
Processed by Luminess, 75001 PARIS (FR)

(19)
EP

4 
43

2 
59

7
A

1
*EP004432597A1*

(11) EP 4 432 597 A1
(12) EUROPEAN PATENT APPLICATION

(43) Date of publication: 
18.09.2024 Bulletin 2024/38

(21) Application number: 23161850.5

(22) Date of filing: 14.03.2023

(51) International Patent Classification (IPC):
H04L 9/06 (2006.01)

(52) Cooperative Patent Classification (CPC): 
H04L 9/0656; H04L 2209/04 

(84) Designated Contracting States: 
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB 
GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL 
NO PL PT RO RS SE SI SK SM TR
Designated Extension States: 
BA
Designated Validation States: 
KH MA MD TN

(71) Applicant: Barclays Execution Services Limited
London E14 5HP (GB)

(72) Inventor: FRENCH, George
London, E145HP (GB)

(74) Representative: Carpmaels & Ransford LLP
One Southampton Row
London WC1B 5HA (GB)

(54) METHODS FOR ENCRYPTING DATA, DECRYPTING DATA, AND SEARCHING ENCRYPTED 
DATA

(57) The invention provides computer-implemented
methods for encrypting data, searching ciphertext, and
decrypting ciphertext, and data processing apparatuses,
computer programs, and computer readable storage me-
dia for achieving the same. Encrypting data comprises
salting and then encrypting ciphertext, both processes

using a respective exclusive OR operation. Decryption
is achieved by the same process in reverse. Searching
the ciphertext is achieved by generating a modifier and
salted search term, before modifying the ciphertext with
the modifier and performing a bytewise comparison be-
tween the salted search term and the modified ciphertext.



EP 4 432 597 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

Technical Field

[0001] This disclosure relates to computer-implement-
ed methods for encrypting data, searching ciphertext,
and decrypting ciphertext, and data processing appara-
tuses, computer programs, and computer readable stor-
age media for achieving the same.

Background

[0002] In the field of cryptography, data can be encrypt-
ed using a key such that the data are not readable or
intelligible by a third party who does not possess a key.
The data in its original state, i.e. before encryption with
a key, is typically referred to as plaintext and the data in
its encrypted state, i.e. after encryption with a key, is typ-
ically referred to as ciphertext.
[0003] Storing data as ciphertext, rather than as plain-
text, is advantageous for data security because an at-
tacker, in the event of a security breach, can retrieve only
the ciphertext which is unintelligible to them and any other
party who does not possess the key.
[0004] Once ciphertext has been encrypted, it can only
be decrypted by a party which has access to the same
key with which it was encrypted in the case of symmetric
encryption, or by a party which has a private key (corre-
sponding to the original encryption key) in the case of
asymmetric encryption.
[0005] Broadly, methods of encryption fall into two cat-
egories: deterministic and non-deterministic.
[0006] If an encryption algorithm is deterministic, a giv-
en input message and encryption key will always produce
the same encrypted output message. In other words, a
given plaintext will always produce the same ciphertext
when encrypted. For example, a simple deterministic en-
cryption algorithm might be to replace each letter of an
input message with the letter one space to the right of it
on a UK keyboard. In this example, the input message
"Sequoia" will always be encrypted as "Drvvipos".
[0007] In an encryption algorithm is non-deterministic,
also referred to as probabilistic, it involves some random-
ness, such that a given input message will produce a
different encrypted output message each time it is en-
crypted. In other words, a given plaintext will not always
produce the same ciphertext when encrypted. For exam-
ple, a simple non-deterministic encryption algorithm
might be to replace each letter of an input message with
the letter of the alphabet corresponding to a randomly
generated number between 1 and 26. In this example,
numbers 11, 3, 9, 4, 13, 10, and 18 might be randomly
selected, leading input message "Sequoia" to be encrypt-
ed as "Kcidmjr". A subsequent encryption of "Sequoia",
with different randomly generated numbers, would return
a different ciphertext.
[0008] Deterministic encryption can be advantageous
because it facilitates searching and indexing of encrypted

data. If, having encrypted and stored the names of a
number of Californian tree genera, it is desired to know
whether "Sequoia" is present in that stored file, the ci-
phertext "Drwipos" can be searched for. This is because,
in every circumstance, "Sequoia" will generate "Drwipos"
when encrypted.
[0009] Deterministic encryption is disadvantageous
because third parties who gain access to the ciphertexts
can derive information from them, despite the underlying
plaintext having been encrypted. Multiple instances of
the same encrypted plaintext are instantly recognisable,
because they are identical even as ciphertext, and pat-
tern recognition can be used to glean insights into the
stored ciphertexts. Real-world context can also be
mapped to the production of specific ciphertexts. For ex-
ample, if a given ciphertext is always observed directly
before a battleship docks at a certain port, a nefarious
third party with access to the ciphertexts can derive very
quickly the effect that observing that given ciphertext is
likely to have. Not only can the third party then predict
the movement of the battleship, rendering the encryption
effectively useless, but this learned correlation may ex-
pedite the process of breaking the encryption altogether.
[0010] The same is true when deterministically en-
crypted data is searched. Patterns may be recognised in
the content and/or context of a specific ciphertext being
searched for, which may give away information as to the
plaintext being searched for and the encryption algorithm
itself. Leakage of any kind is exacerbated when public
key encryption is used, because the third party has ac-
cess to the encryption key. The third party can guess at
the underlying plaintext, encrypt the guess with the public
key, and compare the result to the ciphertext in order to
determine whether the guess was correct.
[0011] Furthermore, deterministically encrypted data
cannot readily be searched with a partial field search. In
other words, it is normally only possible to search for the
entirety of the plaintext as it was encrypted, and not for
a portion thereof. This limits the utility of deterministically
encrypted databases.
[0012] Non-deterministic encryption, on the other
hand, does not suffer from such issues of leakage. The
randomness inherent in the generation of the ciphertext
is such that simply pattern recognition is not possible.
Two identical plaintexts will appear as different cipher-
texts when encrypted and stored. Two identical battleship
movement commands will be preceded by different ci-
phertexts.
[0013] However, these advantages necessarily lead to
difficulty in searching non-deterministically encrypted da-
ta. Attempting to search for "Sequoia" by encrypting "Se-
quoia" and searching for the result will be ineffective, be-
cause there is not a one-to-one correlation between
plaintext and ciphertext. In the example above, "Sequoia"
was non-deterministically encrypted as "Kcidmjr", but
when the same plaintext is encrypted again for the pur-
poses of search, the encryption could return "Ebabgpd".
The encrypted search term does not match the cipher-

1 2 



EP 4 432 597 A1

3

5

10

15

20

25

30

35

40

45

50

55

text, despite identical input plaintexts.
[0014] There remains a need for an improved method
of encryption, decryption, and search which is secure but
allows for search which is efficient and limits data leak-
age.

