
Processed by Luminess, 75001 PARIS (FR)

(19)
EP

4
38

6
59

6
A

1
EP004386596A1

(11) EP 4 386 596 A1
(12) EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication:
19.06.2024 Bulletin 2024/25

(21) Application number: 21931940.7

(22) Date of filing: 08.09.2021

(51) International Patent Classification (IPC):
G06F 21/56 (2013.01) G06F 21/53 (2013.01)

(52) Cooperative Patent Classification (CPC):
G06F 21/566; G06F 21/53; G06F 21/56

(86) International application number:
PCT/KR2021/012194

(87) International publication number:
WO 2023/027228 (02.03.2023 Gazette 2023/09)

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
Designated Validation States:
KH MA MD TN

(30) Priority: 26.08.2021 KR 20210112880

(71) Applicant: Seculetter Co., Ltd.
Sujeong-gu
Seongnam-si, Gyeonggi-do 13453 (KR)

(72) Inventors:
• LIM, Cha Sung

Yongin-si
Gyeonggi-do 16824 (KR)

• YANG, Seung Hwan
Anyang-si
Gyeonggi-do 14046 (KR)

(74) Representative: Murgitroyd & Company
165-169 Scotland Street
Glasgow G5 8PL (GB)

(54) METHOD AND DEVICE FOR DETECTING MALIGNANCY OF NON-PORTABLE EXECUTABLE
FILE THROUGH EXECUTION FLOW CHANGE OF APPLICATION PROGRAM

(57) A method for detecting a maliciousness of a
non-portable executable file according to the present in-
vention includes the steps of: executing a non-portable
executable file by running an application program corre-
sponding to the non-portable executable file in a virtual
environment; monitoring the execution of the application
program; breaking the execution of the application pro-
gram at a predetermined breakpoint during the monitor-
ing of the execution of the application program; changing
an executing flow of the application program in a breaking
state of the execution of the application program and re-
suming the execution of the application program; and
detecting a malicious behavior executed after resuming
the execution of the application program.

EP 4 386 596 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

[Technical Field]

[0001] The present invention relates to a method and
an apparatus for detecting maliciousness of a non-port-
able executable file, and more particularly, to a method
and an apparatus for detecting maliciousness of a non-
portable executable file by a behavior based inspection
method.

[Background Art]

[0002] With the widespread use of the Internet and
wireless communication devices, the transmission
routes of malicious software or malicious codes are di-
versifying, and the degree of damage caused by the ma-
licious software or malicious codes is increasing every
year. The malicious code refers to software which is in-
tentionally designed to perform malicious activities such
as destroying a system or leaking information against the
will and the interests of the user. Types of the malicious
codes include hacking tools such as virus, worm, Trojan,
backdoor, logic bomb, or trap door, malicious spyware,
and ad-ware. The malicious code causes various prob-
lems such as leakage of personal information such as
user identification information (ID) and a password, target
system control, file deletion/change, system destruction,
service denial of application program/system, core data
leakage, or other hacking program installation through a
self-reproduction function or automatic propagation func-
tion, and the damage is very diverse and serious.
[0003] The advanced persistent threat (APT) attack,
which has become a hot topic in recent years, continu-
ously utilizes various types of malicious codes by apply-
ing a high level of attack techniques to allow an attacker
to set a specific target and extract the targeted informa-
tion. Specifically, in many cases, the APT attack is not
detected in an initial invasion stage and non-portable ex-
ecutable (Non-PE) files including mainly malicious codes
are widely used. This is because a program (for example,
document creating program or image program) for exe-
cuting the non-portable executable file basically has a
certain level of security vulnerability and when the mali-
cious code is included in the non-portable executable file,
a variant malicious code may be easily generated ac-
cording to the file change. Here, the "non-portable exe-
cutable file" is a concept opposed to an portable execut-
able (PE) file or an executable file and refers to a file
which is not executed by itself. For example, the non-
portable executable file may be document files such as
a PDF file, a HWP file, a word file, and an excel file, image
files such as a JPG file, video files, java script files, or
HTML files.
[0004] As a method for inspecting the maliciousness
of the non-portable executable file according to the re-
lated art, there is a signature based inspection method.
This method is a method for inspecting whether the non-

