BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
[0001] This invention relates to an elevator system and to a method for operating an elevator
system, and more particularly to a multipurpose elevator system.
DESCRIPTION OF PRIOR ART
[0002] A challenge with traditional elevators is that the provided elevator car is usually
optimized for transporting persons. However, in certain situations, such as during
the construction of the building, for instance, there also exists a need to transport
heavy cargo to upper parts of the building.
[0003] Some buildings are provided with separate elevator cars for transporting persons
and separate for transporting cargo. However, for practical reasons this is not the
case in all buildings. Previously known elevators are disclosed in
JP S55132081U,
CN 209127832U,
JP 2000211856A and
CN 109911745A, for instance.
[0004] Consequently, in some installations, the same elevator car which is used for transporting
persons also needs to be used for transporting cargo. When such a need arises, a common
problem is how to be able to get the heavy cargo into the elevator car and out of
the elevator car without damaging the elevator car in such a way that it no longer
looks tidy and nice for transport of persons.
SUMMARY OF THE INVENTION
[0005] An object of the present invention is to solve the above-mentioned drawback and to
provide an elevator system which is well suited for use both to transport persons
and cargo. This object is achieved with the elevator system according to independent
claim 1 and the method according to independent claim 12.
[0006] Use of an elevator car where the floor is provided with at least a first and a second
rotatably suspended roll providing a rolling floor surface, and with a floor section
consisting of one or more floor elements which are movable between a load bearing
position, where they are aligned on top of the rolling floor surface, and a transport
position, where the rolling floor surface is revealed, makes the elevator car excellent
to use both for persons and cargo.
[0007] Preferred embodiments of the invention are disclosed in the dependent claims.
BRIEF DESCRIPTION OF DRAWINGS
[0008] In the following the present invention will be described in closer detail by way
of example and with reference to the attached drawings, in which
Figure 1 illustrates an elevator car with floor elements in a cargo transport position,
Figure 2 illustrates the elevator car of Figure 1 with the floor elements in a passenger
load bearing position, Figure 3 to 5 illustrate a second embodiment of an elevator
car, and
Figure 6 illustrates a flow chart of a method.
DESCRIPTION OF AT LEAST ONE EMBODIMENT
[0009] Figure 1 illustrates a simplified side view of an elevator system 1 with an elevator
car 2 which is arranged to move vertically in a hoistway 3 between landings 4 of a
building 16. The elevator car is moved by a hoisting machinery 5 which is controlled
by an elevator control 6. The hoisting machinery 5 utilizes a rope 18 to move the
elevator car 2 and a counterweight 19 in the hoistway 3. For simplicity, all details
and elements participating in moving the elevator car are not illustrated in Figures
1 and 2. One alternative is to utilize a similar solution as illustrated in Figure
5.
[0010] The floor 20 of the elevator car 2 is provided with at least a first and a second
roll 7, which are rotatably suspended in the elevator car 2 for rotation around rotation
axles 8. The ensure easy loading and unloading, the rotation axles 8 are in the illustrated
example parallel to a door opening 9 of the elevator car 2, due to which a heavy object
may be directly pushed into the elevator car from the door opening 9 onto the rolls
7.
[0011] In the illustrated example it is by way of example assumed that the number of rolls
7 is larger than two, so that a major part of the bottom area of the elevator car
is provided with rolls 7. The rolls may be rotatably suspended from the bottom part
of the elevator car or alternatively from the side walls 17 of the elevator car. Irrespectively
of the number of rolls 7, the uppermost parts of the rolls that at each moment are
located uppermost together provide a rolling surface 10 at a plane illustrated by
dotted line 10. This rolling surface 10 carries in the cargo transport position heavy
objects that are pushed into or out of the elevator car 2 on the rolls.
[0012] An advantage with the rolling surface 10 provided by the rolls 7 is that when loading
or unloading cargo into the elevator car 2, the cargo can slide along the rolling
surface due to the rotation of the rolls 7. This significantly simplifies loading
and unloading of heavy cargo.
