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(54) ADAPTIVE FUNCTIONAL NEURAL LAYER AND NETWORK

(57) The present disclosure relates to a method of
generating or updating a signal processing logic for
processing signals, in particular time-series signals, that
comprise measurements associated with a physical as-
set, the method comprising: training a machine learning,
ML, model, in particular a functional neural network, FNN,
wherein the ML model comprises performing: receiving
the processing signals; determining a plurality of
first-stage vectors based on the processing signals and
a plurality of basis functions, in particular by projecting
each of the processing signals to a respective basis func-
tion of a plurality of basis functions, wherein each of the

plurality of first-stage vectors is related to the projected
each of the processing signals through the respective
basis function; and determining a plurality of sec-
ond-stage vectors based on the plurality of first-stage
vectors, in particular by projecting each of the plurality of
first-stage vectors to a respective transformation matrix
of a plurality of transformation matrices, wherein each of
the plurality of second-stage vectors is related to the pro-
jected each of the plurality of first-stage vectors through
the respective transformation matrix. The present disclo-
sure further relates to a corresponding determining sys-
tem and industrial or power system.
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Description

Technical Field

[0001] The present disclosure relates to a method, determining system, and an industrial or power system of generating
or updating a signal processing logic for processing signals, in particular time-series signals, that comprise measurements
associated with a physical asset.

Background

[0002] A Functional Neural Network, FNN, can be used for monitoring, diagnostics, and analytics and as a part of a
logic for automatic decision making on industrial assets. This includes assets used in the electricity industry, such as
power generation assets and their parts, power transmission assets and their parts, and power distribution assets and
their parts. There can be different quantities of interest to monitor and/or estimate for an industrial asset, such as
operational performance, operational state, or information on external conditions or adjacent systems. The information
thus obtained can be used for informing human operators, managers, or stakeholders, to support their operational or
other decisions, or to partly or fully automate the operation of the asset. While being operated, industrial assets typically
generate measurement data in the form of numerical and/or categorical time series. Such time series can be recorded
continuously at regular time intervals (periodic sampling), or at irregular time intervals. Measurements may also be
triggered by certain events, e.g., time series may be recorded on detection of certain anomalies in the operating conditions.
[0003] Time series which are measured and sampled at regular or irregular time intervals constitute functional data:
This data can be seen as a function over time. Analytics may be performed on the functional data with the functions,
which may be considered as being comprised of an infinite number of samples, themselves being analyzed. The sampling
is only a necessary technical property of the data, because infinite sampling is technically impossible.
[0004] While, at any time during the operation or lifetime of an asset, time series measurements from the asset may
be available either for a limited time window covering the recent history or even for the entire operation history, some
quantities of interest may not be directly measured, but they need to be derived from the data. In some cases, there
may exist known physical laws that can be applied to calculate a quantity of interest from measured data, such as for
determining the efficiency of an engine. In other cases, often prominently for the state of health of an asset, no such
physical laws linking measured data to a quantity of interest are known. It is an active field of research to develop Machine
Learning approaches for these cases. In particular, Artificial Neural Networks (ANN) are a promising candidate technology
here.
[0005] Functional Data Analysis is an approach to process functional input data to statistical models. If functional input
data is used in this way as an input to ANN, this is termed a Functional Neural Network (FNN). Functional Data Analysis
processes the data in a way that is - as far as possible - sampling time agnostic. In particular, FNN can be applied to
time series with irregular sampling and missing values.
[0006] A conventional FNN is illustrated in Fig. 1 a). Only the first layer is a functional layer, taking functional input. It
is annotated with ∫ f · ϕ, which refers to the fact that the output of this layer is computed by projection ∫ fi(t) · ϕj(t) dt of
the functional input fi(t), for all input channels i, onto basis functions ϕj(t), for all basis functions j. (It could be that different
basis functions are chosen for each channel i, in which case the projections read ∫ fi(t) · ϕi,j(t) dt). The functional inputs

are typically given at discrete sample times  . In this case, the projections may be approximated as 

