Background
1. Technical Field
[0001] The present disclosure relates to an electrostatic charge image developer, a process
cartridge, an image forming apparatus, and an image forming method.
2. Related Art
[0002] JP-A-2019-168533 discloses an electrostatic charge image developing toner having a surface property
index value of 2.0 or more to 2.8 or less.
[0003] JP-A-2011-186005 discloses an electrostatic charge image developing carrier including a carrier body
having a core material and a coating resin layer, and spherical silica particles having
a volume average particle diameter of 50 nm or more and 300 nm or less and adhering
to a surface of the carrier body at a ratio of 0.001 parts by mass or more and 0.100
parts by mass or less with respect to 10 parts by mass of the carrier body.
[0004] JP-A-2008-304745 discloses an electrostatic charge image developer containing a carrier having a resin
coating layer on a core material and a toner. The carrier contains 7 to 35% by mass
of silica or carbon black in the resin coating layer. A weight average molecular weight
of a resin to be coated is 300,000 to 600,000. The toner contains external additive
fine particles having a number average particle diameter of 70 nm to 300 nm.
Summary
[0005] An object of the present disclosure is to provide an electrostatic charge image developer
including a toner containing a toner particle and an external additive, and a carrier
having a magnetic particle and a resin layer. The electrostatic charge image developer
prevents occurrence of image omission as compared to an electrostatic charge image
developer in which a surface property index value of the toner particle is less than
2.0 or more than 2.8, or an electrostatic charge image developer in which a ratio
B/A of a surface area B to a planar view area A is less than 1.020 or more than 1.100,
in which the planar view area A and the surface area B are obtained by three-dimensional
analysis of the surface of the carrier.
<1> According to an aspect of the present disclosure, there is provided an electrostatic
charge image developer containing:
a toner containing a toner particle and an external additive; and
a carrier containing a magnetic particle and a resin layer covering the magnetic particle,
in which
the toner particle has a surface property index value of 2.0 or more and 2.8 or less;
and
the carrier has a surface having a ratio B/A of a surface area B to a planar view
area A of 1.020 or more and 1.100 or less, the planar view area A and the surface
area B being obtained by three-dimensional analysis of the surface of the carrier.
<2> In the electrostatic charge image developer according to <1>, in which
the surface property index value is 2.1 or more and 2.6 or less.
<3> In the electrostatic charge image developer according to <1> or <2>, in which
the ratio B/A is 1.040 or more and 1.080 or less.
<4> In the electrostatic charge image developer according to any one of <1> to <3>,
in which
the resin layer contains inorganic particles having an average particle diameter of
5 nm or more and 90 nm or less.
<5> In the electrostatic charge image developer according to <4>, in which
the average particle diameter of the inorganic particles is 5 nm or more and 70 nm
or less.
<6> In the electrostatic charge image developer according to any one of <1> to <5>,
in which
the resin layer has an average thickness of 0.6 µm or more and 1.4 µm or less.
<7> In the electrostatic charge image developer according to <6>, in which
the average thickness of the resin layer is 0.8 µm or more and 1.2 µm or less.
<8> In the electrostatic charge image developer according to any one of <1> to <7>,
in which
the toner has a storage elastic modulus G' of 6.0 × 108 Pa or more and 1.5 × 109 Pa or less at a temperature of 30°C in dynamic viscoelasticity measurement.
<9> In the electrostatic charge image developer according to <8>, in which
the storage elastic modulus G' is 8.0 × 108 Pa or more and 1.2 × 109 Pa or less.
<10> In the electrostatic charge image developer according to any one of <1> to <9>,
in which
the resin layer contains silica particles, and has a silicon element concentration
of more than 2 atomic% and less than 20 atomic% at the surface of the carrier, the
silicon element concentration being determined by X-ray photoelectron spectroscopy.
<11> In the electrostatic charge image developer according to any one of <1> to <10>,
in which
the resin layer contains a resin having a weight average molecular weight of less
than 300,000.
<12> According to an aspect of the present disclosure, there is provided a process
cartridge configured to be attached to and detached from an image forming apparatus,
the process cartridge including:
a developing unit that accommodates the electrostatic charge image developer according
to any one of <1> to <11>, and is configured to develop an electrostatic charge image
as a toner image by the electrostatic charge image developer, the electrostatic charge
image being formed on a surface of an image carrier.
<13> According to an aspect of the present disclosure, there is provided an image
forming apparatus including:
an image carrier;
a charging unit configured to charge a surface of the image carrier;
an electrostatic charge image forming unit configured to form an electrostatic charge
image on the surface of the image carrier charged;
a developing unit that accommodates the electrostatic charge image developer according
to any one of <1> to <11>, and is configured to develop the electrostatic charge image
as a toner image by the electrostatic charge image developer;
a transfer unit configured to transfer the toner image formed on the surface of the
image carrier to a surface of a recording medium; and
a fixing unit configured to fix the toner image transferred to the surface of the
recording medium.
<14> According to an aspect of the present disclosure, there is provided an image
forming method including:
charging a surface of an image carrier;
forming an electrostatic charge image on the surface of the image carrier charged;
developing the electrostatic charge image as a toner image by the electrostatic charge
image developer according to any one of <1> to <11>;
transferring the toner image formed on the surface of the image carrier to a surface
of a recording medium; and
fixing the toner image transferred to the surface of the recording medium.
[0006] According to the aspect of <1>, there is provided an electrostatic charge image developer
that prevents occurrence of image omission as compared to the electrostatic charge
image developer in which the surface property index value of the toner particle is
less than 2.0 or more than 2.8, or an electrostatic charge image developer in which
the ratio B/A of the surface area B to the planar view area A is less than 1.020 or
more than 1.100, in which the planar view area A and the surface area B are obtained
by three-dimensional analysis of the surface of the carrier.
[0007] According to the aspect of <2>, there is provided an electrostatic charge image developer
that prevents the occurrence of image omission as compared to the electrostatic charge
image developer in which the surface property index value of the toner particle is
less than 2.1 or more than 2.6.
[0008] According to the aspect of <3>, there is provided an electrostatic charge image developer
that prevents the occurrence of image omission as compared to the electrostatic charge
image developer in which the ratio B/A of the surface area B to the planar view area
A is less than 1.040 or more than 1.080, in which the planar view area A and the surface
area B are obtained by three-dimensional analysis of the surface of the carrier.
[0009] According to the aspect of <4>, there is provided an electrostatic charge image developer
that prevents the occurrence of image omission as compared to the electrostatic charge
image developer in which the average particle diameter of the inorganic particles
contained in the resin layer of the carrier is less than 5 nm or more than 90 nm.
[0010] According to the aspect of <4>, there is provided an electrostatic charge image developer
that prevents the occurrence of image omission as compared to the electrostatic charge
image developer in which the average particle diameter of the inorganic particles
contained in the resin layer of the carrier is less than 5 nm or more than 70 nm.
[0011] According to the aspect of <6>, there is provided an electrostatic charge image developer
that prevents the occurrence of image omission as compared to the electrostatic charge
image developer in which the average thickness of the resin layer of the carrier is
less than 0.6 µm or more than 1.4 µm.
[0012] According to the aspect of <7>, there is provided an electrostatic charge image developer
that prevents the occurrence of image omission as compared to the electrostatic charge
image developer in which the average thickness of the resin layer of the carrier is
less than 0.8 µm or more than 1.2 µm.
[0013] According to the aspect of <8>, there is provided an electrostatic charge image developer
that prevents the occurrence of image omission as compared to the electrostatic charge
image developer in which the storage elastic modulus G' of the toner is less than
6.0 × 10
8 Pa or more than 1.5 × 10
9 Pa.
[0014] According to the aspect of <9>, there is provided an electrostatic charge image developer
that prevents the occurrence of image omission as compared to the electrostatic charge
image developer in which the storage elastic modulus G' of the toner is less than
8.0 × 10
8 Pa or more than 1.2 × 10
9 Pa.
[0015] According to the aspect of <10>, there is provided an electrostatic charge image
developer that prevents the occurrence of image omission as compared to the electrostatic
charge image developer in which the silicon element concentration on the carrier surface
is 2 atomic% or less or 20 atomic% or more.
[0016] According to the aspect of <11>, there is provided an electrostatic charge image
developer that prevents the occurrence of image omission as compared to the electrostatic
charge image developer in which the weight average molecular weight of the resin contained
in the resin layer of the carrier is 300,000 or more.
[0017] According to the aspect of <12>, there is provided a process cartridge that prevents
occurrence of image omission as compared to a process cartridge that accommodates
the electrostatic charge image developer in which the surface property index value
of the toner particle is less than 2.0 or more than 2.8, or an electrostatic charge
image developer in which the ratio B/A of the surface area B to the planar view area
A is less than 1.020 or more than 1.100, in which the planar view area A and the surface
area B are obtained by three-dimensional analysis of the surface of the carrier.
[0018] According to the aspect of <13>, there is provided an image forming apparatus that
prevents occurrence of image omission as compared to an image forming apparatus that
accommodates the electrostatic charge image developer in which the surface property
index value of toner particle is less than 2.0 or more than 2.8, or the electrostatic
charge image developer in which the ratio B/A of the surface area B to the planar
view area A is less than 1.020 or more than 1.100, in which the planar view area A
and the surface area B are obtained by three-dimensional analysis of the surface of
the carrier.
[0019] According to the aspect of <14>, there is provided an image forming method that prevents
occurrence of image omission as compared to an image forming method of accommodating
the electrostatic charge image developer in which the surface property index value
of toner particle is less than 2.0 or more than 2.8, or the electrostatic charge image
developer in which the ratio B/A of the surface area B to the planar view area A is
less than 1.020 or more than 1.100, in which the planar view area A and the surface
area B are obtained by three-dimensional analysis of the surface of the carrier.
Brief Description of the Drawings
[0020] Exemplary embodiment(s) of the present invention will be described in detail based
on the following figures, wherein:
Fig. 1 is a schematic configuration diagram illustrating an example of an image forming
apparatus according to the present exemplary embodiment; and
Fig. 2 is a schematic configuration diagram illustrating an example of a process cartridge
attached to and detached from the image forming apparatus according to the present
exemplary embodiment.
Detailed Description
[0021] Hereinafter, an exemplary embodiment according to the present disclosure will be
described. These descriptions and Examples illustrate the exemplary embodiment, and
do not limit the scope of the exemplary embodiment.
[0022] In the present disclosure, a numerical range indicated by "to" indicates a range
including numerical values before and after "to" as a minimum value and a maximum
value, respectively.
[0023] In numerical ranges described in stages in the present disclosure, an upper limit
or a lower limit described in one numerical range may be replaced with an upper limit
or a lower limit of a numerical range described in other stages. In the numerical
ranges described in the present disclosure, the upper limit or the lower limit of
the numerical range may be replaced with values shown in Examples.
[0024] In the present disclosure, the term "step" indicates not only an independent step,
and even when a step cannot be clearly distinguished from other steps, this step is
included in the term "step" as long as an intended purpose of the step is achieved.
[0025] When an exemplary embodiment is described in the present disclosure with reference
to the drawings, a configuration of the exemplary embodiment is not limited to a configuration
illustrated in the drawings. Sizes of members in each drawing are conceptual, and
a relative size relation between the members is not limited thereto.
[0026] In the present disclosure, each component may include plural corresponding substances.
In the present disclosure, in a case of referring to an amount of each component in
a composition, when there are plural substances corresponding to each component in
the composition, unless otherwise specified, the amount of each component in a composition
refers to a total amount of the plural substances present in the composition.
[0027] In the present disclosure, plural kinds of particles corresponding to each component
may be selected. When there are plural kinds of particles corresponding to each component
in the composition, unless otherwise specified, a particle diameter of each component
means a value for a mixture of the plural kinds of particles present in the composition.
[0028] In the present disclosure, the term "(meth)acryl" means at least one of acryl and
methacryl, and the term "(meth)acrylate" means at least one of acrylate and methacrylate.
In the present disclosure, the term "electrostatic charge image developing toner"
is also referred to as a "toner". The term "electrostatic charge image developing
carrier" is also referred to as a "carrier". The term "electrostatic charge image
developer" is also referred to as a "developer".
<Electrostatic Charge Image Developer>
[0029] A developer according to the present exemplary embodiment is a two-component developer
including a toner and a carrier.
[0030] In the present exemplary embodiment, a mixing ratio (mass ratio) of the toner and
the carrier is preferably toner: carrier = 1: 100 to 30: 100, more preferably 3: 100
to 20: 100, and still more preferably 5: 100 to 15: 100.
[0031] The toner according to the present exemplary embodiment includes a toner particle
and an external additive, and a surface property index value of the toner particle
is 2.0 or more and 2.8 or less.
[0032] In the present exemplary embodiment, the surface property index value of the toner
particle is an index for evaluating ruggedness of a toner particle surface. As the
surface property index value approaches 1.0, the toner particle surface tends to be
smooth. As the surface property index value moves away from 1.0, the toner particle
surface tends to be rough. The surface property index value of the toner particle
is calculated from the following Formulas 1 and 2.
[0033] Formula 1: Surface property index value of the toner particle = specific surface
area measured value of the toner particle/specific surface area calculation value
of the toner particle
[0034] Formula 2: Specific surface area calculation value of toner particle = sum of surface
areas calculated from equivalent circle diameters of 4500 toner particles in flow
particle image analysis/(density of the toner particle × sum of volumes calculated
from equivalent circle diameters of 4500 toner particles in flow particle image analysis)
[0035] The specific surface area measured value of the toner particle is obtained from a
nitrogen adsorption amount by BET one-point method (equilibrium relative pressure:
0.3).
[0036] A flow particle image analysis apparatus FPIA-3000 manufactured by Sysmex Corporation
is used for the flow particle image analysis performed to determine the specific surface
area calculation value of the toner particle. The FPIA-3000 captures the toner particle,
performs two-dimensional image processing, and calculates the equivalent circle diameter
from a projection area. Assuming that the toner particle is a true sphere, a surface
area and a volume of the true sphere are calculated from the equivalent circle diameter.
A sum of the surface areas and a sum of the volumes are calculated from equivalent
circle diameters of 4,500 toner particles.
[0037] Density of the toner particle is measured by measuring true density in accordance
with 8.2.2 of JIS K0061: 2001 using a Gulysack type specific gravity bottle.
[0038] The toner particle to be subjected to the measurement is a particle obtained by removing
the external additive from the toner. Removal of the external additive from a surface
of the toner is performed by repeating ultrasonic treatment in water containing a
surfactant and washing with water.
[0039] The carrier in the present exemplary embodiment is a resin-coated carrier including
a magnetic particle and a resin layer covering the magnetic particle. In the carrier
according to the present exemplary embodiment, a ratio B/A of the surface area B to
the planar view area A is 1.020 or more and 1.100 or less. The planar view area A
and the surface area Bare obtained by three-dimensional analysis of the surface of
the carrier.
[0040] In the present exemplary embodiment, the ratio B/A is an index for evaluating ruggedness
of the carrier surface. The ratio B/A is determined by the following method.
[0041] As an apparatus for three-dimensional analysis of the carrier surface, a scanning
electron microscope including four secondary electron detectors (for example, electron
beam three-dimensional roughness analysis apparatus ERA-8900FE, manufactured by Elionix
Inc.) is used, and analysis is performed as follows.
[0042] The surface of one carrier particle is enlarged 5,000 times. A distance between two
measurement points is set to 0.06 µm. The measurement point is set to 400 points in
a long side direction and 300 points in a short side direction. A region of 24 µm
× 18 µm is measured to obtain three-dimensional image data.
[0043] For the three-dimensional image data, a limit wavelength of a spline filter (a frequency
selection filter using a spline function) is set to 12 µm to remove wavelengths having
a period of 12 µm or more. Accordingly, a waviness component of the carrier surface
is removed and a roughness component is extracted to obtain a roughness curve.
[0044] Furthermore, a cutoff value of a Gaussian high-pass filter (a frequency selection
filter using a Gaussian function) is set to 2.0 µm to remove wavelengths having a
period of 2.0 µm or more. Accordingly, wavelengths corresponding to convex portions
of the magnetic particle exposed on the carrier surface are removed from the roughness
curve after the spline filtering to obtain a roughness curve from which a wavelength
component having a period of 2.0 µm or more is removed.
