(11) **EP 4 325 128 A1**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 21.02.2024 Bulletin 2024/08

(21) Application number: 23190649.6

(22) Date of filing: 09.08.2023

(51) International Patent Classification (IPC): F24D 19/08 (2006.01) F24D 19/10 (2006.01) F24H 15/12 (2022.01) F25B 13/00 (2006.01)

(52) Cooperative Patent Classification (CPC): F24H 15/12; F24D 19/083; F24D 19/1039; F25B 13/00; F24F 11/36; F25B 2313/003

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA

Designated Validation States:

KH MA MD TN

(30) Priority: 17.08.2022 JP 2022129793

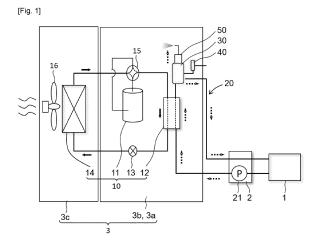
(71) Applicant: Panasonic Intellectual Property Management Co., Ltd. Osaka 571-0057 (JP) (72) Inventors:

 TANIYAMA, Makoto Kadoma-shi, Osaka, 571-0057 (JP)

• FUJIMOTO, Takanobu Kadoma-shi, Osaka, 571-0057 (JP)

 NOMURA, Masakazu Kadoma-shi, Osaka, 571-0057 (JP)

 MORIBE, Hiroshi Kadoma-shi, Osaka, 571-0057 (JP)


(74) Representative: Eisenführ Speiser
Patentanwälte Rechtsanwälte PartGmbB
Postfach 31 02 60
80102 München (DE)

(54) HEAT MEDIUM CIRCULATION DEVICE

(57) [Object] It is an object of the present invention to provide a heat medium circulation device capable of expecting a high gas-liquid separation ratio.

[Solving means] A heat medium circulation device of the present invention including: a refrigerant circuit 10 to which a compressor 11, a use-side heat exchanger 12, an expansion device 13 and a heat source-side heat exchanger 14 are connected, and through which refrigerant circulates; a heat medium circuit 20 which circulates heat medium cooled or heated by the refrigerant discharged out from the compressor 11 in the use-side heat exchanger 12 through a use-side terminal 1; and a gas-liquid separating section 30 for separating gas in the

heat medium circuit 20 from the heat medium; wherein the gas-liquid separating section 30 is placed in the heat medium circuit 20 located downstream of the use-side heat exchanger 12, the gas-liquid separating section 30 includes a gas-liquid separation inflow port 32 through which the heat medium flows into a cylindrical inner space 31, and a gas-liquid separation outflow port 33 through which the heat medium flows out from the cylindrical inner space 31, the gas-liquid separation inflow port 32 is provided in a bottom surface of the gas-liquid separating section 30, and the gas-liquid separation outflow port 33 is provided in a side surface of the gas-liquid separating section 30.

EP 4 325 128 A1

. . . .

[TECHNICAL FIELD]

[0001] The present invention relates to a heat medium circulation device for circulating heat medium through a use-side terminal by a heat medium circuit having a gasliquid separating section.

[BACKGROUND TECHNIQUE]

[0002] Patent document 1 discloses an air conditioner which has a separating section for separating refrigerant from heat medium flowing through a heat medium pipe, and which discharges the refrigerant separated by the separating section to outside of air-conditioning space.
[0003] According to the patent document 1, even if refrigerant flows into the heat medium circuit, since the refrigerant is discharged to outside of the air-conditioning space, it is possible to suppress the refrigerant from flowing into the heat medium pipe which is provided in a room.

[PRIOR ART DOCUMENT]

[PATENT DOCUMENT]

[Patent Document 1]

[0004] Japanese Translation of PCT international Application Publication No.2018/154628

[SUMMARY OF THE INVENTION]

[PROBLEM TO BE SOLVED BY THE INVENTION]

[0005] However, the patent document 1 does not assume that a gas-liquid separating section is placed in a limited space such as an outdoor machine.

[0006] It is an object of the present invention to provide a heat medium circulation device capable of expecting a high gas-liquid separation ratio.

[0007] A heat medium circulation device described in claim 1 of the present invention including: a refrigerant circuit 10 to which a compressor 11, a use-side heat exchanger 12, an expansion device 13 and a heat sourceside heat exchanger 14 are connected, and through which refrigerant circulates; a heat medium circuit 20 which circulates heat medium cooled or heated by the refrigerant discharged out from the compressor 11 in the use-side heat exchanger 12 through a use-side terminal 1; and a gas-liquid separating section 30 for separating gas in the heat medium circuit 20 from the heat medium; wherein the gas-liquid separating section 30 is placed in the heat medium circuit 20 located downstream of the use-side heat exchanger 12, the gas-liquid separating section 30 includes a gas-liquid separation inflow port 32 through which the heat medium flows into a cylindrical inner space 31, and a gas-liquid separation outflow port

33 through which the heat medium flows out from the cylindrical inner space 31, the gas-liquid separation inflow port 32 is provided in a bottom surface of the gas-liquid separation outflow port 33 is provided in a side surface of the gas-liquid separating section 30.

[0008] According to claim 2 of the invention, in the heat medium circulation device described in claim 1, the gasliquid separation inflow port 32 is eccentric from a virtual axis 31x of the cylindrical inner space 31 at a position separated from the gas-liquid separation outflow port 33.

[0009] According to claim 3 of the invention, in the heat medium circulation device described in claim 1, the gasliquid separation outflow port 33 is located at a position which is equal to or smaller than a half of a bottle height 31h of the cylindrical inner space 31.

[0010] According to claim 4 of the invention, in the heat medium circulation device described in claim 1, a bottle diameter 31R of the cylindrical inner space 31 is two times or more of an entrance diameter 32R of the gas-liquid separation inflow port 32.

[0011] According to claim 5 of the invention, in the heat medium circulation device described in claim 4, an exit diameter 33R of the gas-liquid separation outflow port 33 is equal to or greater than the entrance diameter 32R.