[0007] . The sum may be replaced by a weighted sum to account for irregular sampling intervals. For notational
simplicity, this weight term is not shown here. Fig. 1 b) illustrates a small example. Here, two functional inputs are
projected onto two basis functions, giving rise to a four-dimensional output of the functional layer. After the first functional
layer of the FNN, further conventional Multilayer Perceptron (MLP) layers follow. They may be of any known or new
kind: fully connected, convolutional, recurrent, etc. The example in Fig. 1 b) shows one hidden fully connected layer with
Rectified Linear Unit (ReLU) activation and one fully connected output layer with linear activation.
[0008] One design decision (in a Machine Learning context, such design decisions are often referred to as hyperpa-
rameter selection) when setting up an FNN is the choice of the basis functions used in the first functional layer. In doing
so, a FNN architecture may be implemented with an adaptive basis layer. Fig. 2 illustrates a conventional FNN with
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adaptive basis layers (AdaFNN). Only the input layer is shown in detail and the remaining layers (e.g. fully connected
MLP, convolutional, recurrent, etc.) are omitted for simplicity. The input is visualized in two dimensions: there are channels
(3 in this example) and time steps (7 in this example). The time steps need not be regularly spaced, and the number of
time steps per channel need not be the same. The basis functions ϕi,j may but need not depend on the channel i. They
are fixed or adaptive.
[0009] Implementing an adaptive basis layer means that the choice of the basis function is shifted. This means that it
is taken out of the hyperparameter selection, where it causes additional effort to the modeler and thus gives rise to higher
modeling costs and risks. It is taken into the usual training process, typically based on Stochastic Gradient Descent
(SGD), leading to less effort, costs, and risks to the user performing the configuration of the network. When the SGD is
applied to sufficiently wide network architectures, they will create hidden features that, depending on the task to be
learned, with very high probability, cause the trainable ANN weight vector to be initialized very close to an optimum that
can be quickly reached with state-of-the-art SGD. This can be demonstrated with the smallest possible example of
learning a 2-dimensional linear regression with SGD, as illustrated in Fig. 3. Although any linear ANN will be functionally
equivalent to a minimal ANN as shown in Fig. 3 a), a non-minimal architecture, as illustrated in Fig. 3 b), with an additional
wide (e.g., 128 neurons) hidden linear layer will train much more efficiently with SGD. Training efficiency may be defined
by three properties: Low number of training epochs to convergence, low amount of time for training, and high likelihood
of a networks being trained to low generalization error when started from randomly initialized weights.
[0010] An alternative approach to conduct analytics and make predictions on the basis of time series data is recurrent
models, such as Recurrent Neural Networks (RNN). In contrast to Functional Data Analysis, recurrent models rely on
the sampling of the time series. Typically, the sampling is required to be regular in order to make the recurrent models
perform well.
[0011] The conventional methods however, both FNN and RNN, offer poor trainability, particularly in the case where
limited training data is available or no/limited labels are available for the training data. For the modelling of industrial
assets, this case applies very often.
[0012] Thus, there is a need to improve the method, determining system, and an industrial or power system of generating
or updating a signal processing logic for processing signals, in particular time-series signals, that comprise measurements
associated with a physical asset.

