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(54) METHOD FOR AUTOMATED PROCESSING OF VOLUMETRIC MEDICAL IMAGES

(57) A method, device and system for automated
processing of volumetric medical images (MI). In one as-
pect, the method comprises:
receiving (301) a volumetric medical image (MI), the vol-
umetric medical image (MI) comprising at least one organ
or portion thereof,
providing (302) a sparse sampling model (SM) for sparse
sampling the volumetric medical image (MI), the sparse
sampling model (SM) defining a number N of sampling
points (400a-400c) distributed in the volumetric medical
image (MI) and defining locations and distances of the
distributed sampling points (400a-400c),
sampling (303) voxels (306-308) from the volumetric
medical image (MI) using the provided sparse sampling
model (SM) for obtaining N sparse sampling descriptors
(D),
classifying (304) labels (L) for query points (701) in the
volumetric medical image (MI) by applying a trained clas-
sifier to the obtained sparse sampling descriptors (D),
and
providing (305) a segmentation mask (MAP, 601, 602)
for the volumetric medical image (MI) using the classified
labels (L).
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Description

[0001] The present invention relates to a computer-
implemented method for automated processing of volu-
metric medical images, to a device, to a system, to a
computer program product and to a computer-readable
medium.
[0002] Segmentation is one of the core problems in
medical imaging. It has been used for identifying organ
boundaries, displaying visualizations or volume calcula-
tions. One prominent use case is organ identification in
the finding location. However, full segmentation of all or-
gans for this purpose is computationally intensive since
3D images could contain up to billions of voxels. Also,
the identification of organs in a location of interest does
not need full organ segmentation in most cases.
[0003] As compared to landmarking and bounding box
detection methods, segmentation provides more granu-
lar information, which would be beneficial while storing
anatomical locations of findings in structured databases,
quantification of abnormalities, radio therapy planning,
dose calculations, comparing longitudinal studies, visu-
alization of imaging data or filter the scanning region for
CAD algorithms. Thus, it is desired to have fast and ac-
curate segmentation algorithms.
[0004] Conventional methods are known from refer-
ences [1] to [8], as shown below. From these recent meth-
ods, U-net is a widely used machine learning algorithm
that learns the mapping from image to segmentation
space. The power of U-net comes from utilizing multiple
resolutions of the same image while extracting feature
vectors. Thus, coarse layers work on global representa-
tion, while finer levels work on local details. Further, con-
ventional transformer-based encoder-decoder ap-
proaches have been demonstrated to be more powerful
in biomedical segmentation tasks. These methods usu-
ally depend on large training datasets with a considerable
amount of training time with specialized hardware. Monai
Label is a software that provides intelligent segmentation
tools. It enables labeling and learning at the same time.
The segmentation results could be visualized in 3D as
well.
[0005] Flare challenge created an open competition for
abdominal organ segmentation under low resources.
Higher performing methods in that challenge were dem-
onstrated to be around 10s in time scale in the segmen-
tation tasks.
[0006] The object of the invention is therefore to pro-
vide a method, device and system that enables an im-
proved automated processing of volumetric medical im-
ages.
[0007] According to a first aspect, a computer-imple-
mented method for automated processing of volumetric
medical images is provided. The method comprises:

a) receiving a volumetric medical image, the volu-
metric medical image comprising at least one organ
or portion thereof,

b) providing a sparse sampling model for sparse
sampling the volumetric medical image, the sparse
sampling model defining a number N of sampling
points distributed in the volumetric medical image
and defining locations and distances of the distrib-
uted sampling points, wherein "N" is a positive, real
and whole number,
c) sampling voxels from the volumetric medical im-
age using the provided sparse sampling model for
obtaining N sparse sampling descriptors,
d) classifying labels for query points in the volumetric
medical image by applying a trained classifier to the
obtained sparse sampling descriptors, and
e) providing a segmentation mask for the volumetric
medical image using the classified labels.

[0008] As a result, the segmentation mask is provided
using sparse sampling and sparse sampling descriptors.
Even though the amount of data processed is reduced,
the inventors found that the segmentation mask can still
be provided in good quality, and a type of organ can par-
ticularly be identified reliably using the present approach.
[0009] As the data processed is reduced, the present
approach is very fast in providing a segmentation mask.
As the user may define and/or adapt the query points for
classifying the labels, the user has the ability to define
the granularity of the segmentation mask. For example,
a coarse segmentation mask may be provided very fast.
Furthermore, a fine segmentation mask may be provided
with detailed information for the user.
[0010] For example, by using query points in every 8
mm, a coarse segmentation mask may be obtained in
around one second. In the segmentation mask, each vis-
ualized intensity may represent a different organ label.
[0011] The provided segmentation mask may be used
for identifying organ boundaries, displaying visualiza-
tions and/or volume calculations. The term "segmenta-
tion mask" may be also referred to as "segmentation
map".
[0012] An organ is to be understood as a collection of
tissue joined in a structural unit to serve a common func-
tion. The organ may be a human organ. The organ may
be any one of the following, for example: intestines, skel-
eton, kidneys, gall bladder, liver, muscles, arteries, heart,
larynx, pharynx, brain, lymph nodes, lungs, spleen bone
marrow, stomach, veins, pancreas, and bladder.
[0013] The volumetric medical image may be captured
by and received from a medical imaging unit, the medical
imaging unit may include, for example, but not limited to,
a magnetic resonance imaging device, a computer tom-
ography device, an X-ray imaging device, an ultrasound
imaging device, etc. The volumetric medical image may
be three-dimensional (3D) and/or related to a volume.
The volumetric medical image may be made up of a
number of slices, i.e., 2D (two-dimensional) medical im-
ages. The 2D medical images may be captured by and
received from the medical imaging unit mentioned above.
The 2D medical images may then be assembled to form

