

(11) EP 4 410 446 A1

EUROPEAN PATENT APPLICATION

(43) Date of publication: 07.08.2024 Bulletin 2024/32

(21) Application number: 24153183.9

(22) Date of filing: 22.01.2024

(51) International Patent Classification (IPC): **B21D** 35/00 (2006.01) **B21D** 37/10 (2006.01) **B21D** 45/02 (2006.01)

B21D 45/02 (2006.01)

(52) Cooperative Patent Classification (CPC): B21D 41/026; B21D 35/005; B21D 37/10; B21D 45/02

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA

(12)

Designated Validation States:

GE KH MA MD TN

(30) Priority: **31.01.2023 IT 202300001488**

- (71) Applicant: Officina Meccanica Grisi S.r.l. 20099 Sesto San Giovanni (MI) (IT)
- (72) Inventor: Griffini, Gilberto Giuseppe Sesto San Giovanni (MI) (IT)
- (74) Representative: Perani & Partners S.p.A. Piazza Armando Diaz, 7 20123 Milano (IT)

(54) PROCESS OF PRODUCING FITTINGS BY COLD PLASTIC DEFORMATION OF RAW COPPER TUBES

- (57) The present invention concerns cold production process of fitting elements comprising the steps of
- providing a hard-drawn copper pipe (1) to be plastically deformed,
- providing a punch (3) configured to come into contact with the pipe (1),
- providing a mould (4) having a cavity (40) adapted to receive the pipe (1) and delimited by a moulding surface (41),
- providing actuation means (5) for the punch (3) configured to move the punch (3) to and from the cavity (40) of the mould (4),
- actuating the actuation means (5) to exert a deformation force on the pipe (1) so as to plastically deform it on the moulding surface (41),
- actuating the actuation means (5) to disengage the punch (3) and move it away from the pipe (1),
- extracting the pipe (1) from the cavity (40) of the mould (4).

Fig. 1

Description

Technical Field

[0001] The present invention relates to a process for the production of fitting elements, in particular by means of mechanical processing by cold plastic deformation of hard-drawn copper pipes.

1

[0002] The object of the present invention finds useful use in the sector of the production of fitting elements made of raw copper for hydraulics, in particular for refrigeration or air conditioning systems.

State of the art

[0003] It has long been known in the field of hydraulics to use fitting elements to fluid-dynamically connect two or more conduits that convey fluid or aeriform flows.

[0004] These fitting elements can be made by hot deep drawing of coils of annealed copper.

[0005] Disadvantageously, this process is significantly energy-intensive as it requires heating the workpiece.

[0006] Furthermore, disadvantageously, the use of annealed copper and the hot machining reduce the shape stability of the fitting element obtained by deep drawing. [0007] Alternatively, the fitting elements are made by means of common mechanical machining processes by chip removal - such as, for example, turning or milling -, i.e. processes in which a workpiece is shaped by removing material using special cutting tools.

[0008] Disadvantageously, the machining processes by chip removal are characterized by high cycle times that significantly impact the production costs.

[0009] Furthermore, disadvantageously, the machining processes by chip removal find significant qualitative limits in the production of fitting elements with small diameters and thicknesses, in particular if these are made of ductile and malleable materials such as copper. In this regard, it should be noted that the interaction between the tool and the workpiece induces vibrations in the latter all the more significant the more the workpiece has reduced diameters and thicknesses, thus compromising the quality of the machined surface. This issue is of particular relevance in the machining of inner portions of the fitting elements since in this case, during turning, it is not possible to use tailstocks adapted to stabilize the workpiece.

Object of the invention

[0010] In this context, the task of the person skilled in the art underlying the present invention is to propose a process for the production of fitting elements that overcomes the drawbacks of the aforementioned prior art.

[0011] In particular, it is an object of the present invention to make available a process for the production of fitting elements that allows productivity to be increased without negatively impacting the final quality of the ma-

chined product and the production costs.

[0012] It is also an aim of the present invention to make available a process for the production of fitting elements with reduced thicknesses and diameters capable of achieving high quality standards.