Summary

[0015] In a first aspect of the invention, there is provid-
ed a computer-implemented method for encrypting data,
comprising: i) receiving plaintext and a first key; ii) gen-
erating a first random salt; iii) performing an exclusive
OR operation on the plaintext and the first random salt
to produce salted plaintext; and iv) performing an exclu-
sive OR operation on the salted plaintext and the first key
to produce ciphertext.
[0016] In this way, the invention provides a non-deter-
ministic encryption of the plaintext which facilitates later
secure searching. The properties of the exclusive OR
function performing on the plaintext and the random salt,
and then on the salted plaintext and the first key, lead to
the ciphertext ‘containing’ both the salt and the key. In
other words, the ciphertext can be ‘unsalted’ and decrypt-
ed with respective exclusive OR functions performed on
the ciphertext. These properties of the ciphertext are ad-
vantageous for facilitating secure search, as will be de-
scribed in greater detail below.
[0017] Plaintext may also be referred to as a "mes-
sage", or "input message", and refers to the data bits that
it is desirable to encrypt. There are myriad examples of
categories of data that it is desirous and advantageous
to encrypt in a manner that facilitates secure searching.
Indeed, any plaintext that must be kept secure, but who’s
contents must be susceptible to interrogation. One such
example is personal and financial data. Databases stor-
ing this data may need to be interrogated in order to pro-
vision and activate payment accounts or process trans-
actions, for example, but must also not be presented in
the clear to any eavesdropping third party.
[0018] The first key may be received from a key gen-
eration module which may generate the key in any suit-
able manner apparent to the skilled person. Key gener-
ation may be as simple as random number generation,
or could be more complex in order to improve the security
of the encrypted data. For example, key generation may
be constrained such that no one key can be used twice
within a given time period, or indeed ever again.
[0019] Performing an exclusive OR operation on two
data items, such as between the plaintext and the random
salt and between the salted plaintext and the first key,
may be performed in a bytewise fashion, or with multiple
bytes in parallel.
[0020] The encryption can be considered to be non-
deterministic, or probabilistic, due to the use of the ran-
dom salt. Since any given plaintext is salted prior to its
encryption with the key, the salted plaintext will be ran-
dom. Salting, in the context of this invention, is used to
refer to the process of performing an exclusive OR op-

eration on a random salt of bit length x and a plaintext of
bit length x (or on equivalently sized blocks of salt and
plaintext).
[0021] The generation of the random salt can be
achieved by any suitable method that may be apparent
to the skilled person. For example, any form of pseudor-
andom or true random number generator could be used,
although true random number generation is preferable
for data security.
[0022] The method may further comprise: partitioning
the plaintext into n plaintext blocks; producing n salt
blocks from the first random salt; producing a key stream
from the first key; and producing n ciphertext blocks,
wherein producing n ciphertext blocks comprises per-
forming steps iii) and iv) of claim 1 for each of the n plain-
text blocks, n salt blocks, and the key stream.
[0023] In this way, the method of encryption can be
used for plaintexts and keys of any length, because the
key stream can be generated to have a desired bit length,
i.e. to match the length of the plaintext and random salt.
The random salt may be generated to be the same bit
length as the plaintext. In order to facilitate an exclusive
OR being performed between each block of the salted
plaintext and the key stream, the key stream may be par-
titioned into blocks of equal byte length to the byte length
of the blocks of salted plaintext.
[0024] Producing a key stream from the first key may
comprise using a block cipher, optionally wherein the
block cipher comprises an advanced encryption standard
algorithm using the first key, a nonce, and first input data
as inputs, wherein the first input data is not the plaintext,
further optionally wherein the first input data comprises
data associated with the plaintext, for example a field
name associated with the plaintext.
[0025] In this way, the encryption benefits from the ad-
vantages associated with block ciphers which use a
stream-based encryption key, including excellent tamper
resistance and high diffusion.
[0026] A nonce, in the context of the invention, refers
to any number used only once, i.e. once used for an en-
cryption is not used for a subsequent encryption. Nonce
reuse may be avoided in many ways, for example using
a counter to increment from the previous nonce, or using
a Synthetic Initial Vector mode of operation (SIV).
[0027] The first input data replaces what would usually
be the plaintext being encrypted with the block cipher. A
typical block cipher such as AES would use as its inputs
a key, a nonce or IV, and the plaintext to be encrypted,
with the output being the ciphertext. However, with such
a typical cipher, the plaintext is required in order to rec-
reate the keystream.
[0028] The present invention uses input data which is
not the plaintext in order to allow regeneration of the key-
stream without the need for the presence of the plaintext.
The plaintext and the key need never, therefore, be
stored or exist at the same time in the same location.
This is true even when decryption of the ciphertext is
performed, because the result of the initial decryption

3 4 



EP 4 432 597 A1

4

5

10

15

20

25

30

35

40

45

50

55

with the key stream is salted plaintext, and not the plain-
text itself.
[0029] When searching the ciphertext is performed,
the input data that would have been used to generate
the key stream for the plaintext being searched for can
be derived. In other words, the input data may be asso-
ciated with the plaintext to a sufficient extent that it can
be derived for any search term.
[0030] For example, at the point of encryption, input
data may be generated deterministically using the plain-
text. Then, when it is desired to search the encrypted
data for the plaintext, the plaintext can again be used to
derive the input data, and the input data sent to the key
generation module.
[0031] Alternatively, in another example, the input data
may comprise a characteristic of the plaintext, such as
the field name associated with the plaintext. For example,
if encrypting a user’s address: "One Churchill Place", the
input data may be an identifier that the encrypted data is
an address: "UserAddress". Other examples of input data
that could be associated with certain plaintext contents
may therefore be: "UserID"; "UserName"; "AccountNum-
ber"; "ProductID"; or any other suitable data that can be
reliably and repeatably associated with the plaintext at
the point of encryption, decryption, and search.
[0032] The block cipher may comprise a synthetic ini-
tialisation vector, optionally wherein the block cipher is
configured to operate as a stream cipher, optionally
wherein the block cipher is one of: Galois Counter Mode
(AES-GCM-SIV), Counter Mode (AES-CTR-SIV), Cipher
Feedback Mode (AES-CFB-SIV), and Output Feedback
Mode (AES-OFB-SIV).
[0033] Implementing the encryption using AES has
been found to be particularly beneficial, due to the ro-
bustness against hacking and reliability of AES. AES is
a deterministic encryption algorithm, so usually suffers
from the drawbacks associated with such algorithms.
However, because in the present invention the input
plaintext has first been salted, the overall method of en-
cryption becomes non-deterministic, despite using a de-
terministically derived stream cipher.
[0034] In such methods, the input data may be provid-
ed as the input to the cipher-based message authentica-
tion code (CMAC) calculation, and anywhere else that
would otherwise require the plaintext as input.
[0035] Throughout this document, an X is added to the
end of acronyms referring to encryption algorithms to de-
note the difference between encryption algorithms as im-
plemented by the present invention and those known in
the art, brought about by the use of input data which is
not the plaintext in place of the plaintext. For example,
where the skilled person would understand the imple-
mentation of AES-GCM-SIV, AES-GCM-SIVX might be
used to denote a suitable implementation of AES-GCM-
SIV, but using input data as described herein and not the
plaintext itself.
[0036] Similarly, but used more generally to capture
any AES implementation, AESSIVX is used to refer to

