

(11) EP 4 410 735 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 07.08.2024 Patentblatt 2024/32

(21) Anmeldenummer: 23209389.8

(22) Anmeldetag: 13.11.2023

(51) Internationale Patentklassifikation (IPC): **B66C 23/76** (2006.01)

(52) Gemeinsame Patentklassifikation (CPC): **B66C** 23/76

(84) Benannte Vertragsstaaten:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

Benannte Erstreckungsstaaten:

BA

Benannte Validierungsstaaten:

KH MA MD TN

(30) Priorität: 03.02.2023 DE 102023102707

(71) Anmelder: Liebherr-Werk Ehingen GmbH 89584 Ehingen/Donau (DE)

(72) Erfinder:

- EBERHARDT, Lars 89195 Staig (DE)
- BOOS, Bernd 72537 Mehrstetten (DE)
- (74) Vertreter: Laufhütte, Dieter Lorenz Seidler Gossel Rechtsanwälte Patentanwälte Partnerschaft mbB Widenmayerstraße 23 80538 München (DE)

(54) MOBILKRAN MIT VERSTELLBARER GEGENGEWICHTSVORRICHTUNG

(57) Die Erfindung betrifft einen Mobilkran umfassend einen fahrbaren Unterwagen, einen um eine vertikale Oberwagendrehachse drehbar auf dem Unterwagen gelagerten Oberwagen mit einer Ballastiereinrichtung und eine mit der Ballastiereinrichtung koppelbare Gegengewichtsvorrichtung, welche eine Gegengewichtsgrundplatte und mindestens ein sich von der Gegengewichtsgrundplatte erstreckendes Verbindungselement zum Anheben und Koppeln der Gegengewichtsvorrichtung mit der Ballastiereinrichtung umfasst. Der Abstand der Gegengewichtsvorrichtung von der Ober-

wagendrehachse ist im ballastierten Zustand über mindestens einen um eine vertikale Drehachse verschwenkbaren ersten Arm der Ballastiereinrichtung verstellbar. Erfindungsgemäß ist der erste Arm im ballastierten Zustand über ein verschwenkbares Koppelelement mit der Gegengewichtsgrundplatte verbunden, welches derart relativ zum ersten Arm und zur Gegengewichtsgrundplatte verschwenkbar gelagert ist, dass die Gegengewichtsgrundplatte durch gleichzeitiges Verschwenken von erstem Arm und Koppelelement in einer linearen Bewegung radial zur Oberwagendrehachse verstellbar ist.

Beschreibung

[0001] Die vorliegende Erfindung betrifft Mobilkran nach dem Oberbegriff des Anspruchs 1.

[0002] Mobilkrane weisen typischerweise einen Unterwagen mit Rad- oder Raupenfahrwerk, einen um eine vertikale Achse drehbar auf dem Unterwagen gelagerten Oberwagen, einen schwenkbar am Oberwagen angebrachten Ausleger sowie eine auch als Oberwagenballast bezeichnete Gegengewichtsvorrichtung auf. Das Gegengewicht bringt in jeder Position des Oberwagens über einen Hebelarm ein Gegenmoment zum Lastmoment auf und dreht sich daher mit dem Oberwagen mit. [0003] Während kleinere Mobilkrane häufig als sogenannte Taxikrane sämtliche Ausrüstungsgegenstände für den Einsatz auf der Baustelle auch im öffentlichen Straßenverkehr mit sich führen, sind größere Mobilkrane hierzu jedoch nicht in der Lage, sodass es notwendig ist, Krankomponenten und insbesondere die Gegengewichtsvorrichtung ganz oder teilweise für den Transport im öffentlichen Straßenverkehr abzubauen und vor Ort zu montieren. Auch bei Raupenkranen ist die Gegengewichtsvorrichtung typischerweise für den Transport zu demontieren und am Einsatzort am Oberwagen zu montieren.

[0004] Aus dem Stand der Technik ist es daher bekannt, eine Gegengewichtsgrundplatte mit Verbindungselementen zur lösbaren Verbindung mit dem Oberwagen vorzusehen, auf der Gegengewichtselemente stapelbar sind. Der Oberwagen ist hierzu mit einer Ballastiereinrichtung versehen, die in der Lage ist, zur Montage die Gegengewichtsvorrichtung umfassend die Gegengewichtsgrundplatte und die darauf gestapelten Gegengewichtselemente an den Verbindungselementen vom Boden oder von einem Ablagebereich auf dem Unterwagen aufzunehmen und an den Oberwagen zu heben. Zur Demontage kann die Gegengewichtsgrundplatte mit den Gegengewichtselementen wieder auf dem Boden oder dem Unterwagen abgelegt werden. Hierzu umfasst die Ballastiereinrichtung üblicherweise einen oder mehrere hydraulische Ballastierzylinder, die nach unten ausfahren, mit den Verbindungselementen der Gegengewichtsvorrichtung in Eingriff gebracht werden und durch Einfahren die Gegengewichtsvorrichtung an den Oberwagen heben.

[0005] Als Verbindungselement kommen im Stand der Technik u.a. zylindrische oder flache Aufnahmerohre zum Einsatz, die unbeweglich mit der Gegengewichtsgrundplatte verbunden, beispielsweise verschweißt sind und von dieser senkrecht nach oben abstehen. Die Gegengewichtselemente weisen entsprechende Ausnehmungen auf, durch die die Verbindungselemente hindurchragen, sodass im aufgestapelten Zustand die Ballastierzylinder von oben mit Aufnahmen der Verbindungselemente in Eingriff gebracht werden können, beispielsweise in Kombination mit einer Drehbewegung des Oberwagens.

[0006] Zur Montage der Gegengewichtsvorrichtung

wird diese üblicherweise auf einem Ablagebereich auf dem Unterwagen abgelegt und die Gegengewichtselemente auf der Gegengewichtsgrundplatte aufgestapelt. Der Oberwagen dreht sich mit seiner Ballastiereinrichtung über die aufgestapelte Gegengewichtsvorrichtung und die Ballastierzylinder ziehen diese an den Verbindungselementen zum Oberwagen. Aufgrund dieses Montageverfahrens ist die Größe des montierbaren Volumens der Gegengewichtsvorrichtung begrenzt. Insbesondere kann sich die Gegengewichtsvorrichtung nicht beliebig weit von der vertikalen Drehachse des Oberwagens bzw. Oberwagendrehachse erstrecken. Hier weist der Unterwagen typischerweise andere Komponenten wie ein Fahrerhaus, ein Motorgehäuse, Komponenten der Abgasnachbehandlung oder dergleichen auf, sodass sich die Gegengewichtsvorrichtung nicht in diesem Bereich erstrecken kann. Näher zur vertikalen Drehachse des Oberwagens kann sich die Gegengewichtsvorrichtung ebenfalls nicht ausdehnen, da sich dort der Stahlbau des Oberwagens befindet. Soll nun die Masse des Gegengewichts weiter erhöht werden, könnte dies bei gleichbleibendem Volumen nur noch über eine Erhöhung des spezifischen Gewichts der Gegengewichtselemente erreicht werden. Dadurch wird aber die Herstellung und Beschaffung der Gegengewichtselemente aufwendig und teuer.

[0007] Aus der DE 20 2014 008 661 U1 ist es bekannt, zur Erhöhung des Gegengewichtsmoments den Abstand der Ballastierzylinder zur Oberwagendrehachse zu verändern. Dieser Abstand kann vor dem Rüsten des Gegengewichts fest eingestellt werden. Nachteilig an dieser Lösung ist jedoch, dass der Gegengewichtsradius während der Kranarbeit nicht mehr veränderbar ist und dadurch nicht an die vorherrschenden Platzverhältnisse der Baustelle, beispielsweise bei einer bestimmten Drehbewegung, angepasst werden kann. Zudem ergibt sich besonders bei Mobilkranen mit einer variablen Abstützbasis ein zusätzliches Kippkriterium.

[0008] Andere Lösungen wie diejenige der DE 10 2016 009 013 A1 verwenden schwenkbare Gegengewichtsgrundplatten. Die Montage derartiger Gegengewichtsvorrichtungen gestaltet sich jedoch als aufwändig, da die Gegengewichtsvorrichtungen eigene Ballastierzylinder tragen, um sich selbst von unten an den Oberwagen zu drücken. Somit ist vor dem Rüsten des Gegengewichts eine hydraulische Verbindung zu den Ballastierzylindern der Gegengewichtsvorrichtung herzustellen. Ferner muss eine sichere, stabile Lagerung der Gegengewichtsvorrichtung auf den Ballastierzylindern gewährleistet sein, damit diese beim Hochdrücken nicht kippt. Darüber hinaus sind derartige Lösungen eher für größere Mobilkrane geeignet, die Türme aufgestapelter Gegengewichtselemente verwenden, sodass sich der Einsatz standardisierter Gegengewichtselemente lohnt.

[0009] Vor diesem Hintergrund liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine Gegengewichtsvorrichtung für gattungsgemäße Mobilkrane anzugeben, welche eine Veränderung des erzeugten Gegenmo-

ments im Betrieb zulässt und dabei insbesondere für kleinere Mobilkrane mit weniger Gegengewichtselementen geeignet ist.

[0010] Erfindungsgemäß wird diese Aufgabe durch einen Mobilkran mit den Merkmalen des Anspruchs 1, gelöst. Vorteilhafte Ausführungsformen der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung.

[0011] Demnach wird erfindungsgemäß ein Mobilkran vorgeschlagen, welcher einen fahrbaren Unterwagen, einen um eine vertikale Oberwagendrehachse drehbar auf dem Unterwagen gelagerten Oberwagen sowie eine Gegengewichtsvorrichtung umfasst. An den Oberwagen ist insbesondere ein Ausleger, beispielsweise ein Teleskopausleger, wippbar angelenkt. Der Oberwagen umfasst eine Ballastiereinrichtung, mit welcher die Gegengewichtsvorrichtung lösbar koppelbar ist, um im Betrieb ein der gehobenen Last entgegenwirkendes Gegenmoment zu erzeugen. Die Gegengewichtsvorrichtung umfasst eine Gegengewichtsgrundplatte und mindestens ein Verbindungselement zum Anheben der Gegengewichtsvorrichtung sowie zum Koppeln der Gegengewichtsvorrichtung mit der Ballastiereinrichtung des Oberwagens. Das mindestens eine Verbindungselement erstreckt sich von der Gegengewichtsgrundplatte und ist mit dieser verbunden. Insbesondere erstreckt es sich im Wesentlichen senkrecht zur Gegengewichtsgrundplatte. Die Ballastiereinrichtung umfasst mindestens einen ersten Arm, welcher um eine vertikale Drehachse am Oberwagen verschwenkbar gelagert ist und eine Verstellung des Abstands der Gegengewichtsvorrichtung von der Oberwagendrehachse im ballastierten Zustand ermöglicht. Die Gegengewichtsvorrichtung ist unmittelbar oder mittelbar mit dem mindestens einen ersten Arm verbunden, sodass eine Bewegung des ersten Arms in einer Bewegung der Gegengewichtsvorrichtung resultiert.

[0012] Erfindungsgemäß ist der erste Arm im ballastierten Zustand über ein verschwenkbares Koppelelement mit der Gegengewichtsgrundplatte verbunden. Im Falle mehrerer erster Arme ist jeder erste Arm mit einem entsprechenden Koppelelement verbunden. Das mindestens eine Koppelelement ist dabei derart relativ zum zugehörigen ersten Arm und zur Gegengewichtsgrundplatte verschwenkbar gelagert, dass die Gegengewichtsgrundplatte durch ein gleichzeitiges Verschwenken des ersten Arms und des Koppelelements in einer linearen Bewegung radial zur Oberwagendrehachse verstellbar bzw. veränderbar ist.