SUMMARY OF THE INVENTION

[0013] The defined technical task and the specified aims are substantially achieved by a process for the production of fitting elements comprising the technical features set forth in one or more of the appended claims.

[0014] Advantageously, the process for the production of fitting elements by means of mechanical machining by cold plastic deformation, since they do not require the workpiece to be heated, allows to reduce the energy consumptions of the machining compared to hot deep drawing.

[0015] Furthermore, advantageously, the cold deformation hardens the material and increases the shape stability of the machined product.

[0016] Advantageously, the process for the production of fitting elements by means of mechanical machining by cold plastic deformation allows to obtain high production volumes reducing the machining cycle time compared to the mechanical machining by chip removal.

[0017] Furthermore, advantageously, the use of the process for the production of fitting elements by cold plastic deformation of hard-drawn copper pipes allows to obtain high quality standards and, in particular, allows to homogenize the quality of the machined products.

[0018] It should also be noted that the process for the production of fitting elements object of the present invention, by plastically deforming the hard-drawn copper pipe to be machined by interposing it between the mould and the punch, allows to precisely machine pipes with reduced diameters and thicknesses, as well as made of ductile and malleable materials such as copper.

LIST OF FIGURES

[0019] Further characteristics and advantages of the present invention will become more apparent from the description of an exemplary, but not exclusive, and therefore nonlimiting preferred embodiment of a process for the production of fitting elements, as illustrated in the attached drawings in which:

- Figure 1 shows a flowchart of the process for the production of fitting elements according to the present invention,
- Figure 2 shows a sectional view from the side of a step of the production process of Figure 1,
- Figure 3a shows a sectional view from the side of a hard-drawn copper pipe to be plastically deformed by the production process of Figure 1,
- Figure 3b shows a sectional view from the side of the pipe of Figure 3a after performing the production

2

45

50

55

process of Figure 1.

DETAILED DESCRIPTION

[0020] With reference to figure 1, the present invention relates to a process for the production of fitting elements, in particular by means of mechanical machinings by cold plastic deformation of hard-drawn copper pipes.

[0021] In the context of the present invention, "mechanical machinings by plastic deformation" means all those machinings that use mechanical stresses to induce plastic deformations in the workpiece - hereinafter "harddrawn copper pipe 1" -, i.e. deformations that remain when the stresses cease.

[0022] The term "cold", on the other hand, means that the mechanical machining process takes place in the absence of heat input. The workpiece is therefore not supplied with heat either upstream or during the plastic deformation process.

[0023] As indicated in box 1000 of figure 1, the production process object of the present invention comprises a first step of providing a hard-drawn copper pipe 1 to be plastically deformed.

[0024] It should be pointed out that the hard-drawn copper differs from the annealed copper in that it has not undergone any thermal treatment of heating to a temperature below melting point, aimed at increasing its malleability and homogeneity.

[0025] The pipe 1 to be deformed has a constant cross-section along a main extension direction X-X, differently the machined pipe 1 - i.e. the pipe obtained following the production process object of the present invention - is characterized by a variable cross-section along the main extension direction X-X. The machined pipe 1 is identifiable with the fitting element or a component thereof and can therefore be classified as a finished product or a semi-finished product.

[0026] The production process object of the present invention is therefore configured to plastically deform the pipe 1 so as to locally vary its cross-section.

[0027] It should be specified that by "cross-section" is meant the section of the pipe oriented perpendicularly to the main extension direction X-X.

[0028] In detail, with reference to figure 3a, the pipe 1 to be deformed has a circular cross-section characterized by an initial outer diameter D_{ext} and a thickness s. The initial inner diameter D_{int} of the pipe 1 is obtained indirectly by subtracting twice the thickness s from the initial outer diameter D_{ext} .

[0029] According to one aspect, the initial outer diameter $D_{\rm ext}$ is comprised between a maximum value of 86 mm and a minimum value of 6 mm. Preferably, the initial outer diameter $D_{\rm ext}$ is comprised between 20 mm and 5 mm, even more preferably between 10 mm and 5 mm.