any suitable AES encryption algorithm, using synthetic
IV, and modified to use input data as described herein in
place of the plaintext itself.
[0037] Producing n salt blocks from the first random
salt may comprise passing the first random salt through
an extender, and wherein the n salt blocks are produced
so as to have a combined byte length equal to the byte
length of the plaintext. An extender, configured to parti-
tion the first random salt into discrete blocks of the same
byte length as the blocks of plaintext and blocks of key
stream is an efficient way to facilitate the exclusive OR
operation between the blocks of salt and the blocks of
plaintext which requires equal byte length inputs. The
extender may be, for example, a repeated hashing func-
tion, such as SHA-256, but other operations suitable for
the function of the extender as described herein could
also be used.
[0038] The method may further comprise: storing the
ciphertext and the first random salt in a first database;
and storing the first key in a second database, the first
and second database being remote from one another.
[0039] In this way, a successful attack on either data-
base does not compromise the security of the plaintext.
A leak from the first database, providing a third party with
both the ciphertext and the salt, does not allow the plain-
text to be generated, because the encryption key is not
known. Similarly, a third party intercepting the ciphertext
and breaking into the second database cannot derive the
plaintext, because the salt is not known.
[0040] In a second aspect of the invention, there is pro-
vided a computer-implemented method for searching ci-
phertext encrypted by a method according to any one of
the preceding aspects, the method comprising: i) receiv-
ing the ciphertext, the first key, the first random salt, and
a search term; ii) generating a salted search term and a
modifier, comprising: a) generating a second random
salt; b) performing an exclusive OR operation on the sec-
ond random salt and the first key to produce the modifier;
c) performing an exclusive OR operation on the second
random salt and the search term; and d) performing an
exclusive OR operation on the product of step c) and the
first random salt to produce a salted search term; iii) per-
forming an exclusive OR operation on the ciphertext and
the modifier to produce modified ciphertext; and iv) per-
forming a bytewise comparison between the modified ci-
phertext and the salted search term to determine a level
of similarity between the salted search and the modified
ciphertext.
[0041] In this way, the invention provides an efficient
and secure method for searching non-deterministically
encrypted data. The search term itself is advantageously
obscured by the use of a second random salt, thereby
protecting its security. The modifier is also produced by
using the second random salt as an input, and is thus
similarly obscured. In other words, neither the salted
search term, nor the modifier and modified ciphertext,
provide information to a third party which could allow it
to derive the plaintext.

5 6 



EP 4 432 597 A1

5

5

10

15

20

25

30

35

40

45

50

55

[0042] Both the modified ciphertext and salted search
term have been obscured by the first random salt and
the second random salt during their generation. Similarly,
both the modified ciphertext and the salted search term
are, effectively, encrypted under the first key, because
both have been combined with the key with an exclusive
OR operation.
[0043] Due to the properties of the exclusive OR op-
eration used to introduce the first and second random
salts, and the key, to the modifier and salted search term,
the bytewise comparison is still effective in determining
whether the search term matches the plaintext. In other
words, because the modified ciphertext and salted
search term are both salted in the same way by both the
first random salt and the second random salt, and en-
crypted in the same way and by the same key, the salting
and encryption on each is the same. As such, the byte-
wise comparison between the two is a meaningful search
of the underlying plaintext by the search term, all while
ensuring that the search term and plaintext never appear
in the clear.
[0044] The method may further comprise: providing a
positive output if the salted search and at least a portion
of the modified ciphertext are identical, the positive output
indicating that the search term exists in the plaintext; and
providing a negative output if the salted search is not
identical with any portion of the modified ciphertext, the
negative output indicating that the search term does not
exist in the plaintext.
[0045] The positive and negative outputs may be, for
example, computer-readable messages for transmission
to a processor for further evaluation and/or processing.
For example, if the search was initiated in response to a
request dependent on certain encrypted plaintext ap-
pearing in a database, a positive output may be a trigger
to allow the request to continue, and a negative output
may be a trigger to cease and block the request. Other
such suitable computer-readable outputs will be appar-
ent to a person skilled in the art.
[0046] Alternatively, for example, the positive and/or
negative output may be realised as a result of the search
presented to a user on a display.
[0047] In this way, the result of the search operation
can be actioned appropriately, either by a user or to in-
struct a further computer process.
[0048] Steps a) to c) of the second aspect may be per-
formed in a secure environment remote from the first da-
tabase storing the ciphertext and the first random salt,
and the method may further comprise: receiving the first
random salt from the first database; and receiving the
first key from the second database.
[0049] In this way, as was the case with the encryption,
a third party gaining access to any one storage and
processing location carrying out embodiments of the in-
vention cannot derive the plaintext which underlies the
ciphertext. At no one point in time does there exist to-
gether sufficient information to generate the plaintext.
[0050] If the ciphertext has been encrypted using a key

stream generated from the first key by a block cipher, the
method of searching may further comprise: producing a
key stream from the first key using the block cipher; pro-
ducing n first salt blocks from the first random salt; par-
titioning the ciphertext into n ciphertext blocks; and par-
titioning the search term into n search term blocks, where-
in step b) comprises performing an exclusive OR oper-
ation on the n first salt blocks and the key stream to pro-
duce n modifier blocks, and wherein step c) comprises
performing an exclusive OR operation on the second ran-
dom salt and the n search term blocks, and wherein step
d) comprises performing an exclusive OR operation on
the block products of step c) and the n search term blocks
to produce n salted search term blocks, optionally where-
in the bytewise comparison is performed block by block
for each of the n salted search term blocks and n cipher-
text blocks.
[0051] In this way, the method of search uses as its
encryption of the search term the same method of en-
cryption that was used to encrypt the plaintext originally.
This matching of search term and plaintext encryption
facilitates accurate searching of the ciphertext.
[0052] Generating the modifier may further comprise
performing a first bytewise rotation to the product of the
exclusive OR operation on the second random salt and
the first key to produce the modifier; producing modified
ciphertext further comprises performing a second byte-
wise rotation to the modifier before performing the exclu-
sive OR operation on the ciphertext and the modifier; and
the first and second bytewise rotations are opposite in
direction and equal in magnitude.
[0053] In such embodiments of the invention, an addi-
tional, optional, step is carried out during generation of
the modifier, and that step is then undone prior to com-
bination of the modifier and the ciphertext. The bytewise
rotation applied to the modifier may be applied before
the modifier is sent from the search term generation mod-
ule, such that the security of the modifier (which has been
produced using the key or a key stream) is improved.
The rotation can then be reversed in order to restore the
correspondence of the modifier to the salted search term.
[0054] As will be discussed in greater detail, the direc-
tion and magnitude of the bytewise rotation may vary
over time, such that it is less easy to derive information
about the key stream from the contents of successive
modifiers.
[0055] In a third aspect of the invention, there is pro-
vided a computer-implemented method for decrypting ci-
phertext encrypted by a method according to the first
aspect, the method for decrypting ciphertext comprising:
i) receiving the ciphertext, the first key, and the first ran-
dom salt; ii) performing an exclusive OR operation on the
ciphertext and the first key to produce salted plaintext;
and iii) performing an exclusive OR operation on the salt-
ed plaintext and the first random salt to produce plaintext.
[0056] Not only, therefore, is ciphertext produced ac-
cording to the first aspect efficiently searchable, but also
efficiently decryptable, due to the properties imparted in

7 8 



EP 4 432 597 A1

6

5

10

15

20

25

30

35

40

45

50

55

the ciphertext during encryption.
[0057] The method may further comprise: partitioning
the ciphertext into n ciphertext blocks; producing n salt
blocks from the first random salt; producing a key stream
from the first key; and producing n plaintext blocks,
wherein producing n plaintext blocks comprises perform-
ing steps ii) and iii) of claim 1 for each of the n ciphertext
blocks, n salt blocks, and the key stream.
[0058] Advantages related to decryption of the cipher-
text using a key stream are equivalent to those discussed
in respect of key streams for encryption.
[0059] Generally, it will be apparent that optional meth-
od steps described in relation to the first aspect of the
invention (encryption) are equally applicable to this third
aspect of the invention (decryption). For example, if en-
cryption was performed using AES-CTR-SIV, then de-
cryption will be performed using AES-CTR-SIV.
[0060] In a fourth aspect of the invention, there is pro-
vided a data processing apparatus comprising means for
carrying out the steps of the method of any of the first to
third aspects.
[0061] In a fifth aspect of the invention, there is provid-
ed a computer program comprising instructions which,
when the program is executed by a computer, cause the
computer to carry out the steps of the method of any one
of the first to third aspects.
[0062] In a sixth aspect of the invention, there is pro-
vided a computer-readable storage medium having
stored thereon the computer program of the fifth aspect.