[0013] Durch die erfindungsgemäße Kombination von erstem Arm und Koppelelement, welche beide schwenkbar ausgebildet sind, ist es möglich, den Gegengewichtsradius nicht durch ein Verschwenken des Gegengewichts auf einer Kreisbahn, sondern durch eine lineare Bewegung der Gegengewichtsvorrichtung radial zur vertikalen Oberwagendrehachse, d.h. parallel zu einer Längsachse des Oberwagens zu verändern. Dadurch ist es möglich, das durch die Gegengewichtsvorrichtung erzeugbare Gegenmoment flexibel während des Kranbe-

triebs anzupassen und dabei insbesondere keinen zusätzlichen Raum seitlich des Oberwagens bzw. der Gegengewichtsvorrichtung zu beanspruchen, da kein Gegengewicht seitlich ausgeschwenkt wird. Gerade in beengten Baustellenumgebungen stellt dies eine Erleichterung dar.

[0014] Darüber hinaus benötigt der Unterwagen nur eine einzige Ablageeinrichtung bzw. einen einzigen Ablagebereich für die Gegengewichtsvorrichtung, da die Verstellung des Gegengewichtsradius während des Betriebs im ballastierten Zustand und nicht beim Rüsten des Gegengewichts erfolgt. Der Unterwagen kann somit eine optimierte, platzsparende Konstruktion aufweisen. [0015] Bevorzugt ist der mindestens eine erste Arm über mindestens einen Aktuator, insbesondere einen Hydraulikzylinder, aktiv verschwenkbar. Die Verstellung der Gegengewichtsvorrichtung über den mindestens einen Aktuator kann bevorzugt zentral über eine Kransteuerung erfolgen, wobei der Bediener die entsprechenden Eingaben vorzugsweise von der Fahrerkabine aus machen kann.

[0016] Wenn im Folgenden der Einfachheit halber nur noch von "dem Verbindungselement" die Rede ist, soll dies als das mindestens eine Verbindungselement verstanden werden, d.h. ggf. weitere vorhandene Verbindungselemente mit umfassen. Darüber hinaus beziehen sich absolute Angaben wie "vertikal" und "horizontal" stets auf den Fall, dass der Mobilkran auf einem ebenen, horizontalen Untergrund steht.

[0017] Vorzugsweise ist das mindestens eine Verbindungselement als Blechkonstruktion mit einer insbesondere im Wesentlichen flachen Form ausgebildet. Eine solche Blechkonstruktion ist einfacher herzustellen als z.B. ein zylinderförmiges Aufnahmerohr und kann mit einer geeigneten Dicke hergestellt werden, um den verschiedenen Belastungen, welche entlang und quer zu deren Längsachse wirken, standzuhalten.

[0018] Das Verbindungselement kann ein Anschlagelement zur Befestigung eines Anschlagmittels (z.B. einer Kette oder eines Seils) eines Hebezeugs zum Anheben der Gegengewichtsgrundplatte aufweisen. Dadurch kann die Gegengewichtsgrundplatte samt Verbindungselement(en) von einem Hilfskran oder dem zu rüstenden Mobilkran selbst gehoben und beispielsweise auf einem Ablagebereich des Unterwagens positioniert werden. Vorzugsweise wird das Anschlagelement durch eine Ausnehmung des Verbindungselements gebildet. Auch Hakenelemente, Vorsprünge oder dergleichen sind denkbar, um das Anschlagmittel befestigen zu können. [0019] In einer möglichen Ausführungsform ist vorgesehen, dass die Gegengewichtsvorrichtung zwei voneinander beabstandete Verbindungselemente zum Koppeln der Gegengewichtsvorrichtung mit der Ballastiereinrichtung umfasst. Entsprechend weist die Ballastiereinrichtung in dieser Ausführungsform zwei verschwenkbare erste Arme auf, welche zum Verstellen des Abstands der Gegengewichtsvorrichtung von der Oberwagendrehachse gemeinsam bzw. synchron verschwenk-

bar sind. Durch die Verwendung mehrerer Verbindungselemente ergibt sich eine stabile Verbindung der Gegengewichtsvorrichtung am Oberwagen. Bevorzugt sind genau zwei Verbindungselemente vorgesehen.

[0020] Die Verbindungselemente können insbesondere im gleichen Abstand zum Schwerpunkt der Gegengewichtsgrundplatte bzw. zur Längsachse des Oberwagens angeordnet sein. Die Gegengewichtsvorrichtung ist bevorzugt symmetrisch zu einer durch die Oberwagenlängsachse verlaufenden senkrechten Mittelebene ausgebildet.

[0021] In einer weiteren möglichen Ausführungsform ist vorgesehen, dass die ersten Arme seitlich an der Ballastiereinrichtung angeordnet sind, insbesondere an einem mit dem Oberwagen verbundenen oder an diesem ausgebildeten Ballastrahmen. Ferner sind die ersten Arme zum linearen Verstellen des Abstands der Gegengewichtsvorrichtung von der Oberwagendrehachse in entgegengesetzten Drehrichtungen verschwenkbar, d.h. einer der ersten Arme schwenkt im Uhrzeigersinn, während der andere erste Arm gleichzeitig im Gegenuhrzeigersinn schwenkt.

[0022] Die synchronisierte, aktuatorbasierte Verstellung der ersten Arme kann auf unterschiedliche Arten realisiert werden.

[0023] In einer möglichen Ausführungsform ist vorgesehen, dass jeder der ersten Arme über einen eigenen Hydraulikzylinder verschwenkbar ist. In diesem Fall ist eine geeignete Synchronisierung der Schwenkbewegungen zu gewährleisten. Dies kann über eine Synchronisierung der Hydraulikzylinder und der zugehörigen Steuerung erfolgen. Dies kann beispielsweise über Längengeber in den Zylindern realisiert werden, welche ihre Signale einer Steuerung bereitstellen, die die Hydraulikzylinder entsprechend synchronisiert ansteuert, beispielsweise über elektrisch betätigbare Ventile. In diesem Fall können die statischen Lastfälle so reduziert werden (es muss keine Asymmetrie angenommen werden). [0024] In einer alternativ möglichen Ausführungsform ist vorgesehen, dass nur einer der ersten Arme über einen Hydraulikzylinder verschwenkbar ist und die ersten Arme über ein Zahnradgetriebe mechanisch derart miteinander gekoppelt sind, dass die ersten Arme bei Betätigung des Hydraulikzylinders synchron verschwenken. Vorliegend meint der Begriff "Zahnradgetriebe", dass mindestens zwei Zahnräder vorgesehen sind. Diese können miteinander, durch weitere Zahnräder oder durch ein Verbindungsmittel wie beispielsweise eine Kette miteinander gekoppelt sein. In letzterem Fall könnte man auch von einem Kettengetriebe sprechen.

[0025] Durch die mechanische Kopplung der ersten Arme muss keine synchronisierte Steuerung mehrerer Aktuatoren vorgesehen werden. Das genannte Zahnradgetriebe umfasst vorzugsweise drehfest mit den ersten Armen verbundene Zahnräder, welche über ein Verbindungsmittel mechanisch miteinander gekoppelt sind. Die Kopplung erfolgt dabei nicht direkt, da sich sonst die ers-

ten Arme in dieselbe Richtung bewegen würden. Daher ist mindestens ein zwischengeschaltetes weiteres Zahnrad vorgesehen, um die Drehrichtung eines der ersten Arme umzudrehen. Dieses ist insbesondere frei drehbar am Oberwagen angeordnet und kämmt mit dem drehfesten Zahnrad eines der ersten Arme. Die drehfesten Zahnräder sind insbesondere kollinear zu den Drehachsen der Arme angeordnet.

[0026] Bei dem Verbindungsmittel handelt es sich vorzugsweise um eine Kette, sodass der Synchronisierungsantrieb als Kettengetriebe bzw. Kettenantrieb ausgestaltet ist. Als Verbindungsmittel kann jedoch auch ein Band oder aber ein oder mehrere Zahnräder vorgesehen sein.

[0027] Bei einer Betätigung des Hydraulikzylinders dreht sich das an diesem ersten Arm drehfest angeordnete Zahnrad mit dem Arm mit und bewegt dadurch das Verbindungsmittel, welches beispielsweise ein frei drehbar am Oberwagen gelagertes Zahnrad bewegt, welches wiederum mit einem drehfest am anderen ersten Arm befestigten Zahnrad kämmt. Dadurch führen beide Arme eine synchronisierte, gegenläufige Schwenkbewegung aus.

[0028] In einer weiteren möglichen Ausführungsform ist vorgesehen, dass die Ballastiereinrichtung ausgelegt ist, die Gegengewichtsvorrichtung von einem Ablagebereich des Unterwagens anzuheben und auf diesem abzulegen. Der Ablagebereich kann sich hinter einer Fahrerkabine des Unterwagens befinden. Das mindestens eine Verbindungselement weist an einem der Gegengewichtsgrundplatte gegenüberliegenden (d.h. zum Oberwagen bzw. zur Ballastiereinrichtung weisenden) Ende einen Kopplungsabschnitt auf, über den eine lösbare mechanische Kopplung mit der Ballastiereinrichtung herstellbar ist. Der Kopplungsabschnitt kann eine Aufnahme umfassen, in die eine Hubeinrichtung der Ballastiereinrichtung, insbesondere ein Ballastierzylinder, eingefahren werden kann, um eine Verbindung zum Heben der Gegengewichtsvorrichtung herzustellen.

[0029] In einer weiteren möglichen Ausführungsform ist vorgesehen, dass die Ballastiereinrichtung mindestens einen hydraulischen Ballastierzylinder umfasst, welcher mit dem Kopplungsabschnitt des mindestens einen Verbindungselements lösbar in Eingriff bringbar ist. Der Kopplungsabschnitt umfasst dabei eine Aufnahme, in die ein Kopplungsstück des Ballastierzylinders, insbesondere durch Drehung des Oberwagens um die Oberwagendrehachse, einfahrbar ist. Der Ballastierzylinder weist insbesondere eine Kolbenstange auf, die von der Ballastiereinrichtung nach unten ausfahrbar ist und an deren Ende das Kopplungsstück aufweist. Letzteres kann Teil der Kolbenstange des Ballastierzylinders, d.h. einstückig mit dieser ausgebildet, oder ein mit dieser verbundenes, separates Bauteil sein.

[0030] Die Aufnahme des Kopplungsabschnitts ist insbesondere nach oben und zu mindestens einer Seite hin offen. Die Aufnahme kann so ausgebildet sein, dass sie ein seitliches (z.B. einer Kreisbewegung folgendes) Ein-

schieben des Ballastierzylinders erlaubt und im verbundenen Zustand eine Bewegung des Ballastierzylinders aus der Ausnehmung heraus in vertikaler Richtung formschlüssig blockiert. Im angehobenen Zustand kann die Gegengewichtsvorrichtung über die Ausnehmung des mindestens einen Verbindungselements auf dem Kopplungsstück des mindestens einen Ballastierzylinders aufliegen bzw. an diesem hängen.

[0031] Das Kopplungsstück kann in der Ausnehmung verriegelbar sein, beispielsweise mittels einer eigens vorgesehenen Verriegelungseinrichtung. Alternativ oder zusätzlich kann sich die Verriegelung einfach durch einen mechanischen Anschlag ergeben, welcher eine weitere Bewegung des Kopplungsstücks relativ zum Kopplungsabschnitt blockiert.

[0032] In einer weiteren möglichen Ausführungsform ist vorgesehen, dass die Aufnahme und/oder das Kopplungsstück eine abgerundete, beispielsweise ballige Kontur aufweist, welche eine gelenkige Bewegung des Kopplungsstücks innerhalb der Aufnahme im belasteten Zustand ermöglicht. Durch eine solche Verbindung kann das Verbindungselement relativ zum Ballastierzylinder entlang verschiedener Freiheitsgrade schwenken, beispielsweise um eine Bewegung des Ballastierzylinders entlang einer Kreisbahn beim Verschwenken des ersten Arms auszugleichen und eine lineare Verschiebung der Gegengewichtsvorrichtung zu ermöglichen.