[0013] As transportation of persons requires a steady base for the persons to stand on,
the elevator car 2 is provided with a floor section comprising one or more floor elements
11, which are movable between a load bearing position, where the one or more floor
elements are aligned on top of the rolling floor surface 10 and provide a fixed floor
surface, and a transport position, where the rolling floor surface 10 is revealed.
[0014] Figure 1 illustrates the one or more floor elements 11 in the transport position,
where the elevator car is optimized for transport of cargo, and Figure 2 illustrates
the one or more floor elements 11 in the load bearing position, where the one or more
floor elements 11 are aligned on top of the rolling floor surface 10 and provide a
fixed floor surface for carrying the weight of person standing on it.
[0015] In the illustrated example it is by way of example assumed that the elevator car
2 is provided with two floor elements 11, which are movable between the load bearing
position and the transport position by rotation around pivot points 12. In that case
each of the floor elements 11 is separately attached by pivot points to the elevator
car, preferably proximate to the opposite side walls of the elevator car. Proximity
to the side walls 17 is advantageous, as in that case the area of the rolling surface
10 becomes as large as possible in the transport position. The pivot points 12 make
it possible to lift each floor element 11 from the horizontal load bearing position
illustrated in Figure 2 to an upright vertical transport position illustrated in Figure
1. In that case each floor element is located along a side wall 17 of the elevator
car in an upright position, due to which the rolling surface 10 is revealed between
the two floor elements. Naturally a similar solution may be utilized also in case
only one floor element is in use. However, in that case this single floor element
will extend to a larger height along the side wall 17 of the elevator car 2, which
makes the elevator floor element heavier and more clumsy to move between the transport
and load bearing positions. The pivot points 12 may be implemented by means of hinges,
for instance.
[0016] Alternatively, or in addition to using hinges as the pivot points 12 which facilitate
moving the floor elements manually between the load bearing position and the transport
position, the elevator car may be provided with a drive unit 13 (or drive units) such
as an electric motor, a hydraulic motor or hydraulic cylinder, or a pneumatic motor
or pneumatic cylinder which can be used to move the one or more floor elements 11
between the load bearing position and the transport position. In that case a control
panel of the elevator car 2, for instance, may be used to control the movement of
the one or more floor elements 11 by utilizing electric power, hydraulic power or
pneumatic power.
[0017] Still another alternative for moving the one or more floor elements 11 into the transport
position is to completely remove the elements from the elevator car 2 to an elevator
landing 4. In that case no pivot points are needed, but instead the elevator car may
be provided with attachment points for attaching the one or more floor elements in
position with screws (if needed), for instance, when the one or more floor elements
11 are in the load bearing position.
[0018] In the example illustrated in Figures 1 and 2, the elevator car 2 is provided with
a sensor 14 providing the elevator control 6 with an indication about the position
of the one or more floor elements 11. In this way the elevator control obtains information
when the one or more floor elements 11 are in the transport position and when they
are in the load bearing position. This information is useful, because it may be advantageous
to stop the elevator car at different heights in the hoistway 3 in relation to the
landings 4 depending on the position of the one or more floor elements 11.
[0019] From Figure 1 it can be seen, that when the one or more floor elements 11 are in
the transport position, the elevator control 6 has stopped the elevator car at a height
in the hoistway 3 where the rolling surface 10 is located a distance D above the upper
surface of the landing 4. This is advantageous, as a load transported to the elevator
car on a trolley having wheels, may be easily transferred directly from the trolley
onto the rolling surface. Depending on the implementation, in the transport position,
the elevator car 2 is preferably stopped at a height where the rolling floor surface
10 is at the same height or above the upper surface of the landing 4.
[0020] Correspondingly, it can be seen from Figure 2 that when the one or more floor elements
11 are in the passenger load bearing position, in other words ready to receive passengers,
the elevator control 6 has stopped the elevator car 2 in the hoistway 3 at a height
where an upper surface of the one or more floor elements 11 is at the same height
as the upper surface of the landing 4.
[0021] Consequently, when taking into account also the thickness of the one or more floor
elements 11 laying on top of the rolling floor surface 10 in Figure 2, it is clear
that the elevator control 6 is configured to stop the elevator car 2 at a higher position
in relation to the landing 4 when the one or more floor elements 11 are in the transport
position, than when the one or more floor elements 11 are in the load bearing position.