[0045] From three-dimensional roughness curve data after the filtering, the surface area
B (µm
2) of a region, which is a central portion of 12 µm × 12 µm, (the plan view area A
= 144 µm
2) is obtained, so as to obtain the ratio B/A. The ratio B/A is calculated for each
of 100 carriers and arithmetically averaged.
[0046] The electrostatic charge image developer according to the present exemplary embodiment
prevents occurrence of image omission. A mechanism thereof is presumed as follows.
[0047] One of causes of the occurrence of the image omission is that the toner remains adhering
to a surface of an image carrier and the toner does not move to an intermediate transfer
member or a recording medium. Therefore, as one of ways for reducing the occurrence
of the image omission, it is possible to prevent the strong adhesion of the toner
to the surface of the image carrier. As one of ways for preventing the strong adhesion
of the toner to the surface of the image carrier, there is a way in which an appropriate
amount of the external additive is present at the toner particle surface.
[0048] When the developer is stirred in the developing device, the external additive of
the toner moves between the toner and the carrier. When the external additive transferred
from the toner to the carrier remains to be attached to the carrier surface, an amount
of the external additive present at the toner particle surface decreases, and the
toner tends to be strongly attached to the surface of the image carrier. This phenomenon
is remarkable when image formation having a low image density is repeated.
[0049] In the developer according to the present exemplary embodiment, the surface property
index value of the toner particle is 2.0 or more, and the ratio B/A of the carrier
surface is 1.020 or more. That is, in the developer according to the present exemplary
embodiment, a height difference of the ruggedness of the toner particle surface is
relatively large, and the number of the ruggedness of the carrier surface is relatively
large or the height difference of the ruggedness of the carrier surface is relatively
large. It is presumed that when the developer according to the present exemplary embodiment
having the surface characteristic is stirred in the developing device, the external
additive is likely to remain in a concave portion of the toner particle surface, the
external additive moves between a convex portion of the toner particle surface and
a convex portion of the carrier surface, and the amount of the external additive present
in the toner particle surface is maintained in an appropriate range.
[0050] When the surface property index value of the toner particle is less than 2.0, it
is presumed that the toner particle surface is excessively flat, a contact surface
of the toner particle with respect to the carrier is large, and as a result, a transfer
amount of the external additive from the toner to the carrier is large, or the external
additive is easily embedded in the toner particle.
[0051] When the ratio B/A of the carrier surface is less than 1.020, it is presumed that
the carrier surface is excessively flat, and a contact surface of the carrier with
the respect to the toner is large, and as a result, the transfer amount of the external
additive from the toner to the carrier is large, or the external additive is easily
embedded in the toner particle.
[0052] In either case, it is presumed that the amount of the external additive exposed in
the toner particle surface decreases, the toner strongly adheres to the surface of
the image carrier, and as a result, the image omission occurs.
[0053] From a viewpoint of preventing the above-described phenomenon, in the developer according
to the present exemplary embodiment, the surface property index value of the toner
particle is 2.0 or more, and the ratio B/A of the carrier surface is 1.020 or more.
[0054] On the other hand, when the surface property index value of the toner particle is
more than 2.8, it is presumed that the height difference of the ruggedness of the
toner particle surface is excessively large, the external additive is unevenly distributed
in the concave portion of the toner particle, the amount of the external additive
in the convex portion of the toner particle decreases, the toner strongly adheres
to the surface of the image carrier via the convex portion of the toner particle,
and as a result, the image omission occurs.
[0055] Further, when the ratio B/A of the carrier surface is more than 1.100, it is presumed
that the number of ruggedness in the carrier surface is excessively large or the height
difference of the ruggedness in the carrier surface is excessively large, the amount
of the external additive entering the concave portions of the carrier surface is increased,
the amount of the external additive returned from the carrier to the toner decreases,
the amount of the external additive present in the toner particle surface decreases,
and as a result, the image omission occurs.
[0056] For the above reasons, the surface property index value of the toner particle is
2.0 or more and 2.8 or less, preferably 2.1 or more and 2.7 or less, more preferably
2.1 or more and 2.6 or less, still more preferably 2.2 or more and 2.6 or less, and
yet still more preferably 2.3 or more and 2.5 or less.
[0057] For the above reasons, the ratio B/A of the carrier surface is 1.020 or more and
1.100 or less, preferably 1.030 or more and 1.090 or less, more preferably 1.040 or
more and 1.080 or less, and still more preferably 1.040 or more and 1.070 or less.
[0058] The surface property index value of the toner particle can be controlled, for example,
by adjusting a temperature or pH at the time of fusing and coalescing aggregated particles
including the resin particles when the toner particle is produced by an aggregation
and coalescence method.
[0059] The ratio B/A of the carrier surface can be controlled by manufacturing conditions
for forming the resin layer. Details will be described later.
[0060] The toner and the carrier according to the present exemplary embodiment will be described
in detail.
<Toner>
[0061] The toner preferably has a storage elastic modulus G' of 6.0 × 10
8 Pa or more and 1.5 × 10
9 Pa or less at a temperature of 30°C in dynamic viscoelasticity measurement.
[0062] The storage elastic modulus G' means an elastic response component of an elastic
modulus in a relationship a stress generated with respect to strain when deformed.
The toner tends to be harder as a value of the storage elastic modulus G' is larger.
[0063] The temperature of 30°C is a temperature at which phase separation between an amorphous
polyester resin and a crystalline polyester resin is maintained when the crystalline
polyester resin is used. The temperature at which the hardness of the toner is evaluated
in the present exemplary embodiment is specified to be 30°C.
[0064] When the storage elastic modulus G' of the toner at a temperature of 30°C is 6.0
× 10
8 Pa or more, the external additive is less likely to be embedded in the toner particle.
As a result, since the external additive is held in the toner particle surface, the
toner is prevented from being strongly attached to a photoreceptor, and therefore
the image omission is less likely to occur.
[0065] When the storage elastic modulus G' of the toner at the temperature of 30°C is 1.5
× 10
9 Pa or less, the external additive is less likely to be detached from the toner particle.
As a result, since the external additive is held in the toner particle surface, the
toner is prevented from being strongly attached to the photoreceptor, and therefore
the image omission is less likely to occur.
[0066] From the above viewpoint, the storage elastic modulus G' of the toner at the temperature
of 30°C is more preferably from 7.0 × 10
8 Pa or more and 1.4 × 10
9 Pa or less, and still more preferably 8.0 × 10
8 Pa or more and 1.2 × 10
9 Pa or less.
[0067] The storage elastic modulus G' of the toner can be controlled by an amount ratio
between the amorphous resin and the crystalline resin contained in the toner. The
storage elastic modulus G' of the toner tends to decrease as the amount of the crystalline
resin increases.
[0068] The storage elastic modulus G' of the toner is determined by performing the dynamic
viscoelasticity measurement as follows.
[0069] Sample: Using a press molding machine, 0.25 g of toner is tablet-molded into a disk
having a diameter of 8 mm and a thickness of 4 mm in an environment of 25°C ± 3°C.
Measurement apparatus: Rheometer ARES, TA Instruments
Measurement jig: 8 mm parallel plate
Frequency: 1 Hz
Angular frequency: 6.28 rad/sec
Strain: 0.03% to 20% (automatic control)
Heat history: A sample is adhered to a parallel plate whose temperature is adjusted
to 130°C, cooled to a temperature of 30°C at a cooling rate of 1°C/min, held at a
temperature of 30°C for 30 minutes, and then measured at the temperature of 30°C.
[Toner particle]
[0070] The toner particle contains, for example, a binder resin, and if necessary, a colorant,
a mold releasing agent, and other additives.
-Binder Resin-
[0071] Examples of the binder resin include vinyl-based resins made of a homopolymer of
monomers such as styrenes (such as styrene, parachlorostyrene, and α-methylstyrene),
(meth)acrylates (such as methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl
acrylate, lauryl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate,
n-propyl methacrylate, lauryl methacrylate, and 2-ethylhexyl methacrylate), ethylenically
unsaturated nitriles (such as acrylonitrile and methacrylonitrile), vinyl ethers (such
as vinyl methyl ether and vinyl isobutyl ether), vinyl ketones (such as vinyl methyl
ketone, vinyl ethyl ketone, and vinyl isopropenyl ketone), and olefins (such as ethylene,
propylene, and butadiene), or a copolymer obtained by combining two or more kinds
of these monomers.
[0072] Examples of the binder resin include non-vinyl-based resins such as an epoxy resin,
a polyester resin, a polyurethane resin, a polyamide resin, a cellulose resin, a polyether
resin, and a modified resin, a mixture of the non-vinyl-based resin and the vinyl-based
resin, or a graft polymer obtained by polymerizing a vinyl-based monomer in the presence
of these non-vinyl-based resins.
[0073] These binder resins may be used alone or in combination of two or more kinds thereof.
[0074] The binder resin is suitably a polyester resin.
[0075] Examples of the polyester resin include a known amorphous polyester resin. As the
polyester resin, the crystalline polyester resin may be used in combination with the
amorphous polyester resin. However, the crystalline polyester resin may be used in
a range in which a content thereof is 2 mass% or more and 40 mass% or less (preferably
2 mass% or more and 20 mass% or less) with respect to a total amount of the binder
resin.
[0076] "Crystalline" of a resin means that the resin has a clear endothermic peak rather
than a stepwise endothermic change in differential scanning calorimetry (DSC), and
specifically means that a half width of the endothermic peak when measured at a heating
rate of 10 (°C/min) is within 10°C.
[0077] On the other hand, "amorphous" of a resin means that a half width exceeds 10°C, a
stepwise change in an endothermic amount is exhibited, or a clear endothermic peak
is not observed.
• Amorphous Polyester Resin
[0078] Examples of the amorphous polyester resin include a condensed polymer of polycarboxylic
acid and polyhydric alcohol. As the amorphous polyester resin, a commercially available
product may be used, or a synthetic resin may be used.
[0079] Examples of the polycarboxylic acid include aliphatic dicarboxylic acids (such as
oxalic acid, malonic acid, maleic acid, fumaric acid, citraconic acid, itaconic acid,
glutaconic acid, succinic acid, alkenyl succinic acid, adipic acid, and sebacic acid),
alicyclic dicarboxylic acids (such as cyclohexanedicarboxylic acid), aromatic dicarboxylic
acids (such as terephthalic acid, isophthalic acid, phthalic acid, and naphthalenedicarboxylic
acid), anhydrides thereof, and lower (for example, having 1 or more and 5 or less
carbon atoms) alkyl esters thereof. Among these, the polycarboxylic acid is preferably,
for example, an aromatic dicarboxylic acid.
[0080] As the polycarboxylic acid, a trivalent or higher carboxylic acid having a crosslinked
structure or a branched structure may be used in combination with the dicarboxylic
acid. Examples of the trivalent or higher carboxylic acid include trimellitic acid,
pyromellitic acid, anhydrides thereof, and lower (for example, having 1 or more and
5 or less carbon atoms) alkyl esters thereof.
[0081] The polycarboxylic acid may be used alone or in combination of two or more kinds
thereof.
[0082] Examples of the polyhydric alcohol include aliphatic diols (such as ethylene glycol,
diethylene glycol, triethylene glycol, propylene glycol, butanediol, hexanediol, and
neopentyl glycol), alicyclic diols (such as cyclohexanediol, cyclohexanedimethanol,
and hydrogenated bisphenol A), and aromatic diols (such as an ethylene oxide adduct
of bisphenol A and a propylene oxide adduct of bisphenol A). Among these, the polyhydric
alcohol is preferably, for example, an aromatic diol and an alicyclic diol, and more
preferably an aromatic diol.
[0083] As the polyhydric alcohol, a trihydric or higher polyhydric alcohol having a cross-linked
structure or a branched structure may be used in combination with a diol. Examples
of the trihydric or higher polyhydric alcohol include glycerin, trimethylolpropane,
and pentaerythritol.
[0084] The polyhydric alcohol may be used alone or in combination of two or more kinds thereof.
[0085] A glass transition temperature (Tg) of the amorphous polyester resin is preferably
50°C or higher and 80°C or lower, and more preferably 50°C or higher and 65°C or lower.
[0086] The glass transition temperature is obtained from a DSC curve obtained by the differential
scanning calorimetry (DSC), and is more specifically obtained by an "extrapolated
glass transition onset temperature" described in a method for obtaining the glass
transition temperature of JIS K 7121:1987 "Method for measuring transition temperature
of plastics".
[0087] A weight average molecular weight (Mw) of the amorphous polyester resin is preferably
5,000 or more and 1,000,000 or less, and more preferably 7,000 or more and 500,000
or less.
[0088] A number average molecular weight (Mn) of the amorphous polyester resin is preferably
2,000 or more and 100,000 or less.
[0089] A molecular weight distribution Mw/Mn of the amorphous polyester resin is preferably
1.5 or more and 100 or less, and more preferably 2 or more and 60 or less.
[0090] The weight average molecular weight and the number average molecular weight are measured
by gel permeation chromatography (GPC). Molecular weight measurement by GPC is performed
by using a GPC•HLC-8120GPC manufactured by Tosoh Corporation as a measurement apparatus,
using a column TSKgel SuperHM-M (15 cm) manufactured by Tosoh Corporation, and using
a THF solvent. The weight average molecular weight and the number average molecular
weight are calculated from measurement results using a molecular weight calibration
curve prepared using a monodispersed polystyrene standard sample.
[0091] The amorphous polyester resin is obtained by a known production method. Specifically,
for example, the amorphous polyester resin is obtained by a method in which a polymerization
temperature is set to 180°C or higher and 230°C or lower, the pressure inside a reaction
system is reduced as necessary, and reaction is performed while removing water or
alcohols generated during condensation.
[0092] When a raw material monomer is not dissolved or compatible at a reaction temperature,
a solvent having a high boiling point may be added as a dissolution aid to dissolve
the monomer. In this case, a polycondensation reaction is carried out while distilling
off the dissolution aid. When there is a monomer having poor compatibility in a copolymerization
reaction, the monomer having the poor compatibility may be previously condensed with
an acid or alcohol to be polycondensed with the monomer, and then the obtained product
may be polycondensed with a main component.
• Crystalline Polyester Resin
[0093] Examples of the crystalline polyester resin include a polycondensate of a polycarboxylic
acid and a polyhydric alcohol. As the crystalline polyester resin, a commercially
available product may be used, or a synthetic resin may be used.
[0094] Here, in order to easily form a crystal structure, the crystalline polyester resin
is preferably a polycondensate using a linear aliphatic polymerizable monomer rather
than a polymerizable monomer having an aromatic ring.
[0095] Examples of the polycarboxylic acid include aliphatic dicarboxylic acids (such as
oxalic acid, succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid,
sebacic acid, 1,9-nonandicarboxylic acid, 1,10-decandicarboxylic acid, 1,12-dodecanediocarboxylic
acid, 1,14 -tetradecanedicarboxylic acid, and 1,18-octadecanedicarboxylic acid), aromatic
dicarboxylic acids (such as dibasic acids such as phthalic acid, isophthalic acid,
terephthalic acid, and naphthalene-2,6-dicarboxylic acid), anhydrides thereof, and
lower (for example, having 1 or more and 5 or less carbon atoms) alkyl esters thereof.
[0096] As the polycarboxylic acid, a trivalent or higher carboxylic acid having a crosslinked
structure or a branched structure may be used in combination with the dicarboxylic
acid. Examples of the trivalent carboxylic acid include aromatic carboxylic acids
(such as 1,2,3-benzenetricarboxylic acid, 1,2,4-benzenetricarboxylic acid, and 1,2,4-naphthalenetricarboxylic
acid), anhydrides thereof, and lower (for example, having 1 or more and 5 or less
carbon atoms) alkyl esters thereof.
[0097] As the polycarboxylic acid, a dicarboxylic acid having a sulfonic acid group and
a dicarboxylic acid having an ethylenic double bond may be used in combination with
these dicarboxylic acids.
[0098] The polycarboxylic acid may be used alone or in combination of two or more kinds
thereof.