[0012] According to claim 6 of the invention, in the heat medium circulation device described in claim 1, the useside heat exchanger 12 includes a heat medium first connection port 22x in a lower portion of a side surface of the use-side heat exchanger 12, and a heat medium second connection port 22y in an upper portion of the side surface of the use-side heat exchanger 12, the heat medium is introduced into the use-side heat exchanger 12 from the heat medium first connection port 22x, and the heat medium introduced into the use-side heat exchanger 12 is discharged out from the heat medium second connection port 22y, the heat medium second connection port 22y and the gas-liquid separation inflow port 32 are connected to each other through a gas-liquid separation inflow pipe 35, and the gas-liquid separation inflow port 32 is located at a position higher than the heat medium second connection port 22y.

[0013] According to claim 7 of the invention, in the heat medium circulation device described in claim 6, the gasliquid separation inflow pipe 35 includes a gas-liquid separation lateral inflow pipe portion 35a connected to the heat medium second connection port 22y, and a gasliquid separation vertical inflow pipe portion 35b connected to the gas-liquid separation inflow port 32.

[0014] According to the present invention, a high gasliquid separation ratio can be expected by flowing-in heat medium from the bottom surface of the gas-liquid separating section, and by flowing-out the heat medium from the side surface of the gas-liquid separating section.

[BRIEF DESCRIPTION OF THE DRAWINGS]

[0015]

Fig. 1 is a diagram showing a configuration of a heat medium circulation device according to an embodiment of the present invention;

Fig. 2 is a perspective view showing essential portions of an outdoor unit of the heat medium circulation device;

Figs. 3 are side views showing essential portions of the outdoor unit;

Figs. 4 are diagrams showing a configuration of a gas-liquid separating section used in the embodiment:

Fig. 5 is a side view showing the gas-liquid separating section and a pressure relief valve used in the embodiment; and

Fig. 6 is a perspective view showing a heat medium chamber of the outdoor unit.

[MODE FOR CARRYING OUT THE INVENTION]

[0016] In a heat medium circulation device according to a first embodiment of the present invention, the gasliquid separating section includes a gas-liquid separation inflow port through which the heat medium flows into a cylindrical inner space, and a gas-liquid separation outflow port through which the heat medium flows out from the cylindrical inner space, the gas-liquid separation inflow port is provided in a bottom surface of the gas-liquid separating section, and the gas-liquid separation outflow port is provided in a side surface of the gas-liquid separating section. According to this embodiment, a high gas-liquid separation ratio can be expected by flowing-in heat medium from the bottom surface of the gas-liquid separating section, and by flowing-out the heat medium from the side surface of the gas-liquid separating section.

[0017] According to a second embodiment of the invention, in the heat medium circulation device of the first embodiment, the gas-liquid separation inflow port is eccentric from a virtual axis of the cylindrical inner space at a position separated from the gas-liquid separation outflow port. According to this embodiment, time during which heat medium flowing-in from the gas-liquid separation inflow port and flowing-out from the gas-liquid separation outflow port stays in the cylindrical inner space can be increased. Therefore, the high gas-liquid separation ratio can be expected.

[0018] According to a third embodiment of the invention, in the heat medium circulation device of the first embodiment, the gas-liquid separation outflow port is located at a position which is equal to or smaller than a half of a bottle height of the cylindrical inner space. According to this embodiment, a space where gas stays can be formed at a position which is higher than the gasliquid separation outflow port of the cylindrical inner space. Therefore, the high gas-liquid separation ratio can be expected.

[0019] According to a fourth embodiment of the invention, in the heat medium circulation device of the first embodiment, a bottle diameter of the cylindrical inner

space is two times or more of an entrance diameter of the gas-liquid separation inflow port. According to this embodiment, flow speed of heat medium which flows-in from the gas-liquid separation inflow port can be lowered. Therefore, the high gas-liquid separation ratio can be ex-

pected. [0020] According to a fifth embodiment of the invention, in the heat medium circulation device of the fourth an exit diameter of the gas-liquid separation outflow port is equal to or greater than the entrance diameter. According to this embodiment, flow speed of heat medium which flows-out from the gas-liquid separation outflow port can be made slower than flow speed of heat medium which flows-in from the gas-liquid separation inflow port. Therefore, the high gas-liquid separation ratio can be expected. [0021] According to a sixth embodiment of the invention, in the heat medium circulation device of the first embodiment, the use-side heat exchanger includes a heat medium first connection port in a lower portion of a side surface of the use-side heat exchanger, and a heat medium second connection port in an upper portion of the side surface of the use-side heat exchanger, the heat medium is introduced into the use-side heat exchanger from the heat medium first connection port, and the heat medium introduced into the use-side heat exchanger is discharged out from the heat medium second connection port, the heat medium second connection port and the gas-liquid separation inflow port are connected to each other through a gas-liquid separation inflow pipe, and the gas-liquid separation inflow port is located at a position higher than the heat medium second connection port. According to this embodiment, the gas-liquid separating section can be placed above the use-side heat exchanger, and a space of the heat medium circuit can be saved. [0022] According to a seventh embodiment of the invention, in the heat medium circulation device of the sixth embodiment, the gas-liquid separation inflow pipe includes a gas-liquid separation lateral inflow pipe connected to the heat medium second connection port, and a gas-liquid separation vertical inflow pipe portion connected to the gas-liquid separation inflow port. According to this embodiment, a flowing direction of the heat medium which is discharged out from the use-side heat exchang-

[Embodiment]

separation ratio can be expected.

[0023] An embodiment of the present invention will be described below with reference to the drawings.

er is changed before the heat medium flows into the gas-

liquid separating section. Therefore, the high gas-liquid

[0024] Fig. 1 is a diagram showing a configuration of a heat medium circulation device according to the embodiment.

[0025] The heat medium circulation device of the embodiment includes a refrigerant circuit 10 and a heat medium circuit 20.

[0026] The refrigerant circuit 10 is formed by connect-

ing a compressor 11, a use-side heat exchanger 12, an expansion device 13 and a heat source-side heat exchanger 14 to one another through a refrigerant pipe, and refrigerant circulates through the refrigerant circuit 10.

[0027] The heat medium circuit 20circulates heat medium heated by the refrigerant discharged out from the compressor 11 in the use-side heat exchanger 12 through a use-side terminal 1.

