BACKGROUND OF THE INVENTION
[0001] Macrophages clear pathogens and damaged or aged cells from the blood stream via phagocytosis.
Cell-surface CD47 interacts with its receptor on macrophages, SIRPα, to inhibit phagocytosis
of normal, healthy cells. CD47 is a broadly expressed transmembrane glycoprotein with
a single Ig-like domain and five membrane spanning regions, which functions as a cellular
ligand for SIRPα with binding mediated through the NH
2-terminal V-like domain of SIRPα. SIRPα is expressed primarily on myeloid cells, including
macrophages, granulocytes, myeloid dendritic cells (DCs), mast cells, and their precursors,
including hematopoietic stem cells.
[0002] SIRPα inhibits the phagocytosis of host cells by macrophages, where the ligation
of SIRPα on macrophages by CD47 expressed on the host target cell generates an inhibitory
signal mediated by SHP-1 that negatively regulates phagocytosis. SIRPα acts to detect
signals provided by "self," to negatively control innate immune effector function
against these cells.
[0003] In keeping with the role of CD47 to inhibit phagocytosis of normal cells, there is
evidence that it is transiently upregulated on hematopoietic stem cells (HSCs) and
progenitors just prior to and during their migratory phase, and that the level of
CD47 on these cells determines the probability that they are engulfed in vivo.
[0004] CD47 is also constitutively upregulated on a number of cancers, including myeloid
leukemias. Overexpression of CD47 on a myeloid leukemia line increases its pathogenicity
by allowing it to evade phagocytosis. We conclude that CD47 upregulation is an important
mechanism that provides protection to normal HSCs during inflammation-mediated mobilization,
and that leukemic progenitors co-opt this ability in order to evade macrophage killing.
[0005] The present invention provides anti-CD47 antibodies having low immunogenicity in
humans.
SUMMARY OF THE INVENTION
[0006] Compositions and methods are provided relating to humanized or chimeric anti-CD47
monoclonal antibodies. The antibodies of the invention bind to and neutralize human
CD47, and find use in various therapeutic methods. Preferred are non-activating antibodies.
Embodiments of the invention include isolated antibodies and derivatives and fragments
thereof, pharmaceutical formulations comprising one or more of the humanized or chimeric
anti-CD47 monoclonal antibodies; and cell lines that produce these monoclonal antibodies.
Also provided are amino acid sequences of the antibodies.
[0007] Antibodies of interest include the provided humanized or chimeric antibodies, and
variants thereof. The monoclonal antibodies of the invention find particular utility
as reagents for the diagnosis and immunotherapy of disease associated with CD47 in
humans, particularly in cancer therapy. An advantage of the monoclonal antibodies
of the invention derives from the humanization process. Thus,
in vivo use of the monoclonal antibodies of the invention for immunotherapy greatly reduces
the problems of significant host immune response to the antibodies.
[0008] Various forms of the antibodies are contemplated herein. For example, the anti-CD47
antibody may be a full length chimeric or humanized antibody,
e.g. having a human immunoglobulin constant region of any isotype,
e.g. IgG1, IgG2a, IgG2b, IgG3, IgG4, IgA,
etc. or an antibody fragment, e.g. a F(ab')
2 fragment, and F(ab) fragment,
etc. Fragments comprising CDR regions are also of interest,
e.g. for imaging purposes. Furthermore, the antibody may be labeled with a detectable
label, immobilized on a solid phase and/or conjugated with a heterologous compound.
The antibody may also be provided as a bispecific or multispecific antibody reactive
with a second antigen, particularly including cancer antigens.
[0009] Diagnostic and therapeutic uses for the antibody are contemplated, particularly relating
to the detection and elimination of undesirable cells expressing CD47. In one diagnostic
application, the invention provides a method for determining the presence of CD47
expressing cancer cells, comprising exposing a patient sample suspected of containing
CD47 expressing cancer cells to the anti-CD47 antibody and determining binding of
the antibody to the sample. For this use, the invention provides a kit comprising
the antibody and instructions for using the antibody.
[0010] The antibodies of the invention are particularly efficacious in the treatment of
disease, e.g. increasing the phagocytosis of CD47 expressing cells. Treatment may
be systemic or localized, e.g. delivery by intratumoral injection,
etc.
[0011] Embodiments of the invention include isolated antibodies and derivatives and fragments
thereof that comprise at least one, usually at least 3 CDR sequences as provided herein,
usually in combination with framework sequences from a human variable region or as
an isolated CDR peptide. In some embodiments an antibody comprises at least one light
chain comprising the 3 light chain CDR sequences provided herein situated in a variable
region framework, which may be, without limitation, a human or mouse variable region
framework, and at least one heavy chain comprising the 3 heavy chain CDR sequence
provided herein situated in a variable region framework, which may be, without limitation,
a human or mouse variable region framework.
[0012] In other embodiments, the antibody comprises an amino acid sequence variant of one
or more of the CDRs of the provided antibodies, which variant comprises one or more
amino acid insertion(s) within or adjacent to a CDR residue and/or deletion(s) within
or adjacent to a CDR residue and/or substitution(s) of CDR residue(s) (with substitution(s)
being the preferred type of amino acid alteration for generating such variants). Such
variants will normally having a binding affinity for human CD47 of at least about
10
-8 M and will bind to the same epitope as an antibody having the amino acid sequence
of those set forth herein. For example, the light chain CDR3 may be modified to mutate
the de-amidation site. Various forms of the antibodies are contemplated herein. For
example, the antibody may be a full length antibody,
e.g. having a human immunoglobulin constant region of any isotype,
e.g. IgG1, IgG2a, IgG2b, IgG3, IgG4, IgA,
etc. or an antibody fragment, e.g. a F(ab')
2 fragment, and F(ab) fragment,
etc. Furthermore, the antibody may be labeled with a detectable label, immobilized on
a solid phase and/or conjugated with a heterologous compound.
[0013] The invention further provides: isolated nucleic acid encoding the antibodies and
variants thereof; a vector comprising that nucleic acid, optionally operably linked
to control sequences recognized by a host cell transformed with the vector; a host
cell comprising that vector; a process for producing the antibody comprising culturing
the host cell so that the nucleic acid is expressed and, optionally, recovering the
antibody from the host cell culture (e.g. from the host cell culture medium). The
invention also provides a composition comprising one or more of the human anti-CD47
antibodies and a pharmaceutically acceptable carrier or diluent. This composition
for therapeutic use is sterile and may be lyophilized,
e.g. being provided as a pre-pack in a unit dose with diluent and delivery device,
e.g. inhaler, syringe,
etc.
BRIEF DESCRIPTION OF THE DRAWINGS
[0014]
Fig. 1. Amino acid sequences of B6H12 heavy chain variable region (A) and light chain
variable region (B). Complementarity determining regions (CDR) are as indicated.
Fig. 2. SDS-PAGE analysis of purified B6H12 proteins. Purified chimeric and humanized
B6H12 were analyzed by SDS-PAGE under non-reducing conditions. Molecular mass standards
are indicated on the left.
Fig. 3. Competition of chimeric B6H12 antibody against mouse B6H12 antibody for CD47
binding. A. Chimeric B6H12 competed against mouse B6H12 for binding to YB2/0 cells
that had been stably transfected with human CD47 (YB2/0-CD47). A human IgG1 antibody
was used as an isotype control. B. Mouse B6H12 competed against chimeric B6H12 for
binding to human CD47 expressed on transfected YB2/0 cells. A mouse lgG1 was used
as an isotype control.
Fig. 4. Nucleotide sequences for humanized B6H12 heavy chain variable region (A) and
light chain variable region (B).
Fig. 5. Comparison of the binding of chimeric and humanized B6H12 antibodies to human
CD47 by flow cytometry. YB2/0 cells stably transfected with human CD47 were stained
with chimeric B6H12, humanized B6H12, or a human IgG1 isotype control antibody. Bound
antibody was detected with PE-labeled secondary antibody.
Fig. 6. Comparison of the binding of chimeric and humanized B6H12 antibodies to human
CD47 by ELISA. Soluble CD47 binding activity was measured by ELISA as described in
Materials and Methods. Bound antibody was detected with goat anti-human kappa conjugated
to HRP, and signal was developed using OPT.
Fig. 7. Chimeric and humanized B6H12 antibody-mediated phagocytosis. CFSE-labeled
HL-60 cells were incubated with mouse bone marrow-derived macrophages in a 4:1 target
to effector cell ratio. 2 hours later, the macrophages were imaged by fluorescence
microscopy to detect phagocytosis. The phagocytic index (number of target cells ingested
per 100 macrophages) was determined for each condition in duplicate. Statistical comparison
of each antibody to hlgG1 isotype control using Student's t-test showed all antibodies
enabled a statistically significant increase in phagocytosis (p-values: mouse B6H12
antibody: 0.004; chimeric B6H12 antibody: 0.04; and humanized B6H12 antibody: 0.003.)