[0099] Examples of the polyhydric alcohol include aliphatic diols (such as linear aliphatic
diols having 7 or more and 20 or less carbon atoms in the main chain part). Examples
of the aliphatic diol include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol,
1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol,
1,11-undecanediol, 1,12-dodecanediol, 1,13-tridecandiol, 1,14-tetradecanediol, 1,18-octadecanediol,
and 1,20-eicosanediol. Among these, the aliphatic diol is preferably 1,8-octanediol,
1,9-nonanediol, or 1,10-decanediol.
[0100] As the polyhydric alcohol, a trihydric or higher alcohol having a crosslinked structure
or a branched structure may be used in combination with the diol. Examples of the
trihydric or higher alcohol include glycerin, trimethylolethane, trimethylolpropane,
and pentaerythritol.
[0101] The polyhydric alcohol may be used alone or in combination of two or more kinds thereof.
[0102] Here, the polyhydric alcohol preferably has an aliphatic diol content of 80 mol%
or more, and preferably 90 mol% or more.
[0103] A melting temperature of the crystalline polyester resin is preferably 50°C or higher
and 100°C or lower, more preferably 55°C or higher and 90°C or lower, and still more
preferably 60°C or higher and 85°C or lower.
[0104] The melting temperature is obtained from a DSC curve obtained by the differential
scanning calorimetry (DSC) according to the "melting peak temperature" described in
a method for obtaining the melting temperature of JIS K7121: 1987 "Method for measuring
transition temperature of plastics".
[0105] A weight average molecular weight (Mw) of the crystalline polyester resin is preferably
6,000 or more and 35,000 or less.
[0106] The crystalline polyester resin can be obtained by, for example, a known production
method same as the amorphous polyester resin.
[0107] A content of the binder resin is preferably 40 mass% or more and 95 mass% or less,
more preferably 50 mass% or more and 90 mass% or less, and still more preferably 60
mass% or more and 85 mass% or less with respect to a total amount of the toner particle.
-Colorant-
[0108] Examples of the colorant include pigments such as Carbon Black, Chrome Yellow, Hansa
Yellow, Benzidine Yellow, Threne Yellow, Quinoline Yellow, Pigment Yellow, Permanent
Orange GTR, Pyrazolone Orange, Vulcan Orange, Watchung Red, Permanent Red, Brilliant
Carmine 3B, Brilliant Carmine 6B, DuPont Oil Red, Pyrazolone Red, Lithol Red, Rhodamine
B Lake, Lake Red C, Pigment Red, Rose Bengal, Aniline Blue, Ultramarine Blue, Calco
Oil Blue, Methylene Blue Chloride, Phthalocyanine Blue, Pigment Blue, Phthalocyanine
Green, and Malachite Green Oxalate; and acridine dyes, xanthene dyes, azo dyes, benzoquinone
dyes, azine dyes, anthraquinone dyes, thioindigo dyes, dioxazine dyes, thiazine dyes,
azomethine dyes, indigo dyes, phthalocyanine dyes, aniline black dyes, polymethine
dyes, triphenylmethane dyes, diphenylmethane dyes, and thiazole dyes.
[0109] The colorant may be used alone or in combination of two or more kinds thereof.
[0110] As the colorant, a surface-treated colorant may be used as necessary, or the colorant
may be used in combination with a dispersant. Plural kinds of colorants may be used
in combination.
[0111] A content of the colorant is preferably 1 mass% or more and 30 mass% or less, and
more preferably 3 mass% or more and 15 mass% or less, with respect to the total amount
of the toner particle.
-Mold Releasing Agent-
[0112] Examples of the mold releasing agent include hydrocarbon wax, natural wax such as
carnauba wax, rice wax, and candelilla wax, synthetic or mineral/petroleum wax such
as montan wax, and ester wax such as fatty acid ester and montanic acid ester. The
mold releasing agent is not limited thereto.
[0113] The melting temperature of the mold releasing agent is preferably 50°C or higher
and 110°C or lower, and more preferably 60°C or higher and 100°C or lower.
[0114] The melting temperature is obtained from a DSC curve obtained by the differential
scanning calorimetry (DSC) according to the "melting peak temperature" described in
a method for obtaining the melting temperature of JIS K7121: 1987 "Method for measuring
transition temperature of plastics".
[0115] A content of the mold releasing agent is preferably 1 mass% or more and 20 mass%
or less, and more preferably 5 mass% or more and 15 mass% or less, with respect to
the total amount of the toner particle.
-Other Additives-
[0116] Examples of the other additives include known additives such as a magnetic body,
an electrostatic charge control agent, and an inorganic powder. These additives are
contained in the toner particle as internal additives.
-Properties of Toner particle-
[0117] The toner particle may be a toner particle having a single layer structure, or may
be a toner particle having a so-called core-shell structure made of a core portion
(core particles) and a coating layer (shell layer) coating the core portion.
[0118] The toner particle having a core-shell structure may be made of, for example, a core
portion made of a binder resin and, if necessary, other additives such as a colorant
and a mold releasing agent, and a coating layer made of a binder resin.
[0119] A volume average particle diameter (D50v) of the toner particle is preferably 2 µm
or more and 10 µm or less, and more preferably 4 µm or more and 8 µm or less.
[0120] The volume average particle diameter (D50v) of the toner particle is measured using
Coulter Multisizer II (manufactured by Beckman Coulter, Inc.) and the electrolytic
solution is ISOTON-II (manufactured by Beckman Coulter, Inc.).
[0121] During measurement, 0.5 mg or more and 50 mg or less of a measurement sample is added
to 2 ml of a 5 mass% aqueous solution of a surfactant (preferably sodium alkylbenzene
sulfonate) as a dispersant. The obtained mixture is added to 100 ml or more and 150
ml or less of the electrolytic solution.
[0122] The electrolytic solution in which the sample is suspended is dispersed for 1 minute
with an ultrasonic disperser, and the particle size distribution of particles having
a particle diameter in a range of 2 µm or more and 60 µm or less is measured by the
Coulter Multisizer II using an aperture having an aperture diameter of 100 µm. The
number of the particles to be sampled is 50,000. A divided particle size range (channel)
is set and a volume-based particle size distribution is obtained. Then, a cumulative
distribution is drawn from a small particle diameter side and a particle diameter
corresponding to the cumulative percentage of 50% with respect to all the particles
is the volume average particle diameter D50v.
[0123] An average circularity of the toner particle is preferably 0.94 or more and 1.00
or less, and more preferably 0.95 or more and 0.98 or less.
[0124] The average circularity of the toner particle is obtained by (circle equivalent perimeter)/(perimeter)
[(perimeter of a circle having the same projection area as a particle image)/(perimeter
of the projected particle image)]. Specifically, the average circularity is a value
measured by the following method.
[0125] First, the toner particles to be measured are sucked and collected to form a flat
flow, and flash light is emitted instantly to capture a particle image as a still
image. The average circularity is obtained by a flow-type particle image analysis
apparatus (FPIA-3000 manufactured by Sysmex Corporation) that analyzes the particle
image. The number of samples for obtaining the average circularity is 4,500.
[0126] When the toner contains an external additive, the toner to be measured is dispersed
in water containing a surfactant, and then an ultrasonic treatment is performed to
obtain toner particle from which the external additive is removed.
[External Additive]
[0127] Examples of the external additive include inorganic particles. Examples of the inorganic
particles include SiO
2, TiO
2, Al
2O
3, CuO, ZnO, SnO
2, CeO
2, Fe
2O
3, MgO, BaO, CaO, K
2O, Na
2O, ZrO
2, CaO·SiO
2, K
2O·(TiO
2)
n, Al
2O
3·2SiO
2, CaCO
3, MgCO
3, BaSO
4, and MgSO
4.
[0128] The surfaces of the inorganic particles as the external additive are preferably subjected
to a hydrophobic treatment. The hydrophobic treatment is performed by, for example,
immersing the inorganic particles in a hydrophobic treatment agent. The hydrophobic
treatment agent is not particularly limited, and examples thereof include a silane
coupling agent, a silicone oil, a titanate coupling agent, and an aluminum coupling
agent. The hydrophobic treatment agent may be used alone or in combination of two
or more kinds thereof.
[0129] An amount of the hydrophobic treatment agent is generally, for example, 1 part by
mass or more and 10 parts by mass or less with respect to 100 parts by mass of the
inorganic particles.
[0130] Examples of the external additive also include resin particles (resin particles such
as polystyrene, polymethylmethacrylate, and melamine resin), and cleaning activators
(for example, metal salts of higher fatty acids represented by zinc stearate, and
particles of a fluoropolymer).
[0131] An amount of the external additive externally added is, for example, preferably 0.01
mass% or more and 5 mass% or less, and more preferably 0.01 mass% or more and 2.0
mass% or less, with respect to the toner particle.
[Method for Producing Toner]
[0132] The toner is obtained by preparing toner particle and then externally adding an external
additive to the toner particle.
[0133] The toner particles may be manufactured by either a dry production method (such as
a kneading pulverization method) or a wet production method (such as an aggregation
and coalescence method, a suspension polymerization method, and a dissolution suspension
method). These production methods are not particularly limited, and known production
methods are adopted. Among these, it is preferable to obtain the toner particles by
the aggregation and coalescence method.
[0134] Specifically, for example, when the toner particles are produced by an aggregation
and coalescence method,
the toner particles are produced through a step of preparing a resin particle dispersion
liquid in which resin particles to be a binder resin are dispersed (resin particle
dispersion liquid preparation step), a step of aggregating the resin particles (other
particles if necessary) in the resin particle dispersion liquid (in a dispersion liquid
after mixing with another particle dispersion liquid if necessary) to form aggregated
particles (aggregated particle forming step), and a step of heating an aggregated
particle dispersion liquid in which the aggregated particles are dispersed and fusing
and coalescing the aggregated particles to form the toner particles (fusion and coalescence
step).
[0135] Details of each step will be described below.
[0136] In the following description, a method for obtaining toner particles containing a
colorant and a mold releasing agent will be described, but the colorant and the mold
releasing agent are used as needed. Of course, other additives other than the colorant
and the mold releasing agent may be used.
-Resin Particle Dispersion Liquid Preparation Step-
[0137] Along with the resin particle dispersion liquid in which the resin particles to be
the binder resin are dispersed, for example, a colorant particle dispersion liquid
in which colorant particles are dispersed and a mold releasing agent particle dispersion
liquid in which mold releasing agent particles are dispersed are prepared.
[0138] The resin particle dispersion liquid is prepared by, for example, dispersing the
resin particles in a dispersion medium with a surfactant.
[0139] Examples of the dispersion medium used in the resin particle dispersion liquid include
an aqueous medium.
[0140] Examples of the aqueous medium include water such as distilled water and ion-exchanged
water, and alcohols. These media may be used alone or in combination of two or more
kinds thereof.
[0141] Examples of the surfactant include a sulfate-based, sulfonate-based, phosphate-based,
soap-based or other anionic surfactant, an amine salt type or quaternary ammonium
salt type cationic surfactant, and a polyethylene glycol-based, alkylphenol ethylene
oxide adduct-based, or polyhydric alcohol-based nonionic surfactant. Among these,
the anionic surfactant and the cationic surfactant are particularly mentioned. The
nonionic surfactant may be used in combination with the anionic surfactant or the
cationic surfactant.
[0142] The surfactant may be used alone or in combination of two or more kinds thereof.
[0143] Examples of a method for dispersing the resin particles in the dispersion medium
in the resin particle dispersion liquid include general dispersion methods such as
a rotary shear homogenizer, a ball mill having a medium, a sand mill, and a dyno mill.
Depending on a kind of the resin particles, the resin particles may be dispersed in
the dispersion medium by a phase inversion emulsification method. In the phase inversion
emulsification method, a resin to be dispersed is dissolved in a hydrophobic organic
solvent in which the resin is soluble, and a base is added to an organic continuous
phase (O phase) to neutralize the resin, and then an aqueous medium (W phase) is added
to perform phase inversion from W/O to O/W, and the resin is dispersed in the aqueous
medium in the form of particles.
[0144] A volume average particle diameter of the resin particles dispersed in the resin
particle dispersion liquid is, for example, preferably 0.01 µm or more and 1 µm or
less, more preferably 0.08 µm or more and 0.8 µm or less, and still more preferably
0.1 µm or more and 0.6 µm or less.
[0145] The volume average particle diameter D50v of the resin particles is calculated measured
by the volume-based particle size distribution obtained by measurement with a laser
diffraction type particle size distribution measuring device (for example, LA-700
manufactured by HORIBA, Ltd.). A divided particle size range is set and the volume-based
particle size distribution is obtained. Then, a cumulative distribution is drawn from
a small particle diameter side and as a volume average particle diameter D50v, which
is a particle diameter corresponding to the cumulative percentage of 50% with respect
to all the particles is the volume average particle diameter D50v. The volume average
particle diameters of the particles in other dispersion liquid are measured in the
same manner. The volume average particle diameters of the particles in another dispersion
liquid is measured in the same manner.
[0146] A content of the resin particles contained in the resin particle dispersion liquid
is preferably 5 mass% or more and 50 mass% or less, and more preferably 10 mass% or
more and 40 mass% or less.
[0147] Similar to the resin particle dispersion liquid, for example, the colorant particle
dispersion liquid and the mold releasing agent particle dispersion liquid are also
prepared. That is, the volume average particle diameter, dispersion medium, dispersion
method, and content of particles of the particles in the resin particle dispersion
liquid are the same for the colorant particles dispersed in the colorant particle
dispersion liquid and the mold releasing agent particles dispersed in the mold releasing
agent particle dispersion liquid.
-Aggregated Particle Forming Step-
[0148] Next, the resin particle dispersion liquid, the colorant particle dispersion liquid,
and the mold releasing agent particle dispersion liquid are mixed. Then, the aggregated
particles containing the resin particles, the colorant particles, and the mold releasing
agent particles having a diameter close to the diameter of the target toner particles
are formed by hetero-aggregating the resin particles, the colorant particles, and
the release agent particles in the mixed dispersion liquid.
[0149] Specifically, for example, the aggregated particles are formed by adding an aggregating
agent to the mixed dispersion liquid, adjusting the pH of the mixed dispersion liquid
to acidic (for example, a pH of 2 or more and 5 or less), adding a dispersion stabilizer
as necessary, then heating the mixed dispersion liquid to a temperature close to the
glass transition temperature (specifically, for example, the glass transition temperature
of the resin particles -30°C or higher and the glass transition temperature -10°C
or lower) of the resin particles, and aggregating the particles dispersed in the mixed
dispersion liquid.
[0150] In the aggregated particle forming step, for example, while the mixed dispersion
liquid is stirred with a rotary shear homogenizer, the aggregating agent may be added
at room temperature (for example, 25°C), the pH of the mixed dispersion liquid may
be adjusted to acidic (for example, a pH of 2 or more and 5 or less), the dispersion
stabilizer may be added if necessary, and then heating may be performed.
[0151] Examples of the aggregating agent include a surfactant having a polarity opposite
to that of the surfactant contained in the mixed dispersion liquid, an inorganic metal
salt, and a divalent or higher metal complex. When the metal complex is used as the
aggregating agent, an amount of the used surfactant is reduced and the chargeability
is improved.
[0152] An additive that forms a complex or a similar bond with metal ions of the aggregating
agent may be used together with the aggregating agent, if necessary. The additive
is preferably a chelating agent.
[0153] Examples of the inorganic metal salt include metal salts such as calcium chloride,
calcium nitrate, barium chloride, magnesium chloride, zinc chloride, aluminum chloride,
and aluminum sulfate, and inorganic metal salt polymers such as polyaluminum chloride,
polyaluminum hydroxide, and calcium polysulfide.
[0154] As the chelating agent, a water-soluble chelating agent may be used. Examples of
the chelating agent include oxycarboxylic acids such as tartaric acid, citric acid,
and gluconic acid, and aminocarboxylic acids such as iminodiacetic acid (IDA), nitrilotriacetic
acid (NTA), and ethylenediaminetetraacetic acid (EDTA).