[0022] As the need for transporting heavy objects is typically at its maximum when a building
is being constructed, a construction time modification of the elevator car illustrated
in Figures 1 and 2 may be utilized only during the construction time of the building.
Consequently, for the construction time of the building the elevator car 2 may be
set in a hybrid mode, where the rolling floor surface 10 and the one or more floor
elements 11 have been provided to the floor 20 of the elevator car. Atthat stage,
the elevator car is well suited for both transport of cargo and passengers, depending
on if the one or more floor elements 11 are in the passenger load bearing position
illustrated in Figure 1 or in the transport position illustrated in Figure 2. However,
once the construction time modification is no longer needed as the building is completed,
this hybrid mode may no longer be needed. At that stage the elevator car may be set
in a person transport mode, by removing the rolls providing the rolling floor surface
10 and the floor elements 11. Consequently, the floor 20 of the elevator car may be
revealed and possibly provided with a new coating for more permanent transport of
passengers. At that stage the elevator control 6 may, if necessary, be set into a
new mode ensuring that the upper surface of the floor 20 is at the same level as the
upper surface of the landings 4 in the hoistway, when the elevator car 2 stops at
a landing.
[0023] Figures 3 to 5 illustrate a second embodiment of an elevator car 2'. The second embodiment
is very similar as the one explained in connection with Figures 1 to 2. Therefore,
in the following, the embodiment of Figures 3 to 5 will mainly be explained by pointing
out the differences.
[0024] In Figure 3 the elevator car is set into a hybrid mode, for the construction time
of the building, for instance, due to which it is provided with rolls 7 providing
a rolling surface 10 and one or more floor elements 11, which can be moved between
the cargo transport position (illustrated in Figure 3) and the passenger load bearing
position, as has been illustrated and explained in connection with Figures 1 and 2.
[0025] However, in Figure 4 it is by way of example assumed that the construction of the
building has ended (for instance), such that the construction time modification with
the hybrid mode is no longer needed. Consequently, the elevator car 2' has been set
in a person transport mode by removing the rolling floor surface 10 and the one or
more floor elements 11 from the elevator car 2' to reveal the floor 20 of the elevator
car 2'. Possibly, a new surface coating has been provided to the floor 20 to make
it suitable and tidy for passenger transport.
[0026] In the embodiment of Figures 3 to 5, the elevator car has additionally been provided
with a height adjustable roof construction to obtain an increased interior height
well suited for loading of long or high objects 15' into an elevator car 2'.
[0027] As can be seen in Figure 3, objects 15' which are higher than the height of the door
opening 9' in the elevator car 2' can easily be loaded onto the rolling floor surface
by tilting at the door, and subsequently turning into an upright position. After this
the objects 15' can slide deeper into the elevator car 2' on the rolling surface.
[0028] When comparing Figures 3 and 4 illustrating the same elevator car 2', one can observe
that in Figure 3 the interior height of the elevator car is higher than in Figure
4.
[0029] There are at least two different ways of providing a height adjustable roof construction.
A first alternative is to provide one single roof element 21' which can be attached
in at least two alternative height positions to the elevator car 2'. This has been
illustrated in Figure 3 by way of example. The roof element 21' has attachment holes
22' at two different vertical heights, so that bolts 23' can protrude through the
holes 22' on the selected height and attach the roof element 21' at a desired height
position to the walls of the elevator car 2'. Bolts and holes are naturally only one
example of devices suitable for providing height adjustment for a single roof element
21'. As an alternative, it is possible to utilize a mechanism which attaches the roof
element to the elevator car and moves the roof element vertically when a lever is
pulled, for instance.
[0030] Another alternative to provide a height adjustable roof construction is to utilize
two different roof elements. In this alternative the first roof element 21' illustrated
in Figure 3, which provides an increased interior height for the elevator car 2' is
replaced by a second roof element 21" as illustrated in Figure 4, when the increased
interior height is no longer necessary. Again, attachment of the second roof element
21" may be implemented with bolts 23', for instance.