portable executable file has a signature of a malicious
code. However, most malicious non-portable executable
file includes the malicious code in a script such as a java
script or a macro script or in some cases, encodes the
script to avoid the diagnosis so that it is difficult to know
which script exists in the non-portable executable file it-
self. Accordingly, it is almost impossible to appropriately
inspect whether the non-portable executable file is ma-
licious using the signature based inspection method of
the related art.
[0005] As another method for inspecting whether the
non-portable executable file is malicious, there is a be-
havior based inspection method. This method is a meth-
od which inspects whether the malicious behavior occurs
by actually executing the non-portable executable file.
However, the malicious code included in the non-portable
executable file may be designed such that when a spe-
cific condition (for example, a version of the application
program or an operating system environment) is not sat-
isfied, no behavior occurs. Accordingly, in the case of the
behavior based inspection method, the non-portable ex-
ecutable file needs to be executed in all versions of the
application program and various operating system envi-
ronments and the behavior needs to be observed. There-
fore, it takes a long time to analyze and it is difficult to
accurately determine whether it is malicious.

[Disclosure]

[Technical Problem]

[0006] A technical object to be achieved by the present
invention is to provide a method and an apparatus for
detecting maliciousness of a non-portable executable file
which efficiently detect maliciousness of a non-portable
executable file designed such that when a specific con-
dition, such as a version of an application program or an
operating system environment, is not satisfied, a mali-
cious behavior does not occur.
[0007] The technical object to be achieved by the
present invention is not limited to the above-mentioned
technical objects, and other technical objects, which are
not mentioned above, can be clearly understood by those
skilled in the art from the following descriptions.

[Technical Solution]

[0008] In order to achieve the technical object, accord-
ing to an aspect of the present invention, a method for
detecting maliciousness of a non-portable executable file
includes the steps of: executing a non-portable execut-
able file by running an application program correspond-
ing to the non-portable executable file in a virtual envi-
ronment; monitoring the execution of the application pro-
gram; breaking the execution of the application program
at a predetermined breakpoint during the monitoring of
the execution of the application program; changing an
executing flow of the application program in a breaking

1 2

EP 4 386 596 A1

3

5

10

15

20

25

30

35

40

45

50

55

state of the execution of the application program and re-
suming the execution of the application program; and
detecting a malicious behavior executed after resuming
the execution of the application program.
[0009] In order to achieve the above-described tech-
nical objects, according to another aspect of the present
invention, an apparatus for detecting maliciousness of a
non-portable executable file includes an application pro-
gram running unit which executes a non-portable exe-
cutable file by running an application program corre-
sponding to the non-portable executable file in a virtual
environment; an application program executing flow
changing unit which monitors an execution of the appli-
cation program, breaks the execution of the application
program at a predetermined breakpoint during the mon-
itoring of the execution of the application program, chang-
es the executing flow of the application program in a
breaking state of the execution of the application pro-
gram, and resumes the execution of the application pro-
gram; and a malicious behavior detecting unit which de-
tects a malicious behavior executed after resuming the
execution of the application program.

[Advantageous Effects]

[0010] According to the present invention described
above, it is possible to effectively detect the malicious-
ness of a non-portable executable file designed such that
when a specific condition such as a version of an appli-
cation program or an operating system environment is
not satisfied, a malicious behavior does not occur.
[0011] Effects of the present invention are not limited
to the above-mentioned effects, and other effects, which
are not mentioned above, can be clearly understood by
those skilled in the art from the following descriptions.

[Description of Drawings]

[0012]

FIG. 1 is a block diagram of an apparatus for detect-
ing a maliciousness of a non-portable executable file
according to an exemplary embodiment of the
present invention.
FIG. 2 is a flowchart of a method for detecting a ma-
liciousness of a non-portable executable file accord-
ing to an exemplary embodiment of the present in-
vention.
FIG. 3 illustrates an example of an operation of
changing an executing flow by changing a flag during
a process of executing a HWP program.
FIG. 4 illustrates a result that a HWP program is con-
tinuously executed without being ended so that a
malicious behavior is detected.
FIG. 5 illustrates an example of a malicious macro
designed to identify feature information of a virtual
environment which is being executed so that if it is
a virtual environment, the malicious behavior is not

conducted.
FIG. 6 illustrates an example of changing a screen
size value stored in a register.
FIG. 7 illustrates an example of changing a value
indicating whether there is a sound driver stored in
a memory.