[0028] The heat medium circuit 20 includes a gas-liquid separating section 30 which separates gas in the heat medium circuit 20 from heat medium, and a transfer pump 21 for circulating the heat medium.

[0029] The heat medium circuit 20 further includes a pressure relief valve 40. In this embodiment, the pressure relief valve 40 is connected to the gas-liquid separating section 30. A discharge device 50 which discharges gas separated by the gas-liquid separating section 30 is connected to the gas-liquid separating section 30.

[0030] The transfer pump 21 is placed in an indoor unit

[0031] It is preferable that the refrigerant circuit 10 includes a four-way valve 15 which switches flow of refrigerant.

[0032] An air blower 16 is provided at a position opposed to the heat source-side heat exchanger 14.

[0033] Propane which is combustible refrigerant is used as refrigerant. Instead of the combustible refrigerant, it is possible to use any of R1234yf, R1234ze and R32 which are slightly flammable refrigerants.

[0034] Water or antifreeze liquid is used as the heat medium.

[0035] The gas-liquid separating section 30 and the pressure relief valve 40 are placed in the heat medium circuit 20 located downstream of the use-side heat exchanger 12.

[0036] An outdoor unit 3 is divided into a heat medium chamber 3a (see Fig. 2), a machine chamber 3b and an air blowing chamber 3c.

[0037] At least a portion of the use-side heat exchanger 12, the gas-liquid separating section 30, the pressure relief valve 40 and the discharge device 50 are placed in the heat medium chamber 3a. The compressor 11, the expansion device 13 and the four-way valve 15 are placed in the machine chamber 3b. The heat source-side heat exchanger 14 and the air blower 16 are placed in the air blowing chamber 3c.

[0038] It is possible to heat or cool the heat medium by switching the four-way valve 15.

[0039] When the heat medium is heated, refrigerant compressed by the compressor 11 flows through the useside heat exchanger 12, the expansion device 13 and the heat source-side heat exchanger 14 in this order. The refrigerant is decompressed by the expansion device 13, heat of the refrigerant is absorbed by the heat source-side heat exchanger 14, and the refrigerant is sucked into the compressor 11. By flowing the refrigerant compressed by the compressor 11 into the use-side heat ex-

changer 12 in this manner, the heat medium can be heated.

[0040] When the heat medium is cooled, refrigerant compressed by the compressor 11 flows through the heat source-side heat exchanger 14, the expansion device 13 and the use-side heat exchanger 12 in this order. The refrigerant is decompressed by the expansion device 13, heat of the refrigerant is absorbed by the use-side heat exchanger 12 and the refrigerant is sucked into the compressor 11. By flowing the refrigerant compressed by the compressor 11 into the heat source-side heat exchanger 14 in this manner, the heat medium can be cooled.

[0041] The heat medium which is cooled or heated by the use-side heat exchanger 12 is transferred to the use-side terminal 1 by the transfer pump 21, and the heat medium whose heat is absorbed or radiated by the use-side terminal 1 is returned to the use-side heat exchanger 12.

[0042] Especially when a plate-type heat exchanger is used as the use-side heat exchanger 12, there is a possibility that refrigerant which flows through the refrigerant circuit 10 is mixed into the heat medium circuit 20 by damage of the use-side heat exchanger 12.

[0043] If refrigerant which leaks into the heat medium circuit 20 is separated from liquid phase heat medium by the gas-liquid separating section 30 in this manner, the refrigerant can be discharged out from the discharge device 50.

[0044] In the outdoor unit 3, the gas-liquid separating section 30 is plated in the heat medium circuit 20 which is located downstream of the use-side heat exchanger 12. Therefore, it is possible to suppress a case where refrigerant which leaks into the heat medium circuit 20 is guided into the use-side terminal 1.

[0045] When the indoor unit 2 is located downstream of the use-side heat exchanger 12 and upstream of the use-side terminal 1, the gas-liquid separating section 30 should be placed upstream of the indoor unit 2, but it is preferable that the gas-liquid separating section 30 is placed in the outdoor unit 3 as in this embodiment.

[0046] The gas-liquid separating section 30 can separate the leaked refrigerant and in addition, the gas-liquid separating section 30 can separate air existing in the heat medium circuit 20. Especially, when heat medium is charged into the heat medium circuit 20 at the time of installation of the heat medium circulation device, the gas-liquid separating section 30 is utilized for removing air from the heat medium circuit 20.

[0047] Although the transfer pump 21 is placed in the indoor unit 2 in this embodiment, the transfer pump 21 may be placed in the outdoor unit 3. When the transfer pump 21 is placed in the outdoor unit 3, it is preferable that the transfer pump 21 is placed in the heat medium chamber 3a.

[0048] Fig. 2 is a perspective view showing essential portions of the outdoor unit of the heat medium circulation device.

[0049] In the outdoor unit 3, a wall surface material 60

30

40

is placed between a bottom surface material outer periphery 3d and a top surface material outer periphery 3e. The wall surface material 60 includes a first wall surface material 61 and a second wall surface material 62 which is adjacent to the first wall surface material 61.

[0050] The heat medium chamber 3a and the machine chamber 3b are divided by a first partition plate 71. The first partition plate 71 is provided with an opening, and the heat medium chamber 3a and the machine chamber 3b keep air permeability. The machine chamber 3b and the air blowing chamber 3c are divided by a second partition plate 72, thereby dividing the outdoor unit 3 into the heat medium chamber 3a, the machine chamber 3b and the air blowing chamber 3c. The first partition plate 71 prevents heat medium which leaks out from the pressure relief valve 40 from scattering to the compressor 11 placed in the machine chamber 3b.

[0051] One side 71x (see Figs. 3) of the first partition plate 71 abuts against the first wall surface material 61, and the other side 71y of the first partition plate 71 abuts against the second wall surface material 62.

[0052] The heat medium chamber 3a is formed by a space which is surrounded by the first partition plate 71, the first wall surface material 61 and the second wall surface material 62.

[0053] By utilizing the first wall surface material 61 and the second wall surface material 62 which are adjacent to each other, the heat medium chamber 3a is formed at a corner portion of the outdoor unit 3. According to this, even when heat medium leaks out, the heat medium chamber 3a can be formed at a position where the heat medium does not exert an influence on the compressor 11, the expansion device 13 and the heat source-side heat exchanger 14.

