BACKGROUND OF THE INVENTION
1. Field of the Invention
[0001] The present invention relates generally to a power tool and more particularly, to
a constant torque module for a power tool.
2. Description of the Related Art
[0002] A conventional power tool, such as pneumatic tool, electric tool, or hydraulically
driven tool, is usually composed of a rotating shaft connectable with a tool head,
such as a socket or a screw bit, for rotating components or parts, such as bolts or
nuts. When the rotating shaft reversely rotates to loosen the nut or bolt, the power
tool should provide as much torque as possible to smoothly unscrew the nut or bolt.
However, when the user would like to tighten the nut or bolt, the torque outputted
by the rotating shaft should be controlled in an appropriate range, thereby preventing
the damage to the bolts or nuts or preventing the difficulty in loosening the thus
tightened bolts or nuts due to exceeding tightening force exerting thereon. Moreover,
in many applications, such as in the task of mounting wheel frames, the torque exerting
on each of a plurality of nuts used at the same time must be consistent; otherwise,
the uneven stress may cause accidents that some nuts are easy to loosen after receiving
vibration for a long time.
[0003] At present, there are pneumatic tools that utilize the oil pressure or a planetary
gear reduction mechanism to control the torque of the output shaft. Document
US 2016/214238 A1 discloses a pneumatic tool with an impact module with dual impact members capable
of producing different torques depending on the direction of the rotation by using
two arch-shaped sections with striking portions having different lengths. However,
such kind of design usually has the disadvantages of restrict requirement in structure
processing accuracy to cause high manufacturing cost, and lower rotational speed to
cause poor working efficiency. Therefore, how to control the magnitude of the output
torque under high rotational speed, and how to provide an easily made structure to
lower the manufacturing cost have become a technical task to be solved in the industry.
SUMMARY OF THE INVENTION
[0004] The present invention has been accomplished in view of the above-noted circumstances.
It is an objective of the present invention to provide a constant torque module for
a power tool, which can output different magnitudes of torque when it rotates in clockwise
and counterclockwise directions.
[0005] It is another objective of the present invention to provide a constant torque module
for a power tool, which can work under high rotational speed to achieve high working
efficiency and can be made with reduced manufacturing cost.
[0006] To attain the above objectives, the present invention provides a constant torque
module adapted to be used for a power tool having an output portion. The constant
torque module comprises a transmission ring member, two buffer units, an internal
shaft member, and an external shaft member. The transmission ring member incudes a
main body, a coupling portion extending from the main body for being coupled with
the output portion of the power tool, a core shaft extending from a lateral side of
the main body opposite to the coupling portion, two accommodations provided at the
main body and located at two lateral sides of the core shaft, and two drive blocks
extending from the main body in a way that each of the two drive blocks is farther
from the core shaft than each of the two accommodations is. Each of the two buffer
units is disposed in a part of one of the two accommodations such that each of the
two accommodations remains a receiving space. The internal shaft member includes an
inner disc body, two inner protrusions extending from the inner disc body into the
receiving spaces respectively, a shaft notch provided at the inner disc body and engaged
with the core shaft of the transmission ring member, a shaft rod extending from a
lateral side of the inner disc body opposite to the two inner protrusions, and an
engagement portion provided at a terminal end of the shaft rod. The external shaft
member includes an outer disc body, two outer protrusions extending from the outer
disc body towards the main body of the transmission ring member and located outside
an outer periphery of the inner disc body, a shaft tube extending from a lateral side
of the outer disc body opposite to the two outer protrusions, a drive portion provided
at a terminal end of the shaft tube, a shaft hole recessed from the outer disc body
into an inside of the shaft tube and inserted with the shaft rod of the internal shaft
member, and an engagement notch provided at an inner end of the shaft hole and engaged
with the engagement portion of the internal shaft member. The inner disc body is located
between the outer disc body and the main body of the transmission ring member. When
the transmission ring member is rotated in a first direction, the two drive blocks
are in contact with the two outer protrusions respectively to transmit a rotational
force to the external shaft member. When the transmission ring member is rotated in
a second direction reverse to the first direction, the two buffer units are in contact
with the two inner protrusions respectively to transmit a reverse rotational force
to the internal shaft member and then the external shaft member through the engagement
portion and the engagement notch.
[0007] With the above structural features, the constant torque module can output different
magnitudes of torque when the transmission ring member is driven to rotate in clockwise
direction (the second direction) and counterclockwise direction (the first direction),
and can work under high rotational speed with high working efficiency and low manufacturing
cost.