[0033] In einer weiteren möglichen Ausführungsform ist vorgesehen, dass der Ballastierzylinder einen Zylindermantel und einen darin verschiebbaren Kolben mit einer Kolbenstange umfasst, an deren freiem Ende sich das Kopplungsstück befindet, wobei der Kolben um die Längsachse der Kolbenstange drehbar im Zylindermantel gelagert ist. Dadurch ist es möglich, dass sich bei einer Schwenkbewegung des ersten Arms das Kopplungsstück, das sich in der Aufnahme des Verbindungselements befindet, relativ zum jeweiligen ersten Arm dreht, idealerweise derart, dass es sich nicht relativ zur Aufnahme des Verbindungselements dreht, sodass aus einer Relativbewegung in der Aufnahme entstehende Reibungskräfte reduziert oder vermieden werden.

[0034] Der Ballastierzylinder ist durch ein Hydrauliksystem betätigbar, wobei der Ballastierzylinder und das Hydrauliksystem derart ausgebildet sind, dass im ballastierten Zustand die Kolbenstange in einem Verriegelungsmodus gegenüber einem Ausfahren und einer Drehung blockiert ist, während in einem Verstellmodus eine Drehung der Kolbenstange relativ zum Zylindermantel bei gleicher Ausfahrposition möglich ist.

[0035] Im Verriegelungsmodus ist der Ballastierzylinder also hydraulisch blockiert, während eine Drehung der Kolbenstange um ihre Längsachse zum Verstellen des Gegengewichtsradius im Verstellmodus möglich ist. Im Verstellmodus ist die Kolbenstange vorzugsweise weiter ausgefahren als im Verriegelungsmodus. Bevorzugt wird die Gegengewichtsvorrichtung durch die Ballastierzylinder an den Oberwagen gedrückt und durch hydraulische Blockierung (Verriegelungsmodus) dort fixiert. Die hy-

draulische Blockierung kann beispielsweise nach Erreichen eines festgelegten Anpressdruckes erfolgen. Eine zusätzliche mechanische Verbindung, beispielsweise durch eine oder mehrere Bolzenverbindungen, kann optional vorgesehen sein. Aufgrund des durch die hydraulische Blockierung erzeugten Widerstands sind zum Verstellen des Gegengewichtsradius zuerst die Ballastierzylinder freizuschalten. Soll die Gegengewichtsvorrichtung also verstellt werden, wird die hydraulische Blockierung aufgehoben und die Kolbenstangen der Ballastierzylinder ein wenig ausgefahren. Durch die freie Rotierbarkeit der Kolbenstangen relativ zu den Zylindern kann eine Relativbewegung zu den Aufnahmen der Verbindungselemente beim Verschwenken der ersten Arme vermieden werden.

[0036] In einer weiteren möglichen Ausführungsform ist mindestens ein auf der Gegengewichtsgrundplatte stapelbares zweites Gegengewichtselement vorgesehen, welches mindestens eine Ausnehmung aufweist, durch die das mindestens eine Verbindungselement im abgelegten Zustand hindurchragt. Das zweite Gegengewichtselement ist insbesondere plattenförmig. Es können mehrere zweite Gegengewichtselemente vorgesehen und auf der Gegengewichtsgrundplatte stapelbar sein.

[0037] Das Verbindungselement weist insbesondere den zuvor beschriebenen Kopplungsabschnitt zum Koppeln mit einem entsprechenden Kopplungsstück eines Ballastierzylinders auf. Vorzugsweise ist der Kopplungsabschnitt bzw. dessen Aufnahme so angeordnet, dass sie im verbundenen Zustand innerhalb der Ausnehmung eines zweiten Gegengewichtselements liegt. Vorzugsweise ist die Ausnehmung dabei so ausgebildet, dass das Kopplungsstück des Ballastierzylinders neben dem Kopplungsabschnitt des Verbindungselements innerhalb der Ausnehmung positionierbar und durch Drehung des Oberwagens um seine vertikale Drehachse in den Kopplungsabschnitt bzw. dessen Aufnahme einfahrbar ist. Dabei beschreibt der Ballastierzylinder eine Kreisbahn und fährt seitlich in die Aufnahme ein. Die Ausnehmung des entsprechenden zweiten Gegengewichtselements muss also breiter ausgebildet sein, um eine solche Kreisbewegung beim Koppeln des Ballastierzylinders mit dem Verbindungselement zuzulassen.

[0038] Die Ausnehmung des zweiten Gegengewichtselements kann einen mechanischen Anschlag aufweisen, an den das Kopplungsstück des Ballastierzylinders
in einer Verriegelungsposition, in der der Ballastierzylinder und das Verbindungselement korrekt miteinander
gekoppelt sind, anschlägt. Der Anschlag kann durch eine
Wandung der Ausnehmung selbst gebildet sein, wodurch sich eine besonders einfache Ausführungsform ergibt. Alternativ kann der Anschlag auch durch ein in der
Ausnehmung angeordnetes, separates Bauteil realisiert
sein

[0039] In einer weiteren möglichen Ausführungsform ist ferner eine Messeinrichtung zur Erfassung eines Ballastierzustands des Mobilkrans vorgesehen, welcher an

eine Steuereinheit des Mobilkrans, insbesondere an eine Lastmomentbegrenzung, übermittelt wird. Dadurch kann der Ballastierungszustand kontinuierlich überwacht und ein mögliches Kippen des Krans frühzeitig erkannt und verhindert werden. Die Messeinrichtung umfasst vorzugsweise mindestens einen Sensor, mittels welchem ein momentaner Schwenkwinkel des mindestens einen ersten Arms erfassbar ist.

[0040] In einer weiteren möglichen Ausführungsform ist vorgesehen, dass der mindestens eine erste Arm der Ballastiereinrichtung mit einem zweiten Arm gelenkig verbunden ist, wobei der zweite Arm um eine vertikale Drehachse schwenkbar am ersten Arm gelagert ist. Sind mehrere erste Arme vorgesehen, ist jeder dieser ersten Arme mit einem zweiten Arm um eine vertikale Drehachse schwenkbar verbunden. Hierbei ist das mindestens eine Verbindungselement der Gegengewichtsvorrichtung mit dem mindestens einen zweiten Arm koppelbar. Die Gegengewichtsvorrichtung wird also nicht mit dem oder den ersten Armen, sondern mit dem oder den zweiten Armen verbunden. Bevorzugt erfolgt die Kopplung wie zuvor beschrieben über Ballastierzylinder. In diesem Fall weist der mindestens eine zweite Arm einen Ballastierzylinder auf, um die Gegengewichtsvorrichtung über das mindestens eine Verbindungselement zu heben und mit der Ballastiereinrichtung zu verbinden.

[0041] In einer weiteren möglichen Ausführungsform ist vorgesehen, dass die ersten und zweiten Arme derart miteinander gekoppelt sind, dass bei einer Schwenkbewegung eines ersten Arms um dessen Drehachse der daran angelenkte zweite Arm automatisch um dessen Drehachse geschwenkt wird. Die beiden Arme sind also mechanisch miteinander gekoppelt und führen eine synchronisierte Schwenkbewegung um ihre jeweiligen Drehachsen aus, insbesondere in entgegengesetzte Drehrichtungen. Die Bewegungen der Arme sind dabei vorzugsweise derart miteinander synchronisiert, dass deren Schwenkwinkel bzw. Winkelgeschwindigkeiten in einem festgelegten Verhältnis zueinander stehen. Dadurch ist es möglich, die beiden Arme derart aufeinander abzustimmen, dass ein am zweiten Arm angeordneter Ballastierzylinder eine lineare Bewegung ausführt, während jeder der Arme jeweils eine Schwenkbewegung ausführt. Sind zwei Verbindungselemente und somit zwei Paare von ersten und zweiten Armen vorgesehen, ergibt sich dadurch eine lineare Bewegung der Gegengewichtsvorrichtung parallel zur Oberwagenlängsachse, wobei die Einzelbewegungen der jeweiligen Arme auf Kreisbahnen erfolgen.

[0042] Die Synchronisierung der miteinander gekoppelten ersten und zweiten Arme kann auf unterschiedliche Arten erfolgen.

[0043] In einer möglichen Ausführungsform ist vorgesehen, dass die ersten und zweiten Arme über einen zweiten Hydraulikzylinder miteinander verbunden sind, wobei der den ersten Arm relativ zum Oberwagen verschwenkende erste Hydraulikzylinder und der den zweiten Arm relativ zum ersten Arm verschwenkende zweite

Hydraulikzylinder derart synchronisiert angesteuert werden, dass die Winkelgeschwindigkeiten der ersten und zweiten Arme beim Verschwenken in einem festgelegten Verhältnis zueinander stehen. Die Abstimmung bzw. Synchronisierung der beiden Arme erfolgt hier also durch eine Synchronisierung mehrerer Hydraulikzylinder.

[0044] In einer alternativ möglichen Ausführungsform ist vorgesehen, dass die ersten und zweiten Arme über ein Zahnradgetriebe mechanisch derart miteinander gekoppelt sind, sodass diese bei Betätigung des den ersten Arm relativ zum Oberwagen verschwenkenden Hydraulikzylinders synchron verschwenken. Ähnlich wie bei der zuvor beschriebenen mechanischen Kopplung zweier erster Arme können also auch die ersten und zweiten

Arme über eine mechanische Kopplung synchronisiert sein.

[0045] Das die ersten und zweiten Arme mechanisch synchronisierende Zahnradgetriebe umfasst vorzugsweise ein drehfest mit dem Oberwagen verbundenes erstes Zahnrad und ein drehfest mit dem zweiten Arm verbundenes zweites Zahnrad, welche durch ein Verbindungsmittel, insbesondere eine Kette, miteinander gekoppelt sind. Das zweite Zahnrad dreht sich bei einer Drehung des zweiten Arms relativ zum ersten Arm folglich mit dem zweiten Arm mit. Auch hier könnte anstelle einer Kette ein Band oder eine Anordnung weiterer Zahnräder (d.h. mindestens ein weiteres Zahnrad) vorgesehen sein

[0046] Das zweite Zahnrad ist insbesondere kollinear zur Drehachse des zweiten Arms angeordnet und bewegt sich beim Verschwenken des ersten Arms mit diesem mit. Dabei kommt es zu einer relativen Drehung des zweiten Zahnrads zum Oberwagen. Aufgrund der insgesamt drehfesten Befestigung des ersten Zahnrads und der Kopplung über das Verbindungsmittel, dreht sich beim Verschwenken des ersten Arms in eine bestimmte Drehrichtung der drehfest mit dem zweiten Zahnrad verbundene zweite Arm automatisch in die entgegengesetzte Drehrichtung.

[0047] Sind zwei erste Arme vorgesehen, können diese einerseits mit den jeweiligen zweiten Armen über Zahnradgetriebe mechanisch gekoppelt sein und andererseits untereinander mechanisch gekoppelt sein, wie oben beschrieben. Alternativ können alle oder ein Teil der Arme über Hydraulikzylinder verschwenkbar sein. Es sind also insbesondere folgende Kombinationen möglich:

- Die ersten Arme sind miteinander und auch mit den jeweiligen zweiten Armen jeweils über Zahnradgetriebe mechanisch gekoppelt, d.h. nur einer der ersten Arme ist über einen Hydraulikzylinder bzw. Verstellzylinder verschwenkbar, während sich der andere erste Arm und die beiden zweiten Arme über die mechanischen Getriebe automatisch mitbewegen.
- Die ersten Arme sind über ein Zahnradgetriebe mechanisch miteinander gekoppelt, wobei die zweiten

45

50

Arme jeweils über Hydraulikzylinder bewegt werden. Diese Variante ist aber weniger bevorzugt, da die Bewegungen der zweiten Arme kompliziert auf die ersten Arme durch entsprechende Ansteuerung der verschiedenen Hydraulikzylinder abgestimmt werden müssten.

- Beide ersten Arme sind über einen eigenen Hydraulikzylinder verschwenkbar, wobei diese wie oben beschrieben aufeinander abgestimmt sind und die ersten Arme mit den zweiten Armen jeweils über Zahnradgetriebe mechanisch gekoppelt sind.
- Beide ersten Arme sind über einen eigenen Hydraulikzylinder verschwenkbar, wobei zusätzlich auch die zweiten Arme jeweils über Hydraulikzylinder bewegt werden, d.h. es sind mindestens vier Hydraulikzylinder abzustimmen.