[0155] An addition amount of the chelating agent is preferably 0.01 parts by mass or more
and 5.0 parts by mass or less, and more preferably 0.1 parts by mass or more and less
than 3.0 parts by mass, with respect to 100 parts by mass of the resin particles.
-Fusion and Coalescence Step-
[0156] Next, the aggregated particle dispersion liquid in which the aggregated particles
are dispersed is heated to, for example, a temperature equal to or higher than the
glass transition temperature of the resin particles (for example, a temperature higher
than the glass transition temperature of the resin particles by 10°C to 30°C), so
that the aggregated particles are fused and coalesced to form the toner particles.
[0157] The toner particles are obtained through the above steps.
[0158] The toner particles may be produced through a step of obtaining the aggregated particle
dispersion liquid in which the aggregated particles are dispersed, then further mixing
the aggregated particle dispersion liquid and the resin particle dispersion liquid
in which the resin particles are dispersed, and performing aggregation to further
adhere and aggregate the resin particles to surfaces of the aggregated particles to
form second aggregated particles, and a step of heating a second aggregated particle
dispersion liquid in which the second aggregated particles are dispersed to fuse and
coalesce the second aggregated particles to form the toner particles having a core-shell
structure.
[0159] After the fusion and coalescence step is completed, the toner particles formed in
the solution are subjected to a washing step, a solid-liquid separation step, and
a drying step, which are known, to obtain dried toner particles. In the washing step,
from the viewpoint of chargeability, displacement washing with ion-exchanged water
may be sufficiently performed. In the solid-liquid separation step, suction filtration,
pressure filtration, and the like may be performed from the viewpoint of productivity.
In the drying step, from the viewpoint of productivity, freeze-drying, air-flow drying,
fluid-drying, vibration-type fluid-drying, and the like may be performed.
[0160] The toner is produced by adding the external additive to the toner particles in a
dry state and mixing them. The mixing may be carried out by, for example, a V blender,
a Henschel mixer, a Loedige mixer, or the like. Further, if necessary, coarse particles
in the toner may be removed by using a vibration sieving machine, a wind sieving machine,
or the like.
<Carrier>
[0161] The carrier in the present exemplary embodiment includes a magnetic particle and
a resin layer covering the magnetic particle.
[Magnetic particle]
[0162] The magnetic particle is not particularly limited, and known magnetic particle used
as a core material of the carrier are applied. Specific examples of the magnetic particle
includes: a particle of a magnetic metal such as iron, nickel, and cobalt; a particle
of a magnetic oxide such as ferrite and magnetite; a resin-impregnated magnetic particle
obtained by impregnating a porous magnetic powder with a resin; and a magnetic powder-dispersed
resin particle in which a magnetic powder is dispersed and blended in a resin. A ferrite
particle is preferred as the magnetic particle in the present exemplary embodiment.
[0163] A volume average particle diameter of the magnetic particle is preferably 15 µm or
more and 100 µm or less, more preferably 20 µm or more and 80 µm or less, and still
more preferably 30 µm or more and 60 µm or less.
[0164] Here, the volume average particle diameter means a particle diameter D50v corresponding
to the cumulative percentage of 50% in a volume-based particle size distribution from
the side of the small diameter.
[0165] The arithmetic average height Ra (JIS B0601: 2001) of the roughness curve of the
magnetic particle is obtained by observing the magnetic particle at an appropriate
magnification (for example, a magnification of 1000 times) using a surface shape measurement
apparatus (for example, "Ultra Depth Color 3D shape measurement microscope VK-9700"
manufactured by KEYENCE CORPORATION), obtaining a roughness curve at a cutoff value
of 0.08 mm, and extracting a reference length of 10 µm from the roughness curve in
a direction of an average line thereof. The arithmetic average value of Ra of 100
magnetic particles is preferably 0.1 µm or more and 1 µm or less, and more preferably
0.2 µm or more and 0.8 µm or less.
[0166] As for a magnetic force of the magnetic particle, saturation magnetization in a magnetic
field of 3,000 Oersted is preferably 50 emu/g or more, and more preferably 60 emu/g
or more. The saturation magnetization is measured using a vibration sample type magnetic
measurement apparatus VSMP10-15 (manufactured by Toei Industry Co., Ltd.). A measurement
sample is packed in a cell having an inner diameter of 7 mm and a height of 5 mm and
set in the device. The measurement is performed by applying an applied magnetic field
and sweeping up to 3000 Oersted. Next, the applied magnetic field is reduced to create
a hysteresis curve on recording paper. Saturation magnetization, residual magnetization,
and a holding force are obtained from data of the curve.
[0167] A volume resistivity of the magnetic particle is preferably 1 × 10
5 Ω•cm or more and 1 × 10
9 Ω•cm or less, and more preferably 1 × 10
7 Ω•cm or more and 1 × 10
9 Ω•cm or less.
[0168] The volume resistivity (Ω•cm) of the magnetic particle is measured as follows. A
layer is formed by flatly placing an object to be measured on a surface of a circular
jig on which a 20 cm
2 electrode plate is arranged so as to have a thickness of 1 mm or more and 3 mm or
less. Another 20 cm
2 electrode plate is placed thereon to sandwich the layer. In order to eliminate voids
between the object to be measured, the thickness (cm) of the layer is measured after
applying a load of 4 kg on the electrode plate arranged on the layer. Both electrodes
above and below the layer are connected to an electrometer and a high voltage power
generator. A high voltage is applied to both electrodes so that an electric field
is 103.8 V/cm, and a current value (A) flowing at this time is read. A measurement
environment is under a temperature of 20°C and a relative humidity of 50%. An equation
for calculating the volume resistivity (Ω•cm) of the object to be measured is as shown
in the equation below.

[0169] In the above equation, R represents the volume resistivity (Ω•cm) of the object to
be measured, E represents the applied voltage (V), I represents the current value
(A), I
0 represents a current value (A) under an applied voltage of 0 V, and L represents
the thickness (cm) of the layer. The coefficient 20 represents the area (cm
2) of the electrode plate.
[Resin Layer]
[0170] Examples of a resin constituting the resin layer include: a styrene-acrylic acid
copolymer; polyolefin-based resins such as polyethylene and polypropylene; polyvinyl-based
or polyvinylidene-based resins such as polystyrene, an acrylic resin, polyacrylonitrile,
polyvinyl acetate, polyvinyl alcohol, polyvinyl butyral, polyvinyl chloride, polyvinylcarbazole,
polyvinyl ether, and polyvinylketone; a vinyl chloride-vinyl acetate copolymer; straight
silicone resins consisting of an organosiloxane bond or a modified product thereof;
fluororesins such as polytetrafluoroethylene, polyvinyl fluoride, polyvinylidene fluoride,
and polychlorotrifluoroethylene; polyester, polyurethane; polycarbonate; amino resins
such as urea and formaldehyde resins; and epoxy resins.
[0171] The resin layer preferably contains an acrylic resin having an alicyclic. A polymerization
component of the acrylic resin having the alicyclic is preferably a lower alkyl ester
of (meth)acrylic acid (for example, (meth)acrylic acid alkyl ester having an alkyl
group having 1 or more and 9 or less carbon atoms), and specific examples thereof
include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl
(meth)acrylate, hexyl (meth)acrylate, cyclohexyl (meth)acrylate, and 2-ethylhexyl
(meth)acrylate. These monomers may be used alone or in combination of two or more
kinds thereof.
[0172] The acrylic resin having the alicyclic preferably contains cyclohexyl (meth) acrylate
as the polymerization component. A content of a monomer unit derived from the cyclohexyl
(meth) acrylate contained in the acrylic resin having the alicyclic is preferably
75 mass% or more and 100 mass% or less, more preferably 85 mass% or more and 100 mass%
or less, and still more preferably 95 mass% or more and 100 mass% or less, with respect
to a total mass of the acrylic resin having the alicyclic.
[0173] The weight average molecular weight of the resin contained in the resin layer is
preferably less than 300,000. When the weight average molecular weight of the resin
contained in the resin layer is less than 300,000, a strength of the resin layer is
higher than that when the weight average molecular weight of the resin is 300,000
or more, and the resin layer is less likely to be peeled off when image formation
is repeated. Therefore, it is presumed that mechanical stress of the carrier with
respect to the toner is prevented from being increased, the external additive is prevented
from being embedded in the toner particles, and the occurrence of the image omission
is prevented.
[0174] From a viewpoint of increasing the strength of the resin layer and preventing the
resin layer from peeling off, the weight average molecular weight of the resin contained
in the resin layer is preferably 50,000 or more and less than 300,000, more preferably
100,000 or more and 250,000 or less, and still more preferably 100,000 or more and
200,000 or less.
[0175] From the viewpoint described above, the weight average molecular weight of the acrylic
resin having the alicyclic contained in the resin layer is preferably 50,000 or more
and less than 300,000, more preferably 100,000 or more and 250,000 or less, and still
more preferably 100,000 or more and 200,000 or less.
[0176] When the resin layer contains plural types of resins, the weight average molecular
weight of the resin contained in the resin layer is a weighted average obtained by
weighting the weight average molecular weight of each resin by a content ratio (on
a mass basis) of each resin.
[0177] The weight average molecular weight of the resin contained in the resin layer is
measured by gel permeation chromatography (GPC). In the molecular weight measurement
by the GPC, GPC • HLC-8120GPC manufactured by Tosoh Corporation is used as a measurement
apparatus, column TSKgel Super HM-M (15 cm) manufactured by Tosoh Corporation is used,
and tetrahydrofuran is used as a solvent. The weight average molecular weight is calculated
from a measurement result using a molecular weight calibration curve prepared using
a monodispersed polystyrene standard sample.
[0178] The resin layer preferably contains inorganic particles. In the present exemplary
embodiment, the carbon black is not treated as an inorganic particle in the resin
layer of the carrier.
[0179] When the inorganic particles are contained in the resin layer, a form in which fine
ruggedness is appropriately present in the carrier surface is formed. Most of the
ruggedness are covered with the resin, but some the inorganic particles may be exposed.
Since the exposed inorganic particles are not charged by contact with the toner unlike
the resin, excessive charging of the carrier surface can be reduced. Further, when
the resin layer of the carrier is abraded by repeating the image formation, the ruggedness
is selectively abraded, and a part of the inorganic particles in the resin layer is
newly exposed. When a part of the inorganic particles continues to be appropriately
exposed at the carrier surface, the chargeability of the carrier surface is lowered,
and an increase in the toner charging is prevented, and as a result, transferability
of a toner image is likely to be satisfactorily maintained.
[0180] Examples of the inorganic particles contained in the resin layer include metal oxide
particles such as silica, titanium oxide, zinc oxide, and tin oxide, metal compound
particles such as barium sulfate, aluminum borate, and potassium titanate, and metal
particles such as gold, silver, and copper. Among these, the silica particles are
preferable.
[0181] Surfaces of the inorganic particles may be subjected to a hydrophobic treatment.
Examples of a hydrophobic treatment agent include known organic silicon compounds
having an alkyl group (for example, a methyl group, an ethyl group, a propyl group,
a butyl group, and the like), and specific examples thereof include an alkoxysilane
compound, a siloxane compound, and a silazane compound. Among these, the hydrophobic
treatment agent is preferably a silazane compound, and preferably hexamethyldisilazane.
The hydrophobic treatment agent may be used alone or in combination of two or more
kinds thereof.
[0182] Examples of a method for hydrophobizing the inorganic particles with the hydrophobic
treatment agent include a method in which supercritical carbon dioxide is used and
the hydrophobic treatment agent is dissolved in the supercritical carbon dioxide to
be attached to the surfaces of the inorganic particles, a method in which a solution
containing a hydrophobic treatment agent and a solvent for dissolving the hydrophobic
treatment agent is applied (for example, sprayed or coated) to the surfaces of the
inorganic particles in the atmosphere to attach the hydrophobic treatment agent to
the surfaces of the inorganic particles, and a method in which a solution containing
a hydrophobic treatment agent and a solvent for dissolving the hydrophobic treatment
agent is added to and held in an inorganic particle dispersion liquid in the air,
and then a mixed solution of the inorganic particle dispersion liquid and the solution
is dried.
[0183] An average particle diameter of the inorganic particles contained in the resin layer
is preferably 5 nm or more and 90 nm or less. When the average particle diameter of
the inorganic particles in the resin layer is 5 nm or more, a filler effect of increasing
the strength of the resin layer is easily obtained, and the resin layer is less likely
to be peeled off when the image formation is repeated. When the average particle diameter
of the inorganic particles in the resin layer is 90 nm or less, the inorganic particles
are less likely to be detached from the convex portion of the resin layer, and the
resin layer is less likely to be peeled off when the image formation is repeated.
In either case, it is presumed that mechanical stress of the carrier with respect
to the toner is prevented from being increased, the external additive is prevented
from being embedded in the toner particles, and the occurrence of the image omission
is prevented.
[0184] From the viewpoint described above, the average particle diameter of the inorganic
particles in the resin layer is more preferably 5 nm or more and 70 nm or less, still
more preferably 5 nm or more and 50 nm or less, and yet still more preferably 8 nm
or more and 50 nm or less.
[0185] The average particle diameter of the inorganic particles contained in the resin layer
can be controlled by a size of the inorganic particles used for forming the resin
layer.
[0186] An average thickness of the resin layer is preferably 0.6 µm or more and 1.4 µm or
less.
[0187] When the average thickness of the resin layer is 0.6 µm or more, the resin layer
is less likely to be peeled off when the image formation is repeated. When the average
thickness of the resin layer is 1.4 µm or less, the toner external additive is less
likely to adhere to or be embedded in the resin layer after the toner external additive
is transferred to the resin layer, and the transfer amount of the external additive
from the toner to the carrier does not become excessive. In either case, as a result,
it is presumed that the occurrence of the image omission is prevented.
[0188] From the viewpoint described above, the average thickness of the resin layer is more
preferably 0.8 µm or more and 1.2 µm or less, and still more preferably 0.8 µm or
more and 1.1 µm or less.
[0189] The average thickness of the resin layer can be controlled by an amount of the resin
used for forming the resin layer, and the average thickness of the resin layer increases
as the amount of the resin with respect to the amount of the magnetic particle increases.
[0190] In the present exemplary embodiment, the average particle diameter of the inorganic
particles contained in the resin layer and the average thickness of the resin layer
are determined by the following methods.
[0191] The carrier is embedded in an epoxy resin and cut with a microtome to prepare a carrier
cross section. A scanning electron microscope (SEM) image obtained by capturing the
carrier cross section with the SEM is taken into an image processing analyzer for
image analysis. 100 inorganic particles (primary particles) in the resin layer are
randomly selected, and an equivalent circular diameter (nm) of each particle is calculated
and arithmetically averaged to obtain the average particle diameter (nm) of the inorganic
particles. Further, the thickness (µm) of the resin layer is measured by randomly
selecting 10 points per particle of the carrier, and 100 particles of the carrier
are further selected to measure thicknesses thereof, and all the thicknesses are arithmetically
averaged to obtain the average thickness (µm) of the resin layer.
[0192] The resin layer of the carrier preferably contains the silica particles, and a silicon
element concentration at the carrier surface determined by an X-ray photoelectron
spectroscopy is more than 2 atomic% and less than 20 atomic%.
[0193] When the silicon element concentration is more than 2 atomic%, it means that the
silica particles are appropriately distributed at the resin layer surface. Therefore,
the chargeability of the carrier surface is appropriately lowered.
[0194] When the silicon element concentration is less than 20 atomic%, it means that an
amount of silica particles distributed at the resin layer surface is not too large.
Therefore, the chargeability of the carrier surface is not excessively lowered.
[0195] In either case, it is presumed that the toner is appropriately triboelectrically
charged and the occurrence of image omission is prevented.
[0196] From the viewpoint described above, the silicon element concentration is more preferably
more than 5 atomic% and less than 20 atomic%, and still more preferably more than
6 atomic% and less than 19 atomic%.
[0197] The silicon element concentration at the carrier surface can be controlled by the
amount of the silica particles used for forming the resin layer, and the silicon element
concentration at the carrier surface increases as the amount of the silica particles
with respect to the amount of the resin increases.
[0198] The silicon element concentration (atomic%) of the carrier surface is determined
based on a peak intensity of each element by analyzing the carrier as a sample by
the X-ray photoelectron spectroscopy (XPS) under the following conditions.