BRIEF DESCRIPTION OF THE DRAWINGS
[0008] The present invention will become more fully understood from the detailed description
given herein below and the accompanying drawings which are given by way of illustration
only, and thus are not limitative of the present invention, and wherein:
FIG. 1 is a perspective view of a power tool equipped with a constant torque module
according to a first embodiment of the present invention;
FIG. 2 is a cross-sectional view taken along line 2-2 of FIG. 1;
FIGS. 3 and 4 are exploded views of the constant torque module used in the power tool
in different viewing angles in accordance with the first embodiment of the present
invention;
FIG. 5 is a right side elevational view of an external shaft member of the constant
torque module of the first embodiment of the present invention;
FIG. 6 is a perspective view of the constant torque module used in the power tool
of the first embodiment of the present invention;
FIGS. 7a and 7b are schematic cutaway views showing the constant torque module is
rotated in a first direction;
FIGS. 8a and 8b are schematic cross-sectional views showing the constant torque module
is rotated in a second direction reverse to the first direction;
FIG. 9 is a perspective view of a constant torque module for a power tool in accordance
with a second embodiment of the present invention; and
FIG. 10 is a perspective view of a constant torque module for a power tool in accordance
with a third embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
[0009] The structure and technical features of the present invention will be detailedly
described hereunder by three embodiments and accompany drawings. As shown in FIGS.
1-4, a constant torque module 1 in accordance with a first embodiment of the present
invention is provided. In this embodiment, the constant torque module 1 is built in
a power tool 2 which may be driven by a power source of electricity, compressed air,
hydraulic oil, or the like. In this embodiment, the power tool 2 is realized as a
pneumatic tool.
[0010] The power tool 2 uses a pneumatic motor 3 to drive an impact unit such that the rotational
force from the pneumatic motor 3 is transmitted forward through the impact unit. To
better illustrate the present invention, the direction denoted by the arrow F in FIG.
2 will be referred to as the front direction hereinafter, and the direction denoted
by the arrow B will be referred to as the rear direction. The impact unit serves as
the output portion 4 of the power tool 2 for outputting the rotational force of the
pneumatic motor 3. Because the pneumatic motor and the impact unit of the power tool
are not the primary technical features of the present invention, details of the aforesaid
mechanisms will not be necessarily given hereinafter. In other embodiment, the power
tool may omit the impact unit, and in this case the output shaft 5 of the pneumatic
motor 3 or other element will directly serve as the output portion 4 of the power
tool 2.
[0011] The constant torque module 1 is composed of a transmission ring member 10, two buffer
units 20, an internal shaft member 30, and an external shaft member 40.
[0012] The transmission ring 10 is made by processing a metal block, and comprises a main
body 11 shaped like a short cylinder, a coupling portion 12 extending backwards from
the main body 11 for being coupled with the output portion 4, a core shaft 14 extending
forwards from a lateral side (i.e., the front side) of the main body 11 opposite to
the coupling portion 12, two accommodations 16 provided at the main body 11 and located
at two lateral sides of the core shaft 14 respectively, and two drive blocks 18 extending
forwards from the main body 11 in a way that each of the two drive blocks 18 is farther
from the core shaft 14 than each of the two accommodations 16 is. Further, the coupling
portion 12 includes a shaft rod 121 and two impact receiving blocks 122 extending
from the shaft rod 121 for receiving the intermittence impact force from the impact
unit. The structure of the coupling portion 12 may be varied in association with the
structure of the output portion 4 as long as the coupling portion 12 has a non-circular
cross-sectional outer periphery that can receive the rotational force form the output
portion 4. The core shaft 14 is located at the rotational center of the main body
11. The two accommodations 16 have a same profile and are arranged symmetrical to
the core shaft 14. The two drive blocks 18 are arranged outside the two accommodations
16 at the places symmetrical to the core shaft 14 and each shaped like an arc strip.
However, the shapes of the accommodations 16 and the drive blocks 18 may be varied
in accordance with actual need.