[0030] According to a further aspect, the thickness s is comprised between a maximum value of 3.5 mm and a minimum value of 0.73 mm. Preferably, the thickness s is comprised between 3 mm and 0.5 mm, even more

preferably between 1.5 mm and 0.5 mm.

[0031] With reference to figure 3b, preferably, the machined pipe 1 has a circular variable cross-section along the main extension direction X-X.

[0032] For example, the machined pipe 1 comprises a first section 11 characterized by a first final outer diameter $D_{ext 1}$ and a first final inner diameter $D_{int 1}$; a second section 12 characterized by a second final outer diameter $D_{\text{ext 2}}$ different from the first final outer diameter $D_{\text{ext 1}}$ and a second final inner diameter $D_{int 2}$ different from the first final inner diameter D_{int 1}; and a third section 13, interposed between the first and the second section 11, 12, having an outer variable diameter along the main extension direction X-X between the first and the second final outer diameter $D_{ext 1}$, $D_{ext 2}$ and an inner variable $\ diameter\, along\, the\, main\, extension\, direction\, X-X\, between$ the first and the second final inner diameter $D_{int,1}$, $D_{int,2}$. [0033] Preferably, but not necessarily, the first final outer diameter $D_{ext\,1}$ is equal to the initial outer diameter D_{ext} , while the second final outer diameter $D_{\text{ext 2}}$ is greater than the initial outer diameter Dext-

[0034] According to one aspect, the ratio of the first to the second final outer diameter $D_{ext 1}$, $D_{ext 2}$ is less than or equal to 0.75.

[0035] Preferably, but not necessarily, the thickness s of the pipe 1 is modified by the mechanical processing object of the present invention.

[0036] As indicated in box 1001 of figure 1, the production process further comprises the step of providing a punch 3 configured to come into contact with a first surface 1a of the pipe 1 and exert on the latter a deformation force.

[0037] In particular, according to an aspect shown in figure 2, the first surface 1a is an inner surface of the pipe 1 to which the punch 3 has access through an end opening 14 of the pipe 1.

[0038] With reference to figure 2, in use, the punch 3 is inserted inside the pipe 1 through the end opening 14 along the main extension direction X-X so as to come into contact with the first surface 1a.

[0039] Preferably, the punch 3 extends along a longitudinal direction Y-Y that coincides with the main extension direction X-X of the pipe 1 when the punch 3 is inserted therein. More details on the geometric conformation of the punch 3 will be provided in a subsequent part of the description.

[0040] The production process further comprises the step of providing a mould 4 having a cavity 40 adapted to receive the pipe 1 and the punch 3.

[0041] In detail, the piston 3 is switchable between a first configuration in which it is extracted from the cavity 40 so as to allow insertion or extraction of the pipe 1, and a second configuration in which it is at least partially inserted into the cavity 40 to exert the aforesaid deformation force on the pipe 1. Preferably, the piston 3 switches between the first and second configuration by moving to and from the cavity 40 along the longitudinal direction Y-V

20

[0042] In particular, the cavity 40 is configured to arrange the pipe 1 with the main extension direction X-X aligned (coincident) with the longitudinal direction Y-Y of the punch 3.

[0043] The cavity 40 is delimited by a moulding surface 41 configured to come into contact with a second surface 1b of the pipe 1 opposite to the first surface 1a.

[0044] In particular, according to an aspect shown in figure 2, the second surface 1b is an outer surface of the pipe 1, i.e. opposite to the inner surface with which the piston 3 is configured to come into contact.

[0045] The moulding surface 41 has a geometric conformation complementary to that which is intended to be given to the pipe 1 - in particular, to the outer surface thereof - with the execution of the production process object of the present invention. In this regard, it should be noted that when the piston 3 exerts the deformation force on the first surface 1a, the second surface 1b abuts on the moulding surface 41 giving the pipe 1 the desired geometric conformation.

[0046] With reference to the embodiment of figure 2, the mould 4 comprises a main body 42 and a plurality of dies 43 connectable to the latter to define the cavity 40. [0047] By interchanging the dies 43 connected to the main body 42 it is possible to change the shape given to the pipe 1 by the mechanical machining without the need to completely make a new mould 4. In other words, advantageously, the main body 42 and the dies 43 make a modular mould that allows to achieve a high production flexibility with reduced investments.