Summary

[0013] The present disclosure provides a building block to facilitate learning in particular for limited availability of data,
i.e., low amount and / or low quality of training data and / or labels. This applies to any learning setup and architecture,
regardless if all / few / no labels are available, if autoencoder and / or reward labels are used, and if the new adaptive
functional layer is being used within a small or a large ANN. Moreover, the present disclosure advantageously offers
the opportunity of increasing the width of the hidden elementary layers in the per-channel processing, to achieve favour-
able initialization. Simultaneously, the number of resulting projections, i.e., the width of the input to the remaining (MLP
or other) layers, can be tightly controlled. This is important: If this width is too big, then the risk of overfitting strongly
increases. In particular if limited training data is available and/or the subsequent layers are hard to train (for instance
because they are recurrent layers), this may often be key to enable successful training.
[0014] The present disclosure relates to a method of generating or updating a signal processing logic for processing
signals, in particular time-series signals, that comprise measurements associated with a physical asset, the method
comprising: training a machine learning, ML, model, in particular a functional neural network, FNN, wherein the ML
model comprises performing: receiving the processing signals; determining a plurality of first-stage vectors based on
the processing signals and a plurality of basis functions, in particular by projecting each of the processing signals to a
respective basis function of a plurality of basis functions, wherein each of the plurality of first-stage vectors is related to
the projected each of the processing signals through the respective basis function; and determining a plurality of second-
stage vectors based on the plurality of first-stage vectors, in particular by projecting each of the plurality of first-stage
vectors to a respective transformation matrix of a plurality of transformation matrices, wherein each of the plurality of
second-stage vectors is related to the projected each of the plurality of first-stage vectors through the respective trans-
formation matrix.
[0015] In an embodiment, the method further comprises, in particular the ML model comprises performing: combining
the second-stage vectors, in particular by concatenating the second-stage vectors into a concatenated vector; and/or
determining at least one output of the FNN based on the plurality of second-stage vectors.
[0016] In an embodiment, the method further comprises providing the trained ML model as at least part of a signal
processing logic to a device that executes the signal processing logic to control, monitor, and/or analyze the physical asset.
[0017] In an embodiment, the method further comprises: receiving the trained ML model; and executing the signal
processing logic to control, monitor, and/or analyze the physical asset.
[0018] In an embodiment, each of the plurality of transformation matrices comprises a plurality of trainable weights.
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[0019] In an embodiment, a dimensionality of at least one of transformation matrices is different from the dimension-
alities of remaining transformation matrices such that a dimensionality of at least one of the plurality of second-stage
vectors is different from the dimensionalities of the remaining second-stage vectors.
[0020] In an embodiment, the dimensionalities of the respective transformation matrices are determined based on at
least one optimization method, in particular on integer decisions including grid search and hill climbing.
[0021] In an embodiment, the method further comprises determining information related to the health of the physical
asset, based on the trained ML model, comprising a health indicator, a time series of health indicator evolution, a
remaining useful life, RUL, a failure probability, a time series of failure probability evolution, a reliability, and/or a time
series of reliabilities.
[0022] In an embodiment, determining the at least one output comprises processing the at least one second-stage
intermediate value by a linear or nonlinear function that is subject to the plurality of trainable weights.
[0023] In an embodiment, the method further comprises: receiving sensor measurement data captured during operation
of the physical asset; and updating the prognostic asset health state based on the received sensor measurement data.
[0024] In an embodiment, the physical asset is a power transformer, a distributed energy resource, DER, unit, or a
power generator.
[0025] The present disclosure also relates to a method of generating or updating a signal processing logic for processing
signals, in particular time-series signals, that comprise measurements associated with a physical asset, the method
comprising providing the ML model, trained according to any one of the above-described embodiments, as at least part
of a signal processing logic to a device that executes the signal processing logic to control, monitor, and/or analyze the
physical asset.
[0026] The present disclosure further relates to a method of operating and/or maintaining an physical asset comprising:
performing a prognostic physical asset health analysis for the physical asset using the method of any one of the above-
described embodiments; and automatically performing at least one of the following: scheduling a down-time of the
physical asset based on the determined prognostic physical asset health state; scheduling maintenance work based on
the determined prognostic physical asset health state; scheduling replacement work based on the determined prognostic
physical asset health state; changing maintenance intervals based on the determined prognostic physical asset health
state.
[0027] The present disclosure further relates to a determining system operative to generate or update a signal process-
ing logic for processing signals, in particular time-series signals, that comprise measurements associated with a physical
asset, the determining system comprising a processor being configured to: receive the processing signals; and train a
machine learning, ML, model, in particular a functional neural network, FNN, wherein the ML model comprises performing:
determining a plurality of first-stage vectors based on the processing signals and a plurality of basis functions, in particular
by projecting each of the processing signals to a respective basis function of a plurality of basis functions, wherein each
of the plurality of first-stage vectors is related to the projected each of the processing signals through the respective
basis function; and determining a plurality of second-stage vectors based on the plurality of first-stage vectors, in particular
by projecting each of the plurality of first-stage vectors to a respective transformation matrix of a plurality of transformation
matrices, wherein each of the plurality of second-stage vectors is related to the projected each of the plurality of first-
stage vectors through the respective transformation matrix.
[0028] In an embodiment, the processor is configured to, in particular the ML model is configured to: combine the
second-stage vectors, in particular by concatenating the second-stage vectors into a concatenated vector; and/or de-
termine at least one output of the FNN based on the plurality of second-stage vectors.
[0029] In an embodiment, the processor is configured to provide the trained ML model as at least part of a signal
processing logic to a device that executes the signal processing logic to control, monitor, and/or analyze the physical asset.
[0030] In an embodiment, the processor is configured to: receive the trained ML model; and execute the signal process-
ing logic to control, monitor, and/or analyze the physical asset.
[0031] In an embodiment, each of the plurality of transformation matrices comprises a plurality of trainable weights.
[0032] In an embodiment, a dimensionality of at least one of transformation matrices is different from the dimension-
alities of remaining transformation matrices such that a dimensionality of at least one of the plurality of second-stage
vectors is different from the dimensionalities of the remaining second-stage vectors.
[0033] In an embodiment, the dimensionalities of the respective transformation matrices are determined based on at
least one optimization method, in particular on integer decisions including grid search and hill climbing.
[0034] In an embodiment, the processor is configured to determine information related to the health of the physical
asset, based on the trained ML model, comprising a health indicator, a time series of health indicator evolution, a
remaining useful life, RUL, a failure probability, a time series of failure probability evolution, a reliability, and/or a time
series of reliabilities.
[0035] In an embodiment, determining the at least one output comprises processing the at least one second-stage
intermediate value by a linear or nonlinear function that is subject to the plurality of trainable weights.
[0036] In an embodiment, the processor is configured to: receive sensor measurement data captured during operation
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of the physical asset; and update the prognostic asset health state based on the received sensor measurement data.
[0037] In an embodiment, the physical asset is a power transformer, a distributed energy resource, DER, unit, or a
power generator.
[0038] The present disclosure further relates to an industrial or power system, comprising: a physical asset; and the
determining system according to any one of the above-described embodiments, optionally wherein the determining
system is a decentralized controller of the industrial or power system for controlling the asset.
[0039] The method according to any one of the embodiments disclosed herein may advantageously monitor and/or
estimate quantities for an industrial asset, such as operational performance, operational state, or information on external
conditions or adjacent systems. One particular quantity to monitor and/or estimate is the state of health of an industrial
asset, which allows the degradation of the asset to be understood, its remaining useful life (RUL) to be predicted, and
decisions for operation, maintenance, and repair to be derived. The information thus obtained can be used for informing
human operators, managers, or stakeholders, to support their operational or other decisions, or to partly or fully automate
the operation of the asset.
[0040] Various exemplary embodiments of the present disclosure are directed to providing features that will become
readily apparent by reference to the following description when taken in conjunction with the accompanying drawings.
In accordance with various embodiments, exemplary systems, methods, and devices are disclosed herein. It is under-
stood, however, that these embodiments are presented by way of example and not limitation, and it will be apparent to
those of ordinary skill in the art who read the present disclosure that various modifications to the disclosed embodiments
can be made while remaining within the scope of the present disclosure.
[0041] Thus, the present disclosure is not limited to the exemplary embodiments and applications described and
illustrated herein. Additionally, the specific order and/or hierarchy of steps in the methods disclosed herein are merely
exemplary approaches. Based upon design preferences, the specific order or hierarchy of steps of the disclosed methods
or processes can be re-arranged while remaining within the scope of the present disclosure. Thus, those of ordinary
skill in the art will understand that the methods and techniques disclosed herein present various steps or acts in a sample
order, and the present disclosure is not limited to the specific order or hierarchy presented unless expressly stated
otherwise.
[0042] In the following, exemplary embodiments of the present disclosure will be described. It is noted that some
aspects of any one of the described embodiments may also be found in some other embodiments unless otherwise
stated or obvious. However, for increased intelligibility, each aspect will only be described in detail when first mentioned
and any repeated description of the same aspect will be omitted.
[0043] The above and other aspects and their implementations are described in greater detail in the drawings, the
descriptions, and the claims.