1 2 



EP 4 425 427 A1

3

5

10

15

20

25

30

35

40

45

50

55

the volumetric medical image.
[0014] Presently, a voxel represents a value in three-
dimensional space, whereas a pixel represents a value
in two-dimensional space. The pixels or voxels may or
may not have their position, i.e., their coordinates explic-
itly encoded with their values. Instead, the position of a
pixel or voxel is inferred based upon its position relative
to other pixels or voxels (i.e., is positioned in the data
structure that makes up a single 2D or 3D (volumetric)
image). The voxels may be arranged on a 3D grid, the
pixels on a 2D grid. The 2D medical image may, for ex-
ample, be in the form of an array of pixels. The volumetric
medical image may comprise an array of voxels. The
pixels of a number of 2D medical images making up a
volumetric medical image are also presently referred to
as voxels. The pixels or voxels may be representative of
intensity, absorption or other parameters as a function
of a three-dimensional position, and may, for example,
be obtained by a suitable processing of measurement
signals obtained by one or more of the above-mentioned
medical imaging units.
[0015] "Sparse sampling" is to be understood as, when
having regard to the total number of voxels making up
the volumetric medical image, only few voxels being used
in sampling. In particular, "sparse" is to say that less than
50% or less than 20% or even less than 10% of the total
number of voxels of the volumetric medical image are
sampled in step c). Sparse sampling has the effect that
the amount of data which needs to be processed by the
trained classifier is reduced, thus reducing computation
time and computation resources. Even though the
amount of data processed by the trained classifier is re-
duced, the inventors found that the segmentation mask
can still be provided in good quality, and a type of organ
can particularly be identified reliably using the present
approach. One reason for this is that the sampled voxels
may correspond to a larger field of view, thus also con-
sidering neighborhood information, compared to the
case where every voxel of a smaller sub volume is sam-
pled. The sampling model contains the information about
the location of the voxels in the volumetric medical image
which are to be sampled, i.e. the sampling points distrib-
uted in the volumetric medical image and the locations
and distances of the distributed sampling points The
sampling model can be or make use of an algorithm, for
example.
[0016] The respective sparse sampling descriptor may
be formed as a vector of values, in particular of intensities,
of the sampled voxels associated to a certain sampling
point of the distributed sampling points.
[0017] A trained classifier is applied to the sparse sam-
pling descriptors obtained in step c). The trained classifier
is, for example, a trained neural network.
[0018] In one embodiment, the method further com-
prises:
identifying the type of organ at a certain point of interest,
in particular by applying the trained classifier to the sam-
pled voxels.

[0019] In particular, a robot, (e.g., CT or MR) scanner
or other device or machine is controlled depending on
the identified type of organ (or organ specific abnormality
as discussed below). The robot may be configured for
operating on a patient’s body, for example. In particular,
a robot (e.g., an operating instrument thereof such as a
scalpel) or scanner movement may be controlled de-
pending on the identified organ.
[0020] In a further embodiment, the method further
comprises:
receiving a command, in particular a user input, for de-
termining the certain point of interest, wherein the sparse
sampling model is provided in dependence on the re-
ceived command.
[0021] Thus, the point of interest may be selected by
a user. For example, the point of interest can be selected
using a graphical user interface and an input device, such
as a pointer device, to interact with the graphical user
interface to select the point of interest. In another em-
bodiment, the point of interest may be input using a key-
board, a data file or the like. According to a further em-
bodiment, the point of interest is selected by pausing a
cursor operated by the user on the volumetric medical
image or a part thereof displayed on the graphical user
interface. "Pausing" here means that the cursor is not
moved by the operator. This allows for a quick and effi-
cient analysis of a volumetric medical image by a user,
for example a doctor.
[0022] In a further embodiment, the sparse sampling
model is provided such that the voxels are sampled with
a sampling rate per unit length, area or volume which
decreases with a distance of the respective voxel on the
certain point of interest.
[0023] In particular, the sampling rate decreases at a
non-linear rate, in particular at the rate of an exponential
logarithmic or a power function. The inventors found that
using a sampling rate as described reduces computation
time significantly, while, at the same time, providing the
segmentation mask reliably.
[0024] In particular, the sampled voxels are less than
1 %, preferably less than 0,1 %, and more preferably less
than 0,01 % of the total number of voxels in the volumetric
medical image.
[0025] In a further embodiment, the sparse sampling
model defines a plurality of grids, in particular 3D grids,
of different grid spacings, the different grid spacings de-
termining different distances of the distributed sampling
points in the volumetric medical image.
[0026] The respective grid spacing is defined as the
distance between two adjacent nodes of the respective
grid, wherein the respective node is defined as the inter-
section of three grid lines and forms a sampling point.
[0027] In a further embodiment, the method further
comprises:
receiving a query determining the query points for clas-
sifying the labels to the sparse sampling descriptors, the
query defining the locations and distances of the query
points in the volumetric medical image.
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[0028] In a further embodiment, the method further
comprises:
receiving a command, in particular a user input, for ad-
justing the query, wherein the locations and distances of
the query points of the query are adjusted in dependence
on the received command.
[0029] In a further embodiment, steps d) and e) in-
clude:

receiving a first query determining first query points
for providing a coarse segmentation mask, the first
query defining first locations and first spacings of the
first query points in the volumetric medical image,
classifying first labels for the first query points in the
volumetric medical image by applying the trained
classifier to the obtained sparse sampling descrip-
tors,
providing the coarse segmentation mask for the vol-
umetric medical image using the classified first la-
bels,
receiving a second query determining second query
points for providing a fine segmentation mask, the
second query defining second locations and second
spacings of the second query points in the volumetric
medical image, wherein the second spacings are dif-
ferent to the first spacings, in particular smaller than
the first spacings,
classifying second labels for the second query points
in the volumetric medical image by applying the
trained classifier to the obtained sparse sampling de-
scriptors, and
providing the fine segmentation mask for the volu-
metric medical image using the classified second la-
bels.

