

(11) EP 4 436 042 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

25.09.2024 Bulletin 2024/39

(21) Application number: 23163942.8

(22) Date of filing: 24.03.2023

(51) International Patent Classification (IPC): H03K 17/10^(2006.01) H03K 17/687^(2006.01)

H03K 17/22 (2006.01) H03K 17/30 (2006.01)

(52) Cooperative Patent Classification (CPC): H03K 17/102; H03K 17/223; H03K 17/6871; H03K 2017/307; H03K 2017/6875; H03K 2217/0036

(84) Designated Contracting States:

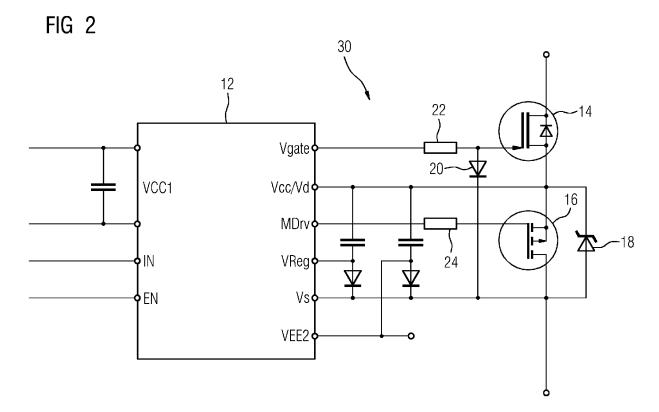
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA

Designated Validation States:

KH MA MD TN


(71) Applicant: Siemens Aktiengesellschaft 80333 München (DE)

(72) Inventor: Melkonyan, Ashot 81549 München (DE)

(74) Representative: Siemens Patent Attorneys Postfach 22 16 34 80506 München (DE)

(54) SYNCHRONOUS RECTIFIER ARRANGEMENT

(57) A synchronous rectifier arrangement comprises a cascode circuit of a high-voltage switch and a low-voltage semiconductor switch, wherein the low-voltage switch is controlled by a low-voltage synchronous rectifier gate driver unit.

EP 4 436 042 A1

25

40

Description

[0001] The present invention relates to a rectifier arrangement, in particular a synchronous rectifier.

[0002] Synchronous rectification is a well-known possibility to reduce a rectifier diode's forward conduction losses by switching a parallel transistor to its ON state synchronously to the diode, shunting the diode with the channel of the parallel connected transistor. This methodology has been mainly used in low voltage and high current applications. Here the forward voltage and current signals can be sensed directly by a controller and forwarded to the low voltage Gate Drive Unit (GDU). Typical commercial synchronous rectifier controllers can sense and drive low voltage, high current MOSFETs only. [0003] High voltage power MOSFETs, particularly those based on Wide Band Gap (WBG) semiconductors, having very low on-state resistances can be used as synchronous rectifiers, even at high voltage levels of 600 V to 1200 V. However, the existing low voltage synchronous rectifier controllers, which are dedicated to driving low voltage switches, cannot be directly used for those applications. Solutions such as galvanically or optically isolated drivers and sensors are expensive and therefore not always practical for industrial applications. Synchronous rectifier methods with high voltage bridge drivers may suffer from lowered sensitivity and accuracy due to very high dynamic voltage range and low CMR immunity. The model-based synchronous rectifiers are typically suited for a specific operating point of a specific converter only and may suffer from light load or no-load operating

[0004] It is an object of the present invention to provide an improved rectifier arrangement, particularly a synchronous rectifier arrangement for high-voltage applications using a low-voltage gate drive unit.

[0005] A synchronous rectifier arrangement in accordance with the invention comprises a first, depletion-mode, semiconductor switch with first and second load terminals and a first control terminal. It further comprises a second, enhancement mode, low-voltage semiconductor switch with third and fourth load terminals and a second control terminal. The second and third load terminals are electrically connected, the two semiconductor switches thus forming a series connection.

[0006] A control circuit is connected to the second control terminal and arranged to turn the second semiconductor switch on and off by applying a signal to the second control terminal.