- XPS device: Versa Probe II manufactured by ULVAC-PHI, Inc.
- Etching gun: argon gun
- Acceleration voltage: 5 kV
- Emission current: 20 mA
- Spatter area: 2 mm × 2 mm
- Sputter rate: 3 nm/min (in terms of SiO2)
[0199] A content of the inorganic particles contained in the resin layer is preferably 10
mass% or more and 60 mass% or less, more preferably 15 mass% or more and 55 mass%
or less, and still more preferably 20 mass% or more and 50 mass% or less with respect
to a total mass of the resin layer.
[0200] A content of the silica particles contained in the resin layer is preferably 10 mass%
or more and 60 mass% or less, more preferably 15 mass% or more and 55 mass% or less,
and still more preferably 20 mass% or more and 50 mass% or less with respect to a
total mass of the resin layer.
[0201] The resin layer may contain conductive particles for a purpose of controlling charging
and resistance. Examples of the conductive particles include carbon black and conductive
particles among the above-mentioned inorganic particles.
[0202] Examples of a method for forming the resin layer on surfaces of the magnetic particle
include a wet production method and a dry production method. The wet production method
is a production method using a solvent that dissolves or disperses the resin constituting
the resin layer. On the other hand, the dry production method is a production method
that does not use the above solvent.
[0203] Examples of the wet production method include an immersion method in which the magnetic
particles are immersed in a resin liquid for forming the resin layer to be coated,
a spray method in which a resin liquid for forming the resin layer is sprayed on the
surfaces of the magnetic particles, a fluidized bed method in which a resin liquid
for forming the resin layer is sprayed while the magnetic particles are in a state
of being fluidized in a fluidized bed, and a kneader coater method in which the magnetic
particles and a resin liquid for forming the resin layer are mixed in a kneader coater
to remove a solvent. These production methods may be repeated or combined.
[0204] The resin liquid for forming the resin layer used in the wet production method is
prepared by dissolving or dispersing a resin, inorganic particles, and other components
in a solvent. The solvent is not particularly limited, and for example, aromatic hydrocarbons
such as toluene and xylene, ketones such as acetone and methyl ethyl ketone, ethers
such as tetrahydrofuran and dioxane, and the like may be used.
[0205] Examples of the dry production method include a method of forming the resin layer
by heating a mixture of the magnetic particles and a resin for forming the resin layer
in a dry state. Specifically, for example, the magnetic particles and the resin for
forming the resin layer are mixed in a gas phase and heated and melted to form the
resin layer.
[0206] The ratio B/A can be controlled by production conditions.
[0207] For example, in a production method in which the kneader coater method is repeated
plural times (for example, twice) to form the resin layer stepwise, in a final kneader
coater step, the ratio B/A is controlled by adjusting a mixing time between particles
to be coated and a resin liquid for forming the resin layer. The longer the mixing
time in the final kneader coater step, the smaller the ratio B/A tends to be.
[0208] Alternatively, for example, in a production method in which a liquid composition
containing inorganic particles (a resin may or may not be contained) is applied, by
a spray method, to the resin-coated carrier surface manufactured by the kneader coater
method, the ratio B/A is controlled by adjusting the particle diameter and the content
of the inorganic particles contained in the liquid composition or an amount of the
liquid composition applied to the resin-coated carrier.
[0209] An exposed area ratio of the magnetic particle at the carrier surface is preferably
5% or more and 30% or less, more preferably 7% or more and 25% or less, and still
more preferably 10% or more and 25% or less. The exposed area ratio of the magnetic
particle in the carrier can be controlled by the amount of the resin used for forming
the resin layer, and the exposed area ratio becomes smaller as the amount of the resin
relative to the amount of the magnetic particle increases.
[0210] The exposed area ratio of the magnetic particle at the carrier surface is a value
obtained by the following method.
[0211] A target carrier and magnetic particle obtained by removing the resin layer from
the target carrier are prepared. Examples of a method for removing the resin layer
from the carrier include a method of dissolving a resin component with an organic
solvent to remove the resin layer and a method of removing the resin component by
heating at about 800°C to remove the resin layer. The carrier and the magnetic particle
are used as measurement samples, and Fe concentrations (atomic%) at surfaces of the
samples are quantified by XPS, and (Fe concentration of the carrier)/(Fe concentration
of the magnetic particle) × 100 is calculated and used as the exposed area ratio (%)
of the magnetic particle.
[0212] A volume average particle diameter of the carrier is preferably 10 µm or more and
120 µm or less, more preferably 20 µm or more and 100 µm or less, and still more preferably
30 µm or more and 80 µm or less.
[0213] Here, the volume average particle diameter means a particle diameter D50v corresponding
to the cumulative percentage of 50% in a volume-based particle size distribution drawn
from the side of the small diameter.
<Image Forming Apparatus and Image Forming Method>
[0214] An image forming apparatus according to the present exemplary embodiment includes:
an image carrier; a charging unit that charges a surface of the image carrier; an
electrostatic charge image forming unit that forms an electrostatic charge image on
the surface of the image carrier charged; a developing unit that accommodates an electrostatic
charge image developer and develops, by the electrostatic charge image developer,
an electrostatic charge image formed on the surface of the image carrier as a toner
image; a transfer unit that transfers the toner image formed on the surface of the
image carrier to a surface of a recording medium; and a fixing unit that fixes the
toner image transferred to the surface of the recording medium. As the electrostatic
charge image developer, the electrostatic charge image developer according to the
present exemplary embodiment is applied.
[0215] In the image forming apparatus according to the present exemplary embodiment, an
image forming method (an image forming method according to the present exemplary embodiment)
including a charging step of charging the surface of the image carrier; an electrostatic
charge image forming step of forming the electrostatic charge image on the surface
of the image carrier charged; a developing step of developing, by the electrostatic
charge image developer according to the present exemplary embodiment, the electrostatic
charge image formed on the surface of the image carrier as the toner image; a transfer
step of transferring the toner image formed on the surface of the image carrier to
the surface of the recording medium; and a fixing step of fixing the toner image transferred
to the surface of the recording medium is performed.
[0216] A known image forming apparatus such as a direct transfer type apparatus that directly
transfers the toner image formed on the surface of the image carrier to the recording
medium, an intermediate transfer type apparatus that primarily transfers the toner
image formed on the surface of the image carrier to a surface of an intermediate transfer
body, and secondarily transfers the toner image transferred to the surface of the
intermediate transfer body to the surface of the recording medium, an apparatus provided
with a cleaning unit for cleaning the surface of the image carrier after the transfer
of the toner image and before charging, and an apparatus provided with a discharging
unit for discharging the surface of the image carrier by irradiation with discharging
light after the transfer of the toner image and before the charging, is applied to
the image forming apparatus according to the present exemplary embodiment.
[0217] When the image forming apparatus according to the present exemplary embodiment is
an intermediate transfer type apparatus, the transfer unit includes, for example,
an intermediate transfer body on which a toner image is transferred onto a surface
thereof, a primary transfer unit that primarily transfers the toner image formed on
the surface of the image carrier onto the surface of the intermediate transfer body,
and a secondary transfer unit that secondarily transfers the toner image transferred
on the surface of the intermediate transfer body onto the surface of the recording
medium.
[0218] In the image forming apparatus according to the present exemplary embodiment, for
example, a part including the developing unit may have a cartridge structure (process
cartridge) attached to and detached from the image forming apparatus. As the process
cartridge, for example, a process cartridge that accommodates the electrostatic charge
image developer according to the present exemplary embodiment and provided with a
developing unit is preferably used.
[0219] Hereinafter, an example of the image forming apparatus according to the present exemplary
embodiment will be described, but the image forming apparatus is not limited thereto.
In the following description, main parts shown in the drawings will be described,
and description of other parts will be omitted.
[0220] Fig. 1 is a schematic configuration diagram illustrating the image forming apparatus
according to the present exemplary embodiment.
[0221] The image forming apparatus illustrated in Fig. 1 includes first to fourth electrophotographic
image forming units 10Y, 10M, 10C, and 10K (image forming units) that output images
of respective colors of yellow (Y), magenta (M), cyan (C), and black (K) based on
image data subjected to color separation. These image forming units (hereinafter may
be simply referred to as "unit") 10Y, 10M, 10C, and 10K are arranged side by side
at a predetermined distance from each other in a horizontal direction. These units
10Y, 10M, 10C, and 10K may be process cartridges that are attached to and detached
from the image forming apparatus.
[0222] Above the units 10Y, 10M, 10C, and 10K, an intermediate transfer belt (an example
of the intermediate transfer body) 20 extends through respective units. The intermediate
transfer belt 20 is provided by being wound around a drive roller 22 and a support
roller 24, and travels in a direction from the first unit 10Y to the fourth unit 10K.
A force is applied to the support roller 24 in a direction away from the drive roller
22 by a spring or the like (not shown), and tension is applied to the intermediate
transfer belt 20 wound around the drive roller 22 and the support roller 24. An intermediate
transfer body cleaning device 30 is provided on a side surface of an image carrier
of the intermediate transfer belt 20 so as to face the drive roller 22.
[0223] Yellow, magenta, cyan, and black toners contained in toner cartridges 8Y, 8M, 8C,
and 8K are supplied to developing devices 4Y, 4M, 4C, and 4K (an example of the developing
unit) of the units 10Y, 10M, 10C, and 10K, respectively.
[0224] Since the first to fourth units 10Y, 10M, 10C, and 10K have the same configuration
and operation, here, the first unit 10Y, which is arranged on an upstream side in
a travelling direction of the intermediate transfer belt and forms a yellow image,
will be described as a representative. 1M, 1C, and 1K in the second to fourth units
10M, 10C, and 10K are photoconductors corresponding to a photoconductor 1Y in the
first unit 10Y; 2M, 2C and 2K are charging rollers corresponding to a charging roller
2Y; 3M, 3C, and 3K are laser beams corresponding to a laser beam 3Y; and 6M, 6C, and
6K are photoconductor cleaning devices corresponding to a photoconductor cleaning
device 6Y.
[0225] The first unit 10Y includes the photoconductor 1Y that acts as an image carrier.
Around the photoconductor 1Y, the following members are arranged in order: the charging
roller (an example of the charging unit) 2Y that charges a surface of the photoconductor
1Y to a predetermined potential; an exposure device (an example of the electrostatic
charge image forming unit) 3 that exposes the charged surface with the laser beam
3Y based on a color-separated image signal to form an electrostatic charge image;
the developing device (an example of the developing unit) 4Y that supplies a charged
toner to the electrostatic charge image to develop the electrostatic charge image;
a primary transfer roller 5Y (an example of the primary transfer unit) that transfers
the developed toner image onto the intermediate transfer belt 20; and the photoconductor
cleaning device (an example of the cleaning unit) 6Y that removes the toner remaining
on the surface of the photoconductor 1Y after the primary transfer.
[0226] The primary transfer roller 5Y is arranged on an inner side of the intermediate transfer
belt 20 and is provided at a position facing the photoconductor 1Y. A bias power supply
(not shown) that applies a primary transfer bias is connected to each of the primary
transfer rollers 5Y, 5M, 5C, and 5K of respective units. Each bias power supply changes
a value of the transfer bias applied to each primary transfer roller under the control
of a controller (not shown).
[0227] Hereinafter, an operation of forming a yellow image in the first unit 10Y will be
described.
[0228] First, prior to the operation, the surface of the photoconductor 1Y is charged to
a potential of -600 V to -800 V by using the charging roller 2Y
[0229] The photoconductor 1Y is formed by laminating a photoconductive layer on a conductive
substrate (for example, having a volume resistivity of 1 × 10
-6 Ω•cm or less at 20°C). The photoconductive layer usually has high resistance (resistance
of general resin), but has a property that when irradiated with a laser beam, the
specific resistance of the portion irradiated with the laser beam changes. Therefore,
the charged surface of the photoconductor 1Y is irradiated with the laser beam 3Y
from the exposure device 3 in accordance with yellow image data sent from the controller
(not shown). As a result, an electrostatic charge image having a yellow image pattern
is formed on the surface of the photoconductor 1Y
[0230] The electrostatic charge image is an image formed on the surface of the photoconductor
1Y by charging, and is a so-called negative latent image formed by lowering the specific
resistance of the portion of the photoconductive layer irradiated with the laser beam
3Y to flow charges charged on the surface of the photoconductor 1Y and by, on the
other hand, leaving charges of a portion not irradiated with the laser beam 3Y
[0231] The electrostatic charge image formed on the photoconductor 1Y rotates to a predetermined
developing position as travelling of the photoconductor 1Y Then, at this developing
position, the electrostatic charge image on the photoconductor 1Y is developed and
visualized as a toner image by the developing device 4Y
[0232] In the developing device 4Y, for example, an electrostatic charge image developer
containing at least a yellow toner and a carrier is accommodated. The yellow toner
is triboelectrically charged by being stirred inside the developing device 4Y, and
has charges of the same polarity (negative polarity) as the charges charged on the
photoconductor 1Y and is held on a developer roller (an example of a developer holder).
Then, when the surface of the photoconductor 1Y passes through the developing device
4Y, the yellow toner electrostatically adheres to a discharged latent image portion
on the surface of the photoconductor 1Y, and the latent image is developed by the
yellow toner. The photoreceptor 1Y on which the yellow toner image is formed continuously
travels at a predetermined speed, and the toner image developed on the photoconductor
1Y is conveyed to a predetermined primary transfer position.
[0233] When the yellow toner image on the photoconductor 1Y is conveyed to the primary transfer
position, a primary transfer bias is applied to the primary transfer roller 5Y, an
electrostatic force from the photoconductor 1Y to the primary transfer roller 5Y acts
on the toner image, and the toner image on the photoconductor 1Y is transferred onto
the intermediate transfer belt 20. The transfer bias applied at this time has a polarity
(+) opposite to the polarity (-) of the toner, and is controlled to, for example,
+10 µA by the controller (not shown) in the first unit 10Y.
[0234] On the other hand, the toner remaining on the photoconductor 1Y is removed and collected
by the photoconductor cleaning device 6Y.
[0235] The primary transfer biases applied to the primary transfer rollers 5M, 5C, and 5K
of the second unit 10M and the subsequent units are also controlled in the same manner
as in the first unit.
[0236] In this way, the intermediate transfer belt 20 to which the yellow toner image is
transferred by the first unit 10Y is sequentially conveyed through the second to fourth
units 10M, 10C, and 10K, and toner images of the respective colors are superimposed
and transferred in a multiple manner.
[0237] The intermediate transfer belt 20 onto which the toner images of four colors are
transferred in a multiple manner through the first to fourth units arrives at a secondary
transfer unit including the intermediate transfer belt 20, the support roller 24 in
contact with an inner surface of the intermediate transfer belt, and a secondary transfer
roller (an example of a secondary transfer unit) 26 arranged on an image holding surface
side of the intermediate transfer belt 20. On the other hand, a recording paper (an
example of the recording medium) P is fed through a supply mechanism into a gap where
the secondary transfer roller 26 and the intermediate transfer belt 20 are in contact
with each other at a predetermined timing, and a secondary transfer bias is applied
to the support roller 24. The transfer bias applied at this time has the same polarity
(-) as the polarity (-) of the toner. An electrostatic force from the intermediate
transfer belt 20 to the recording paper P acts on the toner image, and the toner image
on the intermediate transfer belt 20 is transferred onto the recording paper P. The
secondary transfer bias at this time is determined according to the resistance detected
by a resistance detecting unit (not shown) that detects the resistance of the secondary
transfer unit, and is subjected to voltage control.
[0238] Thereafter, the recording paper P is sent to a pressure contact portion (nip portion)
of a pair of fixing rollers in a fixing device 28 (an example of the fixing unit),
and the toner image is fixed onto the recording paper P, thereby forming a fixed image.
[0239] Examples of the recording paper P onto which the toner image is transferred include
plain paper used in electrophotographic copiers and printers. As the recording medium,
in addition to the recording paper P, an OHP sheet or the like may be used.