[0048] Bei den zuvor beschriebenen Ausführungsformen wird eine lineare Bewegung der Gegengewichtsgrundplatte dadurch erreicht, dass über einen zweiten Arm eine Schwenkbewegung des ersten Arms (d.h. eine kreisförmige Bahnkurve des Endes des ersten Arms) durch eine Synchronisierung der Schwenkbewegungen in eine lineare Bewegung eines freien Endes des zweiten Arms umgewandelt wird. Hier stellt der zweite Arm (bzw. die zweiten Arme) folglich das genannte verschwenkbare Koppelelement dar und sowohl die Schwenkbewegung des ersten Arms als auch die Schwenkbewegung des Koppelelements erfolgen um eine vertikale Drehachse

[0049] Eine weitere Lösung, um eine lineare Bewegung der Gegengewichtsgrundplatte parallel zur Oberwagenlängsachse zu erreichen, wird in einer alternativ möglichen Ausführungsform dadurch realisiert, dass das mindestens eine Verbindungselement der Gegengewichtsvorrichtung schwenkbar mit der Gegengewichtsgrundplatte verbunden ist. Das mindestens eine Verbindungselement ist mit dem mindestens einen ersten Arm koppelbar, insbesondere über einen am ersten Arm angeordneten Ballastierzylinder. Hier ist also kein zweiter Schwenkarm vorgesehen, sondern die Gegengewichtsvorrichtung wird direkt mit dem mindestens einen ersten Arm verbunden.

[0050] Die Schwenkbewegung des ersten Arms wird in dieser Ausführungsform nicht durch einen gegenläufig rotierenden zweiten Arm erreicht, sondern dadurch, dass das mindestens eine Verbindungselement verschwenkbar gelagert ist und beim Verschwenken des ersten Arms somit quasi zur Seite ausweichen kann. Hier stellt das mindestens eine Verbindungselement also selbst das verschwenkbare Koppelelement dar, welches mit der Gegengewichtsgrundplatte verbunden ist.

[0051] In einer weiteren möglichen Ausführungsform sind, wie oben beschrieben, zwei Verbindungselemente vorgesehen, wobei die Verbindungselemente jeweils um eine horizontale Schwenkachse schwenkbar mit der Gegengewichtsgrundplatte verbunden sind. Bei einem Verschwenken der ersten Arme zum linearen Verstellen der

Gegengewichtsvorrichtung verschwenken die Verbindungselemente somit seitlich, insbesondere senkrecht zur Bewegungsrichtung der Gegengewichtsvorrichtung bzw. zur Oberwagenlängsachse, um die Kreisbewegungen der ersten Arme auszugleichen. Hier erfolgt beim Verstellen des Gegengewichtsradius also eine Kombination aus einer Schwenkbewegung um eine vertikale Drehachse und einer weiteren Schwenkbewegung um eine horizontale Drehachse.

[0052] Wie oben beschrieben können beide ersten Arme über je einen Hydraulikzylinder angetrieben sein oder die ersten Arme sind mechanisch miteinander gekoppelt, sodass nur einer der ersten Arme über einen Aktuator bzw. Hydraulikzylinder angetrieben zu werden braucht.
 [0053] Durch das Verschwenken der Verbindungselemente relativ zu den ersten Armen erfolgt zwangsläufig auch eine Relativbewegung zwischen den Kopplungsstücken der insbesondere an den Enden der ersten Arme angeordneten Ballastierzylinder und den Aufnahmen der

angeordneten Ballastierzylinder und den Aufnahmen der Kopplungsabschnitte der Verbindungselemente. Dieser Relativbewegung kann auf unterschiedlichen Wegen begegnet werden.

[0054] In einer möglichen Ausführungsform ist vorgesehen, dass die Verbindungselemente einen schwenkbar mit der Gegengewichtsgrundplatte verbundenen Grundkörper umfassen, an dessen dem ersten Arm bzw. der Ballastiereinrichtung zugewandten Ende jeweils ein Schwenkkörper schwenkbar befestigt ist, welcher einen Kopplungsabschnitt aufweist, über den eine Kopplung mit dem ersten Arm der Ballastiereinrichtung herstellbar ist. Der Schwenkkörper ist vorzugsweise um eine horizontale Schwenkachse am Grundkörper schwenkbar angelenkt, um eine Schrägstellung der Verbindungselemente auszugleichen und somit für eine gleichbleibende Ausrichtung bzw. Neigung des Kopplungsabschnitts relativ zum ersten Arm zu sorgen. Der Kopplungsabschnitt umfasst insbesondere, wie oben beschrieben, eine Aufnahme zum Koppeln mit einem Ballastierzylinder des ersten Arms.

[0055] Alternativ könnte, wie dies zuvor bereits ausgeführt wurde, eine abgerundete bzw. ballige Verbindung zwischen Aufnahme und Kopplungsstück verwendet werden, um die Reibung des Kopplungsstücks innerhalb der Aufnahme zu minimieren. Bei einer solchen Ausführung muss kein verschwenkbares Schwenkteil am Verbindungselement vorgesehen werden.

[0056] In einer weiteren möglichen Ausführungsform ist vorgesehen, dass die Verbindungselemente jeweils durch ein Rückstellelement, insbesondere eine Feder, in eine vertikale oder nach innen geschwenkte Grundstellung vorgespannt sind. Die Rückstellelemente drücken die Verbindungselemente somit nach innen, sodass beim Verstellen der Gegengewichtsvorrichtung die Verbindungselemente entgegen den Rückstellkräften der Rückstellelemente nach außen schwenken bzw. "ausweichen". Die Rückstellelemente können als sehr starke Federn, beispielsweise als Tellerfedern ausgebildet sein. [0057] In einer weiteren möglichen Ausführungsform

ist vorgesehen, dass die Verbindungselemente gegenüber der Vertikalen in beide Richtungen um einen maximalen Schwenkwinkel verschwenkbar mit der Gegengewichtsgrundplatte verbunden sind. Der maximale Schwenkwinkel bzw. dessen Betrag beträgt vorzugsweise weniger als 20° (d.h. -20° < α < 20°) und besonders vorzugsweise weniger als 15° (d.h. -15° < α < 15°). Bei dieser Ausführungsform müssen die Ausnehmungen etwaiger weiterer auf der Gegengewichtsgrundplatte abgelegter Gegengewichtselemente, durch die die Verbindungselemente hindurchragen, entsprechend verbreitert sein, damit bei der genannten Schwenkbewegung der Verbindungselemente diese nicht mit den Wandungen der Ausnehmungen kollidieren.

13

[0058] Weitere Merkmale, Einzelheiten und Vorteile der Erfindung ergeben sich aus den nachfolgend anhand der Figuren erläuterten Ausführungsbeispielen. Es zeigen:

Figur 1: eine perspektivische Ansicht des Oberwagens des erfindungsgemäßen Mobilkrans gemäß einem ersten Ausfüh-

rungsbeispiel;

Figur 2: eine perspektivische Ansicht des Oberwagens des erfindungsgemäßen Mobil-

krans gemäß einem zweiten Ausfüh-

rungsbeispiel;

Figur 3: eine perspektivische Ansicht des Oberwagens des erfindungsgemäßen Mobil-

krans gemäß einem dritten Ausfüh-

rungsbeispiel;

Figuren 4-7: perspektivische Ansichten des dritten

Ausführungsbeispiels in unterschiedlichen Stellungen beim Verstellen der Ge-

gengewichtsvorrichtung; und

Figur 8: eine schematische Ansicht des Oberwagens des erfindungsgemäßen Mobil-

krans gemäß einem vierten Ausfüh-

rungsbeispiel.

[0059] Die Figur 1 zeigt in einer perspektivischen Ansicht den Oberwagen 14 des erfindungsgemäßen Mobilkrans 10 gemäß einem ersten Ausführungsbeispiel, wobei lediglich der Stahlbau des Oberwagens 14 ohne etwaige Abdeckungen und ohne Ausleger (bei welchem es sich insbesondere um einen Teleskopausleger handelt) dargestellt ist, um den Blick auf die hier relevanten Komponenten freizugeben. Der Oberwagen 14 ist um eine vertikale Oberwagendrehachse 13 drehbar auf einem ebenfalls nicht dargestellten, fahrbaren Unterwagen gelagert.

[0060] Der Oberwagen 14 weist an seinem Heck eine Ballastiereinrichtung 20 mit einem Ballastrahmen 22 auf, an welchem eine auch als Oberwagenballast bezeich-

nete Gegengewichtsvorrichtung 50 lösbar befestigbar ist, um einer mittels des Auslegers gehobenen Last entgegenzuwirken und ein Kippen des Mobilkrans 10 zu verhindern. Die Gegengewichtsvorrichtung 50 umfasst eine Gegengewichtsgrundplatte 52, auf der eine oder mehrere Gegengewichtsplatten ablegbar bzw. stapelbar sind (in den vorliegenden Figuren ist der Übersichtlichkeit halber nur die Gegengewichtsgrundplatte 52 gezeigt). Der Ballastrahmen 22 kann eine Winde 24 tragen.

[0061] Die Ballastiereinrichtung 20 umfasst in den vorliegend diskutierten Ausführungsbeispielen zwei hydraulische Ballastierzylinder 26, um die Gegengewichtsvorrichtung 50 von einem Ablagebereich des Unterwagens aufzunehmen oder darauf abzusetzen. Nach dem Anheben der Gegengewichtsvorrichtung 50 an den Ballastrahmen 22 können diese entweder miteinander verbolzt werden oder die Ballastierzylinder 26 pressen die Gegengewichtsvorrichtung 50 an den Ballastrahmen. Bei letzterer Variante, welche bei dem hier gezeigten Ausführungsbeispiel realisiert ist, werden die Ballastierzylinder 26 nach dem Erreichen eines vorgegebenen Anpressdrucks hydraulisch blockiert, sodass die Gegengewichtsvorrichtung 50 sicher am Oberwagen 14 gehalten wird. Die Ballastierzylinder 26 umfassen in einem Zylindermantel verschiebbar gelagerte Kolben mit einer Kolbenstange, die nach unten in Richtung Unterwagen bzw.

[0062] Zur Montage der Gegengewichtsvorrichtung 50 wird diese auf dem Unterwagen 12 aufgestapelt. Der Oberwagen 14 dreht mit seiner Ballastiereinrichtung 20 über die Gegengewichtsvorrichtung 50, koppelt an diese an und die Ballastierzylinder 26 ziehen sie anschließend an den Oberwagen 14, wo sie im Kranbetrieb gehalten wird.

Gegengewichtsvorrichtung 50 ragt.

[0063] Die Kopplung der Gegengewichtsvorrichtung 50 mit den Ballastierzylindern 26 erfolgt über zwei von der Gegengewichtsgrundplatte 52 senkrecht nach oben abstehende Verbindungselemente 70, die an ihren oberen, der Gegengewichtsgrundplatte 52 abgewandten Enden Kopplungsabschnitte zum reversiblen Koppeln mit ein- und ausfahrbaren Kopplungstücken 27 der Ballastierzylinder 26 aufweisen, welche sich an den unteren Enden der Kolbenstangen der Ballastierzylinder 26 befinden. Die auf der Gegengewichtsgrundplatte 52 ablegbaren weiteren Gegengewichte weisen entsprechende Ausnehmungen auf, durch die die Verbindungselemente 70 hindurchragen. Diese werden also auf der Gegengewichtsgrundplatte 52 von oben abgelegt und dabei auf den Verbindungselementen 70 "aufgefädelt", sodass insbesondere die Endbereiche der Verbindungselemente 70 mit den Kopplungsabschnitten oben herausragen oder in anderer Art erreichbar bleiben.