[0054] Therefore, since the heat medium chamber 3a where the use-side heat exchanger 12, the gas-liquid separating section 30 and the pressure relief valve 40 are placed is separated from the machine chamber 3b and the air blowing chamber 3c, even if heat medium leaks out, the heat medium does not exert an influence on the compressor 11, the expansion device 13 and the heat source-side heat exchanger 14.

[0055] An opening 80 is formed in the first wall surface material 61.

[0056] Figs. 3 are side views showing essential portions of the outdoor unit.

[0057] The first wall surface material 61 is provided with the opening 80 at a position corresponding to an operating lever 41 of the pressure relief valve 40. The opening 80 is provided at a position corresponding to the heat medium chamber 3a which is divided from the machine chamber 3b by the first partition plate 71. The opening 80 formed in the first wall surface material 61 is located in the heat medium chamber 3a, and the opening 80 does not open from the machine chamber 3b. Since the opening 80 does not open from the machine chamber 3b, even when heat medium leaks out, it is possible to prevent the heat medium from entering into the machine

chamber 3b from the heat medium chamber 3a.

[0058] The pressure relief valve 40 is placed at a position opposed to the opening 80. When pressure in the heat medium circuit 20 becomes equal to or higher than predetermined pressure, the pressure relief valve 40 releases heat medium to atmosphere so that the pressure in the heat medium circuit 20 does not become abnormal pressure which is equal to or higher than the predetermined pressure.

[0059] The pressure relief valve 40 includes the operating lever 41. By manually operating the operating lever 41, heat medium can be released to atmosphere from the heat medium circuit 20.

[0060] The operating lever 41 of the pressure relief valve 40 can be operated from the opening 80, and when heat medium is charged into the heat medium circuit 20 or when heat medium is discharged out from the heat medium circuit 20, the pressure relief valve 40 can be utilized.

[0061] Although it is not illustrated in the drawings, when it is unnecessary to operate the operating lever 41, the opening 80 is closed by a lid. Upper and lower portions of the opening 80 includes fastening holes. By mounting fastening tools 81 in the fastening holes, the lid is mounted on the first wall surface material 61.

[0062] Figs. 4 are diagrams showing a configuration of the gas-liquid separating section used in the embodiment, wherein Fig. 4(a) is a perspective view of a partially cut-away gas-liquid separating section, and Fig. 4(b) is a diagram showing a configuration of a gas-liquid separation inflow port and a gas-liquid separation outflow port of the gas-liquid separating section.

[0063] The gas-liquid separating section 30 includes the gas-liquid separation inflow port 32 through which heat medium flows into a cylindrical inner space 31, the gas-liquid separation outflow port 33 through which heat medium flows out from the cylindrical inner space 31, and a pressure relief valve connection port 34 to which the pressure relief valve 40 is connected.

[0064] The gas-liquid separation inflow port 32 is provided on a bottom surface of the gas-liquid separating section 30, and the gas-liquid separation outflow port 33 and the pressure relief valve connection port 34 are provided on a side surface of the gas-liquid separating section 30.

[0065] By flowing the heat medium from the bottom surface of the gas-liquid separating section 30 and flowing out the heat medium from the side surface of the gas-liquid separating section 30 in this manner, a high gas-liquid separation ratio can be expected.

[0066] The heat medium flows in from the gas-liquid separation inflow port 32 and flows out from the gas-liquid separation outflow port 33. The gas-liquid separation inflow port 32 is eccentric from a virtual axis 31x of the cylindrical inner space 31 at a position separated from the gas-liquid separation outflow port 33. Therefore, time during which heat medium stays in the cylindrical inner space 31 can be increased, and the high gas-liquid sep-

aration ratio can be expected.

[0067] A bottle diameter 31R of the cylindrical inner space 31 is two times or more of an entrance diameter 32R of the gas-liquid separation inflow port 32. Therefore, it is possible to reduce the flow speed of heat medium which flows in from the gas-liquid separation inflow port 32, and the high gas-liquid separation ratio can be expected.

[0068] An exit diameter 33R of the gas-liquid separation outflow port 33 is equal to or greater than the entrance diameter 32R. Therefore, the flow speed of the heat medium which flows out from the gas-liquid separation outflow port 33 can be made smaller than the flow speed of the heat medium which flows in from the gas-liquid separation inflow port 32, and the high gas-liquid separation ratio can be expected.

[0069] The discharge device 50 is provided therein with a float 51, and gas separated by the gas-liquid separating section 30 moves to an upper portion of the float 51. When gas does not exist in the discharge device 50, the float 51 is located at an upper end of the discharge device 50.

[0070] Fig. 5 is a side view showing the gas-liquid separating section and the pressure relief valve used in the embodiment.

[0071] The gas-liquid separation outflow port 33 is located at a position of a height 33h which is equal to or smaller than a half of a bottle height 31h of the cylindrical inner space 31. It is further preferable that the height 33h of the gas-liquid separation outflow port 33 is equal to or smaller than 1/3 of the bottle height 31h of the cylindrical inner space 31. Therefore, since a space where gas stays can be formed at a height 34h which is higher than the height 33h of the gas-liquid separation outflow port 33 of the cylindrical inner space 31, the high gas-liquid separation ratio can be expected. Here, the height 33h of the gas-liquid separation outflow port 33 is a height from a bottom surface of the cylindrical inner space 31 to a center of the exit diameter 33R of the gas-liquid separation outflow port 33.

[0072] The pressure relief valve connection port 34 is located at the height 34h which is higher than the height 33h of the gas-liquid separation outflow port 33. Therefore, even when operation of the gas-liquid separating section 30 has a problem, it is possible to flow out the gas by the pressure relief valve 40, and safety can be enhanced

[0073] The pressure relief valve 40 and the pressure relief valve connection port 34 are connected to each other through a pressure relief valve connection pipe 42. **[0074]** The pressure relief valve connection pipe 42 includes a lateral connection pipe portion 42a connected to the pressure relief valve connection port 34, and a vertical connection pipe portion 42b connected to the pressure relief valve 40. The pressure relief valve 40 may be connected directly to the gas-liquid separating section 30 without through the pressure relief valve connection pipe 42.