Brief Description of the Drawings

[0044]

Fig. 1 a) and b) illustrate a functional neural network architecture.

Fig. 2 illustrates a functional neural network architecture.

Fig. 3 a) and b) illustrate minimal and non-minimal architectures.

Fig. 4 illustrates a flowchart of a method according to an embodiment of the present disclosure.

Fig. 5 illustrates a functional neural network architecture according to an embodiment of the present disclosure.

Fig. 6 illustrates a generalized structure of the functional neural network architecture according to an embodiment
of the present disclosure.

Fig. 7 a) and b) illustrate a performance comparison among functional neural network architectures including the
functional neural network architecture according to an embodiment of the present disclosure.

Fig. 8 a) and b) illustrate a performance comparison among functional neural network architectures including the
functional neural network architecture according to an embodiment of the present disclosure.

Fig. 9 a) and b) illustrate a device and a system according to an embodiment of the present disclosure.
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Detailed Description of the Disclosure

[0045] Fig. 4 illustrates a flowchart of a method according to an embodiment of the present disclosure. In particular,
the method according to an embodiment of the present disclosure comprises training a machine learning, ML, model,
in particular a functional neural network, FNN, and Fig. 4 illustrates the methods performed by the ML model. At S401,
the processing signals are received. The processing signals may be time-series signals, that comprise measurements
associated with at least one physical asset. The processing signals may be optionally preprocessed before being received,
in particular by the ML model, (e.g. by scaling, data cleaning, etc.). At S402, a plurality of first-stage vectors is determined
based on the processing signals and a plurality of basis functions, in particular by projecting each of the processing
signals to a respective basis function of a plurality of basis functions, wherein each of the plurality of first-stage vectors
is related to the projected each of the processing signals through the respective basis function. At S403, a plurality of
second-stage vectors is determined based on the plurality of first-stage vectors, in particular by projecting each of the
plurality of first-stage vectors to a respective transformation matrix of a plurality of transformation matrices, wherein each
of the plurality of second-stage vectors is related to the projected each of the plurality of first-stage vectors through the
respective transformation matrix.
[0046] Fig. 5 illustrates a functional neural network architecture according to an embodiment of the present disclosure.
The functional neural network of the present disclosure is hereinafter referred to as an Adaptive-Equivalent FNN (AEFNN)
layer. The basic linear AEFNN architecture is shown in Fig. 5 and comprises performing:

• Projecting (S510) the channels on many fixed basis functions ϕk. There are no trainable weights involved in this
step, hence it may be done outside the SGD training. That is, fixed basis functions ϕk are not trainable.

• Optionally, normalizing the output of the first projection ui,k 511 for the inputs to ANN (e.g. centered and scaled to
unit standard deviation). Subsequently there is, per channel i, one trainable regular ANN layer with linear activation.
These trainable layers act in parallel on the channels.