Figure 8. Amino acid alignment between humanized B6H12 VL and human VK3-11 and JK1,
and humanized B6H12 VH and human VH3-7 and JH4. Number of different amino acids of
humanized B6H12 and human germline sequences in the framework and CDR regions of VH
and VL are summarized in the table.
Fig. 9. Amino acid sequences of 5F9 heavy chain variable region (A) and light chain
variable region (B). Complementarity determining regions (CDR) are as indicated.
Fig. 10. Amino acid sequences of 8B6 heavy chain variable region (A) and light chain
variable region (B). Complementarity determining regions (CDR) are as indicated.
Fig. 11. Comparison of the binding of chimeric 5F9 and 8B6 antibodies to human CD47
by ELISA. Soluble CD47 binding activity was measured by an ELISA assay as described
previously. Bound antibody was detected with goat anti-human kappa conjugated to HRP,
and signal was developed using OPT.
Fig. 12. Amino-acid sequence alignments of different versions of humanized 5F9 heavy
chain variable regions (A) and light chain variable regions (B) with germline sequences.
CDR regions are marked in red.
Fig. 13. Comparison of the binding of humanized and chimeric 5F9 antibodies to human
CD47 by ELISA. Soluble CD47 binding activity was measured by an ELISA assay as described
previously. Bound antibody was detected with goat anti-human kappa conjugated to HRP,
and signal was developed using OPT.
Fig. 14. Phagocytosis induced by antibodies of 5F9 and 8B6. HL-60 cells were used
as target cells and incubated with human peripheral blood-derived macrophages in a
4:1 target to effector cell ratio. Each condition was done in duplicate.
DETAILED DESCRIPTION OF THE INVENTION
[0015] The present invention relates to humanized monoclonal antibodies which are specific
for CD47. Also disclosed is a nucleic acid, and amino acid sequence of such antibodies.
The antibodies find use in therapeutic and diagnostic methods associated with CD47.
[0016] "Treatment" refers to both therapeutic treatment and prophylactic or preventative
measures. Those in need of treatment include those already with the disorder as well
as those in which the disorder is to be prevented.
[0017] "Mammal" for purposes of treatment refers to any animal classified as a mammal, including
humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs,
horses, cats, cows, etc. Preferably, the mammal is human.
[0018] The term "antibody" is used in the broadest sense and specifically covers monoclonal
antibodies (including full length monoclonal antibodies), polyclonal antibodies, multispecific
antibodies (e.g., bispecific antibodies), and antibody fragments so long as they exhibit
the desired biological activity. "Antibodies" (Abs) and "immunoglobulins" (Igs) are
glycoproteins having the same structural characteristics. While antibodies exhibit
binding specificity to a specific antigen, immunoglobulins include both antibodies
and other antibody-like molecules which lack antigen specificity. Polypeptides of
the latter kind are, for example, produced at low levels by the lymph system and at
increased levels by myelomas.
[0019] As used in this invention, the term "epitope" means any antigenic determinant on
an antigen to which the paratope of an antibody binds. Epitopic determinants usually
consist of chemically active surface groupings of molecules such as amino acids or
sugar side chains and usually have specific three dimensional structural characteristics,
as well as specific charge characteristics.
[0020] "Native antibodies and immunoglobulins" are usually heterotetrameric glycoproteins
of about 150,000 daltons, composed of two identical light (L) chains and two identical
heavy (H) chains. Each light chain is linked to a heavy chain by one covalent disulfide
bond, while the number of disulfide linkages varies between the heavy chains of different
immunoglobulin isotypes. Each heavy and light chain also has regularly spaced intrachain
disulfide bridges. Each heavy chain has at one end a variable domain (V
H) followed by a number of constant domains. Each light chain has a variable domain
at one end (V
L) and a constant domain at its other end; the constant domain of the light chain is
aligned with the first constant domain of the heavy chain, and the light chain variable
domain is aligned with the variable domain of the heavy chain. Particular amino acid
residues are believed to form an interface between the light- and heavy-chain variable
domains (
Clothia et al., J. Mol. Biol. 186:651 (1985);
Novotny and Haber, Proc. Natl. Acad. Sci. U.S.A. 82:4592 (1985)).
[0021] The term "variable" refers to the fact that certain portions of the variable domains
differ extensively in sequence among antibodies and are used in the binding and specificity
of each particular antibody for its particular antigen. However, the variability is
not evenly distributed throughout the variable domains of antibodies. It is concentrated
in three segments called complementarity-determining regions (CDRs) or hypervariable
regions both in the light-chain and the heavy-chain variable domains. The more highly
conserved portions of variable domains are called the framework (FR). The variable
domains of native heavy and light chains each comprise four FR regions, largely adopting
a β-sheet configuration, connected by three CDRs, which form loops connecting, and
in some cases forming part of, the β-sheet structure. The CDRs in each chain are held
together in close proximity by the FR regions and, with the CDRs from the other chain,
contribute to the formation of the antigen-binding site of antibodies (see
Kabat et al., Sequences of Proteins of Immunological Interest, Fifth Edition, National
Institute of Health, Bethesda, Md. (1991)). The constant domains are not involved directly in binding an antibody to an antigen,
but exhibit various effector functions, such as participation of the antibody in antibody-dependent
cellular toxicity.
[0022] The CDR sequences of exemplary anti-CD47 heavy and light chains combinations are
set forth in the sequence listing, including B6H12: SEQ ID NO:3-8; 5F9: SEQ ID NO:20-25;
and 8B6: SEQ ID NO:28-33. In some embodiments the CDR sequences for a particularly
heavy and light chain combination as set forth in B6H12, 5F9 and 8B6 will be maintained
in a combination, i.e. a humanized antibody will comprise both B6H12 heavy chain CDR
sequences and B6H12 heavy chain CDR sequences; or both 5F9 heavy chain CDR sequences
and 5F9 heavy chain CDR sequences, or 8B6 heavy chain CDR sequences and 8B6 heavy
chain CDR sequences.
[0023] Papain digestion of antibodies produces two identical antigen-binding fragments,
called "Fab" fragments, each with a single antigen-binding site, and a residual "Fc"
fragment, whose name reflects its ability to crystallize readily. Pepsin treatment
yields an F(ab')
2 fragment that has two antigen-combining sites and is still capable of cross-linking
antigen.
[0024] "Fv" is the minimum antibody fragment which contains a complete antigen-recognition
and -binding site. In a two-chain Fv species, this region consists of a dimer of one
heavy- and one light-chain variable domain in tight, non-covalent association. In
a single-chain Fv species (scFv), one heavy- and one light-chain variable domain can
be covalently linked by a flexible peptide linker such that the light and heavy chains
can associate in a "dimeric" structure analogous to that in a two-chain Fv species.
It is in this configuration that the three CDRs of each variable domain interact to
define an antigen-binding site on the surface of the VH-VL dimer. Collectively, the
six CDRs confer antigen-binding specificity to the antibody. However, even a single
variable domain (or half of an Fv comprising only three CDRs specific for an antigen)
has the ability to recognize and bind antigen, although at a lower affinity than the
entire binding site. For a review of scFv see
Pluckthun, in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore
eds., Springer-Verlag, New York, pp. 269-315 (1994).
[0025] The Fab fragment also contains the constant domain of the light chain and the first
constant domain (CH1) of the heavy chain. Fab' fragments differ from Fab fragments
by the addition of a few residues at the carboxy terminus of the heavy chain CH1 domain
including one or more cysteines from the antibody hinge region. Fab'-SH is the designation
herein for Fab' in which the cysteine residue(s) of the constant domains bear a free
thiol group. F(ab')
2 antibody fragments originally were produced as pairs of Fab' fragments which have
hinge cysteines between them. Other chemical couplings of antibody fragments are also
known.
[0026] There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, and
several of these can be further divided into subclasses (isotypes), e.g., IgG
1, IgG
2, IgG
3, IgG
4, IgA
1, IgA
2. The heavy-chain constant domains that correspond to the different classes of immunoglobulins
are called α, δ, ε, γ, and µ, respectively. The subunit structures and three-dimensional
configurations of different classes of immunoglobulins are well known.