[0075] Gas introduced into the discharge device 50 is discharged out from a discharge port 52. If gas is discharged out from the discharge port 52, the float 51 (see Fig. 4(a)) is located at the upper end of the discharge device 50, thereby closing the discharge port 52.

[0076] Fig. 6 is a perspective view showing the heat medium chamber of the outdoor unit.

[0077] A height 12h of the use-side heat exchanger 12 is greater than its width 12w and depth 12b.

[0078] A lower portion of a side surface of the use-side heat exchanger 12 includes a heat medium first connection port 22x, and an upper portion of the side surface of the use-side heat exchanger 12 includes a heat medium second connection port 22y.

[0079] The lower portion of the side surface of the use-side heat exchanger 12 includes a refrigerant first connection port 17x, and the upper portion of the side surface of the use-side heat exchanger 12 includes a refrigerant second connection port 17y.

20 [0080] The heat medium is introduced into the use-side heat exchanger 12 from the heat medium first connection port 22x, and the heat medium introduced into the useside heat exchanger 12 is discharged out from the heat medium second connection port 22y.

[0081] When the heat medium is heated, refrigerant compressed by the compressor 11 is introduced into the use-side heat exchanger 12 from the refrigerant second connection port 17y, and the refrigerant introduced into the use-side heat exchanger 12 is discharged out from the refrigerant first connection port 17x.

[0082] The heat medium second connection port 22y and the gas-liquid separation inflow port 32 are connected to each other through a gas-liquid separation inflow pipe 35.

35 [0083] The gas-liquid separation inflow pipe 35 includes a gas-liquid separation lateral inflow pipe portion 35a connected to the heat medium second connection port 22y, and a gas-liquid separation vertical inflow pipe portion 35b connected to the gas-liquid separation inflow port 32.

[0084] The gas-liquid separation inflow port 32 is located at a position higher than the heat medium second connection port 22y.

[0085] The bottom surface of the gas-liquid separating section 30 is provided with the gas-liquid separation inflow port 32, and the gas-liquid separation inflow port 32 is located at the position higher than the heat medium second connection port 22y in this manner. According to this, the gas-liquid separating section 30 which is required to be placed at a high position among the heat medium circuit 20 is easily be placed, the gas-liquid separating section 30 can be plated above the use-side heat exchanger 12, and a space of the heat medium circuit 20 can be saved.

[0086] The gas-liquid separating section 30 is placed at the position higher than the use-side heat exchanger 12 and the pressure relief valve 40 is placed on the side of the gas-liquid separating section 30. Especially ac-

cording to this configuration, the gas-liquid separating section 30 and the pressure relief valve 40 are placed above the use-side heat exchanger 12, and a space of the heat medium chamber 3a can be saved.

[0087] Further, since the gas-liquid separation inflow pipe 35 includes the gas-liquid separation lateral inflow pipe portion 35a and the gas-liquid separation vertical inflow pipe portion 35b, a flowing direction of heat medium discharged out from the use-side heat exchanger 12 is changed until the heat medium flows into the gas-liquid separating section 30. Therefore, the high gas-liquid separation ratio can be expected.

[0088] Further, by connecting the pressure relief valve 40 to the gas-liquid separating section 30, a space of the heat medium circuit 20 can be saved.

[0089] The pressure relief valve 40 is located at the position higher than the use-side heat exchanger 12 and the pressure relief valve 40 is placed in the upper space of the use-side heat exchanger 12. Especially according to this configuration, the upper space of the use-side heat exchanger 12 can effectively be utilized, and the space of the heat medium circuit 20 can be saved.

[0090] Further, the lateral connection pipe portion 42a connected to the pressure relief valve connection port 34 is placed above the gas-liquid separation lateral inflow pipe portion 35a. According to this configuration, the gas-liquid separating section 30 and the pressure relief valve 40 can be placed above the use-side heat exchanger 12, and the space of the heat medium circuit 20 can be saved. [0091] The lateral connection pipe portion 42a is placed in parallel to the gas-liquid separation lateral inflow pipe portion 35a. Especially according to this configuration, the use-side heat exchanger 12, the gas-liquid separating section 30 and the pressure relief valve 40 can be placed in a limited spaced.

[0092] An exit joint 36 is connected to the gas-liquid separation flow exit 33, and a heat medium first connection pipe 23 is connected to the heat medium first connection port 22x. An entrance joint 37 is connected to the heat medium first connection pipe 23.

[0093] The exit joint 36 and the entrance joint 37 project outward from the second wall surface material 62 which is located in the heat medium chamber 3a.

[0094] The heat medium chamber 3a is formed in a corner portion of the outdoor unit 3 utilizing the first wall surface material 61 and second wall surface material 62 which are adjacent to each other. Therefore, the exit joint 36 and the entrance joint 37 easily project from the outdoor unit 3.

[Configuration supported by the above-described embodiment]

[0095] The embodiment supports the following configuration.

(Configuration 1)

[0096] A heat medium circulation device including: a refrigerant circuit to which a compressor, a use-side heat exchanger, an expansion device 13 and a heat sourceside heat exchanger are connected, and through which refrigerant circulates; a heat medium circuit which circulates heat medium cooled or heated by the use-side heat exchanger through a use-side terminal by the refrigerant discharged out from the compressor; and a gas-liquid separating section for separating gas in the heat medium circuit from the heat medium; wherein the gas-liquid separating section is placed in the heat medium circuit located downstream of the use-side heat exchanger, the gas-liquid separating section includes a gas-liquid separation inflow port through which the heat medium flows into a cylindrical inner space, and a gas-liquid separation outflow port through which the heat medium flows out from the cylindrical inner space, the gas-liquid separation inflow port is provided in a bottom surface of the gasliquid separating section, and the gas-liquid separation outflow port is provided in a side surface of the gas-liquid separating section.

[0097] According to this configuration, a high gas-liquid separation ratio can be expected by flowing-in heat medium from the bottom surface of the gas-liquid separating section and by flowing-out the heat medium from the side surface of the gas-liquid separating section.

(Configuration 2)

35

40

45

50

55

[0098] In the heat medium circulation device of the configuration 1, the gas-liquid separation inflow port is eccentric from a virtual axis of the cylindrical inner space at a position separated from the gas-liquid separation outflow port.