[0240] In order to further improve the smoothness of an image surface after fixing, the
surface of the recording paper P is also preferably smooth. For example, coated paper
obtained by coating the surface of the plain paper with a resin or the like, art paper
for printing, or the like is preferably used.
[0241] The recording paper P, on which the fixing of the color image is completed, is conveyed
out toward a discharge unit, and a series of color image forming operations is completed.
<Process Cartridge>
[0242] The process cartridge according to the present exemplary embodiment includes a developing
unit that accommodates the electrostatic charge image developer according to the present
exemplary embodiment and develops, by the electrostatic charge image developer, the
electrostatic charge image formed on the surface of the image carrier as the toner
image, and is attached to and detached from the image forming apparatus.
[0243] The process cartridge according to the present exemplary embodiment is not limited
to the above configuration and may be configured to include a developing unit and,
if necessary, at least one selected from other units such as an image carrier, a charging
unit, an electrostatic charge image forming unit, and a transfer unit.
[0244] Hereinafter, an example of the process cartridge according to the present exemplary
embodiment will be shown, but the process cartridge is not limited thereto. In the
following description, main parts shown in the drawings will be described, and description
of other parts will be omitted.
[0245] Fig. 2 is a schematic configuration diagram illustrating the process cartridge according
to the present exemplary embodiment.
[0246] A process cartridge 200 shown in Fig. 2 is formed as a cartridge by, for example,
integrally combining and holding a photoconductor 107 (an example of the image carrier),
a charging roller 108 (an example of the charging unit), an image developing device
111 (an example of the developing unit), and a photoconductor cleaning device 113
(an example of a cleaning unit) provided around the photoconductor 107 by a housing
117 provided with a mounting rail 116 and an opening 118 for exposure.
[0247] In Fig. 2, 109 denotes an exposure device (an example of the electrostatic charge
image forming unit), 112 denotes a transfer device (an example of the transfer unit),
115 denotes a fixing device (an example of the fixing unit), and 300 denotes recording
paper (an example of the recording medium).
[Examples]
[0248] Hereinafter, the exemplary embodiment of the invention will be described in detail
with reference to Examples, but the exemplary embodiment of the invention is not limited
to these Examples.
[0249] In the following description, all "parts" and "%" are based on mass unless otherwise
specified.
[0250] Synthesis, treatment, production, and the like are performed at a room temperature
(25°C ± 3°C), unless otherwise specified.
<Preparation of Toner>
[Preparation of Amorphous Polyester Resin Dispersion Liquid (1)]
[0251]
- Terephthalic acid: 30 parts by mole
- Fumaric acid: 70 parts by mole
- Bisphenol A ethylene oxide adduct: 5 parts by mole
- Bisphenol A propylene oxide adduct: 95 parts by mole
[0252] A flask equipped with a stirrer, a nitrogen inlet tube, a temperature sensor, and
a rectifying column is charged with the above materials, a temperature is raised to
220°C over 1 hour, and 1 part of titanium tetraethoxide is added to 100 parts of the
above materials. The temperature is increased to 230°C over 30 minutes while distilling
off generated water, and a dehydration condensation reaction is continued at the temperature
for 1 hour, and then a reaction product is cooled to obtain an amorphous polyester
resin (1) (weight average molecular weight: 18,000, glass transition temperature:
59°C).
[0253] 40 parts of ethyl acetate and 25 parts of 2-butanol are added into a vessel equipped
with a temperature control unit and a nitrogen substitution unit to prepare a mixed
solvent, and then 100 parts of the amorphous polyester resin (1) is gradually put
into the vessel and dissolved. Here, a 10% ammonia aqueous solution (corresponding
to 3 times of an acid value of the resin in terms of a molar ratio) is added thereto
and stirred for 30 minutes. Next, an inside of the vessel is replaced with dry nitrogen,
the temperature is maintained at 40°C, and 400 parts of ion-exchanged water is added
dropwise while stirring a mixed solution to perform emulsification. After completion
of the dropwise addition, an emulsion is returned to 25°C to obtain a resin particle
dispersion liquid in which resin particles having the volume average particle diameter
of 180 nm are dispersed. Ion exchange water is added to the resin particle dispersion
liquid to adjust a solid content to 20%, thereby obtaining an amorphous polyester
resin dispersion liquid (1).
[Preparation of Crystalline Polyester Resin Dispersion Liquid (1)]
[0254]
- Decanedioic acid: 81 parts
- Hexanediol: 47 parts
[0255] The above materials are charged into a flask and raised to a temperature of 160°C
over 1 hour, and after confirming that the inside of the reaction system is uniformly
stirred, 0.03 parts of dibutyltin oxide is added. The temperature is raised to 200°C
over 6 hours while water to be produced is distilled off, and stirring is continued
at 200°C for 4 hours. Next, a reaction liquid is cooled to perform solid-liquid separation,
and a solid is dried under a reduced pressure at a temperature of 40°C to obtain a
crystalline polyester resin (1) (weight average molecular weight: 15,000, melting
point: 64°C).
[0256] 50 parts of the crystalline polyester resin (1), 2 parts of an anionic surfactant
(NEOGEN RK, manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.), and 200 parts of the
ion exchange water are mixed and heated to 120°C, sufficiently dispersed by a homogenizer
(ULTRA-TURRAX T50 manufactured by IKA Co., Ltd.), and then subjected to a dispersion
treatment with a pressure discharge type homogenizer. When the volume average particle
diameter reaches 180 nm, the mixture is recovered to obtain a crystalline polyester
resin dispersion liquid (1) having a solid content of 20%.
[Preparation of Colorant Dispersion Liquid (C1)]
[0257]
- Cyan pigment (Pigment Blue 15:3, manufactured by Dainichiseika Color & Chemicals Mfg.
Co., Ltd.): 50 parts
- Anionic surfactant (NEOGEN RK manufactured by Daiichi Kogyo Seiyaku Co., Ltd.): 5
parts
- Ion-exchanged water: 195 parts
[0258] The above materials are mixed and subjected to a dispersion treatment for 60 minutes
using a high-pressure impact type disperser (ULTIMAIZER HJP30006 manufactured by Sugino
Machine Limited) to obtain a colorant dispersion liquid (C1) having a solid content
of 20%.
[Preparation of Releasing Agent Dispersion Liquid (W1)]
[0259]
- Paraffin wax (HNP-9 manufactured by Nippon Seiro Co., Ltd., melting point: 75°C):
100 parts
- Anionic surfactant (NEOGEN RK manufactured by Daiichi Kogyo Seiyaku Co., Ltd.): 1
part
- Ion-exchanged water: 350 parts
[0260] The above materials are mixed and heated to 100°C, dispersed using the homogenizer
(ULTRA-TURRAX T50 manufactured by IKA Co., Ltd.), and then subjected to a dispersion
treatment with a pressure discharge type Gaulin homogenizer to obtain a mold releasing
agent dispersion liquid in which mold releasing agent particles having a volume average
particle diameter of 200 nm are dispersed. The ion-exchange water is added to the
mold releasing agent dispersion liquid to prepare a solid content of 20%, thereby
obtaining a mold releasing agent dispersion liquid (W1).
[Preparation of Cyan Toner Particles (1)]
[0261] Ion-exchanged water: 200 parts
- Amorphous polyester resin dispersion liquid (1): 150 parts
- Crystalline polyester resin dispersion liquid (1): 20 parts
- Mold releasing agent dispersion liquid (W1): 10 parts
- Colorant dispersion liquid (C1): 15 parts
- Anionic surfactant (Tayca Power): 2.8 parts
[0262] The above materials are put into a round stainless steel flask, 0.1N nitric acid
is added to adjust pH to 3.5, and then an aqueous solution of polyaluminum chloride
in which 2 parts of polyaluminum chloride (30% powdery product manufactured by Oji
Paper Co., Ltd.) is dissolved in 30 parts of ion-exchange water is added. The mixture
is dispersed at 30°C using the homogenizer (ULTRA-TURRAX T50 manufactured by IKA Co.,
Ltd.), the heated to 45°C in an oil bath for heating, and held until the volume average
particle diameter becomes 4.9 µm.
[0263] Next, 60 parts of the amorphous polyester resin dispersion liquid (1) is added and
held for 30 minutes. Next, when the volume average particle diameter is 5.2 µm, 60
parts of the amorphous polyester resin dispersion liquid (1) is added and held for
30 minutes.
[0264] Next, 20 parts of 10% nitrilotriacetic acid (NTA) metal salt aqueous solution (CHELEST
70 manufactured by Chelest Corporation) is added, and a 1N sodium hydroxide aqueous
solution is added to adjust the pH to 9.0. Next, 1 part of anionic surfactant (Tayca
Power) is added and heated to 88°C while stirring is continued, and held for 5 hours.
Next, the mixture is cooled to 20°C at a rate of 20°C/min. Next, the solution is filtered,
sufficiently washed with the ion-exchanged water, and dried to obtain cyan toner particles
(1) having a volume average particle diameter of 5.7 µm.
[Preparation of Cyan Toner Particles (2) to (11)]
[0265] Cyan toner particles (2) to (11) are prepared in the same manner as in the preparation
of the cyan toner particles (1), except that a pH and a temperature in a fusion and
coalescence step or a usage amount of the crystalline polyester resin dispersion liquid
(1) is changed as shown in Table 1.
Table 1
Cyan toner |
Cyan toner particle |
Usage amount of crystalline polyester resin dispersion liquid (1) |
Fusion and coalescence step |
Parts by mass |
pH |
Temperature |
- |
°C |
(2) |
(2) |
20 |
8.6 |
94 |
(3) |
(3) |
20 |
8.7 |
92 |
(4) |
(4) |
20 |
8.8 |
90 |
(1) |
(1) |
20 |
9.0 |
88 |
(5) |
(5) |
20 |
9.2 |
87 |
(6) |
(6) |
20 |
9.4 |
86 |
(7) |
(7) |
20 |
9.6 |
85 |
(8) |
(8) |
10 |
9.0 |
88 |
(9) |
(9) |
15 |
9.0 |
88 |
(10) |
(10) |
23 |
9.0 |
88 |
(11) |
(11) |
25 |
9.0 |
88 |
[Preparation of Cyan Toner particle (12)]
[0266]
- Amorphous Polyester Resin (1): 73 parts
- Crystalline Polyester Resin (1): 7 parts
- Cyan pigment (Pigment Blue 15:3, manufactured by Dainichiseika Color & Chemicals Mfg.
Co., Ltd.): 7 parts
- Paraffin wax (HNP-9 manufactured by Nippon Seiro Co., Ltd., melting point: 75°C):
5 parts
[0267] The above materials are mixed in a Henschel mixer (FM75L; manufactured by Nippon
Coke & Engineering Co., Ltd.) at a rotation speed of 20s
-1 and for a rotation time of 15 minutes to obtain a toner composition. Next, the toner
composition is kneaded with a twin-screw kneading extruder (TEM-48SS: manufactured
by Shibaura Machine Co., Ltd.) set at a temperature of 150°C, and a kneaded material
is rolled and cooled to 30°C or less at an average cooling rate of 10°C/sec or more.
The obtained kneaded material is coarsely pulverized to 1 mm or less by a hammer mill,
finely pulverized by a jet mill (AFG; manufactured by Hosokawa Micron Corporation),
and classified by an elbow jet classifier (EJ-LABO; manufactured by Nittetsu Mining
Co., Ltd.) to obtain toner particle (12) having a volume average particle diameter
of 6.5 µm.
[Preparation of Cyan Toner particle (13)]
[0268]
- Amorphous Polyester Resin (1): 73 parts
- Cyan pigment (Pigment Blue 15:3, manufactured by Dainichiseika Color & Chemicals Mfg.
Co., Ltd.): 7 parts
- Paraffin wax (HNP-9 manufactured by Nippon Seiro Co., Ltd., melting point: 75°C):
5 parts
[0269] The above materials are mixed in a Henschel mixer (FM75L; manufactured by Nippon
Coke & Engineering Co., Ltd.) at a rotation speed of 20s
-1 and for a rotation time of 15 minutes to obtain a toner composition. Next, the toner
composition is kneaded with a twin-screw kneading extruder (TEM-48SS: manufactured
by Shibaura Machine Co., Ltd.) set at a temperature of 150°C, and a kneaded material
is rolled and cooled to 30°C or less at an average cooling rate of 10°C/sec or more.
The obtained kneaded material is coarsely pulverized to 1 mm or less by a hammer mill,
finely pulverized by a jet mill (AFG; manufactured by Hosokawa Micron Corporation),
and classified by an elbow jet classifier (EJ-LABO; manufactured by Nittetsu Mining
Co., Ltd.) to obtain toner particle (13) having a volume average particle diameter
of 6.7 µm.
[Preparation of Cyan Toners (1) to (13)]
[0270] 100 parts of any of the cyan toner particle (1) to (13) and 1.5 parts of hydrophobic
silica particles (RY50 manufactured by Nippon Aerosil Co., Ltd.) are charged into
a sample mill and mixed at a rotation speed of 10,000 rpm for 30 seconds. Next, the
mixture is sieved with a vibrating sieve having an opening of 45 µm to obtain cyan
toners (1) to (13).
[Preparation of Ferrite Particles]
[0271] 1318 parts of Fe
2O
3, 587 parts of Mn(OH)
2, and 96 parts of Mg(OH)
2 are mixed and calcined at a temperature of 900°C for 4 hours. A calcined product,
6.6 parts of polyvinyl alcohol, 0.5 parts of polycarboxylic acid as a dispersant,
and zirconia beads having a media diameter of 1 mm are charged into water, pulverized,
and mixed in a sand mill to obtain a dispersion liquid. A volume average particle
diameter of particles in the dispersion liquid is 1.5 µm.
[0272] The dispersion liquid is used as a raw material and granulated and dried with a spray
dryer to obtain granules having a volume average particle diameter of 37 µm. Next,
under an oxygen-nitrogen mixed atmosphere having an oxygen partial pressure of 1%,
main firing is performed using an electric furnace at a temperature of 1450°C for
4 hours, and then heating is performed in air at a temperature of 900°C for 3 hours
to obtain fired particles. The fired particles are crushed and classified to obtain
ferrite particles (1) having a volume average particle diameter of 35 µm. An arithmetic
average height Ra (JIS B0601: 2001) of a roughness curve of the ferrite particles
(1) is 0.6 µm.
<Preparation of Silica Particles to be Added to Carrier Resin Layer>
[Silica Particles (1)]
[0273] Commercially available hydrophilic silica particles (fumed silica particles, without
surface treatment, volume average particle diameter: 40 nm) are prepared as silica
particles (1).
[Silica Particles (2)]
[0274] 890 parts of methanol and 210 parts of 9.8% ammonia water are charged into a 1.5
L glass reaction vessel equipped with a stirrer, a dropping nozzle, and a thermometer
and mixed to obtain an alkaline catalyst solution. After the alkaline catalyst solution
is adjusted to 45°C, 550 parts of tetramethoxysilane and 140 parts of 7.6% ammonia
water are simultaneously added dropwise over 450 minutes while stirring to obtain
a silica particle dispersion liquid (A). The silica particles in the silica particle
dispersion liquid (A) have a volume average particle diameter of 4 nm and a volume
particle size distribution index of 1.2 (the volume particle size distribution index
is (D84v/D16v)
1/2 which is square root of a ratio of a particle diameter D84v at 84% accumulation to
a particle diameter D16v at 16% accumulation from the small diameter side in the volume-based
particle size distribution).
[0275] 300 parts of the silica particle dispersion liquid (A) are charged into an autoclave
equipped with a stirrer, and the stirrer is rotated at a rotation speed of 100 rpm.
While the stirrer is continuously rotated, liquefied carbon dioxide is injected into
the autoclave from a carbon dioxide cylinder via a pump, a pressure inside the autoclave
is raised by the pump while the temperature is raised by a heater, and the inside
of the autoclave is brought into a supercritical state of 150°C and 15 MPa. A pressure
valve is operated to circulate supercritical carbon dioxide while keeping the inside
of the autoclave at 15 MPa, and methanol and water are removed from the silica particle
dispersion liquid (A). When an amount of carbon dioxide supplied into the autoclave
became 900 parts, supply of carbon dioxide is stopped to obtain a powder of silica
particles.