[0030] For example, the first query may define the first
query points such that they have first spacings of 8 mm.
By using said first query, the coarse segmentation mask
may be provided. Once this mask is generated, there is
no additional query needed for the whole image since it
covers all locations. However, the coarse segmentation
mask may be not accurate in the edges due to low res-
olution. Since errors may happen in the edges, one could
further refine the resolution in those regions by using the
second query. To achieve this, all points in the segmen-
tation mask may be checked with higher resolution, and
points may be added, if the neighbors having different
labels, as different labels define an edge. Thus, the cost
of classification in high resolution in the homogeneous
points may be eliminated.
[0031] Furthermore, a connected component analysis
may be included to remove false positive errors in the
segmentation masks before refinement. For example, liv-
er appears in the bottom of the lung and some query
locations could give liver locations in some small regions
on the various locations, for example on top of the lung.
In particular, the biggest connected component may be
selected to remove erroneous regions before further re-

fining the edges. This may further improve the accuracy
and the speed of the present approach. Further, query
edge locations by adapting the queries may be repeated
until the desired level of granularity is satisfied.
[0032] In a further embodiment, the second query is
determined such that second query points are selected
from neighbors where two of neighbor first query points
have different labels. As neighbors having different labels
may define an edge, these points in the segmentation
mask can be checked with higher resolution.
[0033] In a further embodiment, the respective sparse
sampling descriptor is formed as a vector of values, in
particular of intensities, of the sampled voxels associated
to a certain sampling point of the distributed sampling
points.
[0034] In a further embodiment, the provided segmen-
tation mask or part thereof, in particular comprising the
certain point of interest, is displayed on a graphical user
interface, wherein the segmentation mask is displayed
such that each intensity in the displayed segmentation
mask represents a different label, in particular a different
organ label.
[0035] In a further embodiment, the trained classifier
comprises a neural network, in particular a residual neu-
ral network. The residual neural network is particularly
configured to receive the obtained sparse sampling de-
scriptors and to provide the labels, in particular each of
the labels in the form of a vector of estimated probabilities
for each organ, as an output.
[0036] In particular, the residual neural network com-
prises a plurality of different layers. The different layers
particularly include linear projection, normalization, acti-
vation, linear projection and normalization.
[0037] In a further embodiment, the obtained N sparse
sampling descriptors are decoded into a 2D image in-
cluding the certain point of interest. In particular, the 2D
image is displayed on a graphical user interface together
with a plurality of different 3D slices of the volumetric
medical image, the different 3D slices having different
resolutions and different ranges.
[0038] According to a second aspect, a computer-im-
plemented device for automated processing of volumet-
ric medical images is provided, the computer-implement-
ed device comprising:

one or more processing units,
a receiving unit which is configured to receive one
or more volumetric medical images captured by a
medical imaging unit, and
a memory coupled to the one or more processing
units, the memory comprising a module configured
to perform the method steps of the first aspect or of
any embodiment of the first aspect.

[0039] The respective unit, e.g., the processing unit or
the receiving unit, may be implemented in hardware
and/or in software. If said unit is implemented in hard-
ware, it may be embodied as a device, e.g., as a computer
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or as a processor or as a part of a system, e.g., a computer
system. If said unit is implemented in software, it may be
embodied as a computer program product, as a function,
as a routine, as a program code or as an executable
object.
[0040] The embodiments and features according to the
first aspect are also embodiments of the second aspect.
[0041] According to a third aspect, a system for auto-
mated processing of volumetric medical images is pro-
vided, the system comprising:

one or more servers,
a medical imaging unit coupled to the one or more
servers,
the one or more servers, comprising instructions,
which when executed causes the one or more serv-
ers to perform the method steps of the first aspect
or of any embodiment of the first aspect.

[0042] The embodiments and features according to the
first aspect are also embodiments of the third aspect.
[0043] According to a fourth aspect, a computer pro-
gram product is provided, the computer program product
comprising machine readable instructions, that when ex-
ecuted by one or more processing units, cause the one
or more processing units to perform the method steps of
the first aspect or of any embodiment of the first aspect.
[0044] The embodiments and features according to the
first aspect are also embodiments of the fourth aspect.
[0045] A computer program product, such as a com-
puter program means, may be embodied as a memory
card, USB stick, CD-ROM, DVD or as a file which may
be downloaded from a server in a network. For example,
such a file may be provided by transferring the file com-
prising the computer program product from a wireless
communication network.
[0046] According to a fifth aspect, a computer readable
medium on which program code sections of a computer
program are saved, the program code sections being
loadable into and/or executable in a system to make the
system execute the method steps of the first aspect or
of any embodiment of the first aspect when the program
code sections are executed in the system.
[0047] The embodiments and features according to the
first aspect are also embodiments of the fifth aspect.
[0048] The realization by a computer program product
and/or a computer-readable medium has the advantage
that already existing management systems can be easily
adopted by software updates in order to work as pro-
posed by the invention.
[0049] "A" is to be understood as non-limiting to a sin-
gle element. Rather, one or more elements may be pro-
vided, if not explicitly stated otherwise. Further, "a", "b"
etc. in steps a), step b) etc. is not defining a specific order.
Rather, the steps may be interchanged as deemed fit by
the skilled person.
[0050] Further possible implementations or alternative
solutions of the invention also encompass combinations

- that are not explicitly mentioned herein - of features
described above or below with regard to the embodi-
ments. The person skilled in the art may also add indi-
vidual or isolated aspects and features to the most basic
form of the invention.
[0051] Further embodiments, features, and advantag-
es of the present invention will become apparent from
the subsequent description and dependent claims, taken
in conjunction with the accompanying drawings, in which:

FIG. 1 illustrates a block diagram of a client-server
architecture embodying a system for auto-
mated processing of volumetric medical im-
ages;

FIG. 2 illustrates a block diagram of a data process-
ing system embodying a device for automat-
ed processing of volumetric medical images;

FIG. 3 illustrates a flowchart of an embodiment of a
computer-implemented method for automat-
ed processing of volumetric medical images;

FIG. 4 illustrates a slice from a volumetric medical
image and including portions of a sparse sam-
pling model according to an embodiment;