[0027] "Antibody fragment", and all grammatical variants thereof, as used herein are defined
as a portion of an intact antibody comprising the antigen binding site or variable
region of the intact antibody, wherein the portion is free of the constant heavy chain
domains (i.e. CH2, CH3, and CH4, depending on antibody isotype) of the Fc region of
the intact antibody. Examples of antibody fragments include Fab, Fab', Fab'-SH, F(ab')
2, and Fv fragments; diabodies; any antibody fragment that is a polypeptide having
a primary structure consisting of one uninterrupted sequence of contiguous amino acid
residues (referred to herein as a "single-chain antibody fragment" or "single chain
polypeptide"), including without limitation (1) single-chain Fv (scFv) molecules (2)
single chain polypeptides containing only one light chain variable domain, or a fragment
thereof that contains the three CDRs of the light chain variable domain, without an
associated heavy chain moiety and (3) single chain polypeptides containing only one
heavy chain variable region, or a fragment thereof containing the three CDRs of the
heavy chain variable region, without an associated light chain moiety; and multispecific
or multivalent structures formed from antibody fragments. In an antibody fragment
comprising one or more heavy chains, the heavy chain(s) can contain any constant domain
sequence (e.g. CH1 in the IgG isotype) found in a non-Fc region of an intact antibody,
and/or can contain any hinge region sequence found in an intact antibody, and/or can
contain a leucine zipper sequence fused to or situated in the hinge region sequence
or the constant domain sequence of the heavy chain(s).
[0028] Unless specifically indicated to the contrary, the term "conjugate" as described
and claimed herein is defined as a heterogeneous molecule formed by the covalent attachment
of one or more antibody fragment(s) to one or more polymer molecule(s), wherein the
heterogeneous molecule is water soluble, i.e. soluble in physiological fluids such
as blood, and wherein the heterogeneous molecule is free of any structured aggregate.
A conjugate of interest is PEG. In the context of the foregoing definition, the term
"structured aggregate" refers to (1) any aggregate of molecules in aqueous solution
having a spheroid or spheroid shell structure, such that the heterogeneous molecule
is not in a micelle or other emulsion structure, and is not anchored to a lipid bilayer,
vesicle or liposome; and (2) any aggregate of molecules in solid or insolubilized
form, such as a chromatography bead matrix, that does not release the heterogeneous
molecule into solution upon contact with an aqueous phase. Accordingly, the term "conjugate"
as defined herein encompasses the aforementioned heterogeneous molecule in a precipitate,
sediment, bioerodible matrix or other solid capable of releasing the heterogeneous
molecule into aqueous solution upon hydration of the solid.
[0029] The term "monoclonal antibody" (mAb) as used herein refers to an antibody obtained
from a population of substantially homogeneous antibodies, i.e., the individual antibodies
comprising the population are identical except for possible naturally occurring mutations
that may be present in minor amounts. Monoclonal antibodies are highly specific, being
directed against a single antigenic site. Each mAb is directed against a single determinant
on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous
in that they can be synthesized by hybridoma culture, uncontaminated by other immunoglobulins.
The modifier "monoclonal" indicates the character of the antibody as being obtained
from a substantially homogeneous population of antibodies, and is not to be construed
as requiring production of the antibody by any particular method. For example, the
monoclonal antibodies to be used in accordance with the present invention may be made
in an immortalized B cell or hybridoma thereof, or may be made by recombinant DNA
methods.
[0030] The monoclonal antibodies herein include hybrid and recombinant antibodies produced
by splicing a variable (including hypervariable) domain of an anti-CD47 antibody with
a constant domain (e.g. "humanized" antibodies), or a light chain with a heavy chain,
or a chain from one species with a chain from another species, or fusions with heterologous
proteins, regardless of species of origin or immunoglobulin class or subclass designation,
as well as antibody fragments (e.g., Fab, F(ab')
2, and Fv), so long as they exhibit the desired biological activity.
[0031] The monoclonal antibodies herein specifically include "chimeric" antibodies (immunoglobulins)
in which a portion of the heavy and/or light chain is identical with or homologous
to corresponding sequences in antibodies derived from a particular species or belonging
to a particular antibody class or subclass, while the remainder of the chain(s) is
identical with or homologous to corresponding sequences in antibodies derived from
another species or belonging to another antibody class or subclass, as well as fragments
of such antibodies, so long as they exhibit the desired biological activity.
[0032] An "isolated" antibody is one which has been identified and separated and/or recovered
from a component of its natural environment. Contaminant components of its natural
environment are materials which would interfere with diagnostic or therapeutic uses
for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous
solutes. In some embodiments, the antibody will be purified (1) to greater than 75%
by weight of antibody as determined by the Lowry method, and most preferably more
than 80%, 90% or 99% by weight, or (2) to homogeneity by SDS-PAGE under reducing or
nonreducing conditions using Coomassie blue or, preferably, silver stain. Isolated
antibody includes the antibody in situ within recombinant cells since at least one
component of the antibody's natural environment will not be present. Ordinarily, however,
isolated antibody will be prepared by at least one purification step.
[0033] The term "epitope tagged" when used herein refers to an anti-CD47 antibody fused
to an "epitope tag". The epitope tag polypeptide has enough residues to provide an
epitope against which an antibody can be made, yet is short enough such that it does
not interfere with activity of the CD47 antibody. The epitope tag preferably is sufficiently
unique so that the antibody specific for the epitope does not substantially cross-react
with other epitopes. Suitable tag polypeptides generally have at least 6 amino acid
residues and usually between about 8-50 amino acid residues (preferably between about
9-30 residues). Examples include the c-myc tag and the 8F9, 3C7, 6E10, G4, B7 and
9E10 antibodies thereto (
Evan et al., Mol. Cell. Biol. 5(12):3610-3616 (1985)); and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody (
Paborsky et al., Protein Engineering 3(6):547-553 (1990)).
[0034] The word "label" when used herein refers to a detectable compound or composition
which is conjugated directly or indirectly to the antibody. The label may itself be
detectable by itself (e.g., radioisotope labels or fluorescent labels) or, in the
case of an enzymatic label, may catalyze chemical alteration of a substrate compound
or composition which is detectable.
[0035] By "solid phase" is meant a non-aqueous matrix to which the antibody of the present
invention can adhere. Examples of solid phases encompassed herein include those formed
partially or entirely of glass (e.g. controlled pore glass), polysaccharides (e.g.,
agarose), polyacrylamides, polystyrene, polyvinyl alcohol and silicones. In certain
embodiments, depending on the context, the solid phase can comprise the well of an
assay plate; in others it is a purification column (e.g. an affinity chromatography
column). This term also includes a discontinuous solid phase of discrete particles,
such as those described in
U.S. Pat. No. 4,275,149.
Polypeptides
[0036] In one aspect, the present invention is directed to humanized or chimeric monoclonal
antibodies that are specifically reactive with and neutralize CD47, and cell lines
that produce such antibodies. Variable regions of exemplary antibodies are provided.
Antibodies of interest include these provided combinations, as well as fusions of
the variable regions to appropriate constant regions or fragments of constant regions,
e.g. to generate F(ab)' antibodies. Variable regions of interest include at least
one CDR sequence of the provided anti-CD47 antibody, where a CDR may be 3, 4, 5, 6,
7, 8, 9, 10, 11, 12 or more amino acids. Alternatively, antibodies of interest include
a variable region as set forth in the provided antibodies, or pairs of variable regions
sequences as set forth herein.
[0037] In some embodiments a polypeptide of interest has a contiguous sequence of at least
about 10 amino acids, at least about 15 amino acids, at least about 20 amino acids,
at least about 25 amino acids, at least about 30 amino acids, up to the complete provided
variable region. Polypeptides of interest also include variable regions sequences
that differ by up to one, up to two, up to 3, up to 4, up to 5, up to 6 or more amino
acids as compared to the amino acids sequence set forth herein. In other embodiments
a polypeptide of interest is at least about 80%, at least about 85%, at least about
90%, at least about 95%, at least about 99% identical to the amino acid sequence set
forth herein.
[0038] In addition to Fabs, smaller antibody fragments and epitope-binding peptides having
binding specificity for at least one epitope of CD47 are also contemplated by the
present invention and can also be used in the methods of the invention. For example,
single chain antibodies can be constructed according to the method of
U.S. Pat. No. 4,946,778 to Ladner et al, which is incorporated herein by reference in its entirety. Single chain antibodies
comprise the variable regions of the light and heavy chains joined by a flexible linker
moiety. Yet smaller is the antibody fragment known as the single domain antibody,
which comprises an isolate VH single domain. Techniques for obtaining a single domain
antibody with at least some of the binding specificity of the intact antibody from
which they are derived are known in the art. For instance,
Ward, et al. in "Binding Activities of a Repertoire of Single Immunoglobulin Variable
Domains Secreted from Escherichia coli," Nature 341: 644-646, disclose a method for screening to obtain an antibody heavy chain variable region
(H single domain antibody) with sufficient affinity for its target epitope to bind
thereto in isolate form.