Brief Description of the Drawings

[0063] Embodiments of the invention will be described,
by way of example, with reference to the following draw-
ings, in which:

Fig. 1 illustrates a method of encryption according
to an embodiment of the invention.

Fig. 2 illustrates a method of encryption using key
streaming according to an embodiment of the inven-
tion.

Fig. 3 illustrates a method of decryption according
to an embodiment of the invention.

Fig. 4 illustrates a method of decryption using key
streaming according to an embodiment of the inven-
tion.

Fig. 5 illustrates a first part of a method of searching
ciphertext in accordance with an embodiment of the
invention; the generation of a modifier and second
random salt-search term product.

Fig. 6 illustrates a second part of a method of search-
ing ciphertext in accordance with an embodiment of
the invention, using a previously generated modified

and second random salt-search term product.

Fig. 7 illustrates a first part of a method of searching
ciphertext in accordance with an embodiment of the
invention; the generation of a modifier and second
random salt-search term product, using key stream-
ing.

Fig. 8 illustrates a second part of a method of search-
ing ciphertext in accordance with an embodiment of
the invention, using a previously generated modified
and second random salt-search term product, pro-
duced using key streaming.

Fig. 9 illustrates a flow diagram showing modules of
a computing system performing methods in accord-
ance with embodiments of the invention.

Detailed Description

[0064] The invention is described below with reference
to a number of different embodiments and the aforemen-
tioned figures. These embodiments are merely illustra-
tive and are not intended to limit the scope of the append-
ed claims.
[0065] Referring to Fig. 1, a flow diagram depicting a
method of encryption according to the present invention
is shown.
[0066] Plaintext is received to be encrypted. In a first
step, a random salt is generated with a length matching
the plaintext, such that the two can be effectively com-
bined via an exclusive OR operation. It is possible to per-
form a partial exclusive OR operation if the random salt
and plaintext are different lengths; the overlap of the long-
er data item is simply unchanged by the operation. While
possible in embodiments of the invention, the overlap-
ping bits of data are, in effect, portions of either the plain-
text or random salt appearing in the clear. Such embod-
iments are therefore less secure than if the random salt
and plaintext are of matching length.
[0067] The random salt and plaintext are combined us-
ing an exclusive OR operation to form salted plaintext.
An encryption key is then received for use in the encryp-
tion. The encryption key may be received from an exter-
nal source to the processing unit performing the exclusive
OR operations, or from a key generation source at the
same processing unit. In a similar manner to the length
of the salt, the key is preferably generated with a length
matching that of the salted plaintext for data security pur-
poses.
[0068] The salted plaintext is then combined with the
encryption key using a second exclusive OR operation.
In this context, an exclusive OR operation with an en-
cryption key is referred to as an encryption. The result of
the second exclusive OR operation is ciphertext. The ci-
phertext is stored in a storage location, such as a data-
base, alongside the random salt used in its generation.
[0069] The random salt that has been used to encrypt

9 10 



EP 4 432 597 A1

7

5

10

15

20

25

30

35

40

45

50

55

the ciphertext may be referred to as a stored salt, or syn-
onymously as a first random salt, once it has been stored
following salting of the plaintext prior to its encryption with
the encryption key. The first random salt/stored salt is
thereby distinguished from the second random salt which
is generated as part of methods of searching ciphertext.
[0070] The key remains associated with the ciphertext,
for example via metadata associated with one allowing
identification of the other, but is preferably not stored in
the same storage location as the ciphertext and first ran-
dom salt.
[0071] In some embodiments, the processes of salting
with a first random salt and encrypting with an encryption
key can be performed in the alternative order to that
shown in Fig. 1, and indeed as shown in Figs. 2 to 4
described in greater detail below. The nature of the ex-
clusive OR functions used to combine sequentially the
plaintext with a first random salt and an encryption key
is such that the same result can be achieved whether the
plaintext is first salted and then encrypted, or first en-
crypted and then salted. The same is true of ciphertext
in the case of a decryption; the ciphertext can be first ‘de-
salted’ and then decrypted, rather than the reverse as
shown.
[0072] It is also anticipated that the first random salt
and encryption key could first be combined using an ex-
clusive OR operation, before the result is combined with
the plaintext via an exclusive OR function. What is crucial
to produce ciphertext having the necessary properties
for effective and secure search is that the entire length
of the plaintext has experienced an exclusive OR oper-
ation with a first random salt and an exclusive OR oper-
ation with an encryption key.
[0073] Referring to Fig. 2, a flow diagram of a method
of encryption similar in substance to that of Fig. 1 is de-
picted, but according to Fig. 2 the method is implemented
using a block cipher in a stream mode of operation. The
block cipher in a stream mode of operation depicted is
AES with a synthetic IV. The use of a synthetic IV retains
security even in the case of nonce re-use, so the nonce
content needs less strict control than with other methods.
[0074] One of a number of counter or feedback modes
may be used, including GCM and CTR, and OFB and
CFB, respectively.
[0075] A first random salt and key are received. The
first random salt is extended to the length of the plaintext
to be encrypted, for example by repeated hashing where
the salt block length is the hash digest length. The length
of salt block as determined by the hash digest length may
then be applied to the plaintext and key stream in order
to generate respective blocks of plaintext and key stream
with the same length as the blocks of salt.
[0076] Blocks herein are referred to as 1, 2, and n. It
will be appreciated that there may be as few as two
blocks, and any number of blocks greater than two up to n.
[0077] The plaintext is also partitioned into a number
of blocks, as above, with length matching the length of
each block of salt. An encryption key is received for input

to AESSIVX, along with a nonce and input data. As de-
scribed above, a nonce is any number used only once
and is standard when using AES. The input data, how-
ever, differs from being the plaintext as would be common
when using AES, and is instead not the plaintext but data
which is associated with the plaintext.
[0078] As described in relation to Fig. 1, the encryption
key may be received from an external source to the
processing unit performing the exclusive OR operations,
or from a key generation source at the same processing
unit. The nonce and input data may be generated as part
of the method of encryption, or may also be received
along with the key.
[0079] Alternatively, the production of a key stream
may be outsourced to a remote processing unit, and the
processing unit performing the encryption may simply
receive the key stream or pre-partitioned blocks of the
key stream.
[0080] Following broadly the same steps as described
in relation to Fig. 1, but block-by-block, the plaintext is
salted by being combined with the first random salt using
a number of exclusive OR operations, the number of ex-
clusive OR operations being equal to the number of
blocks. The blocks of salted plaintext are then encrypted
by being combined with the blocks of the key stream us-
ing a number of exclusive OR operations.
[0081] The result of the encryption level exclusive OR
operations is a series of blocks of ciphertext, matching
in length and number the blocks of salted plaintext and
key stream. These blocks are then stored in a storage
location, such as a database, alongside their associated
random salt.
[0082] The blocks of ciphertext can at this stage be
concatenated with one another, i.e. their "block" nature
removed after encryption, or can remain stored as blocks
of ciphertext.
[0083] The key remains associated with the ciphertext,
for example via metadata associated with one allowing
identification of the other, but is preferably not stored in
the same storage location as the ciphertext and first ran-
dom salt.
[0084] In Fig. 2, and indeed throughout the Figures,
circled capital letters, e.g. "A" as follows "Plaintext 2", are
used simply as a replacement for connections with ar-
rows for conciseness and clarity of the Figures. In other
words, these are not algorithmic processes nor data
items.
[0085] Referring to Fig. 3, a method of decryption ac-
cording to an embodiment of the invention is depicted.
[0086] In a first step, ciphertext for decryption and an
associated first random salt may be retrieved from a stor-
age location. The encryption key under which the cipher-
text is encrypted may then be requested from its storage
location, which is preferably different to that in which the
ciphertext and first random salt are stored. The ciphertext
is preferably ciphertext generated in accordance with a
method according to embodiments of the invention, for
example as shown in Fig. 1. The method of decryption