[Best Mode]

[0013] Hereinafter, exemplary embodiments of the
present invention will be described in detail with refer-
ence to the drawings. Substantially same components in
the following description and the accompanying draw-
ings may be denoted by the same reference numerals
and redundant description will be omitted. Further, in the
description of the exemplary embodiment, if it is consid-
ered that specific description of related known configu-
ration or function may cloud the gist of the present inven-
tion, the detailed description thereof will be omitted.
[0014] FIG. 1 is a block diagram of an apparatus for
detecting a maliciousness of a non-portable executable
file according to an exemplary embodiment of the present
invention.
[0015] The apparatus for detecting a maliciousness of
a non-portable executable file according to the exemplary
embodiment includes a user interface 110, a virtual en-
vironment generating unit 120, an application program
storing unit 130, an application program running unit 140,
an application program executing flow changing unit 150,
and a malicious behavior detecting unit 160.
[0016] The user interface 110 provides an interface to
select a directory in which a non-portable executable file
to be inspected is stored or a non-portable executable file.
[0017] The virtual environment generating unit 120
generates a virtual environment 180 in a computer envi-
ronment in which the apparatus for detecting a malicious-
ness of the non-portable executable file according to the
exemplary embodiment of the present invention is imple-
mented. For example, the virtual environment 180 may
be a well-known sandbox. The virtual environment 180
has a flag representing a process state, a register, and
a memory.
[0018] The application program storing unit 130 stores
various types of application programs to execute the non-
portable executable file to be inspected. The application
program storing unit 130 may store application programs
such as acrobat reader, MS-word, Power point, Excel,
HWP, an image viewer program, a video viewer program,
or Internet Explorer.
[0019] The application program driving unit 140 deter-
mines a format of the non-portable executable file select-
ed by the user interface 110 and selects an application
program corresponding to the format of the non-portable
executable file from the application program storing unit
130. The application program running unit 140 runs the
selected application program in the virtual environment
180 to execute the non-portable executable file.
[0020] The apparatus for detecting the maliciousness

3 4

EP 4 386 596 A1

4

5

10

15

20

25

30

35

40

45

50

55

of the non-portable executable file according to the ex-
emplary embodiment of the present disclosure includes
the application program executing flow changing unit 150
which detects the maliciousness of the non-portable ex-
ecutable file regardless of a specific condition such as a
version of the application program or an operating system
environment.
[0021] The malicious non-portable executable file may
have branching points that terminates an application pro-
gram or branches to a flow where no malicious behavior
occurs if the specific condition such as the version of the
application program or the operating system environ-
ment is not satisfied. The non-portable executable file is
analyzed in advance by an analyzer to set a breakpoint
at the branching point having this possibility. Therefore,
a condition which is associated with the branching point
to continuously execute the application program without
terminating the application program or induce a flow that
the malicious behavior occurs may be set.
[0022] The application program executing flow chang-
ing unit 150 monitors the execution of the application
program and breaks the execution of the application pro-
gram at the branching point set as a breakpoint during
the monitoring of the execution of the application pro-
gram. The application program executing flow changing
unit 150 changes the executing flow of the application
program to continuously execute the application program
or generate a malicious behavior using the set condition
and then resumes the execution of the application pro-
gram. The application program executing flow changing
unit 150 changes a process state, a register value, or a
value of a specific address of the memory to change the
executing flow of the application program at the branch-
ing point.
[0023] The malicious behavior detecting unit 160 mon-
itors an executing process of the application program to
detect the malicious behavior through a general behavior
based inspecting method. The malicious behavior which
is not detected if the executing flow of the application
program is not changed appears because the executing
flow of the application program is changed by the appli-
cation program executing flow changing unit 150 so that
the malicious behavior is detected by the malicious be-
havior detecting unit 160.
[0024] FIG. 2 is a flowchart of a method for detecting
a maliciousness of a non-portable executable file accord-
ing to an exemplary embodiment of the present invention.
[0025] In step 210, the application program driving unit
140 runs the application program corresponding to the
non-portable executable file in the virtual environment
180 to execute the non-portable executable file.
[0026] In step 220, the application program executing
flow changing unit 150 starts monitoring of the execution
of the application program.
[0027] In step 250, the application program executing
flow changing unit 150 breaks the execution of the ap-
plication program at the set breakpoint.
[0028] In step 260, the application program executing