[0099] According to this configuration, time during which heat medium flowing-in from the gas-liquid separation inflow port and flowing-out from the gas-liquid separation outflow port stays in the cylindrical inner space can be increased. Therefore, the high gas-liquid separation ratio can be expected.

(Configuration 3)

[0100] The heat medium circulation device of the configuration 1 or 2, the gas-liquid separation outflow port is located at a position which is equal to or smaller than a half of a bottle height of the cylindrical inner space.

[0101] According to this configuration, a space where gas stays can be formed at a position which is higher than the gas-liquid separation outflow port of the cylindrical inner space. Therefore, the high gas-liquid separation ratio can be expected.

(Configuration 4)

[0102] The heat medium circulation device of the con-

figuration of any one of the configurations 1 to 3, a bottle diameter of the cylindrical inner space is two times or more of an entrance diameter of the gas-liquid separation inflow port.

[0103] According to this configuration, flow speed of heat medium which flows-in from the gas-liquid separation inflow port can be lowered. Therefore, the high gas-liquid separation ratio can be expected.

(Configuration 5)

[0104] The heat medium circulation device of the configuration 4, an exit diameter of the gas-liquid separation outflow port is equal to or greater than the entrance diameter.

[0105] According to this configuration, flow speed of heat medium which flows-out from the gas-liquid separation outflow port can be made slower than flow speed of heat medium which flows-in from the gas-liquid separation inflow port. Therefore, the high gas-liquid separation ratio can be expected.

(Configuration 6)

[0106] The heat medium circulation device of the configuration of any one of the configurations 1 to 5, the useside heat exchanger includes a heat medium first connection port in a lower portion of a side surface of the use-side heat exchanger, and a heat medium second connection port in an upper portion of the side surface of the use-side heat exchanger, the heat medium is introduced into the use-side heat exchanger from the heat medium first connection port, and the heat medium introduced into the use-side heat exchanger is discharged out from the heat medium second connection port, the heat medium second connection port and the gas-liquid separation inflow port are connected to each other through a gas-liquid separation inflow pipe, and the gasliquid separation inflow port is located at a position higher than the heat medium second connection port.

[0107] According to this configuration, the gas-liquid separating section can be placed above the use-side heat exchanger, and a space of the heat medium circuit can be saved.

(Configuration 7)

[0108] The heat medium circulation device of the configuration 6, the gas-liquid separation inflow pipe includes a gas-liquid separation lateral inflow pipe connected to the heat medium second connection port, and a gas-liquid separation vertical inflow pipe portion connected to the gas-liquid separation inflow port.

[0109] According to this configuration, a flowing direction of the heat medium which is discharged out from the use-side heat exchanger is changed before the heat medium flows into the gas-liquid separating section. Therefore, the high gas-liquid separation ratio can be expected.

[INDUSTRIAL APPLICABILITY]

[0110] The present invention is suitable especially for a heat medium circulation device using combustible refrigerant.

[EXPLANATION OF SYMBOLS]

[0111]

10

1	use-side terminal
2	indoor unit
3	
-	outdoor unit
3a	heat medium chamber
3b	machine chamber
3c	air blowing chamber
3d	bottom surface material outer periphery
3e	top surface material outer periphery
10	refrigerant circuit
11	compressor
12	use-side heat exchanger
12b	depth
12h	height
12w	width
13	expansion device
14	heat source-side heat exchanger
15	four-way valve
16	air blower
17x	refrigerant first connection port
17y	refrigerant second connection port
20	heat medium circuit
21	transfer pump
22x	heat medium first connection port
22y	heat medium second connection port
23	heat medium first connection pipe
30	gas-liquid separating section
31	cylindrical inner space
31h	bottle height
31R	bottle diameter
31x	virtual axis
32	gas-liquid separation inflow port
32R	entrance diameter
33	gas-liquid separation outflow port
33h	height
33R	•
34	pressure relief valve connection port
34h	position
35	gas-liquid separation inflow pipe
35a	gas-liquid separation lateral inflow pipe portion
35b	gas-liquid separation vertical inflow pipe portion
36	exit joint
37	entrance joint
40	pressure relief valve
41	operating lever (operating section)
42	pressure relief valve connection pipe
	·
42a	lateral connection pipe portion

vertical connection pipe portion

discharge device

42b

50

40

10

15

20

35

40

45

51 float

52 discharge port

60 wall surface material

61 first wall surface material

62 second wall surface material

71 first partition plate

71x one side

71y other side

72 second partition plate

80 opening

81 fastening tool

Claims

1. A heat medium circulation device comprising:

a refrigerant circuit (10) to which a compressor (11), a use-side heat exchanger (12), an expansion device (13) and a heat source-side heat exchanger (14) are connected, and through which refrigerant circulates;

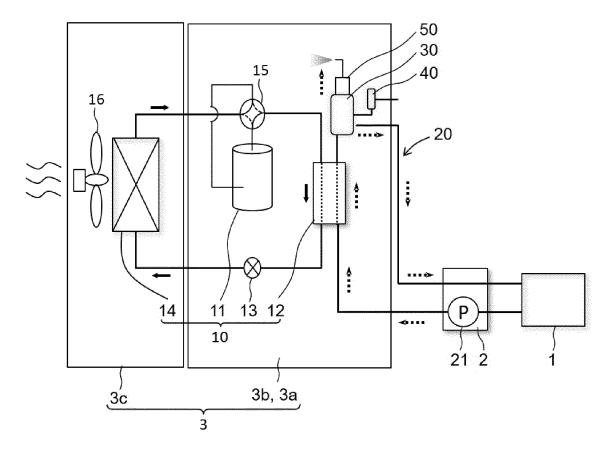
a heat medium circuit (20) which circulates heat medium cooled or heated by the refrigerant discharged out from the compressor (11) in the useside heat exchanger (12) through a use-side terminal (1); and

a gas-liquid separating section (30) for separating gas in the heat medium circuit (20) from the heat medium; wherein