[0039] The invention also provides isolated nucleic acids encoding the humanized or chimeric
anti-CD47 antibodies, vectors and host cells comprising the nucleic acid, and recombinant
techniques for the production of the antibody. Nucleic acids of interest may be at
least about 80% identical to the provided nucleic acid sequences, at least about 85%,
at least about 90%, at least about 95%, at least about 99%, or identical. In some
embodiments a contiguous nucleotide sequence as set forth in any one of SEQ ID NO:1-6
of at least about 20 nt., at least about 25 nt, at least about 50 nt., at least about
75 nt, at least about 100 nt, and up to the complete provided sequence may be used.
Such contiguous sequences may encode a CDR sequence, or may encode a complete variable
region. As is known in the art, a variable region sequence may be fused to any appropriate
constant region sequence.
[0040] For recombinant production of the antibody, the nucleic acid encoding it is inserted
into a replicable vector for further cloning (amplification of the DNA) or for expression.
DNA encoding the monoclonal antibody is readily isolated and sequenced using conventional
procedures (e.g., by using oligonucleotide probes that are capable of binding specifically
to genes encoding the heavy and light chains of the antibody). Many vectors are available.
The vector components generally include, but are not limited to, one or more of the
following: a signal sequence, an origin of replication, one or more marker genes,
an enhancer element, a promoter, and a transcription termination sequence.
[0041] The anti-CD47 antibody of this invention may be produced recombinantly not only directly,
but also as a fusion polypeptide with a heterologous or homologous polypeptide, which
include a signal sequence or other polypeptide having a specific cleavage site at
the N-terminus of the mature protein or polypeptide, an immunoglobulin constant region
sequence, and the like. A heterologous signal sequence selected preferably may be
one that is recognized and processed (i.e., cleaved by a signal peptidase) by the
host cell. For prokaryotic host cells that do not recognize and process the native
antibody signal sequence, the signal sequence is substituted by a prokaryotic signal
sequence selected.
[0042] An "isolated" nucleic acid molecule is a nucleic acid molecule that is identified
and separated from at least one contaminant nucleic acid molecule with which it is
ordinarily associated in the natural source of the antibody nucleic acid. An isolated
nucleic acid molecule is other than in the form or setting in which it is found in
nature. Isolated nucleic acid molecules therefore are distinguished from the nucleic
acid molecule as it exists in natural cells. However, an isolated nucleic acid molecule
includes a nucleic acid molecule contained in cells that ordinarily express the antibody
where, for example, the nucleic acid molecule is in a chromosomal location different
from that of natural cells.
[0043] Suitable host cells for cloning or expressing the DNA are the prokaryote, yeast,
or higher eukaryote cells. Examples of useful mammalian host cell lines are monkey
kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney
line (293 or 293 cells subcloned for growth in suspension culture,
Graham et al., J. Gen Virol. 36:59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/-DHFR(CHO,
Urlaub et al., Proc. Natl. Acad. Sci. USA 77:4216 (1980)); mouse sertoli cells (TM4,
Mather, Biol. Reprod. 23:243-251 (1980)); monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-76,
ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells
(MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells
(W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT
060562, ATCC CCL51); TR1 cells (
Mather et al., Annals N.Y. Acad. Sci. 383:44-68 (1.982)); MRC 5 cells; FS4 cells; and a human hepatoma line (Hep G2). Host cells
are transformed with the above-described expression or cloning vectors for anti-CD47
antibody production and cultured in conventional nutrient media modified as appropriate
for inducing promoters, selecting transformants, or amplifying the genes encoding
the desired sequences.
[0044] The antibody composition prepared from the cells can be purified using, for example,
hydroxylapatite chromatography, gel electrophoresis, dialysis, and affinity chromatography,
with affinity chromatography being the preferred purification technique. The suitability
of protein A as an affinity ligand depends on the species and isotype of any immunoglobulin
Fc domain that is present in the antibody. Protein A can be used to purify antibodies
that are based on human γ1, γ2, or y4 heavy chains (
Lindmark et al., J. Immunol. Meth. 62:1-13 (1983)). Protein G is recommended for human γ3 (
Guss et al., EMBO J. 5:15671575 (1986)). The matrix to which the affinity ligand is attached is most often agarose, but
other matrices are available. Mechanically stable matrices such as controlled pore
glass or poly(styrenedivinyl)benzene allow for faster flow rates and shorter processing
times than can be achieved with agarose. Where the antibody comprises a CH
3 domain, the Bakerbond ABX
™ resin (J. T. Baker, Phillipsburg, N.J.) is useful for purification. Other techniques
for protein purification such as fractionation on an ion-exchange column, ethanol
precipitation, Reverse Phase HPLC, chromatography on silica, chromatography on heparin
SEPHAROSE
™ chromatography on an anion or cation exchange resin (such as a polyaspartic acid
column), chromatofocusing, SDS-PAGE, and ammonium sulfate precipitation are also available
depending on the antibody to be recovered.
[0045] Following any preliminary purification step(s), the mixture comprising the antibody
of interest and contaminants may be subjected to low pH hydrophobic interaction chromatography
using an elution buffer at a pH between about 2.5-4.5, preferably performed at low
salt concentrations (e.g., from about 0-0.25M salt).
Methods of Use
[0046] The humanized or chimeric monoclonal antibodies of the invention can be used in the
modulation of phagocytosis, including the methods set forth in International Application
US2009/000319, herein specifically incorporated by reference in its entirety. For example, antibody
compositions may be administered to increase phagocytosis of cancer cells expressing
CD47.
[0047] The humanized or chimeric monoclonal antibodies of the invention can be used
in vitro and
in vivo to monitor the course of CD47 disease therapy. Thus, for example, by measuring the
increase or decrease in the number of cells expressing CD47, particularly cancer cells
expressing CD47, it can be determined whether a particular therapeutic regimen aimed
at ameliorating disease is effective.
[0048] The monoclonal antibodies of the invention may be used
in vitro in immunoassays in which they can be utilized in liquid phase or bound to a solid
phase carrier. In addition, the monoclonal antibodies in these immunoassays can be
detectably labeled in various ways. Examples of types of immunoassays which can utilize
monoclonal antibodies of the invention are flow cytometry, e.g. FACS, MACS, immunohistochemistry,
competitive and non-competitive immunoassays in either a direct or indirect format;
and the like. Detection of the antigens using the monoclonal antibodies of the invention
can be done utilizing immunoassays which are run in either the forward, reverse, or
simultaneous modes, including immunohistochemical assays on physiological samples.
Those of skill in the art will know, or can readily discern, other immunoassay formats
without undue experimentation.
[0049] The monoclonal antibodies of the invention can be bound to many different carriers
and used to detect the presence of CD47 expressing cells. Examples of well-known carriers
include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases,
natural and modified celluloses, polyacrylamides, agaroses and magnetite. The nature
of the carrier can be either soluble or insoluble for purposes of the invention. Those
skilled in the art will know of other suitable carriers for binding monoclonal antibodies,
or will be able to ascertain such, using routine experimentation.
[0050] There are many different labels and methods of labeling known to those of ordinary
skill in the art, which find use as tracers in therapeutic methods, for use in diagnostic
methods, and the like. For diagnostic purposes a label may be covalently or non-covalently
attached to an antibody of the invention or a fragment thereof, including fragments
consisting or comprising of CDR sequences. Examples of the types of labels which can
be used in the present invention include enzymes, radioisotopes, fluorescent compounds,
colloidal metals, chemiluminescent compounds, and bio-luminescent compounds. Those
of ordinary skill in the art will know of other suitable labels for binding to the
monoclonal antibodies of the invention, or will be able to ascertain such, using routine
experimentation. Furthermore, the binding of these labels to the monoclonal antibodies
of the invention can be done using standard techniques common to those of ordinary
skill in the art.
[0051] In some embodiments the antibody or a fragment thereof is attached to a nanoparticle,
e.g. for use in imaging. Useful nanoparticles are those known in the art, for example
including without limitation, Raman-silica-gold-nanoparticle (R-Si-Au-NP). The R-Si-Au-NPs
consist of a Raman organic molecule, with a narrow-band spectral signature, adsorbed
onto a gold core. Because the Raman organic molecule can be changed, each nanoparticles
can carry its own signature, thereby allowing multiple nanoparticles to be independently
detected simultaneously by multiplexing. The entire nanoparticle is encapsulated in
a silica shell to hold the Raman organic molecule on the gold nanocore. Optional polyethylene
glycol (PEG)-ylation of R-Si-Au-NPs increases their bioavailability and provides functional
"handles" for attaching targeting moieties (see
Thakor et al (2011) Sci Transl Med. 3(79):79ra33;
Jokerst et al. (2011) Small. 7(5):625-33;
Gao et al. (2011) Biomaterials. 32(8):2141-8; each herein specifically incorporated by reference).