[0031] As is clear from Figures 3 and 4, while the building is constructed or there is for
some other reason a need for transporting heavy and/or large sized cargo, the construction
time modification for the elevator car 2' can be implemented by setting the elevator
car into the hybrid mode. In that case the rolling floor surface 10, the one or more
floor elements 11 and the increased interior height may be provided with the adjustable
roof construction.
[0032] Figure 5 illustrates in more detail an example of how the hoisting carried out with
the hoisting machinery 5 and the rope 18 can be implemented. This solution can be
utilized both for the embodiment of Figures 1 to 2 and for the embodiment of Figures
3 to 4.
[0033] As can be seen from Figure 5, the rope 18 is led via pulleys 24' and the hoisting
machinery 5 in such a way that the elevator car 2' is suspended from below. This leaves
the upper part of the elevator car free, so that a height adjustable roof construction
can be implemented.
[0034] Figure 6 is a flow chart of a method for operating an elevator system. This method
can be implemented for the embodiment of Figures 1 to 2 or for the embodiment of Figures
3 to 5.
[0035] In step A the elevator car is set in a hybrid mode for the construction time of the
building, for instance. This involves providing a floor of the elevator car with a
rolling floor surface, and providing the elevator car with a floor section comprising
one or more floor elements which are movable between a load bearing position, where
the floor elements are aligned on top of the rolling floor surface, and a transport
position, where the rolling floor surface is revealed in the elevator car.
[0036] Step B is not necessary in all implementations. However, in case an increased interior
height is needed during the construction time, setting of the elevator car in the
hybrid mode may include also step B. In that case the interior height of the elevator
car is adjusted to an increased interior height. This may be implemented as has been
explained in connection with Figures 3 to 5, for instance.
[0037] In step C, once the construction time modification is no longer needed, the elevator
car is set in a person transport mode. This involves removing the rolling floor surface
and the one or more floor elements from the elevator car to reveal the floor of the
elevator car.
[0038] Step D is not necessary in all implementations. However, if the interior height of
the elevator car has been increased with a step B, in step D the interior height of
the elevator car can be adjusted to a lower height.
[0039] It is to be understood that the above description and the accompanying figures are
only intended to illustrate the present invention. It will be obvious to a person
skilled in the art that the invention can be varied and modified without departing
from the scope of the invention.
1. An elevator system (1, 1'), comprising:
a hoistway (3),
an elevator car (2, 2') arranged in the hoistway, and
an elevator control (6) controlling the elevator car (2, 2') to move vertically in
the hoistway (3) between landings (4) of a building (16), wherein
a floor (20) of the elevator car (2, 2') is provided with at least a first and a second
roll (7) which are rotatably suspended in the elevator car for rotation around rotation
axles (8) which are parallel to a door opening (9, 9') of the elevator car to provide
a rolling floor surface (10), characterized in that
a floor section comprising one or more floor elements (11) which are movable between
a load bearing position, where the floor elements (11) are aligned on top of the rolling
floor surface (10) and provide a fixed floor surface, and a transport position, where
the rolling floor (10) surface is revealed in the elevator car (2, 2').
2. The elevator system according to claim 1, wherein the one or more floor elements (11)
are movable between the load bearing position and the transport position by rotation
around pivot points (12).
3. The elevator system according to claim 2, wherein the pivot points (12) are arranged
proximate to the walls (17) of the elevator car (2, 2').
4. The elevator system according to claim 2 or 3, wherein the pivot points (12) are provided
by hinges.
5. The elevator system according to one of claims 2 to 4, wherein the elevator car (2,
2') is provided with a drive unit (13) for rotating the one or more floor elements
(11) around the pivot points (12).
6. The elevator system according to claim 5, wherein the drive unit (13) rotates the
one or more floor elements (11) around the pivot points (12) by electric power, hydraulic
power or pneumatic power.
7. The elevator system according to one of claims 1 to 6, wherein
the elevator car (2, 2') is provided with a sensor (14) providing the elevator control
(6) with an indication about the position of the one or more floor elements (11),
and
the elevator control is configured to control the stopping of the elevator car (2,
2') at different heights in relation to a landing (4) of the hoistway (3) depending
whether the one or more floor elements (11) are in the load bearing position or in
the transport position.