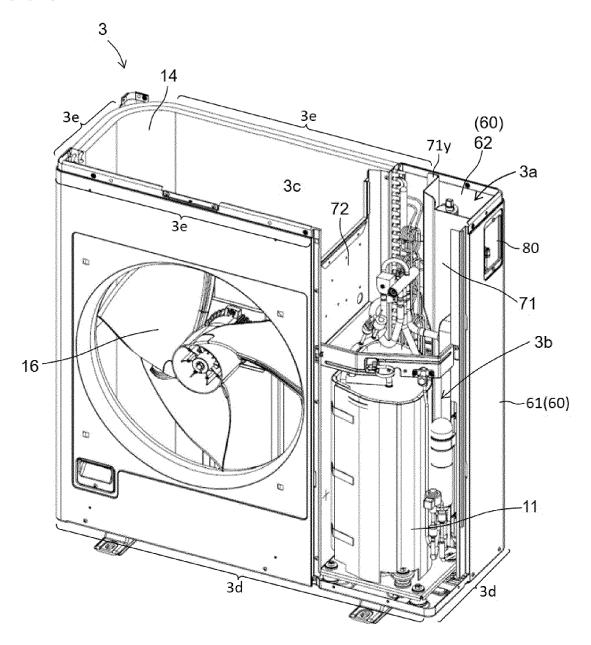
the gas-liquid separating section (30) is placed in the heat medium circuit (20) located downstream of the use-side heat exchanger (12), the gas-liquid separating section (30) includes a gas-liquid separation inflow port (32) through which the heat medium flows into a cylindrical inner space (31), and a gas-liquid separation outflow port (33) through which the heat medium flows out from the cylindrical inner space (31), the gas-liquid separation inflow port (32) is provided in a bottom surface of the gas-liquid separation outflow port (33), and the gas-liquid separation outflow port (33) is provided in a side surface of the gas-liquid separation outflow port (33) is provided in a side surface of the gas-liquid separation section (30).

- 2. The heat medium circulation device according to claim 1, wherein the gas-liquid separation inflow port (32) is eccentric from a virtual axis (31x) of the cylindrical inner space (31) at a position separated from the gas-liquid separation outflow port (33).
- 3. The heat medium circulation device according to claim 1 or 2, wherein the gas-liquid separation outflow port (33) is located at a position which is equal to or smaller than a half of a bottle height (31h) of the cylindrical inner space (31).

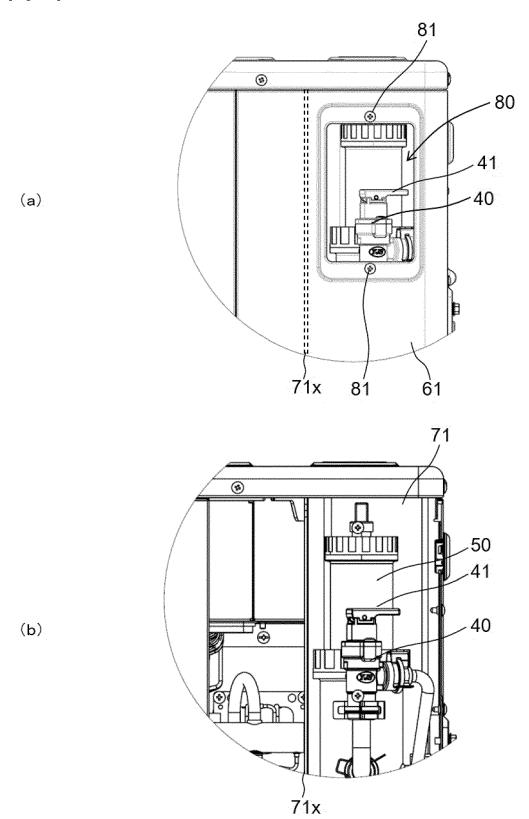
- 4. The heat medium circulation device according to any one of claims 1 to 3, wherein a bottle diameter (31R) of the cylindrical inner space (31) is two times or more of an entrance diameter (32R) of the gas-liquid separation inflow port (32).
- **5.** The heat medium circulation device according to claim 4, wherein an exit diameter (33R) of the gasliquid separation outflow port (33) is equal to or greater than the entrance diameter (32R).
- 6. The heat medium circulation device according to any one of claims 1 to 5, wherein the use-side heat exchanger (12) includes a heat medium first connection port (22x) in a lower portion of a side surface of the use-side heat exchanger (12), and a heat medium second connection port (22y) in an upper portion of the side surface of the use-side heat exchanger (12),

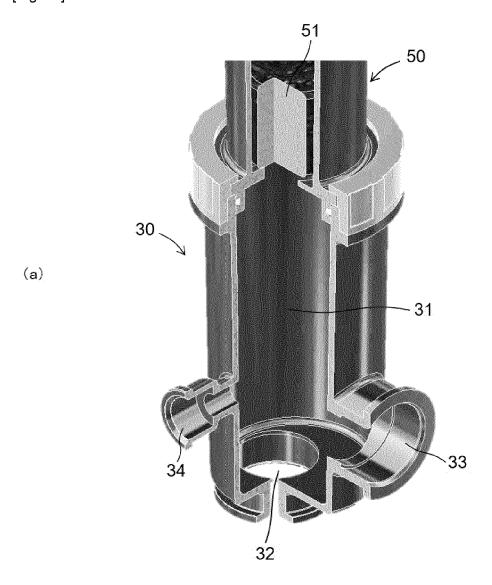

the heat medium is introduced into the use-side heat exchanger (12) from the heat medium first connection port (22x), and the heat medium introduced into the use-side heat exchanger (12) is discharged out from the heat medium second connection port (22y),

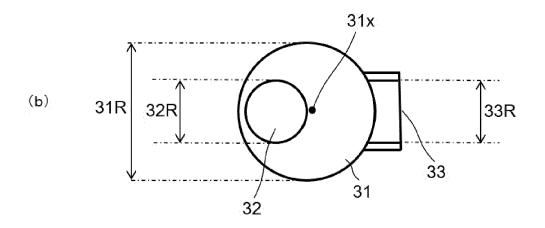
the heat medium second connection port (22y) and the gas-liquid separation inflow port (32) are connected to each other through a gas-liquid separation inflow pipe (35), and


the gas-liquid separation inflow port (32) is located at a position higher than the heat medium second connection port (22y).