[0048] It should be noted that each die 43, when connected to the main body 42, determines a respective portion of the moulding surface 41 of the cavity 40. In other words, the cavity 40 of the mould 4 has a plurality of portions each of which is defined by a respective die 43. [0049] Preferably, the dies 43 are at least three and each of them is distinct and geometrically different from the others. For example, in the embodiment of figure 2, the mould 4 comprises a first die 43a configured to define at least a part of the first section 11 of the machined pipe, a second die 43b configured to define at least part of the second section 12, and a third die 43c configured to define at least the third section 13.

[0050] In the case where the mould 4 comprises the main body 42 and the plurality of dies 43, the production process provides for a set-up step in which the main body 42 is provided and the dies 43 are connected to the main body 42 to define the cavity 40.

[0051] Preferably, moreover, the set-up step provides for selecting a punch 3 having a geometry compatible with that of the cavity 40 and for connecting the punch 3 to actuation means 5 described below.

[0052] With reference to figure 2, it should be specified that with the term "compatible geometry" it is meant that the punch 3 has a geometry complementary to the cavity 40 of the mould 4 scaled up by the thickness s of the pipe 1. In other words, the punch 3 is shaped to fill the cavity 40 of the mould 4 together with the deformed pipe 1 when

it is in the second configuration.

[0053] In the embodiment of figure 2, the main body 42 of the mould 4 comprises a seat 44 inside which the dies 43 are stackable to define the cavity 40.

[0054] Preferably, the seat 44 has a cylindrical conformation and an insertion opening 45. Each die 43 has a cylindrical outer wall 46 that can be inserted complementarily into the seat 44 through the insertion opening 45.

[0055] To connect the dies 43 to the main body 42 of the mould 4, the dies 4 are sequentially inserted and stacked in the seat 44, in particular along the longitudinal direction Y-Y, as shown in figure 2.

[0056] As indicated in box 1003 of figure 1, the production process further comprises the step of providing actuation means 5 of the punch 3 configured to move the latter to and from the cavity 40 of the mould 4. In particular, the actuation means 5 are configured to switch the punch 3 between the aforesaid first and second configuration.

[0057] It should be specified that the actuation means 5, in addition to moving the punch 3 to bring it into contact with the first surface 1a of the pipe 1 and disengage it from the latter, are configured to actuate the piston 3 to exert the deformation force on the pipe 1.

[0058] According to one aspect, the punch 3, the mould 4 and the actuation means 5 are components of a machine for mechanical machinings by plastic deformation (not shown in the figures), in particular a deep drawing press.

[0059] Following the aforementioned steps, the production process provides for inserting the pipe 1 to be plastically deformed into the cavity 40 of the mould 4 (box 1004 of figure 1), and actuating the actuation means 5 to bring the punch 3 into contact with the first surface 1a of the pipe 1 and to exert the deformation force on the pipe 1 (box 1005 of figure 1).

[0060] By the action of the deformation force, the pipe 1 is plastically deformed so that the second surface 1b of the pipe 1 abuts completely against the moulding surface 41 of the mould 4 as shown in figure 2.

[0061] As indicated in box 1006 of figure 1, the production process then comprises the step of actuating the actuation means 5 to disengage the punch 3 and move it away from the first surface 1a of the pipe 1 which will thus be extractable from the cavity 40 of the mould 4.

[0062] The deformed pipe 1 is then extracted from the cavity 40 of the mould 4, preferably by means of an extractor element 6.

[0063] According to one aspect, the extractor element 6 is configured to come into contact with the deformed pipe 1 and remove it from the cavity 40 of the mould 4 by moving it along the main extension direction X-X.

[0064] Clearly, in order to satisfy contingent and specific needs, a person skilled in the art may make numerous modifications and variants to the configurations described above. Such modifications and variations are all also contained within the scope of the invention, as defined by the following claims.