11 12 



EP 4 432 597 A1

8

5

10

15

20

25

30

35

40

45

50

55

as shown in Fig. 3 is suitable for any ciphertext which is
both salted and encrypted, and for which the salt and key
used to perform these operations are available.
[0087] In what is a reversal of the steps shown in Fig.
1, an exclusive OR operation is performed on the cipher-
text and the encryption key to produce salted plaintext,
and an exclusive OR operation is performed on the salted
plaintext and the first random salt in order to generate
the plaintext.
[0088] Referring to Fig. 4, a method of decryption using
key streaming according to an embodiment of the inven-
tion is depicted.
[0089] Fig. 4 is a key streaming embodiment of the
method shown in Fig. 3 in much the same way that Fig.
2 is a key streaming embodiment of the method shown
in Fig. 1.
[0090] As with the method shown in Fig. 3, the cipher-
text and associated first random salt are retrieved from
their storage location(s). Either an encryption key can be
received, and an AESSIVX algorithm used to produce a
suitable key stream, or a key stream can be received.
The nonce and input data will also match the nonce and
input data used when first encrypting the ciphertext, such
that an identical key stream is produced by AESSIVX.
[0091] The first random salt is extended in order to pro-
duce blocks of salt. The algorithm used to extend the first
random salt for the purpose of decryption should match
the algorithm used to extend the first random salt for the
purpose of encryption, such that the blocks of salt pro-
duced in each case are identical.
[0092] Alternatively, when storing the first random salt
at the point of encryption, each block of salt as extended
could be stored, rather than the first random salt. While
less efficient in terms of storage capacity, this may be
advantageous for processing efficiency by obviating the
need to re-extend the salt at the point of decryption, or
indeed search. In other words, at the point of decryption
or search, the already extended blocks could be retrieved
rather than the first random salt in need of extending.
[0093] In a first step, for each block of ciphertext and
for each respective block of key stream are subjected to
an exclusive OR operation in order to produce blocks of
salted plaintext. The blocks of salted plaintext are then
subjected to an exclusive OR operation with a respective
block of salt in order to produce blocks of plaintext. The
blocks of plaintext may then be concatenated with one
another to produce the complete plaintext in clear to com-
plete the decryption.
[0094] Fig. 5 illustrates a first part of a method of
searching ciphertext in accordance with an embodiment
of the invention; the generation of a modifier and second
random salt-search term product.
[0095] In a first step, a second random salt is generat-
ed. As detailed above, this is a different random salt to
the random salt generated for use in decryption, stored
alongside or associated with the ciphertext, and retrieved
for the purpose of decryption. In some embodiments, the
second random salt is prevented from being identical to

the first random salt in order to avoid any possibility of
accidental de-salting of the ciphertext by combining the
first and second random salts.
[0096] The second random salt may be generated with
a length equal to that of the search term and encryption
key in order to facilitate the performance of the exclusive
OR operations.
[0097] A search term is received, as is the encryption
key that was used to encrypt the ciphertext being inter-
rogated.
[0098] An exclusive OR operation is performed on the
second random salt and the search term in order to pro-
duce J in Fig. 5, which is a second random salt-search
term product. A separate exclusive OR operation is per-
formed on the second random salt and the encryption
key in order to produce a modifier. These two exclusive
OR operations can be performed in any order, or simul-
taneously.
[0099] In some embodiments, a bytewise rotation is
applied to the product of the exclusive OR operation per-
formed on the second random salt and the encryption
key before that product (the salted key stream) is con-
sidered a completed modifier. A bytewise, or bitwise, ro-
tation, as will be appreciated by a skilled person, involves
a byte shift of a certain magnitude and direction, with bits
‘falling off the end’ being reintroduced at the other end
of the data item. For example, a one bit left-wise rotation
of 1010001 would produce 0100011, and a two bit right-
wise rotation would produce 0110100. Bytewise rotations
as employed by the present invention may be a pre-de-
termined direction and pre-determined number of bits,
for example between zero and eight bits.
[0100] Fig. 6 illustrates a second part of a method of
searching ciphertext in accordance with an embodiment
of the invention, using a previously generated modified
and second random salt-search term product.
[0101] The second random salt-search term product,
or product J as shown in Figs. 5 and 6, is combined via
an exclusive OR operation with the stored salt associated
with a given ciphertext of interest. The product is referred
to as a salted search term.
[0102] The ciphertext of interest and the modifier are
also subjected to an exclusive OR operation, and the
product is referred to as modified ciphertext. In embodi-
ments in which the modifier was subjected to a bytewise
rotation, the bytewise rotation is reversed prior to the ex-
clusive OR operation with the ciphertext. A reverse byte-
wise rotation in this context involves a bytewise rotation
of the same magnitude as has previously been applied
to the salted key stream, but in the opposite direction.
For example, a two bit left-wise rotation is reversed by a
two bit right-wise rotation, to produce a data item match-
ing the originally salted key stream.
[0103] The products of the two exclusive OR opera-
tions described above are the salted search term and the
modified ciphertext. A bytewise comparison of these two
data items is now performed, and if the modified cipher-
text matches the salted search term, it can be determined

13 14 



EP 4 432 597 A1

9

5

10

15

20

25

30

35

40

45

50

55

that the search term is identical to the plaintext that un-
derpins the ciphertext of interest. This is because the
algorithmic histories of the modified ciphertext and the
salted search term lead to identical ‘levels’ of salting and
encryption.
[0104] The modified ciphertext is based on the cipher-
text, which was salted using the first random salt and
encrypted using the encryption key during its original en-
cryption phase. The modified ciphertext has also, in ef-
fect, been salted with the second random salt, because
it has been combined with the modifier which, as shown
in Fig. 5, includes the second random salt. The other
effect of the exclusive OR operation between the cipher-
text and the modifier is to remove the encryption key.
Both the ciphertext and the modifier have been subjected
to exclusive OR operations which included the encryption
key. As a result, and due to the properties of exclusive
OR operations, the effect of the encryption key is effec-
tively removed from the modified ciphertext. The plaintext
remains secure due to the salting, but the encryption key
no longer encrypts the modified ciphertext.
[0105] Therefore, the modified ciphertext is, in effect,
the plaintext salted by both the first and second random
salts.
[0106] The salted search term has a simpler algorith-
mic history, in that it is the search term first salted with
the second random salt (Fig. 5), and then by the first
random salt (Fig. 6). The result is that the salted search
term is, in effect, the plaintext salted by both the first and
second random salts.
[0107] Therefore, it can be seen that if the search term
matches the plaintext, and both have been ’doubly-salt-
ed’ by exactly the same two salts, a bytewise comparison
demonstrating that the salted search term and modified
ciphertext are equal shows that the search term is iden-
tical to the plaintext. This is, fundamentally, the result that
was being sought, but it has been determined without
either search term or plaintext appearing in the clear, or
even being derivable from the data that could possibly
be obtained by a nefarious third party. This is at least in
part because the salting of the search term is inherently
non-deterministic, because it is based on a randomly
generated salt. For this reason, the bytewise comparison,
i.e. the performance of the search, need not be performed
in a secure environment, because a third party cannot,
even with access to the salted search term and modifier,
derive the contents of the search term.
[0108] For the same reasons, a bytewise comparison
demonstrating that the salted search term and the mod-
ified ciphertext are not equal demonstrates that the
search term does not match the plaintext underpinning
the ciphertext.
[0109] A positive output is generated if the bytewise
comparison shows that the salted search term equals
the modified ciphertext, and a negative output is gener-
ated if the bytewise comparison demonstrates that the
salted search term does not equal the modified cipher-
text.