[0052] For purposes of the invention, CD47 may be detected by the monoclonal antibodies
of the invention when present in biological fluids and on tissues, in vivo or in vitro.
Any sample containing a detectable amount of CD47 can be used. A sample can be a liquid
such as urine, saliva, cerebrospinal fluid, blood, serum and the like, or a solid
or semi-solid such as tissues, feces, and the like, or, alternatively, a solid tissue
such as those commonly used in histological diagnosis.
[0053] Another labeling technique which may result in greater sensitivity consists of coupling
the antibodies to low molecular weight haptens. These haptens can then be specifically
detected by means of a second reaction. For example, it is common to use haptens such
as biotin, which reacts with avidin, or dinitrophenol, pyridoxal, or fluorescein,
which can react with specific anti-hapten antibodies.
[0054] As a matter of convenience, the antibody of the present invention can be provided
in a kit, i.e., a packaged combination of reagents in predetermined amounts with instructions
for performing the diagnostic assay. Where the antibody is labeled with an enzyme,
the kit will include substrates and cofactors required by the enzyme (e.g., a substrate
precursor which provides the detectable chromophore or fluorophore). In addition,
other additives may be included such as stabilizers, buffers (e.g., a block buffer
or lysis buffer) and the like. The relative amounts of the various reagents may be
varied widely to provide for concentrations in solution of the reagents which substantially
optimize the sensitivity of the assay. Particularly, the reagents may be provided
as dry powders, usually lyophilized, including excipients which on dissolution will
provide a reagent solution having the appropriate concentration.
[0055] Therapeutic formulations comprising one or more antibodies of the invention are prepared
for storage by mixing the antibody having the desired degree of purity with optional
physiologically acceptable carriers, excipients or stabilizers (
Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)), in the form of lyophilized formulations or aqueous solutions. The antibody composition
will be formulated, dosed, and administered in a fashion consistent with good medical
practice. Factors for consideration in this context include the particular disorder
being treated, the particular mammal being treated, the clinical condition of the
individual patient, the cause of the disorder, the site of delivery of the agent,
the method of administration, the scheduling of administration, and other factors
known to medical practitioners. The "therapeutically effective amount" of the antibody
to be administered will be governed by such considerations, and is the minimum amount
necessary to prevent the CD47 associated disease.
[0056] The therapeutic dose may be at least about 0.01 µg/kg body weight, at least about
0.05 µg/kg body weight; at least about 0.1 µg/kg body weight, at least about 0.5 µg/kg
body weight, at least about 1 µg/kg body weight, at least about 2.5 µg/kg body weight,
at least about 5 µg/kg body weight, and not more than about 100 µg/kg body weight.
It will be understood by one of skill in the art that such guidelines will be adjusted
for the molecular weight of the active agent,
e.g. in the use of antibody fragments, or in the use of antibody conjugates. The dosage
may also be varied for localized administration,
e.g. intranasal, inhalation,
etc., or for systemic administration,
e.g. i.m., i.p., i.v., and the like.
[0057] The antibody need not be, but is optionally formulated with one or more agents that
potentiate activity, or that otherwise increase the therapeutic effect. These are
generally used in the same dosages and with administration routes as used hereinbefore
or about from 1 to 99% of the heretofore employed dosages.
[0058] Acceptable carriers, excipients, or stabilizers are non-toxic to recipients at the
dosages and concentrations employed, and include buffers such as phosphate, citrate,
and other organic acids; antioxidants including ascorbic acid and methionine; preservatives
(such as octadecyidimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium
chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such
as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol);
low molecular weight (less than about 10 residues) polypeptides; proteins, such as
serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone;
amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine;
monosaccharides, disaccharides, and other carbohydrates including glucose, mannose,
or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose
or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g., Zn-protein
complexes); and/or non-ionic surfactants such as TWEEN
™, PLURONICS
™ or polyethylene glycol (PEG). Formulations to be used for
in vivo administration must be sterile. This is readily accomplished by filtration through
sterile filtration membranes.
[0059] The active ingredients may also be entrapped in microcapsule prepared, for example,
by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose
or gelatin-microcapsule and poly-(methylmethacylate) microcapsule, respectively, in
colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions,
nano-particles and nanocapsules) or in macroemulsions. Such techniques are disclosed
in
Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980).
[0060] The anti-CD47 antibody is administered by any suitable means, including parenteral,
subcutaneous, intraperitoneal, intrapulmonary, and intranasal. Parenteral infusions
include intramuscular, intravenous, intraarterial, intraperitoneal, or subcutaneous
administration. In addition, the anti-CD47 antibody is suitably administered by pulse
infusion, particularly with declining doses of the antibody.
[0061] For the prevention or treatment of disease, the appropriate dosage of antibody will
depend on the type of disease to be treated, as defined above, the severity and course
of the disease, whether the antibody is administered for preventive purposes, previous
therapy, the patient's clinical history and response to the antibody, and the discretion
of the attending physician. The antibody is suitably administered to the patient at
one time or over a series of treatments.
[0062] In another embodiment of the invention, an article of manufacture containing materials
useful for the treatment of the disorders described above is provided. The article
of manufacture comprises a container and a label. Suitable containers include, for
example, bottles, vials, syringes, and test tubes. The containers may be formed from
a variety of materials such as glass or plastic. The container holds a composition
which is effective for treating the condition and may have a sterile access port (for
example the container may be an intravenous solution bag or a vial having a stopper
pierceable by a hypodermic injection needle). The active agent in the composition
is the anti-CD47 antibody. The label on, or associated with, the container indicates
that the composition is used for treating the condition of choice. The article of
manufacture may further comprise a second container comprising a pharmaceutically-acceptable
buffer, such as phosphate-buffered saline, Ringer's solution and dextrose solution.
It may further include other materials desirable from a commercial and user standpoint,
including other buffers, diluents, filters, needles, syringes, and package inserts
with instructions for use.
[0063] The invention now being fully described, it will be apparent to one of ordinary skill
in the art that various changes and modifications can be made without departing from
the spirit or scope of the invention.
EXPERIMENTAL
[0064] The following examples are put forth so as to provide those of ordinary skill in
the art with a complete disclosure and description of how to make and use the present
invention, and are not intended to limit the scope of what the inventors regard as
their invention nor are they intended to represent that the experiments below are
all or the only experiments performed. Efforts have been made to ensure accuracy with
respect to numbers used (
e.g. amounts, temperature,
etc.) but some experimental errors and deviations should be accounted for. Unless indicated
otherwise, parts are parts by weight, molecular weight is weight average molecular
weight, temperature is in degrees Centigrade, and pressure is at or near atmospheric.
[0065] All publications and patent applications cited in this specification are herein incorporated
by reference as if each individual publication or patent application were specifically
and individually indicated to be incorporated by reference.
[0066] The present invention has been described in terms of particular embodiments found
or proposed by the present inventor to comprise preferred modes for the practice of
the invention. It will be appreciated by those of skill in the art that, in light
of the present disclosure, numerous modifications and changes can be made in the particular
embodiments exemplified without departing from the intended scope of the invention.
For example, due to codon redundancy, changes can be made in the underlying DNA sequence
without affecting the protein sequence. Moreover, due to biological functional equivalency
considerations, changes can be made in protein structure without affecting the biological
action in kind or amount. All such modifications are intended to be included within
the scope of the appended claims.
Example 1 Cloning and generation of monoclonal antibodies directed against human CD47
[0067] We describe here the cloning, construction and expression of monoclonal antibodies
directed against human CD47. From a mouse hybridoma cell line secreting B6H12, a functional
blocking antibody directed against human CD47, total RNA was prepared and converted
into cDNA using Ig-specific oligonucleotides. Heavy and light chain encoding cDNA
fragments were isolated and sequenced. Chimeric genes were then constructed by linking
the murine V region cDNA fragments to human immunoglobulin constant regions. By competitive
FACS analysis, chimeric B6H12 inhibited the binding of native mouse B6H12 antibody
to CD47, demonstrating that the chimeric and mouse B6H12 antibodies recognize the
same epitope of CD47. Furthermore, we designed and constructed a humanized B6H12 antibody
by CDR grafting. The humanized B6H12 antibody showed comparable CD47 binding to that
of chimeric B6H12. Both chimeric and humanized B6H12 antibodies enable phagocytosis
of cancer cells
in vitro. We anticipate that the chimeric and humanized antibodies will be less immunogenic
than the native mouse antibody when administered to human patients as part of anti-cancer
therapy.