• Projecting (S520) the (optionally normalized) output of the first projection ui,k 511 to the corresponding weights 

of the weight matrices Ai, wherein the weight matrices Ai are trainable for each data channel i.
• Summing the results of the second projection S520 over k to determine the output of the second projection zi,j 521.
• Optionally, arranging (S530) the output of the second projection zi,j 521 depending on how they are subsequently

used. E.g. if the Adaptive-Equivalent FNN layer is followed by more ANN layers, its outputs may be concatenated,
reshaped, stacked, etc.

[0047] The output of the second projection zi,j are projections of the functional inputs fi(t) onto basis functions which
are linear combinations of the fixed basis functions ϕk. Since the weight matrices Ai are trainable for each data channel
i, the linear combinations of the fixed basis functions ϕk behave as an adaptive basis functions ϕi,j of Fig. 2. This
relationship is illustrated in the mathematical derivation, the basis functions being effectively used are circled 522.
[0048] The input sample may be referred to the processing signals. The output of the first projection ui,k may be referred
to a plurality of first-stage vectors. The output of the second projection zi,j may be referred to a plurality of second-stage
vectors. The matrices Ai may be referred to a transformation matrix.
[0049] In an embodiment, the method further comprises, in particular the ML model comprises performing: combining
the second-stage vectors, in particular by concatenating the second-stage vectors into a concatenated vector; and/or
determining at least one output of the FNN based on the plurality of second-stage vectors.
[0050] In an embodiment, the method further comprises providing the trained ML model as at least part of a signal
processing logic to a device that executes the signal processing logic to control, monitor, and/or analyze the physical asset.
[0051] In an embodiment, the method further comprises: receiving the trained ML model; and executing the signal
processing logic to control, monitor, and/or analyze the physical asset.
[0052] In an embodiment, each of the plurality of transformation matrices comprises a plurality of trainable weights.
[0053] In an embodiment, a dimensionality of at least one of transformation matrices is different from the dimension-
alities of remaining transformation matrices such that a dimensionality of at least one of the plurality of second-stage
vectors is different from the dimensionalities of the remaining second-stage vectors.
[0054] In an embodiment, the dimensionalities of the respective transformation matrices are determined based on at
least one optimization method, in particular on integer decisions including grid search and hill climbing.
[0055] In an embodiment, the method further comprises determining information related to the health of the physical
asset, based on the trained ML model, comprising a health indicator, a time series of health indicator evolution, a
remaining useful life, RUL, a failure probability, a time series of failure probability evolution, a reliability, and/or a time
series of reliabilities.
[0056] In an embodiment, determining the at least one output comprises processing the at least one second-stage
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intermediate value by a linear or nonlinear function that is subject to the plurality of trainable weights.
[0057] In an embodiment, the method further comprises: receiving sensor measurement data captured during operation
of the physical asset; and updating the prognostic asset health state based on the received sensor measurement data.
[0058] In an embodiment, the physical asset is a power transformer, a distributed energy resource, DER, unit, or a
power generator.
[0059] In an embodiment, the method further comprises providing the ML model, trained according to any one of the
above-described embodiments, as at least part of a signal processing logic to a device that executes the signal processing
logic to control, monitor, and/or analyze the physical asset.
[0060] In an embodiment, the method further comprises: performing a prognostic physical asset health analysis for
the physical asset using the method of any one of the above-described embodiments; and automatically performing at
least one of the following: scheduling a down-time of the physical asset based on the determined prognostic physical
asset health state; scheduling maintenance work based on the determined prognostic physical asset health state; sched-
uling replacement work based on the determined prognostic physical asset health state; changing maintenance intervals
based on the determined prognostic physical asset health state.
[0061] The fully general design of the Adaptive-Equivalent FNN layer is shown in Fig. 6. The only difference to the
linear layer described in Fig. 5 is the generalization of the per channel layers, which may be nonlinear and may comprise
multiple elementary layers. Hence, comprises performing:

• Projecting (S610) the channels on many fixed basis functions ϕk. There are no trainable weights involved in this
step, hence it may be done outside the SGD training. That is, fixed basis functions ϕk are not trainable.

• Optionally, normalizing the output of the first projection ui,k for the inputs to ANN (e.g. centered and scaled to unit
standard deviation). Subsequently there are, per channel i, one or multiple trainable regular ANN layers (fully con-
nected or other) with linear or nonlinear activation. These trainable layers act in parallel on the channels.

• Projecting (S620) the (optionally normalized) output of the first projection ui,k to the corresponding weights  of

the weight matrices Ai of the first trainable regular ANN layer of the N trainable regular ANN layers, wherein the
weight matrices Ai are trainable for each data channel i. When, N is larger than one, projecting the output of preceding
projection subsequently, i.e., the results of the projection ui,k to the weight matrices Ai of the first trainable regular

ANN layer is projected onto the weight matrices Ai of the second trainable regular ANN layer, and so forth.
• Summing the results of the second projection S620 over k to determine the output of the second projection zi,j 621.
• Optionally, arranging (S630) the output of the second projection zi,j 621 depending on how they are subsequently

used. E.g. if the Adaptive-Equivalent FNN layer is followed by more ANN layers, its outputs may be concatenated,
reshaped, stacked, etc.