[0013] Each of two buffer units 20 is disposed in a part of one of the two accommodations
16 such that each of the two accommodations 16 remains a receiving space 17. Each
buffer unit 20 comprises an arc-shaped elastic member 22, two arc-shaped spring pieces
24, and a pad member 26. The elastic member 22 is made of nature or synthetic polymer,
such as rubber or silicon material, such that the elastic member 22 is deformable
to absorb the impact and to provide buffer effect. The two spring pieces 24 are made
of metal material, and parallelly arranged and abutted against a convex side 221 of
the elastic member 22. A concave side 222 of the elastic member 22 is distanced from
the inner wall of the accommodation 16 to preserve a gap 161 therebetween, as shown
in FIG. 7b, thereby allowing a greater range of deformation of the elastic member
22 so as to provide more buffer space. Further, the because the two spring pieces
24 are supported by the elastic member 22, a better buffer effect can be provided.
The pad member 26 is made of metal material and has a certain thickness, such that
the pad member 26, which can provide a better impact resistance, can protect the spring
pieces 24 from damage due to continuous impacts.
[0014] The internal shaft member 30 includes a circle-shaped inner disc body 31, two inner
protrusions 32 extending backwards from the inner disc body 31 into the receiving
spaces 17 respectively, a shaft notch 34 provided at a rear side of the inner disc
body 31 and engaged with the core shaft 14 of the transmission ring member 10, a shaft
rod 35 extending forwards from a lateral side (front side) of the inner disc body
31 opposite to the two inner protrusions 32, and an engagement portion 38 provided
at a terminal end 36 of the shaft rod 35. The two inner protrusions 32 are shaped
like arc strips and neighbored to the pad members 26 respectively, such that each
of the pad members 26 is located between the spring pieces 24 and the inner protrusion
32. In another embodiment, if the two spring pieces 24 are designed to have sufficient
thickness, the pad members 26 may be omitted. In this case, the two spring pieces
24 are arranged between elastic member 22 and the inner protrusion 32 in a way that
each of the elastic member 22 and the spring pieces 24 has a convex side protruding
towards the inner protrusion 32. The core shaft 14 extends into the shaft notch 34,
ensuring that the internal shaft member 30 and the transmission ring member 10 will
synchronously and coaxially rotate. Furthermore, the shaft rod 35 of the internal
shaft member 30 has two end sections and a middle section 37 connected between the
two end sections in a way that the diameters of the two end sections are greater than
a diameter of the middle section 37. With this design of the shaft rod 35, the middle
section 37 having a small diameter may be twisted and deformed upon receiving external
force so as to absorb a part of the torque and to maintain sufficient structural strength,
thereby prevent break of the shaft rod 35 upon receiving rotational force. The engagement
portion 38 is provided with two cut flat surfaces 39. However, as long as the engagement
portion 38 has a non-circular cross-sectional outer periphery, the rotational force
can be transmitted to the external shaft member 40, which will be detailedly illustrated
hereinafter.
[0015] The external shaft member 40 includes a circle-shaped outer disc body 41, two outer
protrusions 42 extending from the outer disc body 41 towards the main body 11 of the
transmission ring member 10 (i.e., extending backwards) and located outside an outer
periphery of the inner disc body31, a shaft tube 44 extending forwards from a lateral
side (front side) of the outer disc body 41 opposite to the two outer protrusions
42, a drive portion 46 provided at a terminal end 45 of the shaft tube 44, a shaft
hole 47 recessed from the outer disc body 41 into an inside of the shaft tube 44 and
inserted with the shaft rod 35 of the internal shaft member 30, and an engagement
notch 49 provided at an inner end 48 of the shaft hole 47, as shown in FIG. 5, and
engaged with the engagement portion 38 of the internal shaft member 30. The two outer
protrusions 42 are shaped like arc strips and arranged alternately with the two drive
blocks 18 outside the outer periphery of the inner disc body 31. The shaft tube 44
is sleeved onto the shaft rod 35 of the internal shaft member 30 via the shaft hole
47. The drive portion 46 is shaped like a square rod. However, the shape of the drive
portion 46 may vary. For example, the drive portion 46 may have a non-circular cross-sectional
outer periphery, or the drive portion 46 may be realized as a tubular portion having
a non-circular cross-sectional inner periphery as long as the drive portion 46 can
transmit the rotational force. In practice, a suitable tool head (not shown), such
as wrench socket, may be coupled to the drive portion 46 for driving a bolt or nut.
As shown in FIG. 5, the shape of the inner periphery of the engagement notch 49 is
complementarily fitted with that of the engagement portion 38, and thus has two cut
flat surfaces 491. As such, the outer shaft member 40 can be driven by the internal
shaft member 30 to rotate. In another embodiment, the engagement notch 49 may have
a non-circular cross-sectional inner periphery for receiving the rotational force
transmitted from the internal shaft member 30.