flow changing unit 150 changes the process state, the
register value, or the value of the specific address of the
memory so as to change the executing flow of the appli-
cation program.
[0029] In step 270, the application program executing
flow changing unit 150 resumes the execution of the ap-
plication program and continues to monitor the execution
of the application program.
[0030] In the meantime, when the malicious behavior
occurs in step 230 while monitoring the execution of the
application program, the malicious behavior detecting
unit 160 detects the malicious behavior in step 240.
[0031] When the malicious behavior is detected by the
malicious behavior detecting unit 160, the apparatus for
detecting a maliciousness of the non-portable executable
file outputs a detection result that the corresponding non-
portable executable file is malicious and ends the detect-
ing process.
[0032] Even though the application program is execut-
ed along all executing flows which are branched from all
set breakpoints, if the malicious behavior is not detected
by the malicious behavior detecting unit 160, the appa-
ratus for detecting the maliciousness of the non-portable
executable file outputs the detection result that the cor-
responding non-portable executable file is not malicious
and ends the detecting process.
[0033] An exemplary embodiment in which the appli-
cation program executing flow changing unit 150 chang-
es the process state to change the executing flow of the
application program will be described as follows.
[0034] The process manages the process state by the
data calculation during the executing process with infor-
mation of a combination of switches which are flags. The
flags have a value of 0 or 1 to serve as a switch. When
the branching point is encountered during the process of
executing the process, the branching is performed ac-
cording to the value (0 or 1) of the switch identified from
the instruction. For example, when two values are com-
pared and the values are equal, a Zero Flag (ZF) is set
to 1 and when two arbitrary values are added to exceed
4 bytes (based on a 32-bit operating system), Overflow
Flag (OF) is set to 1. Thereafter, the executing flow is
branched using a condition jump instruction so as to jump
if ZF is 0 (JE, Jump if Equal) or jump if ZF is 1 (JNE, Jump
if Not Equal).
[0035] FIG. 3 illustrates an example of an operation of
changing an executing flow by changing a flag during a
process of executing a HWP program. Referring to FIG.
3, in the address 0283C769, a value of a register a1 is
compared with 10 and a value of ZF (1 if they are equal,
or 0 otherwise) indicating the process state of whether
two values are equal is set to 0. In the address 0283C76B,
if the previous comparison result is that two values are
equal, an instruction to jump to a designated address
283C825 is executed. At this time, the value of ZF is
identified to determine whether to jump. Here, if the com-
parison result is that two values are equal, it jumps to the
address 283C825 to continuously execute the applica-

5 6

EP 4 386 596 A1

5

5

10

15

20

25

30

35

40

45

50

55

tion program. However, if the comparison result is that
two values are not equal, a next instruction is executed
and as a result, the version of the application program
does not match so that the application program is forcibly
terminated. Accordingly, when the executing flow of the
application program is left unchanged, the value of ZF is
0 so that the application program is terminated.
[0036] According to the exemplary embodiment of the
present disclosure, a breakpoint is set to the address
0283C76B and the value of ZF is set to be changed to
1. When the value of ZF is changed to 1 in the breaking
state and the execution of the application program is re-
sumed, the procedure jumps to the address 283C825
according to the condition jump instruction to continuous-
ly execute the application program so that the malicious
behavior occurs during the continuous execution of the
application program. The malicious behavior is detected
by the malicious behavior detecting unit 160. FIG. 4 il-
lustrates a result that a HWP program is continuously
executed without being ended so that a malicious behav-
ior is detected. If the value of ZF is not changed, the
application program is forcibly terminated so that the ma-
licious behavior is not detected.
[0037] Even though in the present exemplary embod-
iment, an example that ZF is changed to change the proc-
ess state is described, not only ZF, but also various flags
such as Sign Flag (SF), Overflow Flag (OF), Auxiliary
Carry Flag (AC), Carry Flag (CF) may be changed to
change the process state.
[0038] According to the exemplary embodiment of the
present invention, when the non-portable executable file
has a logic that terminates the application program be-
cause the condition for operating the malicious behavior
(for example, a version of the application program) is not
satisfied, the application program is continuously execut-
ed by changing the process state at the branching point
so that the operation of the malicious behavior may be
accurately detected.
[0039] An exemplary embodiment in which the appli-
cation program executing flow changing unit 150 chang-
es a register value to change the executing flow of the
application program will be described as follows.
[0040] A behavior based inspecting method which de-
tects a suspicious behavior by executing the non-porta-
ble executable file performs the analysis in an isolated
virtual environment to execute the malicious code. The
virtual environment has unique feature information and
a malicious code in the form of a highly created non-
portable executable file may be designed to identify the
feature information of the virtual environment to prevent
the malicious behavior. For example, when a display size
is smaller than a predetermined size, it is designed to be
determined as a virtual environment so that the malicious
behavior is not conducted or when a memory size is
smaller than a predetermined size, it is designed to be
determined as a virtual environment so that the malicious
behavior is not conducted.
[0041] FIG. 5 illustrates an example of a malicious