[0007] The first semiconductor switch has a higher maximum reverse voltage than the second semiconductor switch and the control circuit is a low-voltage synchronous rectifier control circuit.

[0008] For the semiconductor switches, turning on means bringing them to a conducting state that allows current to flow between the load terminals. Turning off means bringing them to a non-conducting mode that prevents current flow between the load terminals.

[0009] The synchronous rectifier arrangement advantageously uses a cascode-like arrangement of two switches. The second switch is a low-voltage switch such as a 30 V Si MOSFET. A low-voltage gate drive unit is used to control that low-voltage switch. The cascode arrangement in turn provides protection of the low-voltage second semiconductor switch by the first switch from voltages that are possibly higher than the reverse voltage of the second switch. The first switch in turn is turned on and off indirectly by the cascode arrangement. Active controlling of the low-voltage second semiconductor switch provides a synchronous rectifier operation mode for input voltages that may be as high as the first semiconductor's reverse voltage.

[0010] Further features that may be added alone or together in exemplary embodiments of the invention include:

The reverse voltage of the first switch may be at least 400 V, particularly at least 1200 V. The first semiconductor switch may in other words be a high-voltage switch. With a high-voltage switch as the first semiconductor switch the second semiconductor switch can be protected from the same high voltages and can thus itself remain a low-voltage switch. The reverse voltage of the second switch may thus be at most 100 V and in some embodiments at most 50 V.

[0011] The synchronous rectifier arrangement may comprise a diode arranged in parallel to the second semiconductor switch. The diode is preferably oriented to block a forward polarity voltage across it and the second semiconductor switch. This enables the arrangement to operate as a passive rectifier wherein the first semiconductor switch protects the diode from high input voltages. [0012] In an advantageous embodiment the diode is a Schottky diode. Silicon (Si) Schottky diodes have a low forward voltage drop and therefore cause low conducting losses, but they are not available as intrinsic high-voltage devices. The first semiconductor switch protects the Schottky diode from high input voltages. Together with the high voltage first semiconductor switch the Schottky diode may then act as a high-voltage Schottky diode equivalent.

[0013] A first control circuit control terminal may be connected across a first resistor to the first control terminal of the first semiconductor switch. This allows controlling the state of the first semiconductor switch directly and thus enables the synchronous rectifier arrangement to operate as a high-voltage normally-off FET switch.

[0014] A second control circuit control terminal may be connected across a second resistor to the second control terminal of the second semiconductor switch. This allows controlling the state of the second semiconductor switch directly and thus enables the synchronous rectifier arrangement to operate as an active high-voltage rectifier. To enable such a first operating mode, the control circuit may be arranged to, during the first operating mode, obtain a signal indicative of the voltage across the second semiconductor switch and may further be arranged to

turn on the second semiconductor switch when the signal indicates a reverse polarity voltage.

[0015] Furthermore, the control circuit may be arranged to, during a second operating mode, set the arrangement's conducting state by turning on and off the first semiconductor switch while keeping the second semiconductor switch in the on-state. In this second operating mode the synchronous rectifier arrangement operates as a high-voltage normally-off FET switch.

[0016] The control circuit may further be arranged to, during a third operating mode, keep the second semiconductor switch in the off-state and apply no signal to the first control terminal of the first semiconductor switch. In this second operating mode the synchronous rectifier arrangement operates as a passive Schottky rectifier, but for voltages as high as those can the first semiconductor switch can block. Advantageously the first semiconductor switch switches its state automatically in this operating mode and thus requires no active control.

[0017] Embodiments of the present invention are now described with reference to the accompanying drawings to which the invention is not limited. The illustrations of the drawings are in schematic form. It is noted that in different figures, similar or identical elements use the same reference signs.

Fig. 1 illustrates a first high voltage cascode arrangement operating as a synchronous rectifier circuit using low voltage synchronous rectifier controller.

Fig. 2 illustrates a second high-voltage synchronous rectifier circuit with additional operation modes.