[0016] As shown in FIGS. 2 and 6, the inner disc body 31 is located between the outer disc
body 41 and the main body 11 of the transmission ring member 10. When a user would
like to loosen a nut and thus operates the power tool 2 to rotate the output portion
4 counterclockwise when it is viewed from the user's viewing angle, the transmission
ring member 10 is driven by the output portion 4 to rotate in a first direction D1
(i.e., the counterclockwise direction) as shown in FIG. 7a, such that the two drive
blocks 18 will impact and contact the two outer protrusions 42 respectively to transmit
a rotational force from the transmission ring member 10 to the external shaft member
40. Because the drive blocks 18 and the outer protrusions 42 are distanced from the
core shaft 14 at a farther distance, i.e., the arm of force is longer to result in
a greater moment of force, a greater torque can be produced. As shown in FIG. 7b,
at this state, a gap is left between the inner wall of the accommodation 16 and the
inner protrusion 32, such that the rotational force from the transmission ring member
10 will not be transmitted to the internal shaft member 30.
[0017] On the contrary, when the user would like to tighten the nut and thus operates the
power tool 2 to rotate the output portion 4 clockwise, the transmission ring member
10 is rotated in a second direction D2 (i.e., the clockwise direction) reverse to
the first direction D1 as shown in FIG. 8a. At this state, the two drive blocks 18
move away from the two outer protrusions 42, such that the rotational force from the
transmission ring member 10 will not be transmitted to the external shaft member 40
via the two outer protrusions 42. Instead, as shown in FIG. 8b, the two buffer units
20, more specifically the two pad members 26 of the buffer units 20, will impact and
contact the two inner protrusions 32 respectively to transmit a reverse rotational
force from the transmission ring member 10 to the internal shaft member 30, and then
to the external shaft member 40 through the engagement portion 38 and the engagement
notch 49. Because the inner protrusions 32 are distanced from the core shaft 14 at
a smaller distance, i.e., the arm of force is smaller to result in a smaller moment
of force, a smaller torque can be produced. Further, the engagement portion 38 and
the engagement notch 49 are also closer to the axis of the core shaft 14, the transmitted
torque can be further reduced. Moreover, the thin, elongated structure of the shaft
rod 35 of the internal shaft member 30 can absorb the torque due to twist and deformation
thereof. With these structural designs, the reverse torque that is finally outputted
will be greatly reduced into an extent about one quarter of the counterclockwise output
torque according to actual test. That is, when the counterclockwise output torque
is about 400 Nm, the clockwise output torque is about 100 Nm. In addition, the value
of the clockwise output torque can be set in accordance the customer's requirement
so as to achieve the objective of outputting constant torque.
[0018] With the above-disclosed structural features, the constant torque module 1 for a
power tool 2 provided by the present invention can output different magnitudes of
torque when the transmission ring member 10 is driven to rotate in clockwise direction
(the second direction D2) and counterclockwise direction (the first direction D1).
Because the external shaft member 40 is synchronously rotated with the output portion
4 of the power tool 2, the output rotational speed will not be reduced. As such, no
matter counterclockwise rotation or clockwise rotation, the rotational speed can reach
8000 rpm to 9000 rpm, thereby achieving high working efficiency. Further, processing
precisions of the components of the constant torque module 1 are not as high as that
of the conventional hydraulic mechanism, and the processing of the constant torque
module 1 is relatively easy, so that the manufacturing cost thereof can be greatly
reduced, resulting in great market potential of the constant torque module 1.
[0019] Based on the technical features of the present invention, various modifications to
the constant torque module may be made. For example, FIG. 9 shows a constant torque
module 1a in accordance with a second embodiment of the present invention, which has
a structure basically same as that of the constant torque module 1 of the first embodiment,
except that the coupling portion 12a of the transmission ring member 10a is designed
to have a hexagonal rod 121a for being associated with a different output portion
of a power tool. Further, FIG. 10 shows a constant torque module 1b in accordance
with a third embodiment of the present invention, which has a structure basically
same as that of the constant torque module 1 of the first embodiment, except that
the coupling portion 12b of the transmission ring member 10b is designed to have a
rectangular hole 13b, such that the constant torque module 1b can serve as an accessory
part that is capable of being coupled to the rectangular output shaft of commercially
available power tools. As such, the constant torque modules 1, 1a and 1b of the present
invention may be applied to various power tools. In fact, the coupling portion of
the transmission ring member may be realized as a shaft rod having a non-circular
cross-sectional outer periphery, or a coupling hole having a non-circular cross-sectional
inner periphery. The buffer unit may be realized by a structure, such as spring, that
can absorb acting force. Such variations are not to be regarded as a departure from
the scope of the invention, and all such modifications as would be obvious to one
skilled in the art are intended to be included within the scope of the following claims.