15

25

35

40

50

Claims

- Cold production process of fitting elements, characterized in that said process comprises the steps of
 - providing a hard-drawn copper pipe (1);
 - providing a punch (3) configured to come into contact with a first surface (1a) of the pipe (1);
 - providing a mould (4) having a cavity (40) adapted to receive the pipe (1), said cavity (40) being delimited by a moulding surface (41) configured to come into contact with a second surface of the pipe (1b) opposite to the first surface (1a):
 - providing actuation means (5) for the punch (3) configured to move the punch (3) from and toward the cavity (40) of the mould (4);
 - inserting the pipe (1) into the cavity (40) of the mould (4);
 - actuating the actuation means (5) to bring the punch (3) into contact with the first surface (1a) of the pipe (1) and exert a deformation force on the pipe (1), said deformation force plastically deforming the second surface (1b) of the pipe (1) against the moulding surface (41) of the mould (4);
 - actuating the actuation means (5) to disengage and move the punch (3) away from the first surface (1a) of the pipe (1);
 - extracting the pipe (1) from the cavity (40) of 30 the mould (4).
- 2. Cold production process according to claim 1, wherein no heat is provided to the pipe (1) either before the step of inserting the pipe into the cavity (40) of the mould (4), or when the pipe is arranged in the cavity (40) of the mould (4).
- **3.** Cold production process according to any one of the preceding claims, wherein:
 - the mould (4) comprises a main body (42) and a plurality of dies (43) connectable to the main body (42) to define the cavity (40), each die (43) when inserted into the main body (42) determines a portion of the moulding surface (41) of the cavity (40);
 - the cold production process, upstream of the step of inserting the pipe (1) to be formed in the cavity (40), provides a set-up step comprising the sub-steps of:
 - providing the main body (42) of the mould (4);
 - connecting the plurality of dies (43) to the main body (42) of the mould (4) to define the cavity (40) of the mould (4).

- **4.** Cold production process according to claim 3, wherein the dies (43) are at least three, each die (43) being geometrically different from the others.
- Cold production process according to claim 3 or 4, wherein the set-up step comprises the sub-steps of
 - selecting a punch (3) having a geometry compatible with the cavity (40) defined by the plurality of dies (43);
 - connecting the selected punch (3) to the actuation means (5).
 - **6.** Cold production process according to any one of claims 3 to 5, wherein:
 - the main body (42) of the mould (4) comprises a seat (44) inside which the dies (43) are stackable to define the cavity (40);
 - the sub-step of connecting the plurality of dies (43) to the main body (42) of the mould (4) provides for sequentially inserting and stacking the dies (43) in the seat (44) of the main body (42) of the mould (4).
 - Cold production process according to claim 6, wherein:
 - the seat (44) of the main body (42) of the mould (4) has a cylindrical conformation and an insertion opening (45);
 - each die (43) has a cylindrical outer wall (46) complementarily insertable into the seat (44) through the insertion opening (45).
 - **8.** Cold production process according to any one of the preceding claims, wherein:
 - said first surface (1a) of the pipe (1) is an inner surface of the pipe (1);
 - said second surface (1b) of the pipe (1) is an outer surface of the pipe (1) opposite to the inner portion (1a).
- 45 9. Cold production process according to any one of the preceding claims, wherein the pipe (1) has a circular section.
 - 10. Cold production process according to claim 9 wherein the pipe (1) to be deformed has an outer diameter comprised between 86 mm and 6 mm and a thickness comprised between 3.5 mm and 0.73 mm.