8. The elevator system according to claim 7, wherein
the elevator control (6) is configured to stop the elevator car (2, 2') at a higher
position in relation to the landing (4) when the one or more floor elements (11) are
in the transport position than when the one or more floor elements (11) are in the
load bearing position.
9. The elevator system according to one of claims 1 to 8, wherein the elevator control
(6) controls the elevator car (2, 2') to stop at a height where an upper surface of
the one or more floor elements (11) is at the same height as an upper surface of the
landing (4), when the one or more floor elements (11) are in the load bearing position.
10. The elevator system according to one of claims 1 to 9, wherein the elevator control
(6) controls the elevator car (2, 2') to stop at a height where the rolling floor
surface (10) is at the same height or above the upper surface of the landing (4),
when the one or more floor elements (11) are in the transport position.
11. The elevator system according to one of claims 1 to 10, wherein the elevator car (2')
is provided with a height adjustable roof construction, where the interior height
in the elevator car (2') can be adjusted by attaching one single roof element (21')
in at least two alternative height positions, or by replacing a first roof element
(21') with a second roof element (21") providing a different interior height than
the first roof element.
12. A method for operating an elevator system,
characterized in that the method comprises:
setting (A) the elevator car in a hybrid mode by providing a floor (20) of the elevator
car (2, 2') with a rolling floor surface (10), and by providing the elevator car with
a floor section comprising one or more floor elements (11) which are movable between
a load bearing position, where the floor elements (11) are aligned on top of the rolling
floor surface (10), and a transport position, where the rolling floor (10) surface
is revealed in the elevator car (2, 2'), and
setting (C) the elevator car (2') in a person transport mode by removing the rolling
floor surface (10) and the one or more floor elements (11) from the elevator car to
reveal the floor of the elevator car.
13. The method according to claim 12, wherein setting the elevator car (2') in the hybrid
mode comprises adjusting (B) an interior height of the elevator car (2') by a height
adjustable roof construction to obtain an increased interior height.
14. The method according to claim 13, wherein the height adjustment comprises attaching
a single roof element (21') of the elevator car (2') to a higher one of at least two
alternative attachment positions, or replacing a first roof element (21') with a second
roof element (21")providing a different interior height than the first roof element.
15. The method according to one of claims 13 - 14, wherein setting (D) the elevator car
(2') in the person transport mode comprises adjusting the interior height of the elevator
car (2') to a lower height than the increased interior height.
1. Aufzugssystem (1, 1'), umfassend:
einen Aufzugsschacht (3),
eine Aufzugskabine (2, 2'), die in dem Aufzugsschacht eingerichtet ist, und
eine Aufzugssteuerung (6), welche die Aufzugskabine (2, 2') steuert, um sich vertikal
in dem Aufzugsschacht (3) zwischen Absätzen (4) eines Gebäudes (16) zu bewegen, wobei
ein Boden (20) der Aufzugskabine (2, 2') mit mindestens einer ersten und einer zweiten
Rolle (7) versehen ist, die drehbar in der Aufzugskabine zur Drehung um Drehachsen
(8), die parallel zu einer Türöffnung (9, 9') der Aufzugskabine sind, zum Bereitstellen
einer Rollbodenoberfläche (10) aufgehängt sind, dadurch gekennzeichnet, dass
eine Bodensektion, die ein oder mehrere Bodenelemente (11) umfasst, die zwischen einer
lasttragenden Position, wo die Bodenelemente (11) oben auf der Rollbodenoberfläche
(10) ausgerichtet sind und eine feste Bodenoberfläche bereitstellen, und einer Transportposition
beweglich sind, wo die Rollbodenoberfläche (10) in der Aufzugskabine (2, 2') sichtbar
ist.
2. Aufzugssystem nach Anspruch 1, wobei das eine oder die mehreren Bodenelemente (11)
zwischen der lasttragenden Position und der Transportposition durch Drehung um Drehpunkte
(12) beweglich sind.
