral translation if the patching mode parameter is the first value and the reconstructing includes
harmonic transposition by phase-vocoder frequency spreading if the patching mode parameter is the second
value; and
a synthesis filterbank (203, 213) for combining the filtered lowband audio signal with the regenerated highband
portion to form a wideband audio signal;
wherein the encoded audio bitstream further includes a fill element with an identifier indicating a start of the fill
element and fill data after the identifier, wherein the fill data includes the backward-compatible extension con-
tainer, wherein the fill data includes an extension payload, the extension payload includes spectral band repli-
cation extension data, and the extension payload is identified with a four bit unsigned integer transmitted most
significant bit first and having a value of ‘1101’ or ’1110’.

EP 4 303 871 A2

29

EP 4 303 871 A2

30

EP 4 303 871 A2

31

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• EP 22189216 [0001]

	bibliography
	abstract
	description
	claims
	drawings
	cited references