[0068] We have identified and validated leukemia stem cell-preferential expression of CD47
using antigen specific monoclonal antibodies. CD47 is a widely expressed transmembrane
protein; however, we found that CD47 was more highly expressed on AML LSC than their
normal counterparts, and that increased CD47 expression predicted worse overall survival
in three independent cohorts of adult AML patients. CD47 serves as the ligand for
signal regulatory protein alpha (SIRPα), which is expressed on phagocytic cells including
macrophages and dendritic cells, that when activated initiates a signal transduction
cascade resulting in inhibition of phagocytosis. When we used a blocking monoclonal
antibody directed against CD47, it preferentially enabled phagocytosis of AML LSC
and inhibited their engraftment in vivo. Furthermore, treatment of human AML LSC-engrafted
mice with anti-CD47 antibody depleted AML and targeted AML LSC. These results establish
a rationale for anti-CD47 monoclonal antibodies as monotherapy or combination therapy
for AML and other cancers.
[0069] Here we report the isolation, synthesis, and generation of a human IgG1 chimeric
monoclonal antibody-derived from B6H12, and a humanized B6H12 antibody engineered
by CDR grafting. We describe the construction of chimeric and humanized immunoglobulin
genes composed of the cDNAs encoding the variable regions of heavy and light chains
fused to human
y1 and
κ constant regions, respectively. Introduction of these genes into mammalian cells
resulted in production of functional chimeric and humanized antibodies able to bind
human CD47 and cause phagocytosis of target cells.
Materials and Methods
[0070] Antibody V cloning and sequencing. The cloning strategy used here involved the initial
isolation of RNA from hybridoma cells (Qiagen), and preparation of cDNA. cDNA sequences
encoding the heavy and light chain variable regions of the B6H12 monoclonal antibody
were obtained using 5' RACE-PCR techniques (Clontech) and were sequenced using standard
DNA sequencing techniques.
[0071] Construction of B6H12/hlgG1 chimeric antibody. In order to construct the heavy and
light chain variable regions of B6H12 in an expression vector, the following primers
were used:
VH sense primer,
5' CAGACCCGTCGACATGAACTTCGGGCTCAGCTTGATTTTCCTT 3'
VH antisense primer,
5' GCCCTTGGTGCTAGCTGAGGAGACGGTGACTGAGGTTCCTTGACC 3'
VL sense primer,
5' CGCCATCACAGATCTATGGTGTCCACTTCTCAGCTCCTTGGACTT 3'
VL antisense primer,
5' TGCAGCCACCGTACGTTTGATTTCCAGCTTGGTGCCTCCACCGAA 3'.
PCR was then performed using cloned pfu DNA polymerase (Invitrogen). These PCR products
were cut by Sall/Nhel for the VH and Bglll/Bsiwl for the VL and ligated into an expression
vector encoding human gamma 1 and kappa constant regions that was digested by Sall/Nhel
or Bglll/Bsiwl, respectively. All constructs were sequenced to confirm sequence fidelity.
[0072] Molecular Modeling. Humanization of mouse anti-CD47 B6H12 antibody was performed
by installing CDR residues from the mouse antibody into human germline framework (FR)
sequences. Briefly, mouse B6H12 was humanized by judicious recruitment of corresponding
CDR residues and a few FR residues into the human sequences. Differences between mouse
B6H12 and the human FR residues were individually modeled to investigate their possible
influence on CDR conformation. Humanized VH and VL genes were synthesized by McLab
(South San Francisco, CA).
[0073] Cell transfection and stable cell line establishment. Stable cell lines expressing
chimeric or humanized B6H12 were established by transfection of the expression construct
into CHOS cells using DMRIEC transfection reagent (Invitrogen) according to the manufacturer's
instructions. Three days later, transfected cells were selected under 500 ug/ml G418.
Stable clones were isolated by limited dilution in 96-well plates. To screen G418-resistant
clones for their ability to secrete antibody, supernatants of the transfected cells
were tested by ELISA. Briefly, 96-well plates (Nunc, Roskilde, Denmark) were coated
with 1 ug/ml goat anti-human Fc gamma antibody in PBS for 16 h at 4°C. After blocking
for 1 h with 0.4% BSA in PBS at room temperature, isolated supernatants were added
in 1/3 sequential dilutions, and incubated for 1 h at room temperature. Plates were
subsequently washed three times and incubated with HRP-conjugated goat anti-human
kappa-specific antibody for 1 h at room temperature. After washing, plates were developed
with OPT. The reaction was stopped with 2M H
2SO
4, and OD was measured at 520 nM. Positive clones were further expanded and expression
was confirmed by ELISA.
[0074] Antibody purification and characterization. The culture supernatant was applied to
protein G Sepharose columns. The column was washed with phosphate-buffered saline
(PBS) pH 8.0, and protein was then eluted with eluting buffer (glycine pH 2.0). The
eluted fractions were collected in tubes containing neutralizing buffer (2M Tris-HCl,
pH 8.0) to adjust the pH to approximately 7.0. Finally, purified samples were dialyzed
against phosphate-buffered saline (PBS). Purity of the eluted antibody fraction was
analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) on
10% gels under reducing or non-reducing conditions. Bands were visualized by Coomassie
brilliant blue staining.
[0075] Binding specificity by ELISA. Microtiter plates were coated with 100 µl purified
human CD47-Fc fusion protein at 1.0 µg/ml in PBS, and then blocked with 100 µl of
0.4% BSA in PBS. Dilutions of the B6H12 chimeric or humanized antibody were added
to each well and incubated for 1 hour at room temperature. A known murine anti-CD47
antibody was used as a positive control, and human IgG1 was used as an isotype control.
The plates were washed with PBS/Tween and then incubated with a goat anti-human kappa-specific
secondary reagent conjugated to horseradish peroxidase for 1 hour at room temperature.
After washing, the plates were developed with OPT substrate, and analyzed at OD of
520 nm.
[0076] Binding specificity by FACS. YB2/0 cells that had been stably transfected with human
CD47 were incubated with various amounts of chimeric B6H12, humanized B6H12, or a
human IgG1 isotype control antibody on ice for 1 hr. The cells were washed three times
with FACS buffer (PBS containing 0.5% BSA and 0.05% NaN
3). PE labeled goat anti-human antibody was added as a secondary antibody, and the
samples were incubated on ice for another 1 hour. Samples were washed and analyzed
using a FACSAria (Becton-Dickinson, San Jose, CA, USA).
[0077] Competitive binding assay by FACS. Binding inhibition of the chimeric B6H12 antibody
to human CD47 by the mouse antibody B6H12 or an isotype control antibody was measured
using FACS. CD47-transfected YB2/0 cells were harvested and washed twice with FACS
buffer (PBS containing 0.5% BSA and 0.05% NaN
3). Then chimeric B6H12 was added to the cells at a final concentration of 1 ug/ml
with various amounts of mouse B6H12 antibody or an isotype control antibody and incubated
for 1 hour on ice. Similarly, binding inhibition of the mouse B6H12 antibody to human
CD47 was measured by adding various amounts of the chimeric B6H12 or an isotype control
antibody. The samples were washed with FACS buffer, PE labeled goat anti-human or
anti-mouse antibody was added, and the samples were incubated on ice for another 1
hour. Samples were washed and analyzed using a FACSAria (Becton-Dickinson, San Jose,
CA, USA).
[0078] In vitro phagocytosis assays. HL-60 cells were CFSE-labeled and incubated with mouse
bone marrow-derived macrophages in the presence of 10 µg/ml IgG1 isotype control,
mouse B6H12, chimeric B6H12, or humanized B6H12 antibody for 2 hr. Cells were then
analyzed by fluorescence microscopy to determine the phagocytic index (number of cells
ingested per 100 macrophages). Statistical analysis using Student's t-test was performed
with GraphPad Prism.
Results
[0079] Cloning of mouse B6H12 variable regions. Using universal antibody primers, clones encoding heavy and light chain variable
regions were successfully isolated from an anti-CD47 B6H12 hybridoma. Multiple clones
of each V gene product were sequenced to monitor PCR-induced errors. The VH and VL
sequences are shown in Fig. 1A and B, respectively. DNA sequence analysis for products
demonstrated that the heavy chain of B6H12 uses a V segment of the Igh-v7183 VH5 family,
and that the light chain belongs to the IGKV23 subgroup. The heavy chain variable
region comprises CDR1, CDR2, and CDR3 sequences; and the light chain variable region
comprises CDR1, CDR2, and CDR3 sequences (Figure 1).