[0064] Die Verbindungselemente 70 sind in den hier gezeigten Ausführungsbeispielen als Blechkonstruktionen mit einer flachen Grundform gefertigt und können daher auch als Verbindungsschwerter oder Schwerter bezeichnet werden. Die Kopplungsabschnitte der Verbindungselemente 70 umfassen eine mittig angeordnete

Aufnahme in Form einer nach oben offenen, klammerförmigen Ausnehmung 76, in die ein speziell geformtes (insbesondere pilzförmiges) Kopplungsstück 27 des entsprechenden Ballastierzylinders 26 seitlich einfahren kann. In der finalen Position, in der die Gegengewichtsvorrichtung 50 sicher angehoben werden kann, befindet sich das Kopplungsstück 27 vollständig innerhalb der Ausnehmung 76, welche durch ihre Form ein formschlüssiges Anheben der Gegengewichtsvorrichtung 50 durch Einfahren der Ballastierzylinder 26 ermöglicht, da das Kopplungsstück 27 nicht nach oben aus der Ausnehmung 76 herausrutschen kann. Die Kopplung der ausgefahrenen Ballastierzylinder 26 mit den Verbindungselementen 70 erfolgt durch eine Drehung des Oberwagens 14 um dessen vertikale Drehachse 13.

[0065] Um während des Kranbetriebs, d.h. im ballastierten Zustand den Abstand der Gegengewichtsvorrichtung 50 von der Oberwagendrehachse 13 entlang der Längsachse des Oberwagens (d.h. radial bzw. senkrecht zur Oberwagendrehachse 13) verstellen zu können, weist der Ballastrahmen 22 bei allen hier diskutierten Ausführungsbeispielen seitlich zwei vorliegend als erste Arme 31 bezeichnete Schwenkarme auf, die jeweils um eine vertikale erste Drehachse 33 schwenkbar mit dem Ballastrahmen 22 verbunden sind. Die Kopplung der Gegengewichtsvorrichtung 50 mit der Ballastiereinrichtung 20 erfolgt unmittelbar oder mittelbar über die schwenkbaren ersten Arme 31, welche zum Verändern des Gegengewichtsradius um deren Drehachsen 33 verschwenkt werden. Da sich die Enden der ersten Arme 31 dabei entlang von Kreisbahnen bewegen, sind erfindungsgemäß weitere verschwenkbare Koppelelemente vorgesehen, welche zwischen der Gegengewichtsgrundplatte 52 und den ersten Armen 31 angeordnet sind und dafür sorgen, dass sich trotz der Schwenkbewegungen der ersten Arme 31 insgesamt eine lineare Bewegung der Gegengewichtsvorrichtung 50 entlang der Oberwagenlängsachse ergibt.

[0066] Bei dem in der Figur 1 illustrierten ersten Ausführungsbeispiel wird diese Linearbewegung dadurch ermöglicht, dass an die Enden der ersten Arme 31 jeweils ein weiterer, als zweiter Arm 32 bezeichneter Schwenkarm angelenkt ist, wobei die zweiten Arme 32 um eine zweite vertikale Drehachse 34 schwenkbar mit den ersten Armen 31 verbunden sind. Die zweiten Arme 32 stellen in dieser Ausführungsform die genannten verschwenkbaren Koppelelemente dar. An den freien Enden der zweiten Arme 32 befinden sich die Ballastierzylinder 26, welche die Kopplung mit den Verbindungselementen 70 der Gegengewichtsvorrichtung 50 ermöglichen.

[0067] Beim Einfahren der Gegengewichtsvorrichtung 50 (Bewegung in Richtung Oberwagendrehachse 13) schwenken die ersten Arme 31 von der in der Figur 1 gezeigten Stellung nach außen, während gleichzeitig die zweiten Arme 32 nach innen schwenken. Dabei schwenken die beiden ersten Arme 31 in entgegengesetzte Drehrichtungen, ebenso wie die beiden zweiten Arme

32. Auch die ersten und zweiten Arme 31, 32 auf einer Seite des Ballastrahmens 22 schwenken in entgegengesetzte Drehrichtungen. Durch diese Überlagerung zweier gegenläufiger Schwenkbewegungen um zwei vertikale Achsen 33, 34 pro Seite ergibt sich insgesamt eine lineare Bewegung der Ballastierzylinder 26 und somit der gesamten Gegengewichtsvorrichtung 50. Während dieser Bewegung bleiben die Verbindungen zwischen den Ballastierzylindern 26 und den Verbindungselementen 70 stets unter Belastung.

[0068] Bei dem Ausführungsbeispiel der Figur 1 sind beide erste Arme 31 über je einen hydraulischen Verstellzylinder 36 verschwenkbar. Die Verstellzylinder 36 sind dabei gelenkig sowohl mit dem Oberwagen 14 als auch mit den ersten Armen 31 verbunden, wobei die ersten Arme 31 hierzu seitlich abstehende Nasen 37 aufweisen können (vgl. Fig. 2), an denen die Verstellzylinder 36 gelagert sind. Die beiden Verstellzylinder 36 werden dabei über ein Hydrauliksystem und eine Steuerung derart synchronisiert angesteuert, dass sich eine gleichlaufende aber in entgegengesetzte Drehrichtungen erfolgende Schwenkbewegung der ersten Arme 31 ergibt. Zur Synchronisierung der Verstellzylinder 36 können geeignete Sensoren wie beispielsweise Längengeber in bzw. an den Verstellzylindern 36 vorgesehen sein, welche ihre Signale an die Steuerung weitergeben.

[0069] Prinzipiell könnten auch die zweiten Arme 32 über eigene Verstellzylinder relativ zu den ersten Armen 31 verschwenkt werden, welche gelenkig mit den ersten und zweiten Armen 31, 32 verbunden sind. Auch hier wäre eine geeignete Synchronisierung zueinander sowie zu den Verstellzylindern 36 der ersten Arme 31 zu gewährleisten.

[0070] Bei dem Ausführungsbeispiel der Figur 1 sind die zweiten Arme 32 hingegen mechanisch mit den ersten Armen 31 gekoppelt, sodass sich die zweiten Arme 32 automatisch um ihre Drehachsen 34 drehen, wenn die ersten Arme 31 verschwenkt werden. Die mechanische Kopplung wird in diesem Ausführungsbeispiel über Zahnrad- bzw. Kettengetriebe hergestellt. Die folgende Betrachtung bezieht sich auf eine Seite der Ballastiereinrichtung 20 und somit auf eines der beiden Paare aus ersten und zweiten Armen 31, 32.

[0071] Ein erstes Zahnrad 41 ist drehfest, d.h. unbeweglich am Ballastrahmen 22 angebracht, und zwar kollinear zur ersten Drehachse 33. Verschwenkt der erste Arm 31, dreht das erste Zahnrad 41 also nicht mit. Ein zweites Zahnrad 42 ist drehfest mit dem zum ersten Arm 31 weisenden Ende des zweiten Arms 32 verbunden und kollinear zur zweiten Drehachse 34 angeordnet. Dreht sich der zweite Arm 32 relativ zum ersten Arm 31, dreht sich auch das zweite Zahnrad 42 relativ zum ersten Arm 31. Die beiden Zahnräder 41, 42 sind über eine Kette 43 (= Verbindungsmittel) miteinander gekoppelt. Wird nun der erste Arm 31 mittels des Verstellzylinders 36 um die erste Drehachse 33 verschwenkt, schwenkt dieser auch um das drehfeste erste Zahnrad 41. Aufgrund der mechanischen Kopplung über die Kette 43 treibt diese

Schwenkbewegung des ersten Arms 31 den zweiten Arm 32 an. Dieser schwenkt gegenläufig zum ersten Arm 31 um die zweite Drehachse 34.

[0072] Das erste Zahnrad 41 weist dabei einen größeren Durchmesser auf als das zweite Zahnrad 42, sodass sich ein definiertes Übersetzungsverhältnis ergibt. Dadurch dreht der zweite Arm 32 mit einer höheren Winkelgeschwindigkeit um die zweite Drehachse 34 als der erste Arm 31 um die erste Drehachse 33. Dies ist nötig, um insgesamt eine lineare Bewegung des Ballastierzylinders 26 zu erreichen. Das erste Zahnrad 41 kann somit als Großrad und das zweite Zahnrad 42 als Ritzel ausgebildet sein bzw. bezeichnet werden.

[0073] Durch die Schwenkbewegung des zweiten Arms 32 ergibt sich eine Drehung des Ballastierzylinders 26 relativ zum zugehörigen Verbindungselement 70. Somit würde sich eine Relativbewegung zwischen Kopplungsstück 27 und Aufnahme 76 ergeben, die zu einer erhöhten Reibung führen würde. Um dies zu vermeiden, kann vorgesehen sein, dass die Kolbenstangen der Ballastierzylinder 26 um ihre Längsachsen drehbar in den Zylindergehäusen gelagert sind. Somit muss keine Relativbewegung zwischen den Kopplungsstücken 27 und den Aufnahmen 76 angenommen werden. Allerdings ist es in Abwesenheit weiterer Befestigungselemente notwendig, dass die Ballastierzylinder 26 die Gegengewichtsvorrichtung 50 im Kranbetrieb an die Ballastiereinrichtung 20 anpressen. Hierfür werden sie nach dem Erreichen eines ausreichenden Anpressdruckes hydraulisch blockiert (Verriegelungsmodus). Um zum Verstellen des Gegengewichtsradius gegen diese Reibung eine Rotation der Kolbenstangen der Ballastierzylinder 26 zu erreichen, sind die Ballastierzylinder 26 freizuschalten (d.h. die hydraulische Blockierung aufzuheben), die Kolbenstangen etwas nach unten auszufahren und erst dann in der so erreichten Stellung der neue Gegengewichtsradius einzustellen (Verstellmodus).

[0074] Das durch die Gegengewichtsvorrichtung 50 erzeugte Gegenmoment kann von Sensoren überwachbar sein, welche die Daten an eine Lastmomentbegrenzung des Mobilkrans 10 weiterleiten. Dies kann über eine Erfassung der Schwenkwinkel der ersten und/oder zweiten Arme 31, 32 und/oder über eine direkte Messung des Abstands der Gegengewichtsvorrichtung 50 vom Oberwagen 14 erfolgen.

[0075] Alternativ zu einer Verwendung zweier synchronisierter Verstellzylinder 36 zum Verschwenken beider erster Arme 31 kann auch nur ein einziger Verstellzylinder 36 vorgesehen und die beiden ersten Arme 31 mechanisch miteinander gekoppelt sein. Ein entsprechendes zweites Ausführungsbeispiel ist in der Figur 2 in einer perspektivischen Ansicht des Oberwagens 14 dargestellt. Hierbei sind die beiden ersten Arme 31 über ein Zahnrad- bzw. Kettengetriebe mechanisch miteinander gekoppelt, wobei nur einer der beiden ersten Arme 31 über einen Verstellzylinder 36 verschwenkbar ist und sich der andere erste Arm 31 automatisch und synchron mitbewegt.

[0076] In der Figur 2 sind drei Ausführungsbeispiele gezeigt. Es ist die Verstellung über zwei Verstellzylinder 36 sowie die Verstellung über die Kette 49 gezeigt. Möglich wäre auch die Verwendung der Kette 49 als Mittel zur Synchronisation der Verstellzylinder 36.

[0077] Ein erstes Zahnrad 45 ist drehfest mit einem der ersten Arme 31 (beispielsweise den durch den Verstellzylinder 36 verschwenkbaren Arm 31) verbunden und kollinear zur ersten Drehachse 33 angeordnet. In dem hier gezeigten Ausführungsbeispiel, in dem die ersten und zweiten Arme 31, 32 ebenfalls über ein Kettengetriebe miteinander gekoppelt sind, kann das drehfest am ersten Arm 31 sitzende Zahnrad 45 oberhalb und kollinear zum drehfest am Oberwagen 14 befestigten Zahnrad 41 angeordnet sein und beispielsweise über eine Hohlwelle durch das unbewegliche Zahnrad 41 zum ersten Arm 31 hindurchgeführt sein. Bei einer Schwenkbewegung des ersten Arms 31 dreht sich das Zahnrad 45 relativ zum drehfest am Oberwagen 14 befestigten Zahnrad 41.

[0078] Ein zweites Zahnrad 46 ist drehfest mit dem anderen ersten Arm 31 verbunden und ebenfalls kollinear zu dessen erster Drehachse 33 und den dortigen, drehfest mit dem Oberwagen 14 verbundenen Zahnrad 41 angeordnet. Es stellt quasi das Gegenstück zum ersten Zahnrad 45 dar.