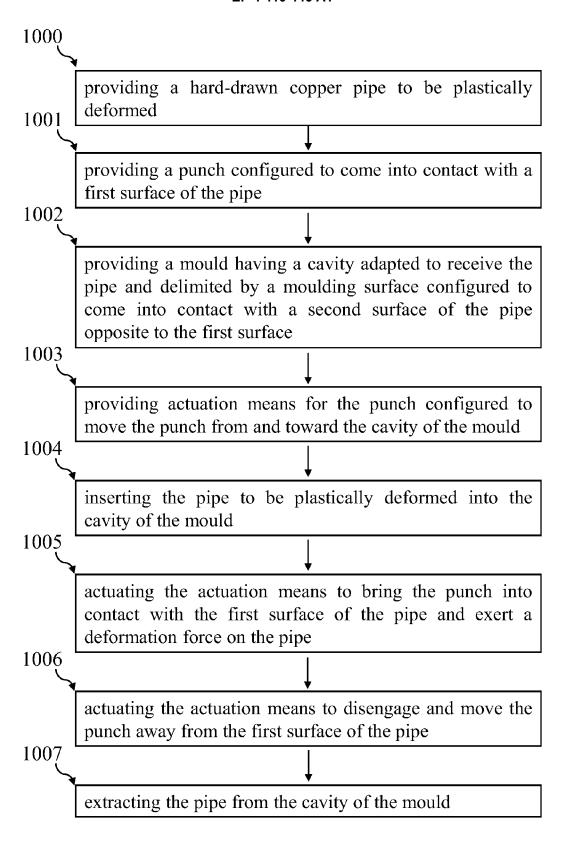


Fig. 1

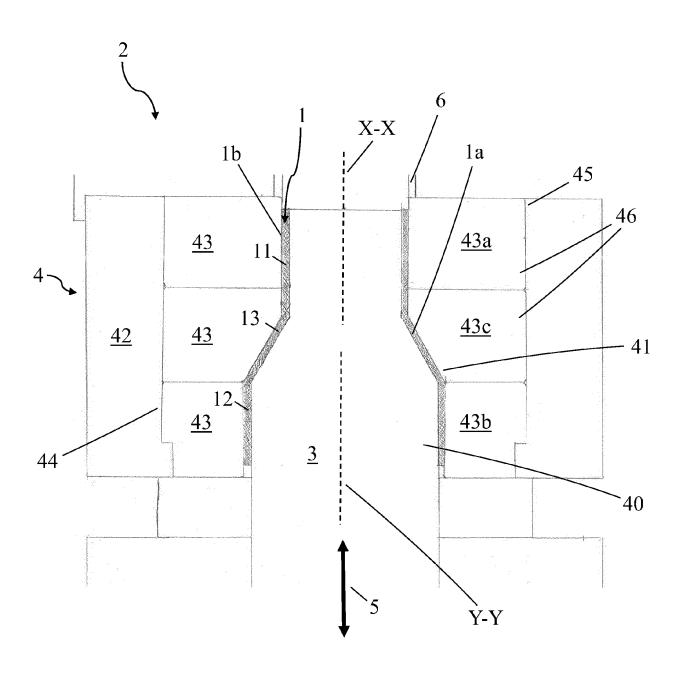


Fig. 2

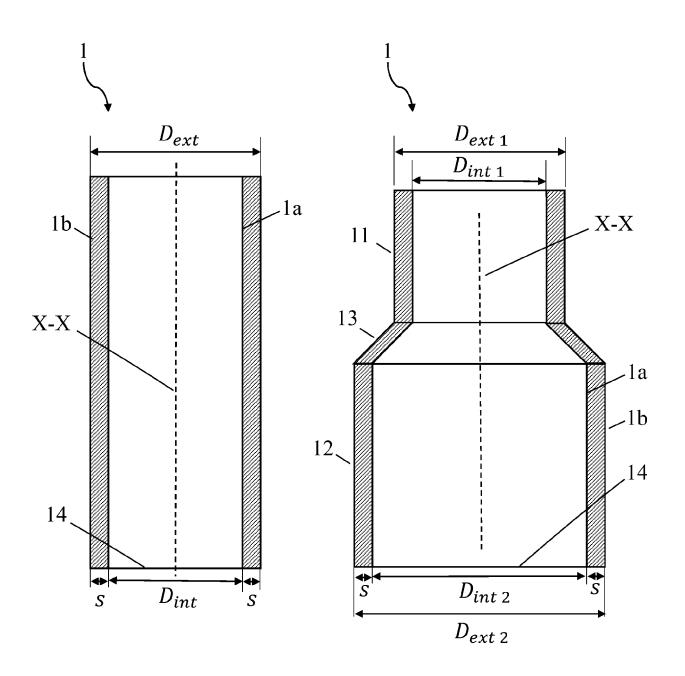


Fig. 3a

Fig. 3b

EUROPEAN SEARCH REPORT

Application Number

EP 24 15 3183

10	
15	
20	
25	
30	
35	
40	
45	

5

-	DOCUMENTS CONSID					
Category	Citation of document with in of relevant pass	ndication, where appr ages	opriate,	Relevant to claim	APPL	SSIFICATION OF THE LICATION (IPC)
x	US 2017/320116 A1 (TGUCHT KETNOS	SIIKE [JP]	1,2,8-10	TNV	_
	ET AL) 9 November 2			1,2,0 10		035/00
Y	* paragraph [0045]	-	037	3 - 7		041/02
_	* figures 1, 3 *					037/10
х						045/02
x	US 6 843 096 B2 (WI 18 January 2005 (20 * column 1, lines 2 * figures 1, 2 *	GMBH [DE])	1-10			
х	US 2018/029435 A1 (AL) 1 February 2018 * claims 3, 4 * * figures 5, 6 *	1-10				
·	ONT 10E 200 242 7 /2		1-10	TEC	CHNICAL FIELDS	
X	CN 105 290 243 A (MACHINERY CO LTD)	TANTANG CHUAI	NO TIN	1-10		ARCHED (IPC)
	3 February 2016 (20	16-02-03)			B21I	<u> </u>
	* paragraph [0016]				2211	
	* figure 4 *					
Y	US 2004/187536 A1 (GONG KEVIN [CA] ET AL)	3 - 7		
	30 September 2004 (
A	* paragraph [0076] * * figure 15 *			1,2,8-10		
	The present search report has	<u> </u>	claims		Exan	niner
	Munich	·	y 2024	Q+ a		Franjo
	ATEGORY OF CITED DOCUMENTS	ZI May	Y 2024 T: theory or principle			
			E : earlier patent doc	ument, but publis	hed on,	or
Y : part	icularly relevant if taken alone icularly relevant if combined with anot iment of the same category inological background	her	after the filing date D: document cited in L: document cited fo	the application		

50

55