[0080] Production and characterization of B6H12 chimeric antibodies. To construct the expression vector for chimeric B6H12 antibody, the heavy chain variable
region of B6H12 that includes its native signal peptide sequence at the NH
2 terminus was fused to the constant region of the human y1 heavy chain and then cloned
into a mammalian expression vector. Similarly, the light chain variable region of
B6H12 that includes its native signal peptide sequence at the NH
2 terminus was fused to the constant region of human κ light chain and introduced into
the vector encoding the B6H12 heavy chain. The resulting single expression vector
was then transfected into mammalian cells. Expressed chimeric B6H12 antibody was purified
and examined by SDS-PAGE analysis. As expected, one single band with a molecular mass
of ~150 kDa was observed under nonreducing conditions (Figure 2). After reduction
with 2-mercaptoethanol, two bands appeared at 50 kDa and 25 kDa, corresponding to
heavy and light chains, respectively. These results indicate that chimeric heavy and
light chain peptides produced in the transfectant were assembled to form the native
IgG molecule.
[0081] To demonstrate that B6H12 variable regions cloned from the mouse hybridoma retain
antigen binding activity similar to the original mouse B6H12 antibody, a competition
binding assay between chimeric and mouse B6H12 was conducted by flow cytometry. Human
CD47 was stably transfected into YB2/0 cells and the expression of CD47 was confirmed
by flow cytometry. As shown in Figure 3A, chimeric B6H12 competed out mouse B6H12
for CD47 binding in a dose-dependent manner, while a human IgG1 isotype control antibody
had no impact on mouse B6H12 binding. Similarly, mouse B6H12 antibody inhibited chimeric
B6H12 antibody for CD47 binding (Figure 3B). This suggests that the chimeric B6H12
antibody recognizes the same epitope of CD47 as the native mouse B6H12 antibody.
[0082] Design and analysis of humanized B6H12 antibody. In order to select human antibody frameworks (FR) to be used as templates for CDR-grafting,
mouse B6H12 VL and VH regions were compared with those of human germline sequences.
The FRs of the mouse B6H12 VL region were found to have the highest homology with
the human VK3 subgroup, suggesting that a member of subgroup III might be the best
selection. The FRs of the mouse B6H12 VH region exhibited the highest homology with
the human VH-3 subgroup. The FRs from human VH-3-7 and VK3-11 were ultimately selected
as the starting point for designing humanized B6H12. Residues in the FRs identical
to the mouse sequences were retained and non-identical residues were either retained
or substituted based on molecular modeling. The humanized B6H12 was transfected and
purified as described above. SDS-PAGE analysis showed one single band with a molecular
mass of ~150 kDa under non-reducing conditions (Figure 2), and two bands appeared
at 50 kDa and 25 kDa under reducing conditions. The sequences are shown in Figure
4.
[0083] Next, the ability of humanized B6H12 to recognize human CD47 was examined. Human
CD47-transfected YB2/0 cells, which have been shown to express membrane-bound CD47,
were used for flow cytometry analysis. Humanized B6H12 bound CD47 expressed on the
cell surface, and the binding activity was equivalent to the chimeric B6H12 antibody
(Figure 5). No binding was detected with B6H12 antibodies when untransfected YB2/0
cells were used. Similar results were also obtained when determining soluble CD47
binding by ELISA. In this assay, humanized B6H12 showed comparable binding activity
to chimeric B6H12 antibody (Figure 6).
[0084] Enabling of phagocytosis by chimeric and humanized B6H12 antibodies. Mouse B6H12 antibody is known to block the interaction between CD47 and SIRPα, an
inhibitory receptor expressed on macrophages, and thereby enable phagocytosis of the
CD47-expressing cells. To examine the ability of chimeric and humanized B6H12 antibodies
to enable phagocytosis, we conducted an
in vitro phagocytosis assay. CFSE-labeled HL-60 cells were incubated with mouse bone marrow-derived
macrophages for 2 hr in presence of control or B6H12 native, chimeric, or humanized
antibody. Phagocytosis was assessed by counting the number of ingested CFSE-labeled
HL-60 target cells within the mouse macrophages visualized by fluorescence microscopy.
As shown in Figure 7, both chimeric and humanized B6H12 efficiently enabled phagocytosis,
at levels comparable to that of the native mouse B6H12 antibody. In contrast, an isotype
control antibody did not trigger macrophage-mediated phagocytosis. These results demonstrate
that chimeric and humanized B6H12 are able to function in a similar manner as the
native mouse B6H12 antibody.
[0085] Thus far, antibodies generated against human CD47 have been mouse antibodies. A major
disadvantage of using a mouse antibody in the treatment of human patients is the development
of a human anti-mouse response (HAMA) in the patient. Accordingly, the need exists
for improved therapeutic antibodies against CD47 that are less immunogenic. In the
present study, we constructed and expressed chimeric and humanized antibodies engineered
from variable regions of a mouse anti-human CD47 mAb (B6H12), which were fused to
human immunoglobulin constant regions. SDS-PAGE analysis revealed that both the chimeric
and humanized B6H12 antibodies are expressed as native IgG proteins composed of two
pairs of heavy and light chains. Chimeric and mouse B6H12 antibodies competed each
other for antigen binding (Figure 3), indicating that chimeric B6H12 antibody retains
the antigen binding of the mouse antibody and recognizes the same antigen epitope.
Furthermore, humanized B6H12 antibody binds to both soluble and membrane-bound CD47
equivalently to the chimeric antibody (Figures 5 and 6). Chimeric and humanized B6H12
also showed efficient ability to enable phagocytosis as compared to the original mouse
B6H12 antibody (Figure 7). These results suggest that our engineered antibodies form
functionally active IgGs.
[0086] Notably, in B6H12 antibody humanization, we utilized human VH-3-7 and VK3-11 as the
basis for our design. However, mouse B6H12 also showed sequence homology to other
family members in the human VH-3 and VK3 subgroups and to other variable domains outside
these two subgroups. It is possible other frameworks may work just as well.
[0087] Antibodies exhibit four main effector functions: antibody-dependent cellular cytotoxicity
(ADCC), phagocytosis, complement-dependent cytotoxicity (CDC), and half-life/clearance
rate. Each of these effector functions is mediated through interaction with a specific
set of receptors and cell types: ADCC and phagocytosis through interaction of cell-bound
mAbs with Fc gamma receptors (FcγR), CDC through interaction of cell-bound mAbs with
the series of soluble blood proteins that constitute the complement system (e.g. C1q,
C3, C4, etc.), and half-life/clearance rate through binding of antibodies to the neonatal
Fc receptor (FcRn). Activating antibodies, typically of the human IgG1 subclass, are
dependent on an activating Fc-domain. Monoclonal antibodies that function by blocking
a ligand-receptor interaction, however, can function without utilizing effector mechanisms.
In these cases, effector functions may be disadvantageous as they may contribute to
unwanted cytotoxicity. Unwanted agonism through crosslinking by FcR-expressing cells
could trigger inappropriate activation of FcR-expressing cells and subsequent cytokine
storm and associated toxic effects. Therefore, proper choice of IgG subclass or use
of an IgG engineered to abrogate effector function is required. As we reported previously,
murine B6H12 functioned as a blocking antibody, and a B6H12 F(ab)'2 fragment showed
similar efficacy to the full length murine B6H12 in
in vitro phagocytosis assays. Thus, development of non-activating B6H12 monoclonal antibodies
with fewer side effects is beneficial.
[0088] Many strategies have been reported to engineer non-activating antibodies. The use
of antibody-based fragments lacking an Fc-domain provides the simplest way to avoid
Fc-dependent effector mechanisms. From a manufacturing point of view, antibody-based
fragments represent an attractive strategy as high yields are routinely obtained in
well-characterized and cost-effective lower eukaryotic and prokaryotic expression
systems. Recombinant antibody technologies have made monovalent (e.g. Fab, scFv, nanobodies,
and dAbs), bivalent (e.g. F(ab')
2, diabodies, and minibodies) and multivalent (e.g. triabodies and pentabodies) formats
available. These approaches have already resulted in FDA-approved therapeutics, and
several others are undergoing clinical evaluation, illustrating the confidence in
this approach. However, removal of the Fc-domain will dramatically change the pharmacokinetic
properties of antibody-based fragments and make antibody purification less convenient.
Without an Fc-domain, renal clearance is the predominant mechanism influencing serum
half-life and antibody-based fragments smaller than ~50-70 kDa are subject to this
route of elimination. Increasing the apparent molecular size of small antibody fragments,
for instance through linkage to polyethylene glycol (PEG) and human serum albumin
(HSA), represents an alternative strategy to increase circulation time and to improve
their pharmacokinetic properties.