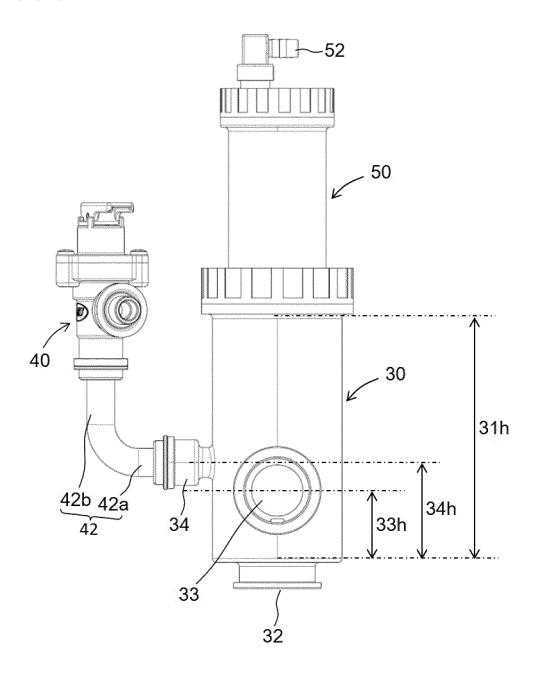
7. The heat medium circulation device according to claim 6, wherein the gas-liquid separation inflow pipe (35) includes a gas-liquid separation lateral inflow pipe portion (35a) connected to the heat medium second connection port (22y), and a gas-liquid separation vertical inflow pipe portion (35b) connected to the gas-liquid separation inflow port (32).


[Fig. 1]

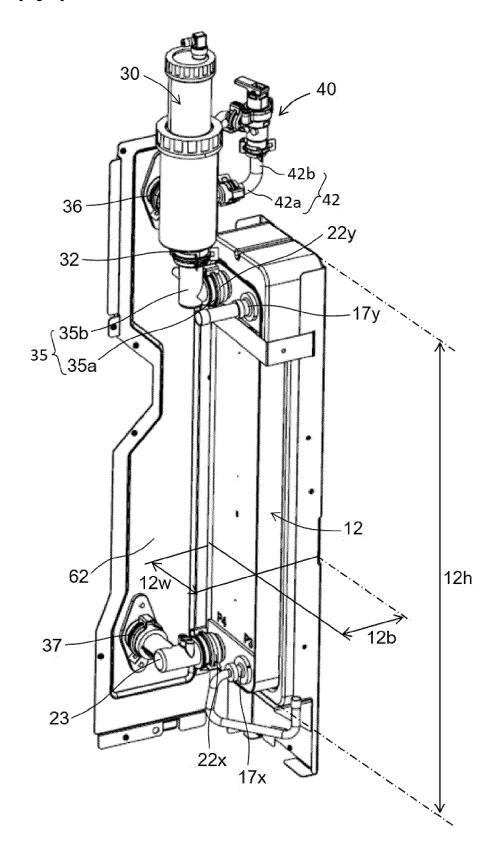

[Fig. 2]



[Figs. 3]



[Figs. 4]



[Fig. 5]

[Fig. 6]

DOCUMENTS CONSIDERED TO BE RELEVANT

Citation of document with indication, where appropriate,

EP 4 011 474 A1 (VAILLANT GMBH [DE])

of relevant passages

Category

Х

EUROPEAN SEARCH REPORT

Application Number

EP 23 19 0649

CLASSIFICATION OF THE APPLICATION (IPC)

INV.

Relevant

to claim

1-5

5

10

15

20

25

30

35

40

45

50

X	15 June 2022 (2022-06	_	E])	-5	F24D19/	าย
Y	* paragraphs [0003] -	•	ure 1 * 6	,7	F24D19/	
				_	F24H15/	
Y	WO 2022/156913 A1 (WO 28 July 2022 (2022-07		, 6	,7	F25B13/	JU
	* page 18, paragraph	•				
	paragraph 6; figure 1					
A	EP 3 734 198 A1 (WOLE		1	-7		
	4 November 2020 (2020		i 11 #			
	* paragraphs [0044] -		1m 11 *			
A,D	WO 2018/154628 A1 (M)		CTRIC 1	-7		
	CORP) 30 August 2018 * paragraphs [0009] -		ures			
	1-2,5-8 *	[0040], 119	4105			
	-					
				_		
					TECHNICA SEARCHEI	
				-	F24H	
					F24F	
					F24D F25B	
					FZJB	
	The present search report has been	<u>'</u>				
	Place of search Munich	Date of completion	mber 2023	Hof	Examiner fmann, S	téphanie
	CATEGORY OF CITED DOCUMENTS		theory or principle ur		·	-chimite
		E:	earlier patent docum after the filing date	ent, but publis	shed on, or	
X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background O: non-written disclosure			arter the filing date D: document cited in the application L: document cited for other reasons &: member of the same patent family, corresponding			

X : particularly relevant if taken alone
 Y : particularly relevant if combined with another document of the same category
 A : technological background
 O : non-written disclosure
 P : intermediate document

after the filing date
D: document cited in the application
L: document cited for other reasons

[&]amp; : member of the same patent family, corresponding document

EP 4 325 128 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 23 19 0649

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

13-12-2023

									15 12 2025
10			Patent document ed in search report		Publication date		Patent family member(s)		Publication date
		EP	4011474	A 1	15-06-2022	DE EP	102020132580 4011474		09-06-2022 15-06-2022
15		WO	2022156913	A1	28-07-2022		112021000172		15-09-2022
						EP WO			10-05-2023 28-07-2022
		EP	3734198	A1	04-11-2020	DE	102019111017	A1	29-10-2020
20						DE	202020005731	U1	16-03-2022
						EP	3734198	A1	04-11-2020
						EP			19-04-2023
						ES			25-05-2023
0.5		WO	2018154628	A1	30-08-2018		3587947		
25						JP	6771642	B2	21-10-2020
						JP	WO2018154628	A1	07-11-2019
						WO			30-08-2018
30									
35									
40									
45									
50									
	0458								
	FORM P0459								
55	ğ [

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

EP 4 325 128 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• JP 2018154628 W [0004]