FIG. 5 shows an example of a volumetric medical
image with some voxels being scanned, oth-
ers being skipped;

FIG. 6 shows different three-dimensional grids used
in the definition of the sparse sampling model
of FIG. 4;

FIG. 7 illustrates a flowchart of an embodiment of a
computer-implemented method for identify-
ing a type of organ;

FIG. 8 illustrates a flowchart of an embodiment of
the sampling step and the classifying step of
the computer-implemented method of FIG. 3;

FIG. 9 illustrates an embodiment of a coarse seg-
mentation mask;

FIG. 10 illustrates the coarse segmentation mask of
FIG. 9 additionally including query points of
a query;

FIG. 11 illustrates an embodiment of a fine segmen-
tation mask;

FIG. 12 illustrates a graphical user interface display-
ing a 2D image and three different 3D slices
of the volumetric medical image; and

FIG. 13 illustrates a further embodiment of a coarse
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segmentation mask additionally including
query points of a query;

[0052] Hereinafter, embodiments for carrying out the
present invention are described in detail. The various em-
bodiments are described with reference to the drawings,
wherein like reference numerals are used to refer to like
elements throughout. In the following description, for pur-
pose of explanation, numerous specific details are set
forth in order to provide a thorough understanding of one
or more embodiments. It may be evident that such em-
bodiments may be practiced without these specific de-
tails.
[0053] FIG. 1 provides an illustration of a block diagram
of a client-server architecture embodying a system for
automated processing of volumetric medical images MI
(see FIG. 4) The client-server architecture 100 comprises
a server 101 and a plurality of client devices 107A-N.
Each of the client devices 107A-N is connected to the
server 101 via a network 105, for example, local area
network (LAN), wide area network (WAN), WiFi, etc. In
one embodiment, the server 101 is deployed in a cloud
computing environment. As used herein, "cloud comput-
ing environment" refers to a processing environment
comprising configurable computing physical and logical
resources, for example, networks, servers, storage, ap-
plications, services, etc., and data distributed over the
network 105, for example, the internet. The cloud com-
puting environment provides on-demand network access
to a shared pool of the configurable computing physical
and logical resources. The server 101 may include a
medical database 102 that comprises medical images
related to a plurality of patients that is maintained by a
healthcare service provider. In an embodiment, the med-
ical database 102 comprises volumetric medical images
captured by a MR scanner and/or by a CT scanner. The
server 101 may include a module 103 that is configured
to perform identifying a type of organ in a volumetric med-
ical image, in particular as described hereinafter.
[0054] The client devices 107A-N are user devices,
used by users, for example, medical personnel such as
a radiologist, pathologist, physician, etc. In an embodi-
ment, the user device 107A-N may be used by the user
to receive volumetric medical images or 2D medical im-
ages associated with the patient. The data can be ac-
cessed by the user via a graphical user interface of an
end user web application on the user device 107A-N. In
another embodiment, a request may be sent to the server
101 to access the medical images associated with the
patient via the network 105.
[0055] An imaging unit 108 may be connected to the
server 101 through the network 105. The unit 108 may
be a medical imaging unit 108 capable of acquiring a
plurality of volumetric medical images. The medical im-
aging unit 108 may be, for example, a scanner unit such
as a magnetic resonance imaging unit, computed tom-
ography imaging unit, an X-ray fluoroscopy imaging unit,
an ultrasound imaging unit, etc.