[0062] Note that, as described in the above steps, the term Adaptive-Equivalent FNN layer refers to a construction
which may technically be a sequence of multiple non-trainable and trainable layers and other matrix manipulation op-
erations (concatenating, reshaping, stacking, etc.).
[0063] The Adaptive-Equivalent FNN layer is usually just one part of the whole ANN. For instance, in Figures 3 and
4, after the Adaptive-Equivalent layer, there is a remaining MLP network S530 S630. In general, the Adaptive-Equivalent
FNN layer is typically the first layer of an ANN, followed by arbitrary further ANN layers.
[0064] In an embodiment, functional layers, including at least one Adaptive-Equivalent functional layer, is stacked, in
particular by performing: applying a functional layer to the functional input data; Interpreting the numerical output vectors
from the functional layer as functional data (e.g. sampled function evaluations), possibly after rearranging the vectors
(reshaping, transposing, etc.); and applying a second functional layer to the data resulting from the previous operation.
[0065] In an embodiment, the processing signals comprises at least two variables. In an embodiment, the basis
functions are chosen for respective variables of the at least two variables. In an embodiment, the processing signals
are projected to the respective basis functions chosen for the respective variables of the at least two variables.
[0066] In an embodiment, the ML is or is part of a trainable Neural Network system which, after training, is used to
process data from industrial assets according to any one of the above-described embodiments. In an embodiment, the
data processing is performed offline or online, wherein the term "online" means that the trained Neural Network system
is continuously or at regular or irregular time intervals evaluated on new data recorded from the asset(s).
[0067] Fig. 7 and Fig. 8 illustrate the performance on a simple RUL prediction task on the NASA Turbofan Data Set.
Specifically, an ANN is setup and trained for predicting RUL labels on the first data set FD001. The training dataset is
randomly partitioned into 80% training and 20% validation data, and the training is repeated multiple times, in order to
obtain statistical distributions of the validation loss and the training time. Two different sets of input channels are used:
(a) all available input channels in the data set, and (b) 6 input channels which have been preselected according to their
significance to predict RUL.
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[0068] 6 architectures are compared. 3 of them learn to predict RUL based on the data taken from a fixed sliding
window of length 21 samples, and 3 combine the sliding window input with past information by means of a Recurrent
Neural Network (RNN) architecture. For the RNN, we use a Gated Recurrent Unit (GRU) network. We also compare a
simplified RNN which processes the temporal information with two parallel processing streams composed of a temporal
convolutional network and a simple cumulative sum.
[0069] Fig. 7 compares the validation loss of the different architectures for the RUL prediction task, for both sets of
input channels. In particular, Fig. 7 a) illustrates the results when all input channels are used and Fig. 7 b) with 6 selected
input channels. It can be seen that with a recurrent architecture, the network performs better than without. Comparing
the AE FNN architecture without reference directly to the FNN with eigenfunctions dedicated to this task, it is observed
that the performance is similar, hence the AE FNN successfully learns to predict RUL well without dedicated eigenfunc-
tions. In contrast, the performance of AdaFNN is less robust. In comparison with a RNN (GRU network), AE FNN is able
to compete.
[0070] Training times of the different architectures are compared in Fig. 8. In particular, Fig. 8 a) illustrates the results
when all input channels are used and Fig. 8 b) with 6 selected input channels. It can be seen that the AEFNN without
recurrence trains fastest, even faster than the FNN with dedicated eigenfunctions. Also in combination with RNN, one
AE FNN variant is fastest. This demonstrates that the AE FNN layer is a strong architectural choice for with possibly
favorable scaling properties for functional input data.
[0071] Fig. 9 a) illustrates a determining system 910 operative to generate or update a signal processing logic for
processing signals, in particular time-series signals, that comprise measurements associated with a physical asset 920,
the determining system 910 comprising a processor 911 being configured to: receive the processing signals; and train
a machine learning, ML, model, in particular a functional neural network, FNN, wherein the ML model comprises per-
forming: determining a plurality of first-stage vectors based on the processing signals and a plurality of basis functions,
in particular by projecting each of the processing signals to a respective basis function of a plurality of basis functions,
wherein each of the plurality of first-stage vectors is related to the projected each of the processing signals through the
respective basis function; and determining a plurality of second-stage vectors based on the plurality of first-stage vectors,
in particular by projecting each of the plurality of first-stage vectors to a respective transformation matrix of a plurality of
transformation matrices, wherein each of the plurality of second-stage vectors is related to the projected each of the
plurality of first-stage vectors through the respective transformation matrix.
[0072] In an embodiment, the processor is configured to transmit/provide/transfer the received processing signals to
the ML model. In an embodiment, the ML model comprises performing receiving the processing signals, in particular
from the processor.
[0073] In an embodiment, the processor is configured to execute a method according to any one of the above-described
embodiments.
[0074] Fig. 9 b) illustrates an industrial or power system 900, comprising: a physical asset 920; and the determining
system 910 according to any one of the above-described embodiments, optionally wherein the determining system 910
is a decentralized controller of the industrial or power system 900 for controlling the asset.
[0075] While various embodiments of the present disclosure have been described above, it should be understood that
they have been presented by way of example only, and not by way of limitation. Likewise, the various diagrams may