[0276] In a state in which the inside of the autoclave is maintained at 150°C and 15 MPa
by the heater and the pump to maintain the supercritical state of carbon dioxide,
50 parts of hexamethyldisilazane with respect to 100 parts of silica particles is
injected into the autoclave by an entrainer pump while the stirrer of the autoclave
is continuously rotated, the temperature inside the autoclave is raised to 180°C,
and a reaction is carried out for 20 minutes. Next, the supercritical carbon dioxide
is circulated again in the autoclave, and excess hexamethyldisilazane is removed.
Next, stirring is stopped, the pressure valve is opened to release the pressure in
the autoclave to atmospheric pressure, and the temperature is lowered to room temperature
(25°C). In this way, silica particles (2) surface-treated with the hexamethyldisilazane
are obtained. The silica particles (2) have a volume average particle diameter of
4 nm.
[Silica Particles (3)]
[0277] In the same manner as the preparation of the silica particles (2), amounts of the
tetramethoxysilane and the 7.6% ammonia water dropped when the silica particle dispersion
liquid (A) is prepared are increased to change the volume average particle diameter
of the silica particles in the silica particle dispersion liquid to 7 nm, thereby
obtaining silica particles (3) surface-treated with the hexamethyldisilazane. The
silica particles (3) have a volume average particle diameter of 7 nm.
[Silica Particles (4)]
[0278] Commercially available hydrophobic silica particles (fumed silica particles surface-treated
with hexamethyldisilazane, volume average particle diameter: 12 nm) are prepared as
silica particles (4).
[Silica Particles (5)]
[0279] Commercially available hydrophilic silica particles (fumed silica particles, without
surface treatment, volume average particle diameter: 62 nm) are prepared as silica
particles (5).
[Silica Particles (6)]
[0280] Commercially available hydrophobic silica particles (fumed silica particles surface-treated
with hexamethyldisilazane, volume average particle diameter: 88 nm) are prepared as
silica particles (6).
[Silica Particles (7)]
[0281] Commercially available hydrophobic silica particles (fumed silica particles surface-treated
with hexamethyldisilazane, volume average particle diameter 93 nm) are prepared as
silica particles (7).
[Inorganic Particles (8)]
[0282] Commercially available calcium carbonate particles (volume average particle diameter:
20 nm) are prepared as inorganic particles (8).
[Inorganic Particles (9)]
[0283] Commercially available barium carbonate particles (volume average particle diameter:
40 nm) are prepared as inorganic particles (9).
[Inorganic Particles (10)]
[0284] Commercially available barium sulfate particles (BARIFINE BF-40, volume average particle
diameter: 10 nm) are prepared as inorganic particles (10).
[Inorganic Particles (11)]
[0285] Commercially available barium sulfate particles (BARIFINE BF-20, volume average particle
diameter: 30 nm) are prepared as inorganic particles (11).
[Inorganic Particles (12)]
[0286] Commercially available barium sulfate particles (BARIFINE BF-21, volume average particle
diameter: 50 nm) are prepared as inorganic particles (12).
[Inorganic Particles (13)]
[0287] Commercially available barium sulfate particles (BARIFINE BF-10, volume average particle
diameter: 60 nm) are prepared as inorganic particles (13).
<Preparation of Coating Agent for Forming Resin Layer of Carrier>
[Coating Agent (1)]
[0288]
- Cyclohexyl methacrylate resin (weight average molecular weight: 350,000): 6.6 parts
- Perfluoropropylethyl methacrylate/methyl methacrylate copolymer (polymerization ratio
by mass: 30: 70, weight average molecular weight Mw = 19000): 9.9 parts
- Carbon black (Cabot Corporation, VXC72): 0.5 parts
- Silica particles (1): 20 parts
- Toluene: 250 parts
- Isopropyl alcohol: 50 parts
[0289] The above materials and glass beads (diameter: 1 mm, the same amount as toluene)
are charged into a sand mill and stirred at a rotation speed of 190 rpm for 30 minutes,
to obtain a coating agent (1) having a solid content of 11%. The weight average molecular
weight of the resin constituting the coating agent (1) is 150,000.
[Coating Agents (2) to (7)]
[0290] Coating agents (2) to (7) are obtained in the same manner as in preparation of the
coating agent (1), except that the silica particles (1) are changed to any of the
silica particles (2) to (7).
[Coating Agents (8) to (11)]
[0291] Coating agents (8) to (11) are obtained in the same manner as in preparation of the
coating agent (1), except that an addition amount of the silica particles (1) is changed
as follows.
- Coating agent (8): 10 parts of the silica particles (1)
- Coating agent (9): 12 parts of the silica particles (1)
- Coating agent (10): 30 parts of the silica particles (1)
- Coating agent (11): 40 parts of the silica particles (1)
[Coating Agent (12-1)]
[0292]
- Cyclohexyl methacrylate resin (weight average molecular weight: 50,000): 20 parts
- Polyisocyanate (Coronate L manufactured by Tosoh Corporation): 4 parts
- Carbon black (Cabot Corporation, VXC72): 1 part
- Toluene: 425 parts
- Methanol: 50 parts
[0293] The above materials and glass beads (diameter: 1 mm, the same amount as toluene)
are charged into a sand mill and stirred at a rotation speed of 1,200 rpm for 30 minutes
to obtain a coating agent (12-1) having a solid content of 5%.
[Coating Agent (12-2)]
[0294]
- Silica particles (4): 8 parts
- Toluene: 92 parts
[0295] The above materials and glass beads (diameter: 1 mm, the same amount as toluene)
are charged into a sand mill and stirred at a rotation speed of 1,200 rpm for 30 minutes
to obtain a coating agent (12-2) having a solid content of 8%.
[Coating Agent (13)]
[0296]
- Cyclohexyl methacrylate resin (weight average molecular weight: 350,000): 3.3 parts
- Perfluoropropylethyl methacrylate/methyl methacrylate copolymer (polymerization ratio
by mass: 30: 70, weight average molecular weight Mw = 19000): 13.2 parts
- Carbon black (Cabot Corporation, VXC72): 0.5 parts
- Silica particles (1): 20 parts
- Toluene: 250 parts
- Isopropyl alcohol: 50 parts
[0297] The above materials and glass beads (diameter: 1 mm, the same amount as toluene)
are charged into a sand mill and stirred at a rotation speed of 190 rpm for 30 minutes,
to obtain a coating agent (13) having a solid content of 11%. The weight average molecular
weight of the resin constituting the coating agent (13) is 85,000.
[Coating Agent (14)]
[0298]
- Cyclohexyl methacrylate resin (weight average molecular weight: 350,000): 9.9 parts
- Perfluoropropylethyl methacrylate/methyl methacrylate copolymer (polymerization ratio
by mass: 30: 70, weight average molecular weight Mw = 19000): 6.6 parts
- Carbon black (Cabot Corporation, VXC72): 0.5 parts
- Silica particles (1): 20 parts
- Toluene: 250 parts
- Isopropyl alcohol: 50 parts
[0299] The above materials and glass beads (diameter: 1 mm, the same amount as toluene)
are charged into a sand mill and stirred at a rotation speed of 190 rpm for 30 minutes,
to obtain a coating agent (14) having a solid content of 11%. The weight average molecular
weight of the resin constituting the coating agent (14) is 210,000.
[Coating Agent (15)]
[0300]
- Cyclohexyl methacrylate resin (weight average molecular weight: 350,000): 16.5 parts
- Carbon black (Cabot Corporation, VXC72): 0.5 parts
- Silica particles (1): 20 parts
- Toluene: 250 parts
- Isopropyl alcohol: 50 parts
[0301] The above materials and glass beads (diameter: 1 mm, the same amount as toluene)
are charged into a sand mill and stirred at a rotation speed of 190 rpm for 30 minutes,
to obtain a coating agent (15) having a solid content of 11%.
[Coating Agent (16)]
[0302]
- Cyclohexyl methacrylate resin (weight average molecular weight: 350,000): 6.6 parts
- Perfluoropropylethyl methacrylate/methyl methacrylate copolymer (polymerization ratio
by mass: 30: 70, weight average molecular weight Mw = 19000): 9.9 parts
- Carbon black (Cabot Corporation, VXC72): 0.5 parts
- Inorganic Particles (8): 20 parts
- Toluene: 250 parts
- Isopropyl alcohol: 50 parts
[0303] The above materials and glass beads (diameter: 1 mm, the same amount as toluene)
are charged into a sand mill and stirred at a rotation speed of 190 rpm for 30 minutes,
to obtain a coating agent (16) having a solid content of 11%.
[Coating Agent (17)]
[0304]
- Cyclohexyl methacrylate resin (weight average molecular weight: 350,000): 6.6 parts
- Perfluoropropylethyl methacrylate/methyl methacrylate copolymer (polymerization ratio
by mass: 30: 70, weight average molecular weight Mw = 19000): 9.9 parts
- Carbon black (Cabot Corporation, VXC72): 0.5 parts
- Inorganic Particles (9): 20 parts
- Toluene: 250 parts
- Isopropyl alcohol: 50 parts
[0305] The above materials and glass beads (diameter: 1 mm, the same amount as toluene)
are charged into a sand mill and stirred at a rotation speed of 190 rpm for 30 minutes,
to obtain a coating agent (17) having a solid content of 11%.
[Coating Agent (18)]
[0306]
- Cyclohexyl methacrylate resin (weight average molecular weight: 350,000): 6.6 parts
- Perfluoropropylethyl methacrylate/methyl methacrylate copolymer (polymerization ratio
by mass: 30: 70, weight average molecular weight Mw = 19000): 9.9 parts
- Carbon black (Cabot Corporation, VXC72): 0.5 parts
- Inorganic Particles (10): 20 parts
- Toluene: 250 parts
- Isopropyl alcohol: 50 parts
[0307] The above materials and glass beads (diameter: 1 mm, the same amount as toluene)
are charged into a sand mill and stirred at a rotation speed of 190 rpm for 30 minutes,
to obtain a coating agent (18) having a solid content of 11%.
[Coating Agent (19)]
[0308]
- Cyclohexyl methacrylate resin (weight average molecular weight: 350,000): 6.6 parts
- Perfluoropropylethyl methacrylate/methyl methacrylate copolymer (polymerization ratio
by mass: 30: 70, weight average molecular weight Mw = 19000): 9.9 parts
- Carbon black (Cabot Corporation, VXC72): 0.5 parts
- Inorganic Particles (11): 20 parts
- Toluene: 250 parts
- Isopropyl alcohol: 50 parts
[0309] The above materials and glass beads (diameter: 1 mm, the same amount as toluene)
are charged into a sand mill and stirred at a rotation speed of 190 rpm for 30 minutes,
to obtain a coating agent (19) having a solid content of 11%.
[Coating Agent (20)]
[0310]
- Cyclohexyl methacrylate resin (weight average molecular weight: 350,000): 6.6 parts
- Perfluoropropylethyl methacrylate/methyl methacrylate copolymer (polymerization ratio
by mass: 30: 70, weight average molecular weight Mw = 19000): 9.9 parts
- Carbon black (Cabot Corporation, VXC72): 0.5 parts
- Inorganic Particles (12): 20 parts
- Toluene: 250 parts
- Isopropyl alcohol: 50 parts
[0311] The above materials and glass beads (diameter: 1 mm, the same amount as toluene)
are charged into a sand mill and stirred at a rotation speed of 190 rpm for 30 minutes,
to obtain a coating agent (20) having a solid content of 11 %.
[Coating Agent (21)]
[0312]
- Cyclohexyl methacrylate resin (weight average molecular weight: 350,000): 6.6 parts
- Perfluoropropylethyl methacrylate/methyl methacrylate copolymer (polymerization ratio
by mass: 30: 70, weight average molecular weight Mw = 19000): 9.9 parts
- Carbon black (Cabot Corporation, VXC72): 0.5 parts
- Inorganic Particles (13): 20 parts
- Toluene: 250 parts
- Isopropyl alcohol: 50 parts
[0313] The above materials and glass beads (diameter: 1 mm, the same amount as toluene)
are charged into a sand mill and stirred at a rotation speed of 190 rpm for 30 minutes,
to obtain a coating agent (21) having a solid content of 11%.
<Preparation of Resin-coated Carrier>
[Carrier (1)]
[0314] 1000 parts of the ferrite particles (1) and 125 parts of the coating agent (1) are
charged into a kneader and mixed at a room temperature (25°C) for 20 minutes. Then,
the mixture is heated to 70°C and reduced in pressure to be dried.
[0315] A dried product is cooled to the room temperature (25°C), 125 parts of the coating
agent (1) is additionally added, and the mixture is mixed at the room temperature
(25°C) for 20 minutes. Then, the mixture is heated to 70°C and reduced in pressure
to be dried.
[0316] Next, a dried product is taken out from the kneader, and coarse powder is sieved
with a mesh having a mesh size of 75 µm and removed to obtain the carrier (1).
[Carriers (2) to (7)]
[0317] Carriers (2) to (7) are obtained in the same manner as in the preparation of the
carrier (1), except that the mixing time after the coating agent (1) is additionally
added is changed as illustrated in Table 3.
[Carriers (8) to (13)]
[0318] Carriers (8) to (13) are obtained in the same manner as in the preparation of the
carrier (1), except that the coating agent (1) is changed to any one of the coating
agents (2) to (7).
[Carriers (14) to (19)]
[0319] Carriers (14) to (19) are obtained in the same manner as in the preparation of the
carrier (1), except that the amount of the additionally added coating agent (1) is
changed as illustrated in Table 3.
[Carriers (20) to (23)]
[0320] Carriers (20) to (23) are obtained in the same manner as in the preparation of the
carrier (1), except that the coating agent (1) is changed to any one of the coating
agents (8) to (11).
[Carrier (24)]
[0321] 100 parts of the ferrite particles (1) and 40 parts of the coating agent (12-1) are
placed in a vacuum degassing kneader, heating and decompression are conducted with
stirring, and the mixture is stirred and dried in an atmosphere of 90°C/-720 mmHg
for 30 minutes. 10 parts of the coating agent (12-2) is applied to the taken out carrier
by a spray method, dried, and then allowed to stand at 150°C for 1 hour in an electric
furnace to be fired. The coarse powder is removed by sieving with a mesh having an
opening of 75 µm to obtain the carrier (24).
[Carriers (25) to (33)]
[0322] Carriers (25) to (33) are obtained in the same manner as in the preparation of the
carrier (1), except that the coating agent (1) is changed to any one of the coating
agents (13) to (21).
<Preparation of Developer>
[0323] As illustrated in Tables 2 and 3, any one of the cyan toners (1) to (13) and any
one of the carriers (1) to (33) are combined, put into a V blender at a mixing ratio
of toner: carrier = 10: 100 (mass ratio), and stirred for 20 minutes to obtain a cyan
developer.
<Surface Property Index Value of Toner Particles>
[0324] The specific surface area measured value of the toner particles is obtained from
a nitrogen adsorption amount by BET one-point method (equilibrium relative pressure:
0.3).
[0325] The toner particles are taken into the flow particle image analysis apparatus (FPIA-3000
manufactured by Sysmex Corporation), the toner particles are captured, subjected to
the two-dimensional image processing, and the equivalent circle diameter is calculated
from the projection area. A sum of the surface areas and a sum of the volumes are
calculated from equivalent circle diameters of 4,500 toner particles.
[0326] Density of the toner particles is measured by measuring true density in accordance
with 8.2.2 of JIS K0061: 2001 using a Gulysack type specific gravity bottle.
<Dynamic Viscoelasticity Measurement of Toner>
[0327] Using a press molding machine, 0.25 g of toner is tablet-molded into a disk having
a diameter of 8 mm and a thickness of 4 mm in an environment of 25°C ± 3°C. The disk-shaped
sample is placed on a parallel plate of a rheometer ("ARES" manufactured by TA Instruments
Inc.). The sample is adhered to a parallel plate at a temperature of 130°C, cooled
to a temperature of 30°C at a cooling rate of 1°C/min, held at a temperature of 30°C
for 30 minutes, and then measured at the temperature of 30°C. Measurement conditions
include a frequency of 1 Hz, an angular frequency of 6.28 rad/sec, and a strain of
0.03 to 20% (automatic control).