[0056] FIG. 2 is a block diagram of a data processing
system 101 in which an embodiment can be implement-
ed, for example, as a system 101 for automated process-
ing of volumetric medical images MI, configured to per-
form the processes as described herein. It is appreciated
that the server 101 is an exemplary implementation of
the system in FIG. 2. In FIG. 2, said data processing
system 101 comprises a processing unit 201, a memory
202, a storage unit 203, an input unit 204, an output unit
206, a bus 205, and a network interface 104.
[0057] The processing unit 201, as used herein, means
any type of computational circuit, such as, but not limited
to, a microprocessor, microcontroller, complex instruc-
tion set computing microprocessor, reduced instruction
set computing microprocessor, very long instruction word
microprocessor, explicitly parallel instruction computing
microprocessor, graphics processor, digital signal proc-
essor, or any other type of processing circuit. The
processing unit 101 may also include embedded control-
lers, such as generic or programmable logic devices or
arrays, application specific integrated circuits, single-
chip computers, and the like.
[0058] The memory 202 may be volatile memory and
non-volatile memory. The memory 202 may be coupled
for communication with said processing unit 201. The
processing unit 201 may execute instructions and/or
code stored in the memory 202. A variety of computer-
readable storage media may be stored in and accessed
from said memory 202. The memory 202 may include
any suitable elements for storing data and machine-read-
able instructions, such as read only memory, random ac-
cess memory, erasable programmable read only mem-
ory, electrically erasable programmable read only mem-
ory, a hard drive, a removable media drive for handling
compact disks, digital video disks, diskettes, magnetic
tape cartridges, memory cards, and the like. In the
present embodiment, the memory 201 comprises a mod-
ule 103 stored in the form of machine-readable instruc-
tions on any of said above-mentioned storage media and
may be in communication to and executed by processing
unit 201. When executed by the processing unit 201, the
module 103 causes the processing unit 201 to provide a
segmentation mask and/or to identify a type of organ in
a volumetric medical image. Method steps executed by
the processing unit 201 to achieve the abovementioned
functionality are elaborated upon in detail in the following
figures.
[0059] The storage unit 203 may be a non-transitory
storage medium which stores the medical database 102.
The input unit 204 may include input means such as key-
pad, touch-sensitive display, camera (such as a camera
receiving gesture-based inputs), a port etc. capable of
providing input signal such as a mouse input signal or a
camera input signal. The bus 205 acts as interconnect
between the processor 201, the memory 202, the storage
unit 203, the input unit 204, the output unit 206 and the
network interface 104. The volumetric medical images
may be read into the medical database 102 via the net-
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work interface 104 or the input unit 204, for example.
[0060] Those of ordinary skilled in the art will appreci-
ate that said hardware depicted in FIG. 1 may vary for
particular implementations. For example, other periph-
eral devices such as an optical disk drive and the like,
Local Area Network (LAN)/ Wide Area Network (WAN)/
Wireless (e.g., Wi-Fi) adapter, graphics adapter, disk
controller, input/output (I/O) adapter also may be used
in addition or in place of the hardware depicted. Said
depicted example is provided for the purpose of expla-
nation only and is not meant to imply architectural limi-
tations with respect to the present disclosure.
[0061] A data processing system 101 in accordance
with an embodiment of the present disclosure may com-
prise an operating system employing a graphical user
interface (GUI). Said operating system permits multiple
display windows to be presented in the graphical user
interface simultaneously with each display window pro-
viding an interface to a different application or to a differ-
ent instance of the same application. A cursor in said
graphical user interface may be manipulated by a user
through a pointing device. The position of the cursor may
be changed and/or an event such as clicking a mouse
button, generated to actuate a desired response.
[0062] One of various commercial operating systems,
such as a version of Microsoft Windows™, a product of
Microsoft Corporation located in Redmond, Washington
may be employed if suitably modified. Said operating sys-
tem is modified or created in accordance with the present
disclosure as described. Disclosed embodiments pro-
vide systems and methods for processing medical imag-
es.
[0063] FIG. 3 illustrates a flowchart of an embodiment
of a method for automated processing of volumetric med-
ical images MI. The method of FIG. 3 is discussed with
reference to FIG. 4, FIG. 5 and FIG. 6. The method of
FIG. 3 includes the method steps 301 - 305:
In step 301, a volumetric medical image MI (see FIG. 4
and FIG. 5) is received. In particular, the volumetric med-
ical image MI comprises at least one organ or portion
thereof.
[0064] The volumetric medical image MI as shown in
FIG. 5 is comprised of a three-dimensional array of voxels
306, 307, 308. This array is illustrated in FIG. 5 as a
cuboid seen in a perspective view. The cuboid comprises
rows and columns of voxels 306, 307, 308 extending in
all three dimensions x, y, z. To make FIG. 5 more read-
able, only some of the voxels 306, 307, 308 within the
cuboid are shown.
[0065] Instead of the three-dimensional array, the
method explained herein may also use a number of slices
(two-dimensional arrays of pixels) which, taken together,
describe a (three-dimensional) volume. In fact, any other
data structure may be used comprising values, such as
intensities, and describing a three-dimensional space.
Any such value is termed a "voxel" herein. The value may
be combined with information describing its three-dimen-
sional relationship with respect to other values, or the

three-dimensional relationship can be inferred from the
data structure, or any other source.
[0066] The volumetric medical image MI comprises at
least one organ 309 or a portion thereof. In the example
of FIG. 5, a portion of an organ 309, for example lungs
or kidney, is represented by hashed voxels 308 in the
volumetric medical image MI.
[0067] In FIG. 5, a point of interest 310 within the vol-
umetric medical image MI is illustrated. As will be ex-
plained in more detail later, the point of interest 310 may
be selected by a user, for example, through a graphical
user interface using a pointer device, such as a mouse.
The point of interest 310 may be received, for example,
through the network interface 104 or the input unit 204
(see FIG. 2).
[0068] The point of interest 310 is a point in the volu-
metric medical image MI for which it may be desired to
identify the type of organ 309 corresponding to said point
(see FIG. 7). Said single point of interest 310 may be
described through coordinates in x, y, z and may corre-
spond to a specific voxel in the cuboid. If, for example, a
mouse is used to select the point of interest 310, the
coordinates of the mouse cursor, once the selection of
the single point of interest 310 is done, for example by
clicking or pausing the cursor over the image, said coor-
dinates x, y, z are transmitted, for example, via the input
unit 204 to the data processing system 101.
[0069] In step 302, a sparse sampling model SM for
sparse sampling the volumetric medical image MI is pro-
vided. As shown in FIG. 4, the sparse sampling model
SM defines a number N of sampling points 400a-400c
distributed in the volumetric medical image MI and de-
fining locations and distances of the distributed sampling
points 400a-400c.
[0070] In particular, the sparse sampling model SM is
provided such that the voxels 306-308 are sampled with
a sampling rate per unit length, area or volume which
decreases with a distance 311 (see FIG. 5) of the respec-
tive voxel 306-308 on the point of interest 310. According
to the sparse sampling model SM, at least one voxel 307
is skipped between two voxels 306, 308 that are to be
sampled. In FIG. 5, the voxels that are to be sampled are
designated with a tick, whereas voxels that are skipped
or not sampled are designated with a cross. In the em-
bodiment of FIG. 5, in the row of voxels defined by adja-
cent voxels 306, 307, 308 only every second voxel 306,
308 is sampled. The voxels 306, 308 may be sampled
sequentially or in parallel.
[0071] In particular, the inventors found that it is ben-
eficial if the voxels 306, 308 that are to be sampled are
sampled (in the following step 303) with a sampling rate
per unit length, area or volume which decreases with a
distance 311 from the point of interest 310. It was found
that results improve even more, when the sampling rate
decreases at a nonlinear rate, in particular at the rate of
an exponential, logarithmic or power function.
[0072] In this regard, it is referred to FIGS. 4 and 6
which show an example of a sparse sampling model SM
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(only some of the sampling points of the sampling model
SM have been marked with reference numerals 400a,
400b, 400c for reasons of readability of FIG. 4) in a 2D
slice 401 taken from a volumetric medical image MI. The
sampling model 400 is designed to provide for a sparse
sampling with a sampling rate per unit volume which de-
creases with a distance in the x-, y- and z-direction. Since
FIG. 4 shows a 2D image, the y-direction which corre-
sponds to the depth normal to the plane of the image
shown in FIG. 4 is not illustrated but corresponds to the
sampling rate shown for the directions x and z in FIG. 4.
[0073] FIG. 6 illustrates three 3D grids 504, 505, 506
of different grid spacings used in the definition of the
sparse sampling model SM of FIG. 4. Thus, as shown in
FIG. 6, the sparse sampling model SM defines a plurality
of grids 504, 505, 506, in particular 3D grids, of different
grid spacings, the different grid spacings determining dif-
ferent distances D4, D5, D6 of the distributed sampling
points 400a-400c in the volumetric medical image MI.
With reference to FIG. 6, the cubes (or cuboids) are des-
ignated 501, 502 and 503. The cubes 501, 502, 503 are
nested within each other, with the smallest cube 501 con-
taining, for example at its center, the point of interest 310.
Each cube contains a grid, respectively. The cube 501
contains a grid 504, the cube 502 a grid 505 and the cube
503 a grid 506. The grids 504, 505, 506 may have a
regular spacing defining cubes or cuboids within. For il-
lustration purposes, the grids 504, 505, 506 are only
shown in 2D (i.e., in the plane of the paper) and only
partially. The grid spacing is defined as the distance be-
tween two adjacent nodes of the respective grid. Any
node is defined as the intersection of three grid lines. As
shown in more detail for grid 506, two nodes 507, 508
are a distance D6 apart. Similarly, the grid spacing of the
grid 504 is defined by a distance D4, and the grid spacing
of the grid 505 is defined by a distance D5.
[0074] In the experiment made by the inventors, D4
was selected 8 mm, D5 20 mm and D6 80 mm. The nodes
507, 508 considered were only those nodes within the
volume of each cube (or cuboids) minus the volume of
the largest cube (or cuboid) nested in-side said cube. For
example, for cube 503, the nodes 507, 508 were consid-
ered in-side the volume of the cube 503 which were not
lying in the volume of the cube 502.
[0075] The nodes 507, 508 define the sampling model
SM and thus define the voxels 306, 308 (see FIG. 5) that
are to be sampled in the volumetric medical image MI.
Thus, when sampling (in the following step 303) the vol-
umetric medical image MI with the sampling model SM,
1,195 voxels are sampled (that is, for example, their in-
tensity values read from the database 102), whereas the
total number of voxels in the volumetric medical image
was 25,000,000. Thus, less than 0.1% of the total number
of voxels are sampled.
[0076] In step 303, voxels 306, 308 (see FIG. 5) from
the volumetric medical image MI are sampled using the
provided sparse sampling model SM for obtaining N
sparse sampling descriptors D. The respective sparse