[0089] Combinations of therapeutic antibodies are also increasingly being used that may
bring the additional benefit of targeting multiple epitopes or antigens. Combinations
may be more effective against disease targets that are commonly heterogeneous and
may thereby limit resistance or escape. We have demonstrated synergy and cure with
B6H12 in combination with rituximab in human NHL xenotransplantation models. Our findings
suggest that combination therapy with B6H12 is a promising new treatment modality
for NHL. Meanwhile, over the last few years, the concept of bispecific antibody (BsAb)-mediated
tumor cell killing has been studied extensively both in preclinical models and clinical
trials. BsAbs share two different antigen-recognizing moieties within one molecule.
Based on our data, B6H12 will synergize with additional FcR-engaging antibodies to
eliminate target cells. This synergy may be recapitulated in B6H12 BsAbs reactive
with CD47 on one hand and an additional surface antigen on a tumor target cell on
the other. Such a reagent may focus immune effector functions towards the target cells.
[0090] In summary, we have developed therapeutic antibodies based on the mouse monoclonal
antibody B6H12 directed against human CD47, by using methods to create a mouse/human
chimeric antibody and a humanized antibody. The chimeric and humanized B6H12 antibodies
retain the ability to specifically bind CD47 and are able to induce phagocytosis
in vitro. These antibodies may be less immunogenic, and thus are more suitable as potential
clinical therapeutics.
Example 2 Cloning of mouse 5F9 and 8B6 variable regions
[0091] Using universal antibody primers, DNA fragments encoding heavy and light chain variable
regions were successfully cloned from anti-CD47 hybridomas 5F9 and 8B6. Multiple clones
of each V gene product were sequenced to monitor PCR-induced errors. The VH and VL
sequences of 5F9 are shown in Fig. 9A and 9B, respectively. DNA sequence analysis
for products demonstrated that the heavy chain of 5F9 uses a V segment of the Igh-VJ558
VH1 family, and that the light chain belongs to the IGKV1 subgroup. The VH and VL
sequences of 8B6 are shown in Fig. 10A and 10B, respectively. DNA sequence analysis
for products demonstrated that the heavy chain of 8B6 uses a V segment of the Igh-VJ558
VH1 family, and that the light chain belongs to the IGKV23 subgroup. The heavy chain
variable regions comprise CDR1, CDR2, and CDR3 sequences; and the light chain variable
regions comprise CDR1, CDR2, and CDR3 sequences (Figure 9 and 10).
[0092] CD47 binding activities of chimeric 5F9 and 8B6. Chimeric 5F9 and 8B6 were constructed
and expressed. Purified antibodies were analyzed by SDS-PAGE, demonstrating that native
IgG antibodies were formed for both. Then, binding activities of chimeric 5F9 and
8B6 were tested using ELISA by coating human CD47 soluble protein in the 96-well plates.
As shown in figure 11, both chimeric 5F9 and 8B6 bound the antigen at comparable levels
to that of chimeric B6H12 antibody.
[0093] Antibody humanization and characterization of 5F9. In order to select human antibody
framework regions (FR) to be used as templates for CDR-grafting, the mouse 5F9 VL
and VH regions were compared with those of human germline sequences. The FRs of the
mouse 5F9 VL region were found to have the highest homology with IGKV2 subgroup. The
FRs of the mouse 5F9 VH region exhibited the highest homology with human VH-1 subgroup.
Identical residues in the FRs were retained and non-identical residues were either
retained or substituted based on molecular modeling. Three versions of each humanized
VH and VL were designed. Sequence alignments of each version together with human germline
sequences are indicated in figure 12.
[0094] Different versions of humanized 5F9 heavy and light chains were transfected in combinations,
yielding different versions of humanized 5F9. Then, the ability of humanized 5F9 antibodies
to recognize CD47 was examined. As shown in figure 13, both version 1 and version
2 of humanized 5F9 bound well to soluble CD47. Isotype control antibody did not show
any binding activity. These results demonstrate that humanized 5F9 retained binding
capability to the human CD47 antigen.
[0095] Phagocytosis induced by 5F9 and 8B6 antibodies. B6H12 antibody is known to block
the interaction between CD47 and SIRPα that is expressed on macrophages and in turn
to activate macrophages for phagocytic response. To examine 5F9 and 8B6 antibodies
ability to induce phagocytosis, we incubated the antibodies with human peripheral
blood-derived macrophages and HL-60 target cells for 2 hr, and assessed phagocytosis
by counting the number of ingested CFSE-labeled HL-60 cells under a microscope. As
shown in Figure 14, both mouse and chimeric 5F9 were able to elicit phagocytosis efficiently,
as did chimeric 8B6. Moreover, humanized 5F9 antibodies also displayed effective phagocytic
activity. In contrast, isotype control antibodies did not trigger macrophage-mediated
phagocytosis. These results demonstrate that 5F9 and 8B6 are able to function in a
similar manner as B6H12 antibody.
Accordingly, the invention includes, but is not limited to, the following numbered
embodiments:
- 1. An isolated chimeric or humanized antibody that specifically binds to human CD47,
and comprises at least one CDR sequence as set forth in SEQ ID NO:3-8, SEQ ID NO:20-25;
or SEQ ID NO:28-33.
- 2. The isolated chimeric or humanized antibody of Embodiment 1, wherein a light chain
of said antibody comprises at least one CDR selected from SEQ ID NO:6-8; SEQ ID NO:23-25
or SEQ ID NO:31-33.
- 3. The antibody of Embodiment 2, wherein said light chain comprises each of the CDR
sequences set forth in SEQ ID NO:6-8; SEQ ID NO:23-25; or SEQ ID NO:31-33.
- 4. The antibody of Embodiment 3, wherein said light chain comprises the amino acid
sequence set forth in SEQ ID NO:12 or Figure 12B
- 5. The isolated chimeric or humanized antibody of Embodiment 1, wherein a heavy chain
of said antibody comprises at least one CDR selected from SEQ ID NO:3-5, SEQ ID NO:20-22
or SEQ ID NO:28-30.
- 6. The antibody of Embodiment 5, wherein said heavy chain comprises each of the CDR
sequences set forth in SEQ ID NO:3-5, SEQ ID NO:20-22 or SEQ ID NO:28-30.
- 7. The antibody of Embodiment 6, wherein said heavy chain comprises the amino acid
sequence set forth in SEQ ID NO:11, 17 or Figure 12A.
- 8. The antibody of Embodiment 1, comprising a light chain as set forth in any of Embodiments
2-4 and a heavy chain as set forth in any one of Embodiments 5-7.
- 9. The antibody of Embodiment 8, wherein said antibody comprises a heavy chain having
each of the CDR sequences set forth in SEQ ID NO:2-5 and a light chain having each
of the CDR sequences set forth in SEQ ID NO:5-6; or a heavy chain having each of the
CDR sequences set forth in SEQ ID NO:20-22 and a light chain having each of the CDR
sequences set forth in SEQ ID NO:23-25; or a heavy chain having each of the CDR sequences
set forth in SEQ ID NO:28-30 and a light chain having each of the CDR sequences set
forth in SEQ ID NO:31-33.
- 10. The antibody of any one of Embodiments 1-8, wherein the antibody does not activate
CD47 upon binding.
- 11. The antibody of Embodiment 9, wherein the antibody is a humanized monoclonal antibody.
- 12. The antibody of Embodiment 9, wherein the antibody is a chimeric antibody.
- 13. A polynucleotide encoding an antibody set forth in any one of Embodiments 1-12.
- 14. A cell that produces an antibody set forth in any one of Embodiments 1-12.
- 15. A pharmaceutical composition comprising an antibody set forth in any one of Embodiments
1-12.
- 16. A pharmaceutical composition comprising an antibody set forth in any one of Embodiments
1-12, and a pharmaceutically acceptable excipient.
- 17. A method of modulating phagocytosis, the method comprising the step of administering
to a subject a therapeutically effective amount of an antibody set forth in any one
of Embodiments 1-12 in a dose effective to modulate phagocytosis.
- 18. The method of Embodiment 17, wherein the subject is human.
- 19. An antibody comprising an amino acid sequence as set forth in any one of SEQ ID
NO: 1-8, 11-12 or 17.
- 20. An antibody encoded by the nucleotide sequence as set forth in any one of SEQ
ID NO: 9, 10 or 13-16.
- 21. A method of detecting the presence of CD47 in a biological sample or tissue, the
method comprising:
contacting said sample or tissues with the antibody set forth in Embodiment 1, and
determining the presence of antibody bound to said tissue or sample.