macro designed that feature information of a virtual en-
vironment which is being executed is identified using Ex-
cel 4.0 macro so that when the executing environment
is not a virtual environment, the malicious behavior is
conducted and when the executing environment is a vir-
tual environment, the malicious behavior is not conduct-
ed.
[0042] Referring to FIG. 5, instructions of a second cell
and a fourth cell are as follows.

A2 = GET.WORKSPACE(13)
A4 = IF(A2<770,CLOSE(FALSE),)

[0043] The instructions execute the instruction
GET.WORKSPACE(13) in the cell A2 to get and store
the size (a horizontal size) of the screen and in the cell
A4, when the value A2 is smaller than 770, ends the
macro by the instruction CLOSE. When the value A2 is
not smaller than 770, a next instruction is continuously
executed. A screen size of the virtual environment is gen-
erally smaller than 770 so that in the virtual environment,
the macro ends according to the comparison result in the
cell A4. Therefore, the maliciousness is not identified by
a behavior based inspecting method of the related art.
[0044] In the exemplary embodiment of the present in-
vention, the breakpoint is set in the address of the branch-
ing point corresponding to the cell A4 and the screen size
value stored in the register is changed so that the macro
is continuously executed without being ended to cause
the malicious behavior.
[0045] FIG. 6 illustrates an example of changing a
screen size value stored in a register according to the
exemplary embodiment of the present invention. The size
of the screen taken through the instruction GET.WORK-
SPACE(13) is stored in the EAX register. Referring to
FIG. 6, the screen size 0x380 in the virtual environment
which is being executed is stored. Here, when the value
of the EAX register is changed to a sufficiently large val-
ue, 0x9999, as a comparison result of the cell A4, the
value of A2 is larger than 7700 so that a next instruction
is continuously executed and the malicious behavior oc-
curs.
[0046] Even though in the present exemplary embod-
iment, an example that the value of the EAX register is
changed to change the executing flow of the application
program has been described, not only the EAX register,
but also values of various registers such as EBX register,
ECX register, EDX register, ESI register, EDI register,
EBP register, and ESP register are changed to change
the executing flow of the application program.
[0047] According to the exemplary embodiment of the
present disclosure, in the case of the non-portable exe-
cutable file including a malicious macro having a logic
which identifies an execution environment to end the
macro when the condition is not satisfied, the value stored
in the register is changed at the branching point so that
the macro is continuously executed without being ended
to accurately detect that the malicious behavior is con-

7 8

EP 4 386 596 A1

6

5

10

15

20

25

30

35

40

45

50

55

ducted.
[0048] An exemplary embodiment in which the appli-
cation program executing flow changing unit 150 chang-
es a value of a specific address of a memory to change
the executing flow of the application program will be de-
scribed as follows.
[0049] Referring to FIG. 5 again, the instruction of the
first cell is as follows.
A1 = IF(GET.WORKSPACE(42)"CLOSE(TRUE))
[0050] As a result of executing the instruction
GET.WORKSPACE(42) to identify whether there is a
sound driver, if there is a sound driver, a next instruction
is continuously executed and if there is no sound driver,
the macro is ended by the instruction CLOSE. In the vir-
tual environment, there is no sound driver so that accord-
ing to the result of executing the instruction GET.WORK-
SPACE(42) the macro ends. Accordingly, the behavior
based inspecting method of the related art cannot deter-
mine the maliciousness.
[0051] In the exemplary embodiment of the present in-
vention, the breakpoint is set in the address of the branch-
ing point corresponding to the cell A1 and a value indi-
cating whether there is a sound driver stored in a specific
address of the memory is changed so that the macro is
continuously executed without being ended to cause the
malicious behavior.
[0052] The instruction GET.WORKSPACE(42) gets
the corresponding return value to store the return value
in the EAX register and performs a predetermined oper-
ation (shr eax,1, and eax, 1) on the value stored in the
EAX register to indicate the existence of the sound driver
as a Boolean value and store the value in a memory
address indicated by the EDI register. FIG. 7 illustrates
that "0" indicating that there is no sound driver is stored
in the address 001335A8 indicated by the EDI register.
It is determined that if a value stored in the address
001335A8 is 0, there is no sound driver and if the value
is 1, there is a sound driver. When the value of the ad-
dress 00135A8 indicated by the EDI register is changed
from 0 to 1, a next instruction is continuously executed
and the malicious behavior may occur.
[0053] Even though in the present exemplary embod-
iment, an example that the value of the address indicated
by the register EDI is changed to change the executing
flow of the application program has been described, not
only the register EDI, but also values of the addresses
indicated by various registers such as the EAX register,
the EBX register, the ECX register, the EDX register, the
ESI register, the EBP register, and the ESP register are
changed to change the executing flow of the application
program.
[0054] As described above, according to the exempla-
ry embodiment of the present disclosure, in the case of
the non-portable executable file including a malicious
macro having a logic which identifies an execution envi-
ronment to end the macro when the condition is not sat-
isfied, the value stored in the specific address of the mem-
ory is changed at the branching point so that the macro