[0079] Ein drittes Zahnrad 47 ist frei drehbar am Oberwagen 14 neben dem zweiten Zahnrad 46 gelagert und über ein Verbindungsmittel in Form einer Kette 49 mit dem ersten Zahnrad 45 gekoppelt. Ein viertes Zahnrad 48 sitzt zu Übersetzungszwecken auf einer gemeinsamen Welle mit dem dritten Zahnrad 47 (letzteres ist in der Figur 2 durch das vierte Zahnrad 48 verdeckt) und dreht sich mit diesem mit. Es besitzt einen größeren Durchmesser als das dritte Zahnrad 47 und kämmt mit dem zweiten Zahnrad 46, welches einen ebenso im Vergleich zum ersten Zahnrad 45 vergrößerten Durchmesser aufweist. Wird nun der erste Arm 31 über den Verstellzylinder 36 verschwenkt, drehen sich das erste Zahnrad 45 und aufgrund der Kopplung über die Kette 49 auch das dritte Zahnrad 47 mit. Über das vierte Zahnrad 48 wird dadurch das drehfest mit dem anderen ersten Arm 31 verbundene zweite Zahnrad 46 in einem dem ersten Zahnrad 45 entgegengesetzten Drehsinn gedreht, sodass beide erste Arme 31 mit identischer Winkelgeschwindigkeit in entgegengesetzte Richtungen schwenken. Durch die Kopplungen der ersten und zweiten Arme 31, 32 über weitere Kettenantriebe schwenken dabei auch die zweiten Arme 32 synchron mit.

[0080] In der Figur 2 ist der Synchronisationsantrieb zur Kopplung der beiden ersten Arme 31 zur besseren Darstellung auf der Oberseite des Ballastrahmens 22 gezeigt. Der Synchronisationsantrieb kann jedoch auch an einer anderen Stelle angeordnet sein, beispielsweise innerhalb des Stahlbaus des Ballastrahmens 22 oder an der Unterseite. Dies gilt auch für die die ersten und zweiten Arme 31, 32 koppelnden Getriebe.

[0081] Auch der Verstellzylinder 36 kann an einer an-

deren Stelle angeordnet sein bzw. den ersten Arm 31 auf andere Weise antreiben. Eine weitere Möglichkeit ist in der Figur 3 gezeigt (diese ist für alle hier gezeigten Ausführungsbeispiel denkbar). Hierbei ist der Verstellzylinder 36 gelenkig mit dem Ballastrahmen 22 und mit einem als Kopplungsrad fungierendem Zahnrad 60 verbunden. Das Kopplungsrad 60 treibt die drehfest mit den ersten Armen verbundenen ersten und zweiten Zahnräder 45, 46 an (in diesem Ausführungsbeispiel über eine mit dem ersten Zahnrad 45 verbundene Kette 48 und ein unterhalb des Kopplungsrads 60 auf einer gemeinsamen Welle sitzendes, mit dem zweiten Zahnrad 46 kämmendes Zahnrad, ggf. mit geeigneter Übersetzung).

[0082] Die Figur 2 zeigt hierbei eine Art Kombination beider Ausführungsbeispiele zur Synchronisierung der ersten Arme 31, da die ersten Arme 31 einerseits über das Kettengetriebe mechanisch miteinander gekoppelt sind und gleichzeitig zwei Verstellzylinder 36 gezeigt sind. Allerdings wird in der Praxis in der Regel nur einer dieser beiden Verstellmechanismen zum Einsatz kommen (also entweder zwei synchronisierte Verstellzylinder 36 oder ein Verstellzylinder 36 und ein Kettengetriebe). [0083] Die Figuren 3-8 zeigen eine alternative Möglichkeit, die Schwenkbewegung der ersten Arme 31 in eine lineare und zur Oberwagenlängsachse parallele Bewegung der Gegengewichtsvorrichtung 50 umzuwandeln.

[0084] Ein drittes Ausführungsbeispiel ist hierbei in der perspektivischen Ansicht der Figur 3 mit Blick auf die an der Ballastiereinrichtung 20 befestigte Gegengewichtsvorrichtung 50 gezeigt. Dieses Ausführungsbeispiel unterscheidet sich von denjenigen der Figuren 1 und 2 dadurch, dass keine zweiten Arme 32 vorgesehen, sondern die Ballastierzylinder 26 direkt an den freien Enden der ersten Arme 31 angeordnet sind.

[0085] Um die kreisförmige Bewegung der Ballastierzylinder 26 auszugleichen, sind die Verbindungselemente 70 hier nicht starr, sondern um eine horizontale Schwenkachse 73 schwenkbar mit der Gegengewichtsgrundplatte 52 verbunden. Beim seitlichen Ausschwenken der ersten Arme 31, bei dem sich der seitliche Abstand der Ballastierzylinder 26 zur Oberwagenlängsachse verändert, schwenken die kippbar gelagerten Verbindungselemente 70 mit bzw. weichen entsprechend zur Seite aus.

[0086] Um hierbei eine stabile Verbindung der Kopplungsstücke 27 der Ballastierzylinder 26 in den Aufnahmen 76 der Verbindungselemente 70 zu gewährleisten, sind die Verbindungselemente 70 nicht wie in den zuvor diskutierten Ausführungsbeispielen einstückig ausgebildet, sondern umfassen einen schwenkbar mit der Gegengewichtsgrundplatte 52 verbundenen Grundkörper 72, an dessen dem ersten Arm 31 zugewandten Ende ein weiterer Schwenkkörper 74 um eine horizontale Schwenkachse 75 schwenkbar gelagert ist. Der Schwenkkörper 74 weist den Kopplungsabschnitt mit der Aufnahme 76 für den Ballastierzylinder 26 auf.

[0087] Einerseits gleicht das Schwenkstück 74 die

Kippbewegung des Grundkörpers 72 aus und sorgt somit dafür, dass sich keine relative Schwenkbewegung zwischen Aufnahme 76 und Kopplungsstück 27 ergibt. In Kombination mit der oben beschrieben Möglichkeit, in einem Verstellmodus die Kolbenstangen der Ballastierzylinder 26 rotierbar zu lagern, kann sogar eine Relativbewegung zwischen Aufnahme 76 und Kopplungsstück 27 jedweder Art verhindert werden. Zum anderen kann der Schwenkkörper 74 derart konstruiert sein, dass er sich durch die Schwerkraft automatisch in eine senkrechte Stellung ausrichtet. Hierzu kann die Schwenkachse 75 in einem oberen Bereich des Schwenkkörpers 74 angeordnet sein, sodass sich der Schwerpunkt unterhalb der Schwenkachse 75 befindet. Dadurch kann das Kopplungsstück 27 des Ballastierzylinders 26 wie gewohnt mit dem senkrecht ausgerichteten Kopplungsabschnitt des Verbindungselements 70 gekoppelt werden.

[0088] Die Figuren 4-7 zeigen das Ausführungsbeispiel der Figur 3 in vier unterschiedlichen Stellungen der Gegengewichtsvorrichtung 50 bei einer Bewegung von einem minimalen zu einem maximalen Gegengewichtsradius. In der Figur 4 sind die ersten Arme 31 vollständig nach vorne geklappt und die Gegengewichtsgrundplatte 52 nimmt einen minimalen Abstand zur Oberwagendrehachse 13 ein. Die Grundkörper 72 der Verbindungselemente 70 sind nach innen (d.h. in Richtung Oberwagenlängsachse) geschwenkt.

[0089] Durch seitliches Ausschwenken bzw. Ausklappen der beiden ersten Arme 31 wird die Gegengewichtsgrundplatte 52 linear und parallel zur Oberwagenlängsachse von der Oberwagendrehachse 13 entfernt. Die Schwenkbewegung der ersten Arme 31 wird dadurch ausgeglichen, dass die Grundkörper 72 der Verbindungselemente 30 seitlich nach außen (d.h. von der Oberwagenlängsachse weg) schwenken. Hierbei schwenkt der Grundkörper 72 auch relativ zum mit dem Ballastierzylinder 26 verbundenen Schwenkkörper 74. Bei einem bestimmten Schwenkwinkel der ersten Arme 31 sind die Grundkörper 72 senkrecht ausgerichtet (vgl. Fig. 5).

[0090] Durch fortgesetztes Verschwenken der ersten Arme 31 wird der Abstand der Gegengewichtsgrundplatte 52 zur Oberwagendrehachse 13 weiter vergrößert. Hierbei schwenken die Grundkörper 72 der Verbindungselemente 70 seitlich nach außen, sodass sie von der Oberwagenlängsachse weggeneigt sind. Diese Stellung ist in der Figur 6 gezeigt, wobei die ersten Arme 31 hier senkrecht zur Oberwagenlängsachse vom Ballastrahmen 22 abstehen, sodass die Ballastierzylinder 26 einen maximalen Abstand von der Oberwagenlängsachse aufweisen (dies entspricht einem maximalen Schwenkwinkel der Grundkörper 72 nach außen).

[0091] Werden die ersten Arme 31 noch weiter geschwenkt, verringert sich der Abstand der Ballastierzylinder 26 von der Oberwagenlängsachse wieder, sodass die Grundkörper 72 zurück nach innen schwenken, ggf. sogar wieder über die senkrechte Stellung hinaus, sodass sie in der Endposition der Gegengewichtsgrund-

35

40

platte 52 wieder nach innen geneigt sind (vgl. Fig. 7). [0092] Zu beachten ist hierbei, dass die schwenkbaren Grundkörper 72 der Verbindungselemente 70 bestimmte Grenzwinkel nach außen (vgl. Fig. 6) und nach innen (vgl. Fig. 4 oder 7) relativ zur Vertikalen einnehmen, d. h. die Grundkörper 72 verschwenken innerhalb eines definierten Winkelintervalls. Dieses Winkelintervall kann kleiner als [-20° 20°], vorzugsweise kleiner als [-15°, 15°], bezogen auf die senkrechte Ausrichtung (vgl. Fig. 5) sein. Daraus ergibt sich einerseits, dass alle ggf. auf der Gegengewichtsgrundplatte 52 aufgestapelten Gegengewichtsplatten mit einem entsprechenden Freiraum bzw. entsprechend breit dimensionierten Ausnehmungen zu versehen sind, durch die die Grundkörper 72 kollisionsfrei ragen. Zum anderen resultiert aus der Schwenkbewegung der Grundkörper 72 um die horizontalen Schwenkachsen 73 ein Höhenversatz 80 der Gegengewichtsgrundplatte 52 (vgl. Fig. 5). Dieser Höhenversatz 80 ist nicht sehr groß, beispielsweise im Bereich von einigen Zentimetern (z.B. 20 mm), aber die anzuhebende Masse der gesamten Gegengewichtsvorrichtung 50 ist dafür sehr groß. Die sich hieraus ergebende Hubarbeit ist von dem Verstellzylinder 36 aufzubringen und in dessen Auslegung zu berücksichtigen.

[0093] Die schwenkbaren Grundkörper 72 können in einer bevorzugten Ausführungsform federbelastest in ihre Grundstellung gedrückt werden. Diese kann zum Beispiel nach innen geschwenkt sein, wie in der Figur 4 gezeigt ist, oder aber eine senkrechte Stellung, wie in Figur 5 zu sehen ist. Die Federn können entsprechend stark ausgebildet sein, z.B. als Tellerfedern. In der Grundstellung befindet sich der Schwenkkörper 74 mit der Aufnahme 76 insbesondere in einer Verbindungsposition für das Koppeln mit dem Kopplungsstück 27 des Ballastierzylinders 26.

[0094] Auch bei der dritten Ausführungsform kann es eine wesentliche Aufgabe der Ballastierzylinder 26 sein, die Gegengewichtsvorrichtung 50 an den Ballastrahmen 22 zu pressen (siehe obige Ausführungen).

[0095] Zudem können auch hier anstelle einer mechanischen Kopplung der beiden ersten Arme 31 über ein Kettengetriebe zwei synchronisiert angesteuerte Verstellzylinder 36 für die beiden ersten Arme 31 vorgesehen sein.