3. Aufzugssystem nach Anspruch 2, wobei die Drehpunkte (12) in der Nähe der Wände (17)
der Aufzugskabine (2, 2') eingerichtet sind.
4. Aufzugssystem nach Anspruch 2 oder 3, wobei die Drehpunkte (12) durch Scharniere bereitgestellt
sind.
5. Aufzugssystem nach einem der Ansprüche 2 bis 4, wobei die Aufzugskabine (2, 2') mit
einer Antriebseinheit (13) zum Drehen des einen oder der mehreren Bodenelemente (11)
um die Drehpunkte (12) versehen ist.
6. Aufzugssystem nach Anspruch 5, wobei die Antriebseinheit (13) das eine oder die mehreren
Bodenelemente (11) durch elektrische Leistung, hydraulische Leistung oder pneumatische
Leistung um die Drehpunkte (12) dreht.
7. Aufzugssystem nach einem der Ansprüche 1 bis 6, wobei
die Aufzugskabine (2, 2') mit einem Sensor (14) versehen ist, welcher der Aufzugssteuerung
(6) eine Angabe über die Position des einen oder der mehreren Bodenelemente (11) bereitstellt,
und
die Aufzugssteuerung dazu ausgestaltet ist, das Anhalten der Aufzugskabine (2, 2')
auf unterschiedlichen Höhen in Bezug auf einen Absatz (4) des Aufzugsschachts (3)
abhängig davon zu steuern, ob das eine oder die mehreren Bodenelemente (11) sich in
der lasttragenden Position oder in der Transportposition befinden.
8. Aufzugssystem nach Anspruch 7, wobei
die Aufzugssteuerung (6) dazu ausgestaltet ist, die Aufzugskabine (2, 2'), wenn das
eine oder die mehreren Bodenelemente (11) sich in der Transportposition befindet bzw.
befinden, an einer höheren Position in Bezug auf den Absatz (4) anzuhalten als wenn
das eine oder die mehreren Bodenelemente (11) sich in der lasttragenden Position befindet
bzw. befinden.
9. Aufzugssystem nach einem der Ansprüche 1 bis 8, wobei die Aufzugssteuerung (6) die
Aufzugskabine (2, 2') steuert, um auf einer Höhe anzuhalten, wo eine obere Oberfläche
des einen oder der mehreren Bodenelemente (11) sich auf der gleichen Höhe befindet
wie eine obere Oberfläche des Absatzes (4), wenn das eine oder die mehreren Bodenelemente
(11) sich in der lasttragenden Position befindet bzw. befinden.
10. Aufzugssystem nach einem der Ansprüche 1 bis 9, wobei die Aufzugssteuerung (6) die
Aufzugskabine (2, 2') steuert, um auf einer Höhe anzuhalten, wo die Rollbodenoberfläche
(10) sich auf der gleichen Höhe wie oder über der oberen Oberfläche des Absatzes (4)
befindet, wenn das eine oder die mehreren Bodenelemente (11) sich in der Transportposition
befindet bzw. befinden.
11. Aufzugssystem nach einem der Ansprüche 1 bis 10, wobei die Aufzugskabine (2') mit
einer höhenverstellbaren Dachkonstruktion versehen ist, wo die Innenhöhe in der Aufzugskabine
(2') durch Anbringen eines einzigen Dachelements (21') in mindestens zwei alternativen
Höhenpositionen oder durch Ersetzen eines ersten Dachelements (21') mit einem zweiten
Dachelement (21") verstellt werden kann, das eine unterschiedliche Innenhöhe bereitstellt
als das erste Dachelement.