[0018] Figure 1 is a circuit diagram of a synchronous rectifier circuit 10 according to a first embodiment of the invention. Synchronous rectifier circuit 10 comprises a low-voltage synchronous rectifier gate drive unit 12. It further comprises a cascode circuit having a first semi-conductor switch 14 and a second semiconductor switch 16.

[0019] The first semiconductor switch 14 is a depletion-type 650 V GaN (gallium nitride) field effect transistor (FET). In alternative embodiments the first semiconductor switch 14 can also be an SiC (silicon carbide) device. It has a first control terminal G14 and first source and drain terminals S14, D14 which are load terminals.

[0020] The second semiconductor switch 16 is an enhancement-type 30 V silicon MOSFET. It has a second control terminal G16 and second source and drain terminals S16, D16 which are load terminals.

[0021] In other words, the first semiconductor switch 14 is a high-voltage, ultra-fast switch while the second semiconductor switch 16 is a low-voltage switch.

[0022] The first source terminal S14 and the second drain terminal D16 are connected, so that the first and second semiconductor switch 14, 16 form a series connection.

[0023] The cascode circuit can be embodied as an in-

tegrated device comprising at least the first and second switch 14, 16. In this case the cascode circuit itself has a drain terminal formed by the first drain terminal D14, a source terminal formed by the second source terminal S16 and two control terminals formed by the first and second control terminals G14, G16.

[0024] The first drain terminal D14 forms a terminal of synchronous rectifier circuit 10 and may be connected to a voltage, for example an AC supply voltage. The second source terminal S16 forms another terminal of synchronous rectifier circuit 10 and may for example be connected to a load, in particular a circuit driven with a DC voltage.

[0025] Gate drive unit 12 is a unit that is specifically arranged to drive a synchronous rectifier circuit at low voltages of below 100 V, for example with a MOSFET semiconductor switch with a reverse voltage of 30 V such as the second semiconductor switch 16. It is, in other words a unit that is unsuitable for directly acting as a gate driver for a high voltage switch.

[0026] As further connections in the synchronous rectifier circuit 10, the first control terminal G14 is connected across a decoupling diode 20 to the second source terminal S16. Decoupling diode 20 is oriented to conduct from the first control terminal G14 to the second source terminal S16. The decoupling diode 20 which may be implemented by a single diode or a series of diodes should be arranged to be able to block the drain-source-voltage of the second semiconductor switch 16. The decoupling diode 20 allows controlling the gate of the first semiconductor switch 14.

[0027] A second control circuit control terminal MDrv is connected across a second resistor 24 to the second control terminal G16 of the second semiconductor switch 16. A first voltage sense input terminal Vd of the gate drive unit 12 is connected to the second drain terminal D16 and therefore also to the first source terminal S14 and one terminal Vs of the gate drive unit 12 is connected to the second voltage sense input terminal Vs of the gate drive unit 12 is connected to the second source terminal S16 and therefore also to the other terminal of Schottky diode 18 and one terminal of the decoupling diode 20.

[0028] Gate drive unit 12 is further connected to a supply voltage on its VCC terminals and to a higher-level controller (not shown in figure 1) such as a microcontroller circuit to receive control signals from this controller. The voltage sense input terminals Vd, Vs are additionally connected across two pairs of a capacitor and diode wherein each of the junctions between capacitor and diode is connected to a further terminal of gate driver unit 12.

[0029] The synchronous rectifier circuit 10 of figure 1 can operate as a synchronous rectifier. The gate driver unit 12 determines the voltage across the second semiconductor switch 16 on its voltage sense terminals Vd, Vs. When it detects that the voltage is negative, meaning Vs > Vd, the gate driver unit 12 switches on the second semiconductor switch 16 by applying a voltage to the second control terminal G16. Turning on the second semiconductor switch 16 by applying a voltage to the

40

50

iconductor switch 16 short-circuits the source terminal S14 of the first semiconductor switch 14 to its control terminal G14, switching on the depletion mode first semiconductor switch 14.