[0096] Eine alternative Möglichkeit, die Relativbewegung zwischen Verbindungselement 70 und Kopplungsstück 27 aufzunehmen, ist schließlich anhand eines vierten Ausführungsbeispiels in der Figur 8 dargestellt, wobei die ersten Arme 31 sowie die Gegengewichtsvorrichtung 50 hier nur schematisch skizziert sind. Wie zuvor beschrieben, sind auch hier die Kolbenstangen der Ballastierzylinder 26 mit den Kopplungsstücken 27 drehbar in den Zylindermänteln gelagert (zumindest in einem Verstellmodus). Dieser Rotationsfreiheitsgrad entlastet die Reibverbindung zwischen Aufnahme 76 und Kopplungsstück 27. Im Unterschied zum dritten Ausführungsbeispiel sind die Verbindungselemente 70 hier jedoch einstückig ausgebildet, wobei eine Schwenkbewegung zwi-

schen Verbindungselement 70 und Kopplungsstück 27 durch eine ballige Verbindung ermöglicht wird. Hierfür weisen bevorzugt sowohl die Aufnahme 76 als auch das Kopplungsstück 27 entsprechend gekrümmte bzw. abgerundete Flächen auf, sodass sich eine Verbindung in der Art eines Kugelgelenks ergibt.

[0097] Durch die erfindungsgemäße Lösung benötigt der Unterwagen im Vergleich zum Stand der Technik nur eine einzige Ablageeinrichtung für die Gegengewichtsvorrichtung 50. Die Verstellung des Gegengewichtsradius findet während des Kranbetriebs statt und nicht beim Rüsten des Gegengewichts. Der Unterwagen kann also ohne dieses Merkmal optimal konstruiert werden.

Bezugszeichenliste:

[0098]

- 10 Mobilkran
- 0 13 Oberwagendrehachse
 - 14 Oberwagen
 - 20 Ballastiereinrichtung
 - 22 Ballastrahmen
 - 24 Winde
- 5 26 Ballastierzylinder
 - 27 Kopplungsstück
 - 31 Erster Arm
 - 32 Zweiter Arm
 - 33 Vertikale Drehachse
- 34 Vertikale Drehachse
 - 36 Hydraulischer Verstellzylinder (oder anderer Linearantrieb)
 - 37 Nase
- 41 Drehfestes Zahnrad
- 35 42 Drehfestes Zahnrad
 - 43 Verbindungsmittel (Kette)
 - 45 Erstes Zahnrad
 - 46 Zweites Zahnrad
 - 47 Drittes Zahnrad
- 0 48 Viertes Zahnrad
 - 49 Verbindungsmittel (Kette)
 - 50 Gegengewichtsvorrichtung
 - 52 Gegengewichtsgrundplatte
 - 60 Kopplungsrad
- 45 70 Verbindungselement
 - 72 Grundkörper
 - 73 Horizontale Schwenkachse
 - 74 Schwenkkörper
 - 75 Horizontale Schwenkachse
- 50 76 Aufnahme
 - 80 Höhenversatz

Patentansprüche

 Mobilkran (10) umfassend einen fahrbaren Unterwagen, einen um eine vertikale Oberwagendrehachse (13) drehbar auf dem Unterwagen gelagerten Ober-

15

20

30

40

45

50

55

wagen (14) mit einer Ballastiereinrichtung (20) und eine mit der Ballastiereinrichtung (20) koppelbare Gegengewichtsvorrichtung (50), welche eine Gegengewichtsgrundplatte (52) und mindestens ein sich von der Gegengewichtsgrundplatte (52) erstreckendes Verbindungselement (70) zum Anheben und Koppeln der Gegengewichtsvorrichtung (50) mit der Ballastiereinrichtung (20) umfasst, wobei der Abstand der Gegengewichtsvorrichtung (50) von der Oberwagendrehachse (13) im ballastierten Zustand über mindestens einen um eine vertikale Drehachse (33) verschwenkbaren ersten Arm (31) der Ballastiereinrichtung (20) verstellbar ist,

dadurch gekennzeichnet,

dass der erste Arm (31) im ballastierten Zustand über ein verschwenkbares Koppelelement mit der Gegengewichtsgrundplatte (52) verbunden ist, welches derart relativ zum ersten Arm (31) und zur Gegengewichtsgrundplatte (52) verschwenkbar gelagert ist, dass die Gegengewichtsgrundplatte (52) durch gleichzeitiges Verschwenken von erstem Arm (31) und Koppelelement in einer linearen Bewegung radial zur Oberwagendrehachse (13) verstellbar ist.

- 2. Mobilkran (10) nach Anspruch 1, wobei die Gegengewichtsvorrichtung (50) zwei voneinander beabstandete Verbindungselemente (70) zum Koppeln der Gegengewichtsvorrichtung (50) mit der Ballastiereinrichtung (20) umfasst, wobei die Ballastiereinrichtung (20) zwei verschwenkbare erste Arme (31) umfasst, welche zum Verstellen des Abstands der Gegengewichtsvorrichtung (20) von der Oberwagendrehachse (13) synchron verschwenkbar sind.
- 3. Mobilkran (10) nach Anspruch 2, wobei die ersten Arme (31) seitlich an der Ballastiereinrichtung (20), insbesondere an einem Ballastrahmen (22), angeordnet und zum Verstellen des Abstands der Gegengewichtsvorrichtung (50) von der Oberwagendrehachse (13) in entgegengesetzten Drehrichtungen verschwenkbar sind.
- 4. Mobilkran (10) nach Anspruch 2 oder 3, wobei jeder der ersten Arme (31) über einen eigenen Hydraulikzylinder (36) verschwenkbar ist und die Hydraulikzylinder (36) synchron ansteuerbar sind.
- 5. Mobilkran (10) nach Anspruch 2 oder 3, wobei einer der ersten Arme (31) über einen Hydraulikzylinder (36) verschwenkbar ist und die ersten Arme (31) über ein Zahnradgetriebe mechanisch derart miteinander gekoppelt sind, dass diese bei Betätigung des Hydraulikzylinders (36) synchron verschwenken, wobei das Zahnradgetriebe vorzugsweise drehfest mit den ersten Armen (31) verbundene Zahnräder (45, 46), welche über ein Verbindungsmittel (49), insbesondere eine Kette, miteinander gekoppelt sind, sowie mindestens ein zwischengeschaltetes weite-

res Zahnrad (47, 48) umfasst.

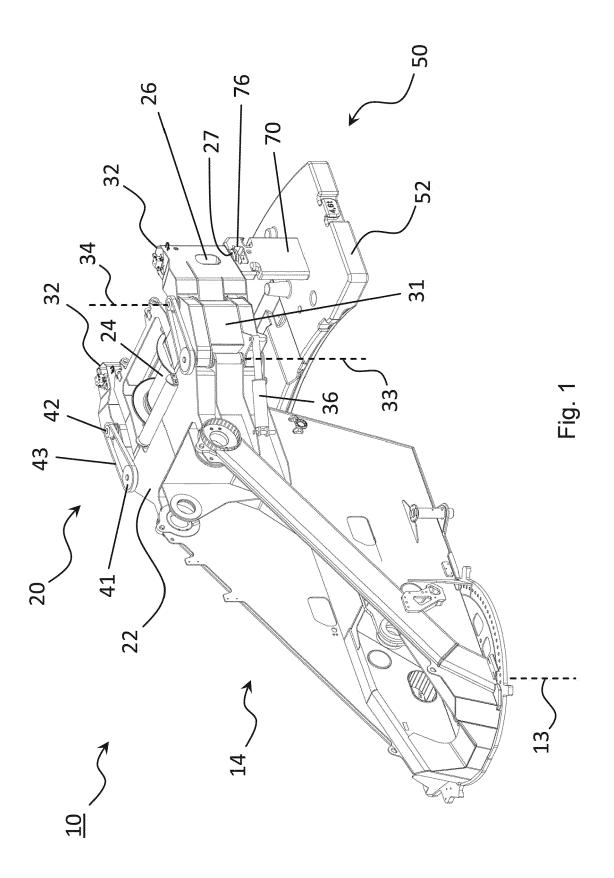
- 6. Mobilkran (10) nach einem der vorhergehenden Ansprüche, wobei die Ballastiereinrichtung (20) ausgelegt ist, die Gegengewichtsvorrichtung (50) von einem Ablagebereich des Unterwagens anzuheben und auf diesem abzulegen, wobei das mindestens eine Verbindungselement (70) an einem der Gegengewichtsgrundplatte (52) gegenüberliegenden Ende einen Kopplungsabschnitt aufweist, über welchen eine Kopplung mit der Ballastiereinrichtung (20) herstellbar ist.
- 7. Mobilkran (10) nach Anspruch 6, wobei die Ballastiereinrichtung (20) mindestens einen hydraulischen Ballastierzylinder (26) umfasst, welcher mit dem Kopplungsabschnitt des mindestens einen Verbindungselements (30) lösbar in Eingriff bringbar ist, wobei der Kopplungsabschnitt eine Aufnahme (76) umfasst, in die ein Kopplungsstück (27) des Ballastierzylinders (26), insbesondere durch Drehung des Oberwagens (14) um die Oberwagendrehachse (13), einfahrbar ist.
- 8. Mobilkran (10) nach Anspruch 7, wobei die Aufnahme (76) und/oder das Kopplungsstück (27) eine abgerundete Kontur aufweisen, welche eine gelenkige Bewegung des Kopplungsstücks (27) innerhalb der Aufnahme (76) im belasteten Zustand ermöglicht.
 - 9. Mobilkran (10) nach Anspruch 7 oder 8, wobei der Ballastierzylinder (26) einen Zylindermantel und einen darin verschiebbaren Kolben mit einer Kolbenstange umfasst, an deren freiem Ende sich das Kopplungsstück (27) befindet, wobei der Kolben um die Längsachse der Kolbenstange drehbar im Zylindermantel gelagert ist, wobei der Ballastierzylinder (26) durch ein Hydrauliksystem betätigbar ist, wobei der Ballastierzylinder (26) und das Hydrauliksystem derart ausgebildet sind, dass im ballastierten Zustand die Kolbenstange in einem Verriegelungsmodus gegenüber einem Ausfahren und einer Drehung blockiert ist, während in einem Verstellmodus eine Drehung der Kolbenstange relativ zum Zylindermantel bei gleicher Ausfahrposition möglich ist, wobei die Kolbenstange im Verstellmodus vorzugsweise weiter ausgefahren ist als im Verriegelungsmodus.
 - 10. Mobilkran (10) nach einem der vorhergehenden Ansprüche, ferner umfassend mindestens ein auf der Gegengewichtsgrundplatte (52) stapelbares zweites Gegengewichtselement, welches mindestens eine Ausnehmung aufweist, durch die das mindestens eine Verbindungselement (70) im abgelegten Zustand hindurchragt.
 - Mobilkran (10) nach einem der vorhergehenden Ansprüche, ferner umfassend eine Messeinrichtung