depict an example architectural or configuration, which are provided to enable persons of ordinary skill in the art to
understand exemplary features and functions of the present disclosure. Such persons would understand, however, that
the present disclosure is not restricted to the illustrated example architectures or configurations, but can be implemented
using a variety of alternative architectures and configurations. Additionally, as would be understood by persons of ordinary
skill in the art, one or more features of one embodiment can be combined with one or more features of another embodiment
described herein. Thus, the breadth and scope of the present disclosure should not be limited by any of the above-
described exemplary embodiments.
[0076] It is also understood that any reference to an element herein using a designation such as "first," "second," and
so forth does not generally limit the quantity or order of those elements. Rather, these designations can be used herein
as a convenient means of distinguishing between two or more elements or instances of an element. Thus, a reference
to first and second elements does not mean that only two elements can be employed, or that the first element must
precede the second element in some manner.
[0077] Additionally, a person having ordinary skill in the art would understand that information and signals can be
represented using any of a variety of different technologies and techniques. For example, data, instructions, commands,
information, signals, bits and symbols, for example, which may be referenced in the above description can be represented
by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination
thereof.
[0078] A skilled person would further appreciate that any of the various illustrative logical blocks, units, processors,
means, circuits, methods and functions described in connection with the aspects disclosed herein can be implemented
by electronic hardware (e.g., a digital implementation, an analog implementation, or a combination of the two), firmware,
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various forms of program or design code incorporating instructions (which can be referred to herein, for convenience,
as "software" or a "software unit"), or any combination of these techniques.
[0079] To clearly illustrate this interchangeability of hardware, firmware and software, various illustrative components,
blocks, units, circuits, and steps have been described above generally in terms of their functionality. Whether such
functionality is implemented as hardware, firmware or software, or a combination of these techniques, depends upon
the particular application and design constraints imposed on the overall system. Skilled artisans can implement the
described functionality in various ways for each particular application, but such implementation decisions do not cause
a departure from the scope of the present disclosure. In accordance with various embodiments, a processor, device,
component, circuit, structure, machine, unit, etc. can be configured to perform one or more of the functions described
herein. The term "configured to" or "configured for" as used herein with respect to a specified operation or function refers
to a processor, device, component, circuit, structure, machine, unit, etc. that is physically constructed, programmed
and/or arranged to perform the specified operation or function.
[0080] Furthermore, a skilled person would understand that various illustrative methods, logical blocks, units, devices,
components and circuits described herein can be implemented within or performed by an integrated circuit (IC) that can
include a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC),
a field programmable gate array (FPGA) or other programmable logic device, or any combination thereof. The logical
blocks, units, and circuits can further include antennas and/or transceivers to communicate with various components
within the network or within the device. A general purpose processor can be a microprocessor, but in the alternative,
the processor can be any conventional processor, controller, or state machine. A processor can also be implemented
as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors,
one or more microprocessors in conjunction with a DSP core, or any other suitable configuration to perform the functions
described herein. If implemented in software, the functions can be stored as one or more instructions or code on a
computer-readable medium. Thus, the steps of a method or algorithm disclosed herein can be implemented as software
stored on a computer-readable medium.
[0081] Computer-readable media includes both computer storage media and communication media including any
medium that can be enabled to transfer a computer program or code from one place to another. A storage media can
be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-
readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or
other magnetic storage devices, or any other medium that can be used to store desired program code in the form of
instructions or data structures and that can be accessed by a computer.
[0082] Additionally, memory or other storage, as well as communication components, may be employed in embodi-
ments of the present disclosure. It will be appreciated that, for clarity purposes, the above description has described
embodiments of the present disclosure with reference to different functional units and processors. However, it will be
apparent that any suitable distribution of functionality between different functional units, processing logic elements or
domains may be used without detracting from the present disclosure. For example, functionality illustrated to be performed
by separate processing logic elements, or controllers, may be performed by the same processing logic element, or
controller. Hence, references to specific functional units are only references to a suitable means for providing the described
functionality, rather than indicative of a strict logical or physical structure or organization.
[0083] Various modifications to the implementations described in this disclosure will be readily apparent to those skilled
in the art, and the general principles defined herein can be applied to other implementations without departing from the
scope of this disclosure. Thus, the disclosure is not intended to be limited to the implementations shown herein, but is
to be accorded the widest scope consistent with the novel features and principles disclosed herein, as recited in the
claims below.