1. A constant torque module (1, 1a, 1b) for a power tool (2) having an output portion
(4), the constant torque module (1, 1a, 1b) comprising:
a transmission ring member (10, 10a, 10b) including a main body (11), a coupling portion
(12, 12a, 12b) extending from the main body (11) for being coupled with the output
portion (4), a core shaft (14) extending from a lateral side of the main body (11)
opposite to the coupling portion (12, 12a, 12b), two accommodations (16) provided
at the main body (11) and located at two lateral sides of the core shaft (14), and
two drive blocks (18) extending from the main body (11) in a way that each of the
two drive blocks (18) is farther from the core shaft (14) than each of the two accommodations
(16) is;
two buffer units (20), each of which is disposed in a part of one of the two accommodations
(16) such that each of the two accommodations (16) remains a receiving space (17);
an internal shaft member (30) including an inner disc body (31), two inner protrusions
(32) extending from the inner disc body (31) into the receiving spaces (17) respectively,
a shaft notch (34) provided at the inner disc body (31) and engaged with the core
shaft (14) of the transmission ring member (10, 10a, 10b), a shaft rod (35) extending
from a lateral side of the inner disc body (31) opposite to the two inner protrusions
(32), and an engagement portion (38) provided at a terminal end (36) of the shaft
rod (35); and
an external shaft member (40) including an outer disc body (41), two outer protrusions
(42) extending from the outer disc body (41) towards the main body (11) of the transmission
ring member (10, 10a, 10b) and located outside an outer periphery of the inner disc
body (31), a shaft tube (44) extending from a lateral side of the outer disc body
(41) opposite to the two outer protrusions (42), a drive portion (46) provided at
a terminal end (45) of the shaft tube (44), a shaft hole (47) recessed from the outer
disc body (41) into an inside of the shaft tube (44) and inserted with the shaft rod
(35) of the internal shaft member (30), and an engagement notch (49) provided at an
inner end (48) of the shaft hole (47) and engaged with the engagement portion (38)
of the internal shaft member (30);
wherein the inner disc body (31) is located between the outer disc body (41) and the
main body (11) of the transmission ring member (10, 10a, 10b);
wherein when the transmission ring member (10, 10a, 10b) is rotated in a first direction
(D1), the two drive blocks (18) are in contact with the two outer protrusions (42)
respectively to transmit a rotational force to the external shaft member (40);
wherein when the transmission ring member (10, 10a, 10b) is rotated in a second direction
(D2) reverse to the first direction (D1), the two buffer units (20) are in contact
with the two inner protrusions (32) respectively to transmit a reverse rotational
force to the internal shaft member (30) and then the external shaft member (40) through
the engagement portion (38) and the engagement notch (49).
2. The constant torque module (1, 1a, 1b) as claimed in claim 1, characterized in that each of the buffer units (20) comprises an elastic member (22) and at least one spring
piece (24) located between one of the two inner protrusions (32) and the elastic member
(22).
3. The constant torque module (1, 1a, 1b) as claimed in claim 2, characterized in that the elastic member (22) is made of nature or synthetic polymer.
4. The constant torque module (1, 1a, 1b) as claimed in claim 2, characterized in that each of the buffer units (20) further comprises a pad member (26) between the spring
piece (24) and the one of the two inner protrusions (32).
5. The constant torque module (1, 1a, 1b) as claimed in claim 2, characterized in that each of the elastic member (22) and the spring piece (24) has a convex side (221)
protruding towards the one of the two inner protrusions (32).
6. The constant torque module (1, 1a, 1b) as claimed in claim 1, characterized in that the coupling portion (12, 12a, 12b) of the transmission ring member (10, 10a, 10b)
is a shaft rod (121, 121a) having a non-circular cross-sectional outer periphery,
or a coupling hole (13b) having a non-circular cross-sectional inner periphery.
7. The constant torque module (1, 1a, 1b) as claimed in claim 1, characterized in that the shaft rod (35) of the internal shaft member (30) has two end sections and a middle
section (37) connected between the two end sections; diameters of the two end sections
are greater than a diameter of the middle section (37).