<Surface Analysis of Carrier>
[0328] As a device for three-dimensional analysis of the surface of the carrier, an electron
beam three-dimensional roughness analysis apparatus ERA-8900FE manufactured by Elionix
Co., Ltd. is used. The surface analysis of the carrier by ERA-8900FE is specifically
performed as follows.
[0329] The surface of one carrier particle is magnified 5,000 times, and three-dimensional
measurement is performed by taking 400 measurement points in a long side direction
and 300 points in a short side direction to obtain three-dimensional image data in
a region of 24 µm × 18 µm. For the three-dimensional image data, the limit wavelength
of the spline filter is set to 12 µm to remove wavelengths having a period of 12 µm
or more, and the cutoff value of the Gaussian high-pass filter is set to 2.0 µm to
remove wavelengths having a period of 2.0 µm or more, so as to obtain three-dimensional
roughness curve data. From three-dimensional roughness curve data, the surface area
B (µm
2) of a central portion 12 µm × 12 µm region (the plan view area A = 144 µm
2) is obtained, so as to obtain the ratio B/A. The ratio B/A is calculated for each
of 100 carriers and the arithmetic average value is obtained.
<Measurement of Average Particle Diameter of Silica Particles in Resin Layer>
[0330] The carrier is embedded in an epoxy resin and cut with a microtome to prepare a carrier
cross section. An SEM image obtained by capturing the carrier cross section with a
scanning transmission electron microscope (S-4100, manufactured by Hitachi, Ltd.)
is taken into an image processing analysis apparatus (Nireco, Luzex AP), and image
analysis is performed. 100 silica particles (primary particles) in the resin layer
are randomly selected, and an equivalent circular diameter (nm) of each particle is
calculated and arithmetically averaged to obtain the average particle diameter (nm)
of the silica particles.
<Measurement of Average Thickness of Resin Layer>
[0331] The SEM image is taken into the image processing analysis apparatus (Nireco, Luzex
AP) to perform the image analysis. The thickness (µm) of the resin layer is measured
by randomly selecting 10 points per particle of the carrier, and 100 particles of
the carrier are further selected to measure thicknesses thereof, and all the thicknesses
are arithmetically averaged to obtain the average thickness (µm) of the resin layer.
<Measurement of Silicon Element Concentration>
[0332] The carrier is used as a sample and analyzed by X-ray photoelectron spectroscopy
(XPS) under the following conditions, and the silicon element concentration (atomic%)
is obtained from a peak intensity of each element.
- XPS device: Versa Probe II manufactured by ULVAC-PHI, Inc.
- Etching gun: argon gun
- Acceleration voltage: 5 kV
- Emission current: 20 mA
- Spatter area: 2 mm × 2 mm
- Sputter rate: 3 nm/min (in terms of SiO2)
<Evaluation of Image omission>
[0333] A modified machine of an image forming apparatus DocuPrint Color 3540 (manufactured
by Fuji Xerox Co., Ltd.) is prepared, and a developer is put into a developing device.
A toner of the same kind as the toner used for preparing the developer is put into
the toner cartridge (for example, when the developer in the developing device is a
developer in which the cyan toner (1) and the carrier (1) are combined, the cyan toner
(1) is put into the toner cartridge).
[0334] The image forming apparatus is left in an environment at a temperature of 25°C and
a relative humidity of 55% for 24 hours. Under an environment of the temperature of
25°C and the relative humidity of 55%, 50,000 sheets of cyan test images having an
image density of 10% are output on A3 size paper. Next, 10 cyan solid images (image
density 100%) are output on the entire surface of the A3 size paper, and whether there
are white spots in the solid images is visually observed and classified as follows.
- A: There is no white spot in all of 10 sheets.
- B: There are white spots at 1 or 2 places in 10 sheets.
- C: There are white spots at 3 to 5 places in 10 sheets.
- D: There are white spots at 6 to 9 places in 10 sheets, but there is no problem in
practical use.
- E: There are white spots at 10 or more places in 10 sheets, and there is a problem
in practical use.
Table 2
|
Cyan toner |
Carrier |
Image omission |
Number |
Surface property index value of toner particle |
Storage elastic modulus G' |
Number |
Coating agent |
Resin layer |
Ratio B/A |
Silicon element concentration |
Number |
Additionally added amount |
Mixing time after additionally addition |
Average particle diameter of inorganic particles |
Average thickness |
- |
- |
× 108 Pa |
- |
- |
Parts by mass |
Minute |
nm |
µm |
- |
atomic% |
- |
Comparative Example |
(2) |
1.9 |
10 |
(1) |
(1) |
125 |
20 |
40 |
0.9 |
1.065 |
11.0 |
E |
Example |
(3) |
2.0 |
10 |
(1) |
(1) |
125 |
20 |
40 |
0.9 |
1.065 |
11.0 |
D |
Example |
(4) |
2.2 |
10 |
(1) |
(1) |
125 |
20 |
40 |
0.9 |
1.065 |
11.0 |
B |
Example |
(1) |
2.4 |
10 |
(1) |
(1) |
125 |
20 |
40 |
0.9 |
1.065 |
11.0 |
A |
Example |
(5) |
2.6 |
10 |
(1) |
(1) |
125 |
20 |
40 |
0.9 |
1.065 |
11.0 |
B |
Example |
(6) |
2.8 |
10 |
(1) |
(1) |
125 |
20 |
40 |
0.9 |
1.065 |
11.0 |
D |
Example |
(12) |
2.1 |
10 |
(1) |
(1) |
125 |
20 |
40 |
0.9 |
1.065 |
11.0 |
B |
Example |
(13) |
2.2 |
13 |
(1) |
(1) |
125 |
20 |
40 |
0.9 |
1.065 |
11.0 |
C |
Comparative Example |
(7) |
2.9 |
10 |
(1) |
(1) |
125 |
20 |
40 |
0.9 |
1.065 |
11.0 |
E |
Example |
(8) |
2.4 |
15 |
(1) |
(1) |
125 |
20 |
40 |
0.9 |
1.065 |
11.0 |
D |
Example |
(9) |
2.4 |
12 |
(1) |
(1) |
125 |
20 |
40 |
0.9 |
1.065 |
11.0 |
C |
Example |
(10) |
2.4 |
8 |
(1) |
(1) |
125 |
20 |
40 |
0.9 |
1.065 |
11.0 |
C |
Example |
(11) |
2.4 |
6 |
(1) |
(1) |
125 |
20 |
40 |
0.9 |
1.065 |
11.0 |
D |
Table 3
|
Cyan toner |
Carrier |
Image omission |
Number |
Surface property index value of toner particle |
Storage elastic modulus G' |
Number |
Coating agent |
Resin layer |
Ratio B/A |
Silicon element concentration |
Number |
Additionally added amount |
Mixing time after additionally addition |
Average particle diameter of inorganic particles |
Average thickness |
- |
- |
× 108 Pa |
- |
- |
Parts by mass |
Minute |
nm |
µm |
- |
atomic% |
- |
Comparative Example |
(1) |
2.4 |
10 |
(2) |
(1) |
125 |
40 |
40 |
1.0 |
1.019 |
10.1 |
E |
Example |
(1) |
2.4 |
10 |
(3) |
(1) |
125 |
37 |
40 |
0.9 |
1.022 |
10.8 |
D |
Example |
(1) |
2.4 |
10 |
(4) |
(1) |
125 |
30 |
40 |
1.2 |
1.043 |
10.2 |
C |
Example |
(1) |
2.4 |
10 |
(5) |
(1) |
125 |
16 |
40 |
1.0 |
1.077 |
12.0 |
C |
Example |
(1) |
2.4 |
10 |
(6) |
(1) |
125 |
10 |
40 |
1.1 |
1.098 |
11.5 |
D |
Comparative Example |
(1) |
2.4 |
10 |
(7) |
(1) |
125 |
5 |
40 |
1.1 |
1.103 |
10.9 |
E |
Example |
(1) |
2.4 |
10 |
(8) |
(2) |
125 |
20 |
4 |
1.1 |
1.067 |
11.9 |
D |
Example |
(1) |
2.4 |
10 |
(9) |
(3) |
125 |
20 |
7 |
0.8 |
1.055 |
11.1 |
C |
Example |
(1) |
2.4 |
10 |
(10) |
(4) |
125 |
20 |
12 |
0.8 |
1.078 |
9.8 |
B |
Example |
(1) |
2.4 |
10 |
(11) |
(5) |
125 |
20 |
62 |
1.3 |
1.056 |
10.8 |
B |
Example |
(1) |
2.4 |
10 |
(12) |
(6) |
125 |
20 |
88 |
0.8 |
1.042 |
10.6 |
C |
Example |
(1) |
2.4 |
10 |
(13) |
(7) |
125 |
20 |
93 |
0.7 |
1.059 |
10.0 |
D |
Example |
(1) |
2.4 |
10 |
(14) |
(1) |
100 |
20 |
40 |
0.5 |
1.083 |
10.6 |
D |
Example |
(1) |
2.4 |
10 |
(15) |
(1) |
110 |
20 |
40 |
0.7 |
1.058 |
11.3 |
C |
Example |
(1) |
2.4 |
10 |
(16) |
(1) |
120 |
20 |
40 |
0.8 |
1.078 |
11.0 |
B |
Example |
(1) |
2.4 |
10 |
(17) |
(1) |
130 |
20 |
40 |
1.0 |
1.083 |
10.2 |
B |
Example |
(1) |
2.4 |
10 |
(18) |
(1) |
140 |
20 |
40 |
1.3 |
1.060 |
11.3 |
C |
Example |
(1) |
2.4 |
10 |
(19) |
(1) |
150 |
20 |
40 |
1.5 |
1.054 |
12.1 |
D |
Example |
(1) |
2.4 |
10 |
(20) |
(8) |
125 |
20 |
40 |
0.8 |
1.062 |
5.3 |
D |
Example |
(1) |
2.4 |
10 |
(21) |
(9) |
125 |
20 |
40 |
1.1 |
1.084 |
6.5 |
C |
Example |
(1) |
2.4 |
10 |
(22) |
(10) |
125 |
20 |
40 |
0.9 |
1.051 |
18.6 |
C |
Example |
(1) |
2.4 |
10 |
(23) |
(11) |
125 |
20 |
40 |
1.0 |
1.069 |
19.7 |
D |
Example |
(1) |
2.4 |
10 |
(25) |
(13) |
125 |
20 |
40 |
0.9 |
1.052 |
11.5 |
C |
Example |
(1) |
2.4 |
10 |
(26) |
(14) |
125 |
20 |
40 |
0.9 |
1.071 |
12.5 |
C |
Example |
(1) |
2.4 |
10 |
(27) |
(15) |
125 |
20 |
40 |
0.9 |
1.085 |
11.8 |
D |
Example |
(1) |
2.4 |
10 |
(28) |
(16) |
125 |
20 |
20 |
0.9 |
1.061 |
No measurement |
C |
Example |
(1) |
2.4 |
10 |
(29) |
(17) |
125 |
20 |
40 |
0.9 |
1.063 |
No measurement |
C |
Example |
(1) |
2.4 |
10 |
(30) |
(18) |
125 |
20 |
10 |
0.9 |
1.067 |
No measurement |
C |
Example |
(1) |
2.4 |
10 |
(31) |
(19) |
125 |
20 |
30 |
0.9 |
1.072 |
No measurement |
C |
Example |
(1) |
2.4 |
10 |
(32) |
(20) |
125 |
20 |
50 |
0.9 |
1.086 |
No measurement |
D |
Example |
(1) |
2.4 |
10 |
(33) |
(21) |
125 |
20 |
60 |
0.9 |
1.092 |
No measurement |
D |
Example |
(1) |
2.4 |
10 |
(24) |
(12-1) |
Produced by spray method |
12 |
1.0 |
1.050 |
10.0 |
C |
(12-2) |
[0335] The foregoing description of the exemplary embodiments of the present invention has
been provided for the purposes of illustration and description. It is not intended
to be exhaustive or to limit the invention to the precise forms disclosed. Obviously,
many modifications and variations will be apparent to practitioners skilled in the
art. The embodiments were chosen and described in order to best explain the principles
of the invention and its practical applications, thereby enabling others skilled in
the art to understand the invention for various embodiments and with the various modifications
as are suited to the particular use contemplated. It is intended that the scope of
the invention be defined by the following claims and their equivalents.
[0336] For the avoidance of doubt, the present application is directed to the subject-matter
described in the following numbered paragraphs:
- 1. An electrostatic charge image developer comprising:
a toner containing a toner particle and an external additive; and
a carrier containing a magnetic particle and a resin layer covering the magnetic particle,
wherein
the toner particle has a surface property index value of 2.0 or more and 2.8 or less;
and
the carrier has a surface having a ratio B/A of a surface area B to a planar view
area A of 1.020 or more and 1.100 or less, the planar view area A and the surface
area B being obtained by three-dimensional analysis of the surface of the carrier.
- 2. The electrostatic charge image developer according to numbered paragraph 1, wherein
the surface property index value is 2.1 or more and 2.6 or less.
- 3. The electrostatic charge image developer according to numbered paragraph 1 or 2,
wherein
the ratio B/A is 1.040 or more and 1.080 or less.
- 4. The electrostatic charge image developer according to any one of numbered paragraphs
1 to 3, wherein
the resin layer contains inorganic particles having an average particle diameter of
5 nm or more and 90 nm or less.
- 5. The electrostatic charge image developer according to numbered paragraph 4, wherein
the average particle diameter of the inorganic particles is 5 nm or more and 70 nm
or less.
- 6. The electrostatic charge image developer according to any one of numbered paragraphs
1 to 5, wherein
the resin layer has an average thickness of 0.6 µm or more and 1.4 µm or less.
- 7. The electrostatic charge image developer according to numbered paragraph 6, wherein
the average thickness of the resin layer is 0.8 µm or more and 1.2 µm or less.
- 8. The electrostatic charge image developer according to any one of numbered paragraphs
1 to 7, wherein
the toner has a storage elastic modulus G' of 6.0 × 108 Pa or more and 1.5 × 109 Pa or less at a temperature of 30°C in dynamic viscoelasticity measurement.
- 9. The electrostatic charge image developer according to numbered paragraph 8, wherein
the storage elastic modulus G' is 8.0 × 108 Pa or more and 1.2 × 109 Pa or less.
- 10. The electrostatic charge image developer according to any one of numbered paragraphs
1 to 9, wherein
the resin layer contains silica particles, and has a silicon element concentration
of more than 2 atomic% and less than 20 atomic% at the surface of the carrier, the
silicon element concentration being determined by X-ray photoelectron spectroscopy.
- 11. The electrostatic charge image developer according to any one of numbered paragraphs
1 to 10, wherein
the resin layer comprises a resin having a weight average molecular weight of less
than 300,000.
- 12. A process cartridge configured to be attached to and detached from an image forming
apparatus, the process cartridge comprising:
a developing unit that accommodates the electrostatic charge image developer according
to any one of numbered paragraphs 1 to 11, and is configured to develop an electrostatic
charge image as a toner image by the electrostatic charge image developer, the electrostatic
charge image being formed on a surface of an image carrier.
- 13. An image forming apparatus comprising:
an image carrier;
a charging unit configured to charge a surface of the image carrier;
an electrostatic charge image forming unit configured to form an electrostatic charge
image on the surface of the image carrier charged;
a developing unit that accommodates the electrostatic charge image developer according
to any one of numbered paragraphs 1 to 11, and is configured to develop the electrostatic
charge image as a toner image by the electrostatic charge image developer;
a transfer unit configured to transfer the toner image formed on the surface of the
image carrier to a surface of a recording medium; and
a fixing unit configured to fix the toner image transferred to the surface of the
recording medium.
- 14. An image forming method comprising:
charging a surface of an image carrier;
forming an electrostatic charge image on the surface of the image carrier charged;
developing the electrostatic charge image as a toner image by the electrostatic charge
image developer according to any one of numbered paragraphs 1 to 11;
transferring the toner image formed on the surface of the image carrier to a surface
of a recording medium; and
fixing the toner image transferred to the surface of the recording medium.