is continuously executed without being ended to accu-
rately detect that the malicious behavior is conducted.
[0055] According to the above-described exemplary
embodiments of the present disclosure, even in the case
of the non-portable executable file designed such that
when the execution condition is not satisfied, the mali-
cious behavior is not generated, the process state, the
value of the register, or the value stored in the memory
is manipulated to cause the malicious behavior.
[0056] The combinations of blocks of the block dia-
grams and steps in the flowcharts of the present invention
may be implemented by computer program instructions.
The computer program instructions may be loaded in a
processor of a general purpose computer, a special pur-
pose computer, or other programmable data processing
apparatus, so that the instructions executed via the proc-
essor of the computer or other programmable data
processing apparatus create means for implementing the
functions described in the blocks of the block diagrams
or the steps in the flowcharts. These computer program
instructions may also be stored in a computer-usable or
computer readable memory that may direct a computer
or other programmable data processing apparatus to
function in a particular manner, so that the instructions
stored in the computer usable or computer readable
memory produce a manufacturing article including in-
struction means which implement the function indicated
in the blocks of the block diagrams or the steps in the
flowcharts. The computer program instructions may be
loaded onto a computer or other programmable data
processing apparatus to cause a series of operational
steps to be performed on the computer or other program-
mable apparatus to produce a computer implemented
process such that the instructions executed on the com-
puter or other programmable apparatus provide steps for
implementing the functions described in the blocks of the
block diagrams or the steps in the flowcharts.
[0057] Each block or each step may represent a part
of a module, a segment or a code, including one or more
executable instructions for executing specific logical
function(s). In addition, it should be noted that the func-
tions mentioned in the blocks or steps may occur out of
order in several alternative embodiments. For example,
two blocks or steps shown in succession may be execut-
ed substantially concurrently, or may be executed in re-
verse order according to corresponding functions.
[0058] It will be appreciated that various exemplary
embodiments of the present invention have been de-
scribed herein for purposes of illustration, and that vari-
ous modifications, changes, and substitutions may be
made by those skilled in the art without departing from
the scope and spirit of the present invention. Therefore,
the exemplary embodiments of the present invention are
provided for illustrative purposes only but not intended
to limit the technical concept of the present invention.
The scope of the technical concept of the present inven-
tion is not limited thereto. The protection scope of the
present invention should be interpreted based on the fol-

9 10

EP 4 386 596 A1

7

5

10

15

20

25

30

35

40

45

50

55

lowing appended claims and it should be appreciated
that all technical spirits included within a range equivalent
thereto are included in the protection scope of the present
invention.

Claims

1. A method for detecting maliciousness of a non-port-
able executable file, comprising the steps of:

executing a non-portable executable file by run-
ning an application program corresponding to
the non-portable executable file in a virtual en-
vironment;
monitoring the execution of the application pro-
gram;
breaking the execution of the application pro-
gram at a predetermined breakpoint during the
monitoring of the execution of the application
program;
changing an executing flow of the application
program in a breaking state of the execution of
the application program and resuming the exe-
cution of the application program; and
detecting a malicious behavior executed after
resuming the execution of the application pro-
gram.