8. The constant torque module (1, 1a, 1b) as claimed in claim 1, characterized in that the engagement portion (38) of the internal shaft member (30) has a non-circular
cross-sectional outer periphery, and the engagement notch (49) of the external shaft
member (40) has a non-circular cross-sectional inner periphery.
9. The constant torque module (1, 1a, 1b) as claimed in claim 1, characterized in that the drive portion (46) of the external shaft member (40) has a non-circular cross-sectional
outer periphery, or a non-circular cross-sectional inner periphery.
1. Konstantes Drehmomentmodul (1, 1a, 1b) für ein Elektrowerkzeug (2) mit einem Abtriebsteil
(4), worin das konstante Drehmomentmodul (1, 1a, 1b) umfasst:
ein Übertragungsringelement (10, 10a, 10b) mit einem Hauptkörper (11), einem Kupplungsabschnitt
(12, 12a, 12b), der sich von dem Hauptkörper (11) aus erstreckt, um mit dem Abtriebsteil
(4) gekoppelt zu werden, einer Kernwelle (14), die sich von einer dem Kupplungsabschnitt
(12, 12a, 12b) abgewandten lateralen Seite des Hauptkörpers (11) aus erstreckt, zwei
Aufnahmen (16), die an dem Hauptkörper (11) vorgesehen sind und sich an zwei lateralen
Seiten der Kernwelle (14) befinden, und zwei Antriebsblöcke (18), die sich von dem
Hauptkörper (11) in einer Weise erstrecken, dass jeder der zwei Antriebsblöcke (18)
weiter von der Kernwelle (14) entfernt ist als jede der zwei Aufnahmen (16) ist;
zwei Puffereinheiten (20), von denen jede in einem Teil einer der beiden Aufnahmen
(16) angeordnet ist, so dass jede der beiden Aufnahmen (16) einen Aufnahmeraum (17)
behält;
ein inneres Wellenelement (30) mit einem inneren Scheibenkörper (31), zwei inneren
Vorsprüngen (32), die sich von dem inneren Scheibenkörper (31) jeweils in die Aufnahmeräume
(17) erstrecken, einer Wellenvertiefung (34), die an dem inneren Scheibenkörper (31)
vorgesehen ist und mit der Kernwelle (14) des Übertragungsringelements (10, 10a, 10b)
in Eingriff steht, einer Wellenstange (35), die sich von einer den beiden inneren
Vorsprüngen (32) abgewandten Seite des inneren Scheibenkörpers (31) erstreckt, und
einem Eingriffsabschnitt (38), der an einem Abschlussende (36) der Wellenstange (35)
vorgesehen ist; und
ein äußeres Wellenelement (40) mit einem äußeren Scheibenkörper (41), zwei äußeren
Vorsprüngen (42), die sich von dem äußeren Scheibenkörper (41) in Richtung des Hauptkörpers
(11) des Übertragungsringelements (10, 10a, 10b) erstrecken und außerhalb eines äußeren
Umfangs des inneren Scheibenkörpers (31) angeordnet sind, und einem Wellenrohr (44),
das sich von einer den beiden äußeren Vorsprüngen (42) abgewandten Seite des äußeren
Scheibenkörpers (41) erstreckt, einem Antriebsabschnitt (46), der an einem Abschlussende
(45) des Wellenrohrs (44) vorgesehen ist, einem Wellenloch (47), das von dem äußeren
Scheibenkörper (41) in eine Innenseite des Wellenrohrs (44) vertieft ist und in das
die Wellenstange (35) des inneren Wellenelements (30) eingesetzt ist, und einer Eingriffsvertiefung
(49), die an einem inneren Ende (48) des Wellenlochs (47) vorgesehen ist und mit dem
Eingriffsabschnitt (38) des inneren Wellenelements (30) in Eingriff steht;
worin der innere Scheibenkörper (31) zwischen dem äußeren Scheibenkörper (41) und
dem Hauptkörper (11) des Übertragungsringelements (10, 10a, 10b) angeordnet ist;
wobei, wenn das Übertragungsringelement (10, 10a, 10b) in einer ersten Richtung (D1)
gedreht wird, die beiden Antriebsblöcke (18) mit den beiden äußeren Vorsprüngen (42)
entsprechend in Kontakt sind, um eine Drehkraft auf das äußere Wellenelement (40)
zu übertragen;
wobei, wenn das Übertragungsringelement (10, 10a, 10b) in einer zweiten Richtung (D2)
umgekehrt zur ersten Richtung (D1) gedreht wird, die beiden Puffereinheiten (20) mit
den beiden inneren Vorsprüngen (32) entsprechend in Kontakt sind, um eine umgekehrte
Drehkraft auf das innere Wellenelement (30) und dann durch den Eingriffsabschnitt
(38) und die Eingriffsvertiefung (49) auf das äußere Wellenelement (40) zu übertragen.