12. Verfahren für den Betrieb eines Aufzugssystems,
dadurch gekennzeichnet, dass das Verfahren umfasst:
Einstellen (A) der Aufzugskabine in einem hybriden Modus durch Versehen eines Bodens
(20) der Aufzugskabine (2, 2') mit einer Rollbodenoberfläche (10) und durch Versehen
der Aufzugskabine mit einer Bodensektion, die ein oder mehrere Bodenelemente (11)
umfasst, die zwischen einer lasttragenden Position, wo die Bodenelemente (11) oben
auf der Rollbodenoberfläche (10) ausgerichtet sind, und einer Transportposition beweglich
sind, wo die Rollbodenoberfläche (10) in der Aufzugskabine (2, 2') sichtbar ist, und
Einstellen (C) der Aufzugskabine (2') in einem Personentransportmodus durch Entfernen
der Rollbodenoberfläche (10) und des einen oder der mehreren Bodenelemente (11) von
der Aufzugskabine, um den Boden der Aufzugskabine sichtbar zu machen.
13. Verfahren nach Anspruch 12, wobei das Einstellen der Aufzugskabine (2') im hybriden
Modus das Verstellen (B) einer Innenhöhe der Aufzugskabine (2') durch eine höhenverstellbare
Dachkonstruktion umfasst, um eine erhöhte Innenhöhe zu erhalten.
14. Verfahren nach Anspruch 13, wobei die Höhenverstellung das Anbringen eines einzigen
Dachelements (21') der Aufzugskabine (2') auf eine höhere von mindestens zwei alternativen
Anbringungspositionen oder das Ersetzen eines ersten Dachelements (21') mit einem
zweiten Dachelement (21") umfasst, das eine unterschiedliche Innenhöhe als das erste
Dachelement bereitstellt.
15. Verfahren nach einem der Ansprüche 13 bis 14, wobei das Einstellen (D) der Aufzugskabine
(2') in dem Personentransportmodus das Verstellen der Innenhöhe der Aufzugskabine
(2') auf eine niedrigere Höhe als die erhöhte Innenhöhe umfasst.
1. Système d'ascenseur (1, 1') comprenant :
une gaine d'ascenseur (3),
une cabine d'ascenseur (2, 2') agencée dans la gaine d'ascenseur, et
une commande d'ascenseur (6) commandant la cabine d'ascenseur (2, 2') pour se déplacer
verticalement dans la gaine d'ascenseur (3) entre les paliers (4) d'un bâtiment (16),
dans lequel :
un plancher (20) de la cabine d'ascenseur (2, 2') est prévu avec au moins un premier
et un second rouleau (7) qui sont suspendus, en rotation, dans la cabine d'ascenseur
pour la rotation autour des essieux de rotation (8) qui sont parallèles à une ouverture
de porte (9, 9') de la cabine d'ascenseur pour fournir une surface de plancher roulante
(10), caractérisé en ce que :
une section de plancher comprenant un ou plusieurs éléments de plancher (11) qui sont
mobiles entre une position de support de charge, dans laquelle les éléments de plancher
(11) sont alignés sur le dessus de la surface de plancher roulante (10) et fournissent
une surface de plancher fixe, et une position de transport, dans laquelle la surface
de plancher roulante (10) est dévoilée dans la cabine d'ascenseur (2, 2').
2. Système d'ascenseur selon la revendication 1, dans lequel les un ou plusieurs éléments
de plancher (11) sont mobiles entre la position de support de charge et la position
de transport par la rotation autour des points de pivot (12).
3. Système d'ascenseur selon la revendication 2, dans lequel les points de pivot (12)
sont agencés à proximité des parois (17) de la cabine d'ascendeur (2, 2').
4. Système d'ascenseur selon la revendication 2 ou 3, dans lequel les points de pivot
(12) sont fournis par les charnières.
5. Système d'ascenseur selon l'une des revendications 2 à 4, dans lequel la cabine d'ascenseur
(2, 2') est prévue avec une unité d'entraînement (13) pour faire tourner les un ou
plusieurs éléments de plancher (11) autour des points de pivot (12).
6. Système d'ascenseur selon la revendication 5, dans lequel l'unité d'entraînement (13)
fait tourner les un ou plusieurs éléments de plancher (11) autour des points de pivot
(12) par alimentation électrique, alimentation hydraulique ou alimentation pneumatique.