sampling descriptor D may be formed as a vector of val-
ues, in particular of intensities, of the sampled voxels
associated to a certain sampling point 400a-400c of the
distributed sampling points 400a-400c.
[0077] In step 304, labels L for query points 701 (see
FIG. 10) in the volumetric medical image MI are classified
by applying a trained classifier to the obtained sparse
sampling descriptors D. In this regard, a query 700 may
be received, said query 700 determining the query points
701 for classifying the labels L to the sparse sampling
descriptors D. In particular, the query 700 defines the
locations and distances of the query points 701 in the
volumetric medical image MI. In embodiments, the meth-
od may further comprise a step of receiving a command,
in particular a user input, for adjusting the query 700.
Here, the locations and distances of the query points 701
of the query 700 may be adjusted in dependence on the
received command.
[0078] In step 305, a segmentation mask MAP, 601,
602 is provided for the volumetric medical image MI using
the classified labels L. In FIG. 3, reference numeral MAP
designates the segmentation mask. Furthermore, FIG. 9
shows a coarse segmentation mask 601, and FIG. 11
shows a fine segmentation mask 602. The segmentation
mask MAP, 601, 602 may be used for identifying organ
boundaries, displaying visualizations or volume calcula-
tions.
[0079] Further, FIG. 7 shows a flowchart of an embod-
iment of a computer-implemented method for identifying
a type of organ T1- T4. The method of FIG. 7 comprises
method steps 301 - 304 corresponding to method steps
301 - 304 as discussed with reference to FIG. 3. Further,
the method of FIG. 7 may optionally comprise method
step 305 as discussed with reference to FIG. 3, i.e., the
step of providing a segmentation mask 601, 602 for the
volumetric medical image MI using the classified labels
L (not shown in FIG. 7).
[0080] Moreover, the method of FIG. 7 comprises a
step 305b of identifying the type of organ T1 - T4 at a
certain point of interest 310, in particular by applying the
trained classifier to the sampled voxels SV and/or to the
obtained sparse sampling descriptors D. Furthermore,
the method of FIG. 7 may include the step of receiving a
command for determining the certain point of interest
310. Then, the sparse sampling model SM may be pro-
vided in dependence on the received command or may
be adapted in dependence on the received command.
The command may be a certain user input.
[0081] Moreover, FIG. 8 is a flowchart of an embodi-
ment of the sampling step 303 and the classifying step
304 of the computer-implemented method of FIG. 3. As
discussed with reference to FIG. 3, the sampling step
303 outputs N sparse sampling descriptors D. Further,
as shown in FIG. 3 as well as in FIG. 8, the classifying
step 304 receives the N sparse sampling descriptors D.
The classifying step 304 classifies labels L for query
points 701 in the volumetric medical image MI by applying
a trained classifier to the N sparse sampling descriptors