2. The method for detecting maliciousness of a non-
portable executable file of claim 1, wherein the
breakpoint is set at a branching point.

3. The method for detecting maliciousness of a non-
portable executable file of claim 1, wherein the exe-
cuting flow of the application program is changed by
changing a process state.

4. The method for detecting maliciousness of a non-
portable executable file of claim 3, wherein the proc-
ess state is changed by changing a flag indicating
the process state.

5. The method for detecting maliciousness of a non-
portable executable file of claim 4, wherein the flag
includes at least one of Zero Flag (ZF), Sign Flag
(SF), Overflow Flag (OF), Auxiliary Carry Flag (AC),
and Carry Flag (CF).

6. The method for detecting maliciousness of a non-
portable executable file of claim 1, wherein the exe-
cuting flow of the application program is changed by
changing a value of a register.

7. The method for detecting maliciousness of a non-
portable executable file of claim 6, wherein the reg-
ister includes at least one of the EAX register, the
EBX register, the ECX register, the EDX register, the

ESI register, the EDI register, the EBP register, and
the ESP register.

8. The method for detecting maliciousness of a non-
portable executable file of claim 1, wherein the exe-
cution of the application program is changed by
changing a value of a specific address of the mem-
ory.

9. The method for detecting maliciousness of a non-
portable executable file of claim 8, wherein the spe-
cific address of the memory is an address indicated
by the EAX register, the EBX register, the ECX reg-
ister, the EDX register, the ESI register, the EDI reg-
ister, the EBP register, or the ESP register.

10. An apparatus for detecting maliciousness of a non-
portable executable file, comprising:

an application program running unit which exe-
cutes a non-portable executable file by running
an application program corresponding to the
non-portable executable file in a virtual environ-
ment;
an application program executing flow changing
unit which monitors an execution of the applica-
tion program, breaks the execution of the appli-
cation program at a predetermined breakpoint
during the monitoring of the execution of the ap-
plication program, changes the executing flow
of the application program in a breaking state of
the execution of the application program, and
resumes an execution of the application pro-
gram; and
a malicious behavior detecting unit which de-
tects a malicious behavior executed after re-
suming the execution of the application pro-
gram.

11. The apparatus for detecting maliciousness of a non-
portable executable file of claim 10, wherein the
breakpoint is set at a branching point.

12. The apparatus for detecting maliciousness of a non-
portable executable file of claim 10, wherein the ex-
ecuting flow of the application program is changed
by changing a process state.

13. The apparatus for detecting maliciousness of a non-
portable executable file of claim 12, wherein the
process state is changed by changing a flag indicat-
ing the process state.

14. The apparatus for detecting maliciousness of a non-
portable executable file of claim 13, wherein the flag
includes at least one of Zero Flag (ZF), Sign Flag
(SF), Overflow Flag (OF), Auxiliary Carry Flag (AC),
and Carry Flag (CF).

11 12

EP 4 386 596 A1

8

5

10

15

20

25

30

35

40

45

50

55

15. The apparatus for detecting maliciousness of a non-
portable executable file of claim 10, wherein the ex-
ecuting flow of the application program is changed
by changing a value of a register.

16. The apparatus for detecting maliciousness of a non-
portable executable file of claim 15, wherein the reg-
ister includes at least one of the EAX register, the
EBX register, the ECX register, the EDX register, the
ESI register, the EDI register, the EBP register, and
the ESP register.

17. The apparatus for detecting maliciousness of a non-
portable executable file of claim 10, wherein the ex-
ecution of the application program is changed by
changing a value of a specific address of the mem-
ory.

18. The apparatus for detecting maliciousness of a non-
portable executable file of claim 17, wherein the spe-
cific address of the memory is an address indicated
by the EAX register, the EBX register, the ECX reg-
ister, the EDX register, the ESI register, the EDI reg-
ister, the EBP register, or the ESP register.

13 14

EP 4 386 596 A1

9

EP 4 386 596 A1

10

EP 4 386 596 A1

11

EP 4 386 596 A1

12

EP 4 386 596 A1

13

EP 4 386 596 A1

14

EP 4 386 596 A1

15

EP 4 386 596 A1

16

5

10

15

20

25

30

35

40

45

50

55

EP 4 386 596 A1

17

5

10

15

20

25

30

35

40

45

50

55

	bibliography
	abstract
	description
	claims
	drawings
	search report