[0030] If the voltage across the second semiconductor switch 16 is positive, the gate driver unit 12 switches off the second semiconductor switch 16 by removing the voltage to the second control terminal G16, making the voltage at its terminal MDrv equal to that of the second source terminal S16. Turning off the second semiconductor switch 16 short-circuits the source terminal S14 of the first semiconductor switch 14 to its control terminal G14, switching on the depletion mode first semiconductor switch 14. This increases the voltage at its drain terminal D16. When the pinch-off voltage of the first semiconductor switch is reached, it switches off and blocks the voltage across both switches 14, 16. It thereby also protects the second semiconductor switch 16 from voltages higher than its reverse voltage.

[0031] Notably this creates a synchronous rectifier able to operate with a high-voltage AC input. For example, the AC input voltage may have a peak of 400 V, 600 V, or even 1200 V. The synchronous rectifier circuit 10 is able to work with this voltage as long as the first semiconductor switch 14 is able to block this peak voltage. At the same time the synchronous rectifier circuit 10 uses a gate driver unit 12 that is configured to drive a synchronous rectifier but only suitable for controlling a low-voltage switch for synchronous rectifier operation.

[0032] Figure 2 is a circuit diagram of a synchronous rectifier circuit 30 according to a second embodiment of the invention. Synchronous rectifier circuit 30 comprises the elements of synchronous rectifier circuit 10. In addition, a first control circuit control terminal Vgate is connected across a first resistor 22 to the first control terminal G14 of the first semiconductor switch 14.

[0033] Arranged in parallel to the second semiconductor switch 16 is a Schottky diode 18. Schottky diode 18 is oriented to block a forward polarity voltage across it and the second semiconductor switch.

[0034] Synchronous rectifier circuit 30 can be operated like the synchronous rectifier circuit 10 of the first embodiment of the invention, i.e. it can be operated as a synchronous (active) rectifier as a first mode of operation. Synchronous rectifier circuit 30 offers the option to use two additional operating modes.

[0035] In the second mode of operation, gate driver unit 12 controls the second semiconductor switch 16 to be continuously turned on by applying a voltage to the second control terminal 16, i.e. its gate terminal. At the same time the state of the first semiconductor switch 14 is controlled by the first control circuit control terminal Vgate. If at any point the second semiconductor switch 16 becomes turned off, either by a control signal of the gate driver unit 12 or through a malfunction within the synchronous rectifier circuit 30, the first semiconductor switch 14 will automatically be turned off regardless of any voltage applied at the first control circuit control ter-

minal Vgate as explained above. Thus, in this mode of operation the synchronous rectifier circuit 30 acts as a high-voltage normally-off JFET switch.

[0036] In the third mode of operation, both semiconductor switches 14, 16 are continuously kept in a turned off state by not applying a turn-on voltage at their respective control terminals G14, G16.

[0037] In this mode of operation, when a negative voltage is applied across the switches, i.e., when the voltage at the second source terminal S16 is higher than that at the first drain terminal D14, Schottky diode 18 conducts and makes the voltage at the first source terminal S14 almost equal to that of the second source terminal S16 and thus the voltage at the first control terminal G14, disregarding the voltage drop of the decoupling diode 20, thus turning on the first semiconductor switch 14. This allows a current flow with the very low resistances intrinsic to both the Schottky diode 18 and the first semiconductor switch 14.

[0038] When the voltage across the switches 14, 16, i.e. the input AC voltage, becomes positive, Schottky diode 18 blocks the current, creating a voltage drop between the first source terminal S14 and the first control terminal G14, thus turning off the first semiconductor switch 14. The first semiconductor switch 14 then blocks the input voltage. As the first semiconductor switch 14 is a high-voltage device, it blocks the input voltage up to its reverse voltage, in this example 650 V. The Schottky diode 18 is thus protected from this input voltage which it could not block alone.

[0039] In this way, the Schottky diode 18 and the first semiconductor switch 14 together form a high-voltage Schottky diode equivalent. While a pure high-voltage Schottky diode device is not available, this combined circuit acts as such a device. The synchronous rectifier circuit 30 thus acts as a passive Schottky rectifier wherein no active control of gate terminals is necessary.