[0110] It will be appreciated that searching a database
populated with a plurality of ciphertexts and associated
stored salts can be achieved by repeating the processes
shown in Figs. 5 and 6 for each ciphertext, associated
stored salt, and associated key. In this way, it is possible
efficiently and securely to determine whether or not a
search term is present in a database of non-determinis-
tically encrypted data.
[0111] Fig. 7 illustrates a first part of a method of
searching ciphertext in accordance with an embodiment
of the invention; the generation of a modifier and second
random salt-search term product, using key streaming.
[0112] The method shown in Fig. 7 is the same process
as the method shown in Fig. 5, in that a search term,
second random salt, and key element are inputs and, via
two exclusive OR operations, outputs of a modifier and
second random salt-search term product (J) are pro-
duced. However, where in Fig. 5 the key element is the
encryption key, in Fig. 7 AESSIVX is used to produce a
key stream. The key stream may be produced as de-
scribed elsewhere herein, using the encryption key, a
nonce, and input data.
[0113] In some embodiments (not shown), an offset
mechanism can be added to the generation of the mod-
ifier and second random salt-search term product, in or-
der to support partial searching of the ciphertext. Such
searches may comprise searching for a specific prefix or
suffix, or searching for a term shorter than the ciphertext
that appears in the centre of the ciphertext. In such em-
bodiments, an offset is introduced to both the keystream
and the search term prior to their respective exclusive
OR operations with the second random salt. The result-
ant second random salt-search term product and modifier
then contain the offset.
[0114] Again, in this embodiment, a bytewise rotation
can be performed in the production of the modifier in order
to increase security.
[0115] Fig. 8 illustrates a second part of a method of
searching ciphertext in accordance with an embodiment
of the invention, using a previously generated modified
and second random salt-search term product, produced
using key streaming.
[0116] Similar to the progression from Fig. 5 to Fig. 7,
Fig. 8 represents the use of the modifier and second ran-
dom salt-search term product to perform a bytewise com-
parison, but accounting for the key streaming used in the
method of Fig. 7.
[0117] If a bytewise rotation has been used in the pro-
duction of the modifier, this is reversed prior to its exclu-
sive OR operation with blocks 1... n of the ciphertext. The
ciphertext may be partitioned into blocks in any manner
that will be apparent to the skilled person, including as
described with reference to Fig. 4.
[0118] The stored salt (first random salt) is extended
to become first random salt blocks 1... n. The first random
salt blocks may be the same length and number as the
ciphertext blocks.
[0119] The modifier, in the context of Fig. 8, may be

15 16 



EP 4 432 597 A1

10

5

10

15

20

25

30

35

40

45

50

55

considered to be/referred to as a modified key steam.
Since the modifier is produced using an exclusive OR
operation on the key stream produced in Fig. 7, the mod-
ifier remains a stream in nature. In order to facilitate the
exclusive OR operation between the modifier and the
blocks of ciphertext, the modifier may be partitioned (not
shown) into blocks of length and number matching the
length and number of the blocks of ciphertext.
[0120] The second random salt-search term product
may also be partitioned (not shown) into blocks of length
and number equal to the blocks of the first random salt.
The respective blocks can then be combined using an
exclusive OR operation in order to produce blocks 1... n
of salted search term.
[0121] In embodiments in which the entire ciphertext
is being searched, the search term will be equal in length
to the plaintext, and thus equal in length to the ciphertext.
Therefore, the ciphertext and search term having been
partitioned into blocks 1... n, the blocks 1... n. of salted
search term and blocks 1... n of modified ciphertext will
be equal in number and in length. The bytewise compar-
ison can be performed block-by-block, or with multiple
blocks compared in parallel. For a full ciphertext search,
when key streaming is used, only if every block of salted
search is identical to every respective block of modified
ciphertext is a positive output generated. Therefore, a
determination by the bytewise comparison that any block,
or any byte within any block, of salted search term does
not match its respective byte/block of modified ciphertext
leads to a negative output.
[0122] In embodiments where an offset mechanism is
used to perform a partial search, an offset is also applied
to the ciphertext prior to its partition into blocks and ex-
clusive OR operation with the blocks of the modifier.
[0123] Partial search using an offset is not limited to
being performed in embodiments using key streaming.
An offset as applied to the search term and encryption
key when producing the modifier and second random
salt-search term product, and then applied to the cipher-
text during search, will allow partial searching in the same
way as described with respect to embodiments using key
streaming.
[0124] Fig. 9 is a flow diagram showing modules of a
computing system performing methods in accordance
with embodiments of the invention.
[0125] The distributed computing system of Fig. 9 com-
prises a search term generation module, an application,
a data store, and a cryptographic service. Each compo-
nent of the computing system may be stored and imple-
mented on a separate processing unit. Alternatively, mul-
tiple components may be stored on the same processing
unit but implemented as distinct processing and storage
modules, so as to maintain information separation be-
tween the modules.
[0126] The application first sends a request for a
search term to the search term generation module. The
request includes the search term and the encryption key
or key stream, and may include the second random salt,

as generated by the application. Alternatively, the second
random salt can be generated by the search term gen-
eration module; this is preferable for the purposes of data
security because the second random salt need not be
transmitted between modules.
[0127] In response to the request, the search term gen-
eration module generates the modifier and second ran-
dom salt-search term product (J), in accordance with
methods such as those shown in Figs. 5 and 7. The ap-
plication then provides both the modifier and second ran-
dom salt-search term product (J) to the data store.
[0128] The data store has saved within it one or more
ciphertexts of interest, and each ciphertext has an asso-
ciated first random salt also stored in the data store. For
each of the one or more ciphertexts of interest, the data
store produces a salted search term and modified cipher-
text, in accordance with methods such as those shown
in Figs. 6 and 8. The data store also performs the byte-
wise comparison between the salted search term and
modified ciphertext in order to generate either a positive
or negative output.
[0129] The data store can either then return to the ap-
plication simply the output of the bytewise comparison
to the application, be that positive or negative, or can
return a positive output along with the ciphertext for which
the positive output was generated.
[0130] In this way, the first random salt (stored salt)
never leaves the data store, so is not susceptible to being
intercepted by a third party man-in-the-middle style at-
tack.
[0131] Furthermore, all key management and search
term creation functions are performed separately from
the storage and searching of the data.
[0132] There may be additional identification and au-
thorisation steps (not shown) performed by or in connec-
tion with the cryptographic service, which prohibit access
to encryption key material and operations using encryp-
tion keys until requestor identity and authorisation is ob-
tained.
[0133] Various numbered embodiments of the present
disclosure are set out below. These provide a disclosure
of various computer-implemented methods for encrypt-
ing data, searching ciphertext, and decrypting ciphertext,
and data processing apparatuses, computer programs,
and computer readable storage media for achieving the
same.

Numbered Embodiments

[0134]

1. A computer-implemented method for encrypting
data, comprising:

i) receiving plaintext and a first key;

ii) generating a first random salt;

17 18 



EP 4 432 597 A1

11

5

10

15

20

25

30

35

40

45

50

55

iii) performing an exclusive OR operation on the
plaintext and the first random salt to produce
salted plaintext; and

iv) performing an exclusive OR operation on the
salted plaintext and the first key to produce ci-
phertext.