EP 4 410 446 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 24 15 3183

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

21-05-2024

10		Patent document cited in search report		Publication date	Patent family member(s)		Publication date	
	us	2017320116	A1	09-11-2017	CN EP	107107157 3238849		29-08-2017 01-11-2017
					JP	6428790	в2	28-11-2018
15					JP	WO2016104706	A1	21-09-2017
					US	2017320116	A1	09-11-2017
					WO	2016104706	A1 	30-06-2016
	US	2007256467	A1	08-11-2007	ΑТ	E514498	т1	15-07-2011
20					BR	PI0416941	A	13-02-2007
					CN	1886210	A	27-12-2006
					DE	102004045981	A1	21-07-2005
					EP	1689539	A1	16-08-2006
					JΡ	2007512140	Α	17-05-2007
					US	2007256467	A1	08-11-2007
25					WO	2005061148	A1	07-07-2005
	US	6843096	в2	18-01-2005	ΑТ	E301513	т1	15-08-2005
					BR	0111978		01-07-2003
					CN	1438923		27-08-2003
30					CZ	20024128		17-09-2003
					DE	10031989		17-01-2002
					DK	1294501		28-11-2005
					EP	1294501		26-03-2003
					ES	2247111		01-03-2006
					JP	2004501773		22-01-2004
35					PT	1294501		30-11-2005
					SK	18012002		11-09-2003
					US	2004003645		08-01-2004
					WO	0202255		10-01-2002
							· · · · · · · ·	10 01 2002
40	ບຮ	2018029435	A 1	01-02-2018	CN	107650612	Α	02-02-2018
					JP	6521914	в2	29-05-2019
					JP	2018016122	A	01-02-2018
					US	2018029435		01-02-2018
45	CN	105290243	A	03-02-2016	NON			
	US	2004187536	A1	30-09-2004	AU	2003275822	A1	25-05-2004
					US	2003084694	A1	08-05-2003
					US	2004187536	A1	30-09-2004
50					WO	2004039511	A1	13-05-2004
55	FORM P0459				•			
	<u>щ</u>							

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82