2. Konstantes Drehmomentmodul (1, 1a, 1b) nach Anspruch 1, dadurch gekennzeichnet, dass jede der Puffereinheiten (20) ein elastisches Element (22) und mindestens ein Federteil
(24) umfasst, das zwischen einem der beiden inneren Vorsprünge (32) und dem elastischen
Element (22) angeordnet ist.
3. Konstantes Drehmomentmodul (1, 1a, 1b) nach Anspruch 2, dadurch gekennzeichnet, dass das elastische Element (22) aus einem natürlichen oder synthetischen Polymer besteht.
4. Konstantes Drehmomentmodul (1, 1a, 1b) nach Anspruch 2, dadurch gekennzeichnet, dass jede der Puffereinheiten (20) ferner ein Polsterelement (26) zwischen dem Federteil
(24) und dem einen der beiden inneren Vorsprünge (32) umfasst.
5. Konstantes Drehmomentmodul (1, 1a, 1b) nach Anspruch 2, dadurch gekennzeichnet, dass sowohl das elastische Element (22) als auch das Federteil (24) eine konvexe Seite
(221) aufweisen, die in Richtung des einen der beiden inneren Vorsprünge (32) vorsteht.
6. Konstantes Drehmomentmodul (1, 1a, 1b) nach Anspruch 1, dadurch gekennzeichnet, dass der Kupplungsabschnitt (12, 12a, 12b) des Übertragungsringelements (10, 10a, 10b)
eine Wellenstange (121, 121a) mit einem nicht kreisförmigen Außenquerschnitt oder
ein Kupplungsloch (13b) mit einem nicht kreisförmigen Innenquerschnitt ist.
7. Konstantes Drehmomentmodul (1, 1a, 1b) nach Anspruch 1, dadurch gekennzeichnet, dass die Wellenstange (35) des inneren Wellenelements (30) zwei Endabschnitte und einen
zwischen den beiden Endabschnitten verbundenen Mittelabschnitt (37) aufweist, worin
die Durchmesser der beiden Endabschnitte größer sind als ein Durchmesser des Mittelabschnitts
(37).
8. Konstantes Drehmomentmodul (1, 1a, 1b) nach Anspruch 1, dadurch gekennzeichnet, dass der Eingriffsabschnitt (38) des inneren Wellenelements (30) einen nicht kreisförmigen
Außenumfang aufweist, und die Eingriffsvertiefung (49) des äußeren Wellenelements
(40) einen nicht kreisförmigen Innenumfang aufweist.
9. Konstantes Drehmomentmodul (1, 1a, 1b) nach Anspruch 1, dadurch gekennzeichnet, dass der Antriebsabschnitt (46) des äußeren Wellenelements (40) einen nicht kreisförmigen
Außenumfang oder einen nicht kreisförmigen Innenumfang aufweist.