2. The computer-implemented method of embodi-
ment 1, further comprising:

partitioning the plaintext into n plaintext blocks;

producing n salt blocks from the first random
salt; and

producing a key stream from the first key; and

producing n ciphertext blocks, wherein produc-
ing n ciphertext blocks comprises performing
steps iii) and iv) of embodiment 1 for each of the
n plaintext blocks, n salt blocks, and the key
stream.

3. The computer-implemented method of embodi-
ment 2, wherein producing a key stream from the
first key comprises using a block cipher.

4. The computer-implemented method of embodi-
ment 3, wherein the block cipher comprises an ad-
vanced encryption standard algorithm using the first
key, a nonce, and first input data as inputs, wherein
the first input data is not the plaintext.

5. The computer-implemented method of embodi-
ment 4, wherein the first input data comprises data
associated with the plaintext, for example a field
name associated with the plaintext.

6. The computer-implemented method of embodi-
ment 4 or embodiment 5, wherein the block cipher
comprises a synthetic initialisation vector.

7. The computer-implemented method of embodi-
ment 6, wherein the block cipher is configured to
operate as a stream cipher, optionally wherein the
block cipher is one of: Galois Counter Mode (AES-
GCM-SIV), Counter Mode (AES-CTR-SIV), Cipher
Feedback Mode (AES-CFB-SIV), and Output Feed-
back Mode (AES-OFB-SIV).

8. The computer-implemented method of any one of
embodiments 2 to 7, wherein producing n salt blocks
from the first random salt comprises passing the first
random salt through an extender, and wherein the n
salt blocks are produced so as to have a combined
byte length equal to the byte length of the plaintext.

9. The computer-implemented method of any pre-
ceding embodiment, further comprising:

storing the ciphertext and the first random salt
in a first database; and

storing the first key in a second database, the
first and second database being remote from
one another.

10. A computer-implemented method for searching
ciphertext encrypted by a method according to any
one of the preceding embodiments, the method com-
prising:

i) receiving the ciphertext, the first key, the first
random salt, and a search term;

ii) generating a salted search term and a modi-
fier, comprising:

a) generating a second random salt;
b) performing an exclusive OR operation on
the second random salt and the first key to
produce the modifier;
c) performing an exclusive OR operation on
the second random salt and the search
term; and
d) performing an exclusive OR operation on
the product of step c) and the first random
salt to produce a salted search term;

iii) performing an exclusive OR operation on the
ciphertext and the modifier to produce modified
ciphertext; and

iv) performing a bytewise comparison between
the modified ciphertext and the salted search
term to determine a level of similarity between
the salted search and the modified ciphertext.

11. The computer-implemented method of embodi-
ment 10, further comprising:

providing a positive output if the salted search
and at least a portion of the modified ciphertext
are identical, the positive output indicating that
the search term exists in the plaintext; and

providing a negative output if the salted search
is not identical with any portion of the modified
ciphertext, the negative output indicating that
the search term does not exist in the plaintext.

12. The computer-implemented method of embodi-
ment 10 or embodiment 11, wherein steps a) to c)
are performed in a secure environment remote from
the first database storing the ciphertext and the first

19 20 



EP 4 432 597 A1

12

5

10

15

20

25

30

35

40

45

50

55

random salt, and further comprises:

receiving the first random salt from the first da-
tabase; and

receiving the first key from the second database.

13. The computer-implemented method of any one
of embodiments 10 to 12, wherein the ciphertext has
been encrypted using a key stream generated from
the first key by a block cipher, further comprising:

producing a key stream from the first key using
the block cipher;

producing n first salt blocks from the first random
salt;

partitioning the ciphertext into n ciphertext
blocks; and

partitioning the search term into n search term
blocks, wherein step b) comprises performing
an exclusive OR operation on the n first salt
blocks and the key stream to produce n modifier
blocks, and wherein step c) comprises perform-
ing an exclusive OR operation on the second
random salt and the n search term blocks, and
wherein step d) comprises performing an exclu-
sive OR operation on the block products of step
c) and the n search term blocks to produce n
salted search term blocks.

14. The computer-implemented method of embodi-
ment 13, wherein the bytewise comparison is per-
formed block by block for each of the n salted search
term blocks and n ciphertext blocks.

15. The computer-implemented method of any one
of embodiments 10 to 14, wherein:

generating the modifier further comprises per-
forming a first bytewise rotation to the product
of the exclusive OR operation on the second ran-
dom salt and the first key to produce the modifier;

producing modified ciphertext further comprises
performing a second bytewise rotation to the
modifier before performing the exclusive OR op-
eration on the ciphertext and the modifier; and

the first and second bytewise rotations are op-
posite in direction and equal in magnitude.

16. The computer-implemented method of any one
of embodiments 13 to 15, wherein producing a key
stream from the first key comprises using a block
cipher.

17. The computer-implemented method of embodi-
ment 16, wherein the block cipher comprises an ad-
vanced encryption standard algorithm using the first
key, a nonce, and first input data as inputs, wherein
the first input data is not the plaintext.

18. The computer-implemented method of embodi-
ment 17, wherein the first input data comprises data
associated with the plaintext, optionally wherein the
first input data comprises a field name associated
with the plaintext.

19. The computer-implemented method of embodi-
ment 17 or embodiment 18, wherein the block cipher
comprises a synthetic initialisation vector.

20. The computer-implemented method of embodi-
ment 19, wherein the block cipher is configured to
operate as a stream cipher, optionally wherein the
block cipher is one of: Galois Counter Mode (AES-
GCM-SIV), Counter Mode (AES-CTR-SIV), Cipher
Feedback Mode (AES-CFB-SIV), and Output Feed-
back Mode (AES-OFB-SIV).

21. The computer-implemented method of any one
of embodiments 13 to 20, wherein producing n first
salt blocks from the first random salt comprises pass-
ing the first random salt through an extender, and
wherein the n first salt blocks are produced so as to
have a combined byte length equal to the byte length
of the plaintext.

22. A computer-implemented method for decrypting
ciphertext encrypted by a method according to any
one of embodiments 1 to 9, the method for decrypting
ciphertext comprising:

i) receiving the ciphertext, the first key, and the
first random salt;

ii) performing an exclusive OR operation on the
ciphertext and the first key to produce salted
plaintext; and

iii) performing an exclusive OR operation on the
salted plaintext and the first random salt to pro-
duce plaintext.

23. The computer-implemented method of embodi-
ment 16, further comprising:

partitioning the ciphertext into n ciphertext
blocks;

producing n salt blocks from the first random
salt; and

producing a key stream from the first key; and

21 22 



EP 4 432 597 A1

13

5

10

15

20

25

30

35

40

45

50

55

producing n plaintext blocks, wherein producing
n plaintext blocks comprises performing steps
ii) and iii) of embodiment 1 for each of the n ci-
phertext blocks, n salt blocks, and the key
stream.

24. The computer-implemented method of embodi-
ment 23, wherein producing a key stream from the
first key comprises using a block cipher.

25. The computer-implemented method of embodi-
ment 24, wherein the block cipher comprises an ad-
vanced encryption standard algorithm using the first
key, a nonce, and first input data as inputs, wherein
the first input data is not the plaintext.

26. The computer-implemented method of embodi-
ment 25, wherein the first input data comprises data
associated with the plaintext, optionally wherein the
first input data comprises a field name associated
with the plaintext.

27. The computer-implemented method of embodi-
ment 25 or embodiment 26, wherein the block cipher
comprises a synthetic initialisation vector.