13 14 



EP 4 425 427 A1

9

5

10

15

20

25

30

35

40

45

50

55

D. The trained classifier may comprise a neural network
800, in particular a residual neural network 800 as de-
picted in FIG. 8. The residual neural network 800 as
shown in FIG. 8 is particularly configured to receive the
obtained sparse sampling descriptors D and to provide
the labels L. In particular, each of the labels L is in the
form of a vector of estimated probabilities for each organ.
[0082] As shown in FIG. 8, the residual neural network
800 may comprise a plurality of different layers, particu-
larly including dimension reduction 801, linear projection
802, normalization 803, activation 804, linear projection
805 and normalization 806. The labels L in the form of
the vector of estimated probabilities for each organ may
be input into an identifying layer 807 which is adapted to
identify the type of organ T1 - T4 based on the received
labels L.
[0083] Moreover, an embodiment of the present meth-
od of FIG. 3 for automated processing of volumetric med-
ical images MI is discussed in the following with reference
to FIGS. 9 - 11. In this regard, FIG. 9 illustrates an em-
bodiment of a coarse segmentation mask 601 as a po-
tential output of the method of FIG. 3, FIG. 10 shows the
coarse segmentation mask 601 of FIG. 9 additionally in-
cluding query points 701 of a query 700, and FIG. 11
shows an embodiment of a fine segmentation mask 602
as a potential output of the method of FIG. 3. As dis-
cussed above, a query 700 may determine query points
701 for classifying the labels L to the sparse sampling
descriptors D, wherein the query 700 defines locations
and distances of the query points 701 in the volumetric
medical image MI (see FIG. 10). To make FIG. 10 more
readable, only one query point 701 is referenced by a
reference numeral. All the other query points in FIG. 10
(small white points) become apparent when comparing
FIG. 10 with FIG. 9.
[0084] The mechanism how a user can output a coarse
segmentation mask 601 as shown in FIG. 9 or a fine
segmentation mask 602 as shown in FIG. 11 is explained
in the following: This mechanism is based on embodi-
ments of the above discussed classifying step 304 and
the providing step 305 of FIG. 3, said embodiments in-
cluding the following steps:

receiving a first query determining first query points
for providing a coarse segmentation mask 601 (see
FIG. 9), the first query defining first locations and first
spacings of the first query points in the volumetric
medical image MI,
classifying first labels for the first query points in the
volumetric medical image MI by applying the trained
classifier to the obtained sparse sampling descrip-
tors D,
providing the coarse segmentation mask 601 (see
FIG. 9) for the volumetric medical image MI using
the classified first labels,
receiving a second query 700 (see FIG. 10) deter-
mining second query points 701 for providing a fine
segmentation mask 602, the second query 700 de-

fining second locations and second spacings of the
second query points 701 in the volumetric medical
image MI, wherein the second spacings are different
to the first spacings, in particular smaller than the
first spacings,
classifying second labels for the second query points
701 in the volumetric medical image MI by applying
the trained classifier to the obtained sparse sampling
descriptors D, and
providing the fine segmentation mask 602 (see FIG.
11) for the volumetric medical image MI using the
classified second labels.

[0085] Thus, by defining the query points 701 as ap-
parent by comparing FIGS. 9 and 11, the user may define
the segmentation mask to be output, for example a
coarse segmentation mask 601 as shown in FIG. 9 or a
fine segmentation mask 602 as shown in FIG. 11. As
shown in FIGS. 9 - 11, the respective segmentation mask
601, 602 or part thereof may be displayed on a graphical
user interface (GUI). The segmentation mask 601, 602
may be displayed such that each intensity in the dis-
played segmentation mask 601, 602 represents a differ-
ent label, in particular a different organ label.
[0086] Moreover, the N sparse sampling descriptors D
as obtained by above-discussed step 303 may be de-
coded into a 2D image 1201 including the point of interest
310, wherein the 2D image 1201 may be displayed on a
graphical user interface - as shown in FIG. 12 - together
with a plurality of different 3D slices 1202 - 1204 of the
volumetric medical image MI. Without loss of generality,
the plurality of different 3D slices 1202 - 1204 is three in
FIG. 12. The different 3D slices 1202 - 1204 may have
different resolutions and different ranges.
[0087] Moreover, FIG. 13 illustrates a further embodi-
ment of a coarse segmentation mask 601 additionally
including query points 701 of a query 700. In the embod-
iment of FIG. 13, the query 700 is determined such that
query points 701 are selected from neighbors where two
of neighbor first query points have different labels. To
make FIG. 13 more readable, only one pair 702 of neigh-
bors having different labels is referenced by a white,
dashed box having the reference numeral 702. As neigh-
bors 702 having different labels may define an edge,
these points in the segmentation mask can be checked
with higher resolution.
[0088] The foregoing examples have been provided
merely for the purpose of explanation and are in no way
to be construed as limiting of the present invention dis-
closed herein. While the invention has been described
with reference to various embodiments, it is understood
that the words, which have been used herein, are words
of description and illustration, rather than words of limi-
tation. Further, although the invention has been de-
scribed herein with reference to particular means, mate-
rials, and embodiments, the invention is not intended to
be limited to the particulars disclosed herein, rather, the
invention extends to all functionally equivalent structures,
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methods and uses, such as are within the scope of the
appended claims. Those skilled in the art, having the ben-
efit of the teachings of this specification, may effect nu-
merous modifications thereto and changes may be made
without departing from the scope and spirit of the inven-
tion in its aspects.
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[0090]

100 system
101 computer-implemented device
102 medical database
103 module
104 network interface
105 network

107A - 107N client device
108 medical imaging unit
201 processing unit
202 memory
203 storage unit
204 input unit
205 bus
206 output unit
301 - 305 method steps
305b method step
306 - 308 voxels
309 organ
310 single point of interest
311 distance
400 sampling model
400a - 400c sampling points
401 slice
501 - 503 cubes
504 - 506 grids
507, 508 nodes
601 coarse segmentation mask
602 fine segmentation mask
700 query
701 query point
702 pair of neighbors having different labels
800 neural network
801 - 807 layer
1201 2D image
1202 3D slice
1203 3D slice
1204 3D slice

D sparse sampling descriptor
D4, D5, D6 distances
GUI graphical user interface
L label
MAP segmentation mask
MI medical image
SM sampling model
SV sampled voxels
T1 first type of organ
T2 second type of organ
T3 third type of organ
T4 fourth type of organ
x, y, z orthogonal directions in space

Claims

1. A computer-implemented method for automated
processing of volumetric medical images (MI), the
method comprising:

a) receiving (301) a volumetric medical image
(MI), the volumetric medical image (MI) compris-
ing at least one organ or portion thereof,
b) providing (302) a sparse sampling model
(SM) for sparse sampling the volumetric medical
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image (MI), the sparse sampling model (SM) de-
fining a number N of sampling points (400a-
400c) distributed in the volumetric medical im-
age (MI) and defining locations and distances
of the distributed sampling points (400a-400c),
c) sampling (303) voxels (306-308) from the vol-
umetric medical image (MI) using the provided
sparse sampling model (SM) for obtaining N
sparse sampling descriptors (D),
d) classifying (304) labels (L) for query points
(701) in the volumetric medical image (MI) by
applying a trained classifier to the obtained
sparse sampling descriptors (D), and
e) providing (305) a segmentation mask (MAP,
601, 602) for the volumetric medical image (MI)
using the classified labels (L).