List of reference numbers

[0040]

	10, 30	synchronous rectifier circuit
	12	low voltage synchronous rectifier gate driver
15		unit
	14	first semiconductor switch
	D14	first drain terminal
	S14	first source terminal
	G14	first control terminal
50	D16	second drain terminal
	S16	second source terminal
	G16	second control terminal
	16	second semiconductor switch
	18	Schottky diode
55	20	decoupling diode
	22, 24	resistors

5

25

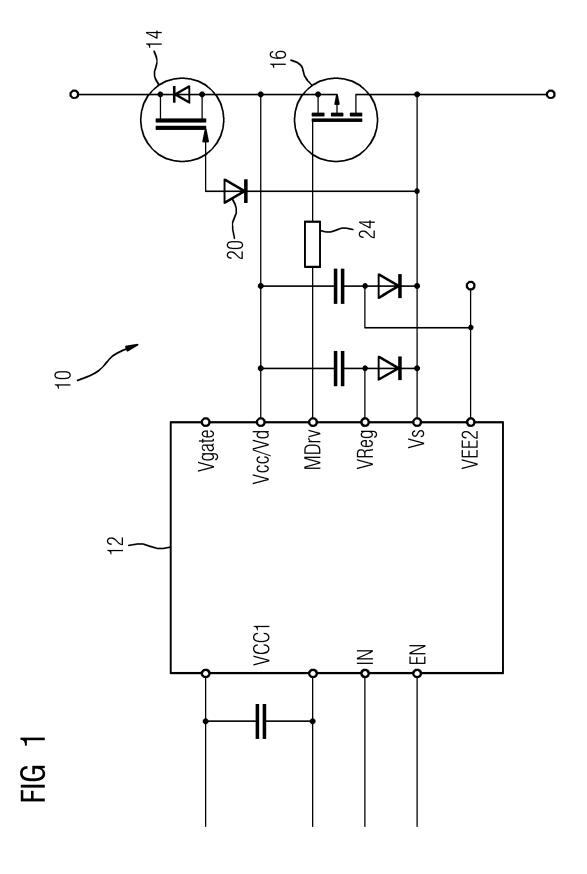
35

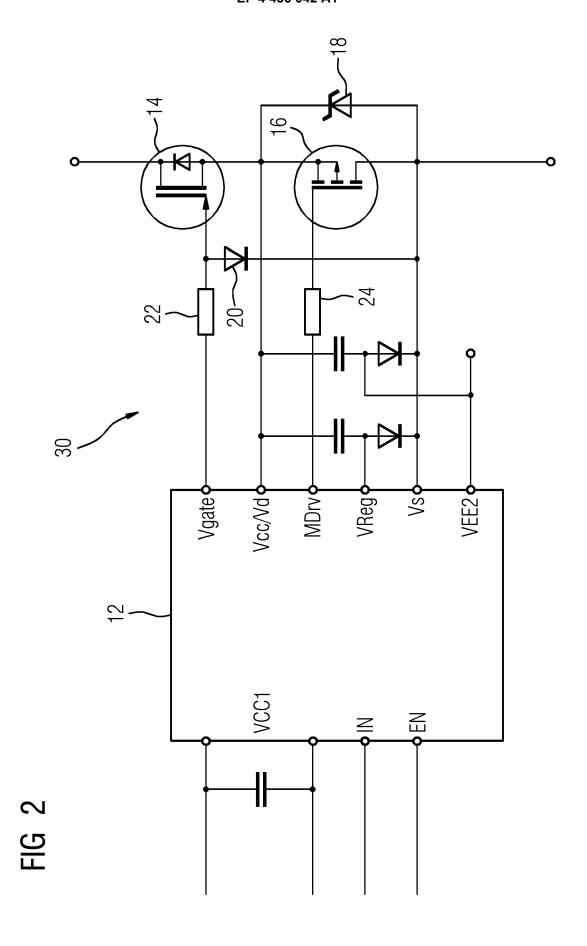
40

45

50

Claims


- Synchronous Rectifier arrangement (10, 30), comprising
 - a first, depletion-mode, semiconductor switch (14) with first and second load terminals (S14, D14) and a first control terminal (G14),
 - a second, enhancement mode, low-voltage semiconductor switch (16) with third and fourth load terminals (S16, D16) and a second control terminal (G16), the second and third load terminals (S14, D16) being electrically connected,
 - a control circuit (12) connected to the second control terminal (G16) and arranged to turn the second semiconductor switch (16) on and off by applying a signal to the second control terminal (G16),