28. The computer-implemented method of embodi-
ment 27, wherein the block cipher is configured to
operate as a stream cipher, optionally wherein the
block cipher is one of: Galois Counter Mode (AES-
GCM-SIV), Counter Mode (AES-CTR-SIV), Cipher
Feedback Mode (AES-CFB-SIV), and Output Feed-
back Mode (AES-OFB-SIV).

29. The computer-implemented method of any one
of embodiments 23 to 28, wherein producing n salt
blocks from the first random salt comprises passing
the first random salt through an extender, and where-
in the n salt blocks are produced so as to have a
combined byte length equal to the byte length of the
plaintext.

30. The computer-implemented method of embodi-
ment 10 or embodiment 11, wherein receiving the
ciphertext, the first key, and the first random salt com-
prises:

receiving the ciphertext and the first random salt
from the first database; and

receiving the first key from the second database,
the first and second databases being remote
from one another.

31. A data processing apparatus comprising means
for carrying out the steps of the method of any one
of embodiments 1 to 30.

32. A computer program comprising instructions
which, when the program is executed by a computer,
cause the computer to carry out the steps of the
method of any one of embodiments 1 to 31.

33. A computer-readable storage medium having
stored thereon the computer program of embodi-
ment 32.

Claims

1. A computer-implemented method for encrypting da-
ta, comprising:

i) receiving plaintext and a first key;
ii) generating a first random salt;
iii) performing an exclusive OR operation on the
plaintext and the first random salt to produce
salted plaintext; and
iv) performing an exclusive OR operation on the
salted plaintext and the first key to produce ci-
phertext.

2. The computer-implemented method of claim 1, fur-
ther comprising:

partitioning the plaintext into n plaintext blocks;
producing n salt blocks from the first random
salt;
producing a key stream from the first key; and
producing n ciphertext blocks, wherein produc-
ing n ciphertext blocks comprises performing
steps iii) and iv) of claim 1 for each of the n plain-
text blocks, n salt blocks, and the key stream.

3. The computer-implemented method of claim 2,
wherein producing a key stream from the first key
comprises using a block cipher, optionally wherein
the block cipher comprises an advanced encryption
standard algorithm using the first key, a nonce, and
first input data as inputs, wherein the first input data
is not the plaintext, further optionally wherein the first
input data comprises data associated with the plain-
text, optionally wherein the first input data comprises
a field name associated with the plaintext.

4. The computer-implemented method of claim 3,
wherein the block cipher comprises a synthetic ini-
tialisation vector, optionally wherein the block cipher
is configured to operate as a stream cipher, option-
ally wherein the block cipher is one of: Galois Coun-
ter Mode (AES-GCM-SIV), Counter Mode (AES-
CTR-SIV), Cipher Feedback Mode (AES-CFB-SIV),
and Output Feedback Mode (AES-OFB-SIV).

5. The computer-implemented method of any one of
claims 2 to 4, wherein producing n salt blocks from

23 24 



EP 4 432 597 A1

14

5

10

15

20

25

30

35

40

45

50

55

the first random salt comprises passing the first ran-
dom salt through an extender, and wherein the n salt
blocks are produced so as to have a combined byte
length equal to the byte length of the plaintext.

6. The computer-implemented method of any preced-
ing claim, further comprising:

storing the ciphertext and the first random salt
in a first database; and
storing the first key in a second database, the
first and second database being remote from
one another.

7. A computer-implemented method for searching ci-
phertext encrypted by a method according to any
one of the preceding claims, the method comprising:

i) receiving the ciphertext, the first key, the first
random salt, and a search term;
ii) generating a salted search term and a modi-
fier, comprising:

a) generating a second random salt;
b) performing an exclusive OR operation on
the second random salt and the first key to
produce the modifier;
c) performing an exclusive OR operation on
the second random salt and the search
term; and
d) performing an exclusive OR operation on
the product of step c) and the first random
salt to produce a salted search term;

iii) performing an exclusive OR operation on the
ciphertext and the modifier to produce modified
ciphertext; and
iv) performing a bytewise comparison between
the modified ciphertext and the salted search
term to determine a level of similarity between
the salted search and the modified ciphertext.

8. The computer-implemented method of claim 7, fur-
ther comprising:

providing a positive output if the salted search
and at least a portion of the modified ciphertext
are identical, the positive output indicating that
the search term exists in the plaintext; and
providing a negative output if the salted search
is not identical with any portion of the modified
ciphertext, the negative output indicating that
the search term does not exist in the plaintext.

9. The computer-implemented method of claim 7 or
claim 8, wherein steps a) to c) are performed in a
secure environment remote from the first database
storing the ciphertext and the first random salt, and

further comprises:

receiving the first random salt from the first da-
tabase; and
receiving the first key from the second database.

10. The computer-implemented method of any one of
claims 7 to 9, wherein the ciphertext has been en-
crypted using a key stream generated from the first
key by a block cipher, further comprising:

producing a key stream from the first key using
the block cipher;
producing n first salt blocks from the first random
salt;
partitioning the ciphertext into n ciphertext
blocks; and
partitioning the search term into n search term
blocks, wherein step b) comprises performing
an exclusive OR operation on the n first salt
blocks and the key stream to produce n modifier
blocks, and wherein step c) comprises perform-
ing an exclusive OR operation on the second
random salt and the n search term blocks, and
wherein step d) comprises performing an exclu-
sive OR operation on the block products of step
c) and the n search term blocks to produce n
salted search term blocks, optionally wherein
the bytewise comparison is performed block by
block for each of the n salted search term blocks
and n ciphertext blocks.

11. The computer-implemented method of any one of
claims 7 to 10, wherein:

generating the modifier further comprises per-
forming a first bytewise rotation to the product
of the exclusive OR operation on the second ran-
dom salt and the first key to produce the modifier;
producing modified ciphertext further comprises
performing a second bytewise rotation to the
modifier before performing the exclusive OR op-
eration on the ciphertext and the modifier; and
the first and second bytewise rotations are op-
posite in direction and equal in magnitude.

12. A computer-implemented method for decrypting ci-
phertext encrypted by a method according to any
one of claims 1 to 6, the method for decrypting ci-
phertext comprising:

i) receiving the ciphertext, the first key, and the
first random salt;
ii) performing an exclusive OR operation on the
ciphertext and the first key to produce salted
plaintext; and
iii) performing an exclusive OR operation on the
salted plaintext and the first random salt to pro-

25 26 



EP 4 432 597 A1

15

5

10

15

20

25

30

35

40

45

50

55

duce plaintext.

13. The computer-implemented method of claim 12, fur-
ther comprising:

partitioning the ciphertext into n ciphertext
blocks;
producing n salt blocks from the first random
salt;
producing a key stream from the first key; and
producing n plaintext blocks, wherein producing
n plaintext blocks comprises performing steps
ii) and iii) of claim 1 for each of the n ciphertext
blocks, n salt blocks, and the key stream.

14. A data processing apparatus comprising means for
carrying out the steps of the method of any one of
claims 1 to 13.

15. A computer program comprising instructions which,
when the program is executed by a computer, cause
the computer to carry out the steps of the method of
any one of claims 1 to 13.

16. A computer-readable storage medium having stored
thereon the computer program of claim 15.

27 28 



EP 4 432 597 A1

16



EP 4 432 597 A1

17



EP 4 432 597 A1

18



EP 4 432 597 A1

19



EP 4 432 597 A1

20



EP 4 432 597 A1

21



EP 4 432 597 A1

22



EP 4 432 597 A1

23



EP 4 432 597 A1

24



EP 4 432 597 A1

25

5

10

15

20

25

30

35

40

45

50

55



EP 4 432 597 A1

26

5

10

15

20

25

30

35

40

45

50

55


	bibliography
	abstract
	description
	claims
	drawings
	search report