7. Système d'ascenseur selon l'une des revendications 1 à 6, dans lequel :
la cabine d'ascenseur (2, 2') est prévue avec un capteur (14) dotant la commande d'ascenseur
(6) d'une indication concernant la position des un ou plusieurs éléments de plancher
(11), et
la commande d'ascenseur est configurée pour commander l'arrêt de la cabine d'ascenseur
(2, 2') à différentes hauteurs par rapport à un palier (4) de la gaine d'ascenseur
(3) selon si les un ou plusieurs éléments de plancher (11) sont dans la position de
support de charge ou dans la position de transport.
8. Système d'ascenseur selon la revendication 7, dans lequel :
la commande d'ascenseur (6) est configurée pour arrêter la cabine d'ascenseur (2,
2') dans une position plus haute par rapport au palier (4), lorsque les un ou plusieurs
éléments de plancher (11) sont dans la position de transport que lorsque les un ou
plusieurs éléments de plancher (11) sont dans la position de support de charge.
9. Système d'ascenseur selon l'une des revendications 1 à 8, dans lequel la commande
d'ascenseur (6) commande la cabine d'ascenseur (2, 2') pour qu'elle s'arrête à une
hauteur où une surface supérieure des un ou plusieurs éléments de plancher (11) est
à la même hauteur qu'une surface supérieure du palier (4), lorsque les un ou plusieurs
éléments de plancher (11) sont dans la position de support de charge.
10. Système d'ascenseur selon l'une des revendications 1 à 9, dans lequel la commande
d'ascenseur (6) commande la cabine d'ascenseur (2, 2') pour qu'elle s'arrête à une
hauteur où la surface de plancher roulante (10) est à la même hauteur ou au-dessus
de la surface supérieure du palier (4), lorsque les un ou plusieurs éléments de plancher
(11) sont dans la position de transport.
11. Système d'ascenseur selon l'une des revendications 1 à 10, dans lequel la cabine d'ascenseur
(2') est dotée d'une construction de toit réglable en hauteur, où la hauteur intérieure
dans la cabine d'ascenseur (2') peut être réglée en fixant un seul élément de toit
(21') dans au moins deux positions de hauteur en variante, ou en remplaçant un premier
élément de toit (21') par un second élément de toit (21") fournissant une hauteur
intérieure différente du premier élément de toit.
12. Procédé pour actionner un système d'ascenseur,
caractérisé en ce que le procédé comprend les étapes consistant à :
régler (A) la cabine d'ascenseur dans un mode hybride en dotant un plancher (20) de
la cabine d'ascenseur (2, 2'), d'une surface de plancher roulante (10), et en dotant
la cabine d'ascenseur d'une section de plancher comprenant un ou plusieurs éléments
de plancher (11) qui sont mobiles entre une position de support de charge, dans laquelle
les éléments de plancher (11) sont alignés sur le dessus de la surface de plancher
roulante (10), et une position de transport, dans laquelle la surface de plancher
roulante (10) est dévoilée dans la cabine d'ascenseur (2, 2'), et
régler (C) la cabine d'ascenseur (2') dans un mode de transport de personnes en retirant
la surface de plancher roulante (10) et les un ou plusieurs éléments de plancher (11)
de la cabine d'ascenseur pour laisser apparaître le plancher de la cabine d'ascenseur.
13. Procédé selon la revendication 12, dans lequel l'étape consistant à régler la cabine
d'ascenseur (2') dans le mode hybride comprend l'étape consistant à régler (B) une
hauteur intérieure de la cabine d'ascenseur (2') par une construction de toit réglable
en hauteur afin d'obtenir une hauteur intérieure accrue.
14. Procédé selon la revendication 13, dans lequel le réglage en hauteur comprend l'étape
consistant à fixer un seul élément de toit (21') de la cabine d'ascenseur (2') dans
une position plus haute d'au moins deux positions de fixation en variante, ou remplacer
le premier élément de toit (21') par un second élément de toit (21") fournissant une
hauteur intérieure différente du premier élément de toit.
15. Procédé selon l'une des revendications 13 à 14, dans lequel l'étape consistant à régler
(D) la cabine d'ascenseur (2') dans le mode de transport de personnes comprend l'étape
consistant à régler la hauteur intérieure de la cabine d'ascenseur (2') à une hauteur
plus basse que la hauteur intérieure accrue.