Claims

1. A method of generating or updating a signal processing logic for processing signals, in particular time-series signals,
that comprise measurements associated with a physical asset, the method comprising:
training a machine learning, ML, model, in particular a functional neural network, FNN, wherein the ML model
comprises performing:

receiving the processing signals;
determining a plurality of first-stage vectors based on the processing signals and a plurality of basis functions,
in particular by projecting each of the processing signals to a respective basis function of a plurality of basis
functions,
wherein each of the plurality of first-stage vectors is related to the projected each of the processing signals
through the respective basis function; and
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determining a plurality of second-stage vectors based on the plurality of first-stage vectors, in particular by
projecting each of the plurality of first-stage vectors to a respective transformation matrix of a plurality of trans-
formation matrices,
wherein each of the plurality of second-stage vectors is related to the projected each of the plurality of first-
stage vectors through the respective transformation matrix.

2. The method of claim 1, further comprising:

combining the second-stage vectors, in particular by concatenating the second-stage vectors into a concatenated
vector; and/or
determining at least one output of the FNN based on the plurality of second-stage vectors.

3. The method of claim 1 or 2, providing the trained ML model as at least part of a signal processing logic to a device
that executes the signal processing logic to control, monitor, and/or analyze the physical asset.

4. The method of claim 3, further comprising:

receiving the trained ML model; and
executing the signal processing logic to control, monitor, and/or analyze the physical asset.

5. The method of any one of claims 1 to 4, wherein each of the plurality of transformation matrices comprises a plurality
of trainable weights.

6. The method of any one of claims 1 to 5, wherein a dimensionality of at least one of transformation matrices is different
from the dimensionalities of remaining transformation matrices such that a dimensionality of at least one of the
plurality of second-stage vectors is different from the dimensionalities of the remaining second-stage vectors.

7. The method of any one of claims 1 to 6, wherein the dimensionalities of the respective transformation matrices are
determined based on at least one optimization method, in particular on integer decisions including grid search and
hill climbing.

8. The method of any one of claims 1 to 7, comprising determining information related to the health of the physical
asset, based on the trained ML model, comprising a health indicator, a time series of health indicator evolution, a
remaining useful life, RUL, a failure probability, a time series of failure probability evolution, a reliability, and/or a
time series of reliabilities.

9. The method of any one of claims 1 to 8, wherein determining the at least one output comprises processing the at
least one second-stage intermediate value by a linear or nonlinear function that is subject to the plurality of trainable
weights.

10. The method of any one of claims 1 to 9, further comprising:

receiving sensor measurement data captured during operation of the physical asset; and
updating the prognostic asset health state based on the received sensor measurement data.

11. The method of any one of claims 1 to 10, wherein the physical asset is a power transformer, a distributed energy
resource, DER, unit, or a power generator.

12. A method of generating or updating a signal processing logic for processing signals, in particular time-series signals,
that comprise measurements associated with a physical asset, the method comprising providing the ML model,
trained according to any one of the proceeding claims, as at least part of a signal processing logic to a device that
executes the signal processing logic to control, monitor, and/or analyze the physical asset.

13. A method of operating and/or maintaining an physical asset comprising:

performing a prognostic physical asset health analysis for the physical asset using the method of any one of
the preceding claims; and
automatically performing at least one of the following: scheduling a down-time of the physical asset based on
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the determined prognostic physical asset health state; scheduling maintenance work based on the determined
prognostic physical asset health state; scheduling replacement work based on the determined prognostic phys-
ical asset health state; changing maintenance intervals based on the determined prognostic physical asset
health state.

14. A determining system operative to generate or update a signal processing logic for processing signals, in particular
time-series signals, that comprise measurements associated with a physical asset, the determining system com-
prising a processor being configured to:

receive the processing signals; and
train a machine learning, ML, model, in particular a functional neural network, FNN, wherein the ML model
comprises performing:

determining a plurality of first-stage vectors based on the processing signals and a plurality of basis functions,
in particular by projecting each of the processing signals to a respective basis function of a plurality of basis
functions,
wherein each of the plurality of first-stage vectors is related to the projected each of the processing signals
through the respective basis function; and
determining a plurality of second-stage vectors based on the plurality of first-stage vectors, in particular by
projecting each of the plurality of first-stage vectors to a respective transformation matrix of a plurality of
transformation matrices,
wherein each of the plurality of second-stage vectors is related to the projected each of the plurality of first-
stage vectors through the respective transformation matrix.

15. An industrial or power system, comprising:
a physical asset; and
the determining system of claim 14, optionally wherein the determining system is a decentralized controller of the
industrial or power system for controlling the asset.
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