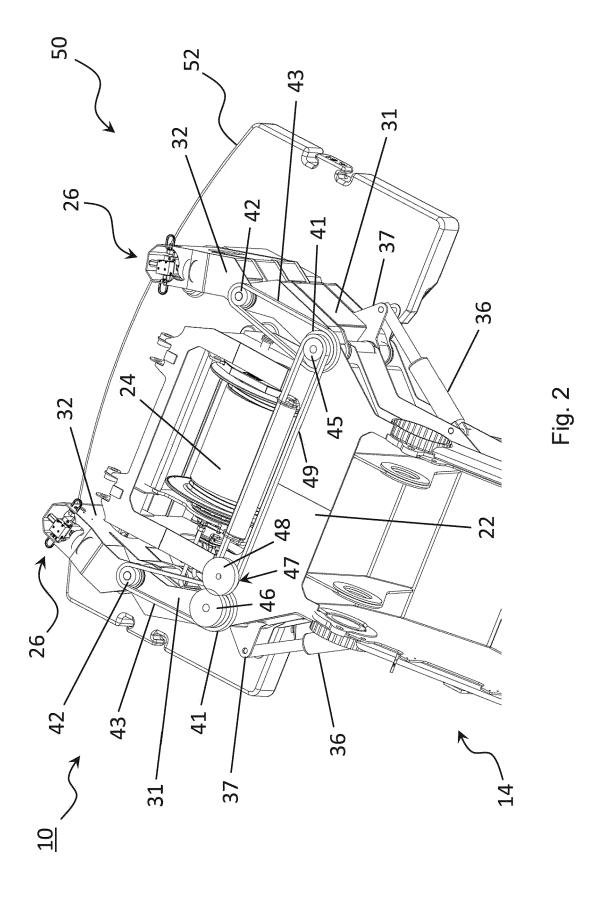
20

25

30

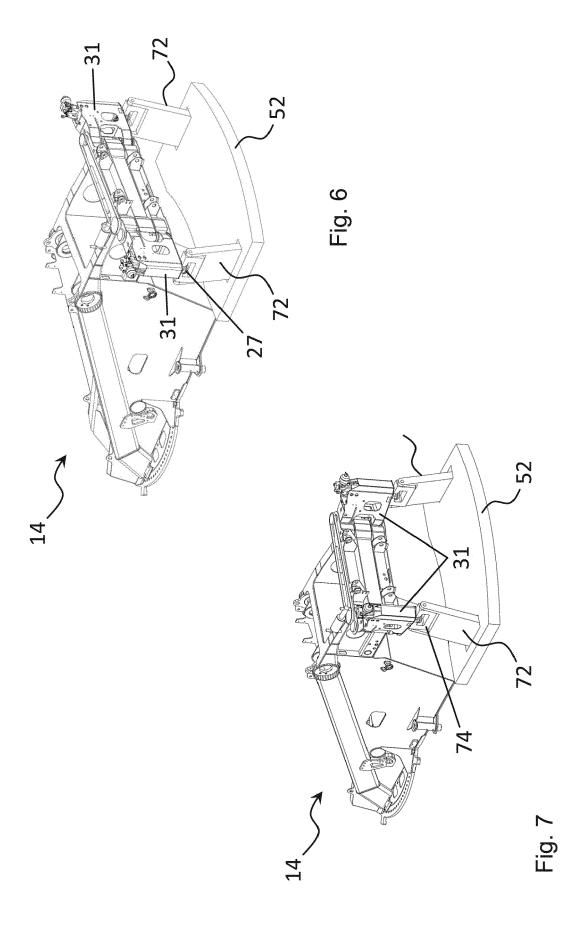
35

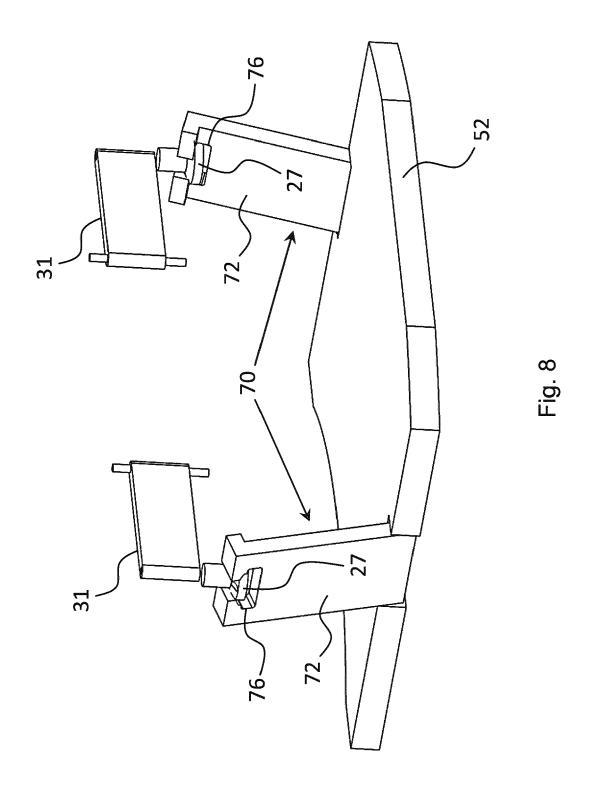

40


45

zur Erfassung eines Ballastierzustands des Mobilkrans (10), welcher an eine Steuereinheit, insbesondere zur Lastmomentbegrenzung, übermittelt wird, wobei die Messeinrichtung vorzugsweise mindestens einen Sensor umfasst, mittels welchem ein momentaner Schwenkwinkel des mindestens einen ersten Arms (31) erfassbar ist.


- 12. Mobilkran (10) nach einem der vorhergehenden Ansprüche, wobei ein zweiter Arm (32) mit dem mindestens einen ersten Arm (31) um eine vertikale Drehachse (34) schwenkbar verbunden ist, wobei das mindestens eine Verbindungselement (70) der Gegengewichtsvorrichtung (50) mit dem mindestens einen zweiten Arm (32) koppelbar ist, insbesondere über einen am zweiten Arm (32) angeordneten Ballastierzylinder (26).
- 13. Mobilkran (10) nach Anspruch 12, wobei die ersten und zweiten Arme (31, 32) derart miteinander gekoppelt sind, dass bei einer Schwenkbewegung des ersten Arms (31) um dessen Drehachse (33) der zweite Arm (32) automatisch um dessen die beiden Arme (31, 32) miteinander verbindende Drehachse (34) geschwenkt wird, insbesondere in die entgegengesetzte Drehrichtung, wobei die Schwenkwinkel der ersten und zweiten Arme (31, 32) in einem festgelegten Verhältnis zueinander stehen.
- 14. Mobilkran (10) nach Anspruch 12 oder 13, wobei die ersten und zweiten Arme (31, 32) über einen zweiten Hydraulikzylinder miteinander verbunden sind, wobei der den ersten Arm (31) relativ zum Oberwagen (14) verschwenkende erste Hydraulikzylinder (36) und der den zweiten Arm (32) relativ zum ersten Arm (31) verschwenkende zweite Hydraulikzylinder derart synchronisiert angesteuert werden, dass die Winkelgeschwindigkeiten der ersten und zweiten Arme (31, 32) beim Verschwenken in einem festgelegten Verhältnis zueinander stehen.
- 15. Mobilkran (10) nach Anspruch 12 oder 13, wobei die ersten und zweiten Arme (31, 32) über ein Zahnradgetriebe mechanisch derart miteinander gekoppelt sind, dass diese bei Betätigung des den ersten Arm (31) relativ zum Oberwagen (14) verschwenkenden Hydraulikzylinders (36) synchron verschwenken, wobei das Zahnradgetriebe vorzugsweise ein drehfest mit dem Oberwagen (14) verbundenes erstes Zahnrad (41) und ein drehfest mit dem zweiten Arm (32) verbundenes zweites Zahnrad (42) umfasst, welche durch ein Verbindungsmittel (43), insbesondere eine Kette, miteinander gekoppelt sind.
- 16. Mobilkran (10) nach einem der Ansprüche 1 bis 11, wobei das mindestens eine Verbindungselement (70) der Gegengewichtsvorrichtung (50) schwenkbar mit der Gegengewichtsgrundplatte (52) verbun-


- den und mit dem mindestens einen ersten Arm (31) koppelbar ist, insbesondere über einen am ersten Arm (31) angeordneten Ballastierzylinder (26).
- 17. Mobilkran (10) nach den Ansprüchen 2 und 16, wobei die Verbindungselemente (70) jeweils um eine horizontale Schwenkachse (73) derart schwenkbar mit der Gegengewichtsgrundplatte (52) verbunden sind, dass die Verbindungselemente (70) bei einem Verschwenken der ersten Arme (31) zum linearen Verstellen des Abstands der Gegengewichtsvorrichtung (50) von der Oberwagendrehachse (13) seitlich, insbesondere senkrecht zur Bewegungsrichtung der Gegengewichtsvorrichtung (50), verschwenken, um eine Kreisbewegung der ersten Arme (31) auszugleichen.
- 18. Mobilkran (10) nach Anspruch 17, wobei die Verbindungselemente (70) einen schwenkbar mit der Gegengewichtsgrundplatte (52) verbundenen Grundkörper (72) umfassen, an dessen dem ersten Arm (31) zugewandten Ende jeweils ein Schwenkkörper (74) um eine insbesondere horizontale Schwenkachse (75) schwenkbar befestigt ist, um eine Schrägstellung der Verbindungselemente (70) auszugleichen, wobei der Schwenkkörper (74) einen Kopplungsabschnitt aufweist, über welchen eine Kopplung mit dem ersten Arm (31) der Ballastiereinrichtung herstellbar ist.
- 19. Mobilkran (10) nach Anspruch 17 oder 18, wobei die Verbindungselemente (70) jeweils durch ein Rückstellelement, insbesondere eine Feder, in eine vertikale oder nach innen geschwenkte Stellung vorgespannt sind.
- 20. Mobilkran (10) nach einem der Ansprüche 17 bis 19, wobei die Verbindungselemente (70) gegenüber der Vertikalen in beide Richtungen um einen maximalen Schwenkwinkel verschwenkbar mit der Gegengewichtsgrundplatte (52) verbunden sind, wobei der maximale Schwenkwinkel vorzugsweise weniger als 20°, besonders vorzugsweise weniger als 15° beträgt.



EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 23 20 9389

5	
10	
15	
20	
25	
30	
35	
40	
45	

50

55

	EINSCHLÄGIGE			
Kategorie	Kennzeichnung des Dokum der maßgebliche	ents mit Angabe, soweit erforderlich, n Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (IPC)
x Y	EP 3 878 795 A1 (SAI [CN]) 15. September * Absätze [0032],			INV. B66C23/76
	[0042], [0051]; Abi	oildungen 1, 2 *	14,15	
Y	DE 10 2015 001080 A: NENZING GMBH [AT]) 28. Juli 2016 (2016- * Abbildungen 2,3 *		5,15	
Y	DE 39 12 868 C1 (LII [DE]) 16. August 199 * Abbildungen 9-11	90 (1990-08-16)	9	
Y	DE 20 2021 106818 UI EHINGEN [DE]) 30. Ma	•	10	
A	* Abbildung 3 *		17-20	
Y	· ·	HONGBIAN RECONCILIARY	14	
CO LTD) 6. Mai 202 * Abbildung 8 *	•			RECHERCHIERTE SACHGEBIETE (IPC)
Der vo		de für alle Patentansprüche erstellt		
	Recherchenort Den Haag	Abschlußdatum der Recherche 1. Mai 2024	Güze	Prüfer el, Ahmet
X : von Y : von and	ATEGORIE DER GENANNTEN DOKU besonderer Bedeutung allein betrachte besonderer Bedeutung in Verbindung eren Veröffentlichung derselben Katege inologischer Hintergrund	E : älteres Patentdok et nach dem Anmel mit einer D : in der Anmeldung	kument, das jedoc dedatum veröffent g angeführtes Dok nden angeführtes	tlicht worden ist kument Dokument

EP 4 410 735 A1

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

5

10

15

20

25

30

35

40

45

50

55

EP 23 20 9389

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten

Patentdokumente angegeben.

Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

01-05-2024

angen	ührtes Patentdokumer	nt	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
EP	3878795	A1	15-09-2021	AU	2019396959	A1	01-07-202
				AU	2023206087		10-08-202
				CN	109279521		29-01-201
				EP	3878795		15-09-202
				KR	20210090232		19-07-202
				RU	2766125		08-02-202
				US	2022024731		27-01-202
				WO	2020118895		18-06-202
DE	102015001080	A1	28-07-2016	CN	105819355		03-08-201
				DE	102015001080	A1	28-07-201
				EP	3050837	A1	03-08-201
				EP	3222576	A1	27-09-201
				JP	2016137998	A	04-08-201
				NO	2694425	т3	28-04-201
				RU	2016101608	A	24-07-201
				US	2016221804	A1	04-08-201
DE		C1	16-08-1990	KEI	NE		
DE	202021106818				202021106818		30-05-202
				US	2023183047		15-06-202
CN	114436137						

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

EP 4 410 735 A1

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

• DE 202014008661 U1 **[0007]**

• DE 102016009013 A1 [0008]