wherein

- the first semiconductor switch (14) has a higher maximum reverse voltage than the second semiconductor switch (16),
- the control circuit (12) is a low-voltage synchronous rectifier control circuit (12).
- Synchronous Rectifier arrangement (10, 30) according to claim 1, wherein the reverse voltage of the first semiconductor switch (14) is at least 400 V, particularly at least 650 V, particularly at least 800 V.
- Synchronous Rectifier arrangement (10, 30) according to claim 1 or 2, wherein the reverse voltage of the second semiconductor switch (16) is at most 100 V, particularly at most 50 V.
- Synchronous Rectifier arrangement (10, 30) according to any of the preceding claims with a diode (18) arranged in parallel to the second semiconductor switch (16).
- **5.** Synchronous Rectifier arrangement (10, 30) according to claim 4, wherein the diode (18) is a Schottky diode.
- 6. Synchronous Rectifier arrangement (10, 30) according to any of the preceding claims, wherein a first control circuit control terminal (Vgate) is connected across a first resistor (22) to the first control terminal (G14) of the first semiconductor switch (14).
- 7. Synchronous Rectifier arrangement (10, 30) according to any of the preceding claims, wherein a second control circuit control terminal (MDrv) is connected across a second resistor (24) to the second control terminal (G16) of the second semiconductor switch (16).
- 8. Synchronous Rectifier arrangement (10, 30) accord-

- ing to claim 7, wherein the control circuit (12) is arranged to, during a first operating mode, obtain a signal indicative of the voltage across the second semiconductor switch (16) and is further arranged to turn on the second semiconductor switch (16) when the signal indicates a reverse polarity voltage.
- 9. Synchronous Rectifier arrangement (10, 30) according to claims 6 and 7, wherein the control circuit (12) is arranged to, during a second operating mode, set the arrangement's conducting state by turning on and off the first semiconductor switch (14) while keeping the second semiconductor switch (16) in the on-state.
- 10. Synchronous Rectifier arrangement (10, 30) according to any of the preceding claims, wherein the control circuit (12) is arranged to, during a third operating mode, keep the second semiconductor switch (16) in the off-state and apply no signal to the first control terminal (G14) of the first semiconductor switch (14).