2. The method of claim 1, further comprising:
identifying the type of organ (T, T1-T4) at a certain
point of interest (310), in particular by applying the
trained classifier to the sampled voxels (SV).

3. The method of claim 2, further comprising:
receiving a command, in particular a user input, for
determining the certain point of interest (310), where-
in the sparse sampling model (SM) is provided in
dependence on the received command.

4. The method of claim 3,
wherein the sparse sampling model (SM) is provided
such that the voxels (306-308) are sampled with a
sampling rate per unit length, area or volume which
decreases with a distance (311) of the respective
voxel (306-308) on the certain point of interest (310).

5. The method of one of the claims 1 to 4,
wherein the sparse sampling model (SM) defines a
plurality of grids (504, 505, 506), in particular 3D
grids, of different grid spacings, the different grid
spacings determining different distances (D4, D5,
D6) of the distributed sampling points (400a-400c)
in the volumetric medical image (MI).

6. The method of one of the claims 1 to 5, further
comprising:
receiving a query (700) determining the query points
(701) for classifying the labels (L) to the sparse sam-
pling descriptors (D), the query (700) defining the
locations and distances of the query points (701) in
the volumetric medical image (MI).

7. The method of claim 6, further comprising:
receiving a command, in particular a user input, for
adjusting the query (700), wherein the locations and
distances of the query points (701) of the query (700)
are adjusted in dependence on the received com-
mand.

8. The method of one of claims 1 to 7, wherein steps
d) and e) include:

receiving a first query determining first query
points for providing a coarse segmentation
mask (601), the first query defining first locations
and first spacings of the first query points in the
volumetric medical image (MI),
classifying first labels for the first query points in
the volumetric medical image (MI) by applying
the trained classifier to the obtained sparse sam-
pling descriptors (D),
providing the coarse segmentation mask (601)
for the volumetric medical image (MI) using the
classified first labels,
receiving a second query (700) determining sec-
ond query points (701) for providing a fine seg-
mentation mask (602), the second query (700)
defining second locations and second spacings
of the second query points (701) in the volumet-
ric medical image (MI), wherein the second
spacings are different to the first spacings, in
particular smaller than the first spacings,
classifying second labels for the second query
points (701) in the volumetric medical image (MI)
by applying the trained classifier to the obtained
sparse sampling descriptors (D), and
providing the fine segmentation mask (602) for
the volumetric medical image (MI) using the
classified second labels.

9. The method of one of claims 1 to 8,
the second query (700) is determined such that sec-
ond query points (701) are selected from neighbors
where two of neighbor first query points have differ-
ent labels.

10. The method of one of claims 1 to 9,
wherein the respective sparse sampling descriptor
(D) is formed as a vector of values, in particular of
intensities, of the sampled voxels (SV) associated
to a certain sampling point (400a-400c) of the dis-
tributed sampling points (400a-400c).

11. The method of one of claims 1 to 10,
wherein the provided segmentation mask (MAP,
601, 602) or part thereof, in particular comprising the
certain point of interest (310), is displayed on a
graphical user interface, wherein the segmentation
mask (601, 602) is displayed such that each intensity
in the displayed segmentation mask (601, 602) rep-
resents a different label, in particular a different or-
gan label.

12. The method of one of claims 1 to 11,
wherein the trained classifier comprises a neural net-
work (800), in particular a residual neural network
(800), wherein the residual neural network (800) is
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particularly configured to receive the obtained
sparse sampling descriptors (D) and to provide the
labels (L), in particular each of the labels in the form
of a vector of estimated probabilities for each organ,
as an output.

13. The method of one of claims 1 to 12,
wherein the obtained N sparse sampling descriptors
(D) are decoded into a 2D image including the certain
point of interest (310), wherein the 2D image is dis-
played on a graphical user interface together with a
plurality of different 3D slices of the volumetric med-
ical image (MI), the different 3D slices having differ-
ent resolutions and different ranges.

14. A computer-implemented device (101) for auto-
mated processing of volumetric medical images
(MI), the computer-implemented device (101) com-
prising:

one or more processing units (201),
a receiving unit (204) which is configured to re-
ceive one or more volumetric medical images
(MI) captured by a medical imaging unit (108),
and
a memory (202) coupled to the one or more
processing units (201), the memory (202) com-
prising a module (103) configured to perform the
method steps as claimed in any one of claims 1
to 13.

15. A system (100) for automated processing of vol-
umetric medical images (MI), the system (100) com-
prising:

one or more servers (101),
a medical imaging unit (108) coupled to the one
or more servers (101), the one or more servers
(101) comprising instructions, which when exe-
cuted causes the one or more servers (101) to
perform the method steps as claimed in any one
of claims 1 to 13.

15. A computer program product comprising ma-
chine readable instructions, that when executed by
one or more processing units (201), cause the one
or more processing units (201) to perform method
steps according to claims 1 to 13.

16. A computer readable medium on which program
code sections of a computer program are saved, the
program code sections being loadable into and/or
executable in a system (100) to make the system
(100) execute the method steps according to any
one of the claims 1 to 13 when the program code
sections are executed in the system (100).
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