5

EUROPEAN SEARCH REPORT

Application Number

EP 23 16 3942

	DOCUMENTS CONSIDERE Citation of document with indicat		Relevant	CLASSIFICATION OF THE	
Category	of relevant passages	ion, where appropriate,	to claim	APPLICATION (IPC)	
x	US 2021/126549 A1 (HAY	מש (מד) ששוופווע דום	1-4,7,8,	INV.	
^	AL) 29 April 2021 (202				
		•	10	H03K17/10	
Y	* paragraph [0019] - p	aragraph [0021];	6,9	H03K17/687	
A	figures 1,3,5 *	5	H03K17/22		
	* paragraph [0024] *				
	* paragraph [0028] *			ADD.	
	* paragraph [0039] *			H03K17/30	
x	JP 2012 205356 A (SHAR	 P KK)	1-5,7,8,		
	22 October 2012 (2012-		10		
A	* paragraph [0101] - p	•	6,9		
	figure 1 *	aragraph [0100],	0,5		
	_				
	* paragraph [0050] - p	aragraph [UU52] *			
	* paragraph [0073] *				
	* paragraph [0002] *				
		 c pore (pe) em »:\	1 5 7 6		
Х	US 2014/016361 A1 (WEI		1-5,7,8,		
	16 January 2014 (2014-		10		
Y	* paragraph [0069]; fi	=	6,9		
	* paragraph [0056]; fi	gure 2 *			
	* paragraph [0072] *			TECHNICAL FIELDS SEARCHED (IPC)	
	* paragraph [0180] *			SEATIONED (II O)	
	* paragraph [0141] - p	aragraph [0145] *		H03K	
	* paragraph [0200] *			H02M	
Y	US 2008/186004 A1 (WIL	LIAMS RICHARD K	6,9		
[US]) 7 August 2008 (2			', -		
A	* paragraph [0128]; fi		1-5,8,10		
	* paragraph [0038] - p		2 3/3/23		
A	 US 2021/408933 A1 (MEL	1-10			
•	30 December 2021 (2021	1 10			
	* paragraph [0026]; fi	•			
	* paragraph [0028] *	gure 4 "			
	· paragraph [0038] ·				
, l	US 2011/181218 A1 (TSU	CUTVA CUTVADA [TD]\	1_10		
A	-		1-10		
	28 July 2011 (2011-07-	20)			
	* figure 15 *				
		,			
		-/			
	The present search report has been	drawn up for all claims			
	Place of search	Date of completion of the search		Examiner	
	The Hague	31 August 2023	O'R	eilly, Siobhan	
	ATEGORY OF CITED DOCUMENTS	T : theory or principl	e underlying the i	nvention	
		E : earlier patent do	cument, but publis	shed on, or	
.,	icularly relevant if taken alone	after the filing da	te n the application		
X : part			locument cited in the application ocument cited for other reasons		
Y : part doci	ticularly relevant if combined with another ument of the same category	L : document cited for	or other reasons		
Y : part doci A : tech		L : document cited for	or other reasons	corresponding	

page 1 of 2

EUROPEAN SEARCH REPORT

Application Number

EP 23 16 3942

5

10	
15	
20	
25	
30	
35	
40	
45	2
50	33.82 (P04G01) D

04C01	
Ε.	
82	
03.82	
1503	
FORM	
0	

55

	DOCUMENTS CONSIDERED			
tegory	Citation of document with indication of relevant passages	n, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
	US 8 487 667 B2 (IWAMURI DENSO CORP [JP]) 16 July * figures 5-7 *		1-10	
				TECHNICAL FIELDS SEARCHED (IPC)
	The present search report has been dr	awn up for all claims	-	
	Place of search	Date of completion of the search		Examiner
	The Hague	31 August 2023	O'R	eilly, Siobhan
X : part Y : part docu A : tech	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with another ument of the same category inological background -written disclosure rmediate document	T : theory or principle E : earlier patent dor after the filing dat D : document cited in L : document cited fo	e underlying the icument, but publice n the application or other reasons	nvention shed on, or

page 2 of 2

EP 4 436 042 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 23 16 3942

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

31-08-2023

10		Patent document cited in search report		Publication date		Patent family member(s)		Publication date
		US 2021126549	A1	29-04-2021	CN	112713790	7	27-04-2021
		05 2021120549	AT	29-04-2021	EP	3813243		28-04-2021
					JP	7148476		05-10-2022
15					JP	2021069232		30-04-2021
					US	2021009232		29-04-2021
		JP 2012205356	A	22-10-2012	NON	∑		
20		US 2014016361		16-01-2014	CN	103546049	A	29-01-2014
					DE :	102013213453	A1	16-01-2014
					US	2014016361	A1	16-01-2014
					US	2015200605	A1	16-07-2015
25		US 2008186004	A1	07-08-2008	NON			
		US 2021408933	A 1	30-12-2021	CN	113852288	A	28-12-2021
					EP	3930159		29-12-2021
					US	2021408933		30-12-2021
30		US 2011181218	A1					
		US 8487667	в2	16-07-2013	JP	5012930	в2	29-08-2012
					JP	2011166673	A	25-08-2011
					US	2011199148	A1	18-08-2011
35								
40								
45								
50								
50								
	o							
	FORM P0459							
	RM F							
55	₫							

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82