1. Module à couple constant (1, 1a, 1b) pour un outil électrique (2) ayant une partie
de sortie (4), le module à couple constant (1, 1a, 1b) comprenant:
un élément de bague de transmission (10, 10a, 10b) comprenant un corps principal (11),
une partie de couplage (12, 12a, 12b) s'étendant à partir du corps principal (11)
pour être accouplée à la partie de sortie (4), un arbre central (14) s'étendant à
partir d'un côté latéral du corps principal (11) opposé à la partie de couplage (12,
12a, 12b), deux logements (16) prévus sur le corps principal (11) et situés sur deux
côtés latéraux de l'arbre central (14), et deux blocs d'entraînement (18) s'étendant
à partir du corps principal (11) de manière à ce que chacun des deux blocs d'entraînement
(18) soit plus éloigné de l'arbre central (14) que ne l'est chacun des deux logements
(16);
deux unités tampons (20), dont chacune est disposée dans une partie de l'un des deux
logements (16) de telle sorte que chacun des deux logements (16) reste un espace de
réception (17);
un élément d'arbre intérieur (30) comprenant un corps de disque interne (31), deux
protubérances internes (32) s'étendant à partir du corps de disque interne (31) dans
les espaces de réception (17) respectivement, une encoche d'arbre (34) prévue sur
le corps de disque interne (31) et engagée avec l'arbre central (14) de l'élément
de bague de transmission (10, 10a, 10b), une tige d'arbre (35) s'étendant d'un côté
latéral du corps de disque interne (31) opposé aux deux protubérances internes (32),
et une partie d'engagement (38) fournie à une extrémité terminale (36) de la tige
d'arbre (35); et
un élément d'arbre extérieur (40) comprenant un corps de disque externe (41), deux
protubérances externes (42) s'étendant du corps de disque externe (41) vers le corps
principal (11) de l'élément de bague de transmission (10, 10a, 10b) et situées à l'extérieur
d'une périphérie externe du corps de disque interne (31), un tube d'arbre (44) s'étendant
à partir d'un côté latéral du corps de disque externe (41) à l'opposé des deux protubérances
externes (42), une partie d'entraînement (46) située à une extrémité terminale (45)
du tube d'arbre (44), un trou d'arbre (47) évidé à partir du corps de disque externes
(41) à l'intérieur du tube d'arbre (44) et inséré dans la tige d'arbre (35) de l'élément
d'arbre intérieur (30), et une encoche d'engagement (49) située à une extrémité intérieure
(48) du trou d'arbre (47) et engagée dans la partie d'engagement (38) de l'élément
d'arbre intérieur (30);
dans lequel le corps de disque interne (31) est situé entre le corps de disque externe
(41) et le corps principal (11) de l'élément de bague de transmission (10, 10a, 10b);
dans lequel lorsque l'élément de bague de transmission (10, 10a, 10b) est tourné dans
un premier sens (D1), les deux blocs d'entraînement (18) sont en contact avec les
deux protubérances externes (42) respectivement pour transmettre une force de rotation
à l'élément d'arbre extérieur (40);
dans lequel, lorsque l'élément de bague de transmission (10, 10a, 10b) est tourné
dans un second sens (D2) inverse du premier sens (D1), les deux unités tampons (20)
sont en contact avec les deux protubérances internes (32) respectivement pour transmettre
une force de rotation inverse à l'élément d'arbre intérieur (30) puis à l'élément
d'arbre extérieur (40) à travers la partie d'engagement (38) et l'encoche d'engagement
(49).
2. Module à couple constant (1, 1a, 1b) selon la revendication 1, caractérisé en ce que chacune des unités tampons (20) comprend un élément élastique (22) et au moins une
pièce élastique (24) située entre l'une des deux protubérances internes (32) et l'élément
élastique (22).
3. Module à couple constant (1, 1a, 1b) selon la revendication 2, caractérisé en ce que l'élément élastique (22) est en polymère naturel ou synthétique.
4. Module à couple constant (1, 1a, 1b) selon la revendication 2, caractérisé en ce que chacune des unités tampons (20) comprend en outre un élément tampon (26) entre la
pièce élastique (24) et l'une des deux protubérances internes (32).
5. Module à couple constant (1, 1a, 1b) selon la revendication 2, caractérisé en ce que l'élément élastique (22) et la pièce élastique (24) ont chacun un côté convexe (221)
faisant saillie vers l'une des deux protubérances internes (32).
6. Module à couple constant (1, 1a, 1b) selon la revendication 1, caractérisé en ce que la partie de couplage (12, 12a, 12b) de l'élément de bague de transmission (10, 10a,
10b) est une tige d'arbre (121, 121a) ayant une périphérie externe de section transversale
non circulaire, ou un trou de couplage (13b) ayant une périphérie interne de section
transversale non circulaire.
7. Module à couple constant (1, 1a, 1b) selon la revendication 1, caractérisé en ce que la tige de l'arbre (35) de l'élément d'arbre intérieur (30) a deux sections d'extrémité
et une section centrale (37) reliée entre les deux sections d'extrémité; les diamètres
des deux sections d'extrémité sont plus grands qu'un diamètre de la section centrale
(37).
8. Module à couple constant (1, 1a, 1b) selon la revendication 1, caractérisé en ce que la partie d'engagement (38) de l'élément d'arbre intérieur (30) a une périphérie
extérieure de section transversale non circulaire, et en ce que l'encoche d'engagement (49) de l'élément d'arbre extérieur (40) a une périphérie
intérieure de section transversale non circulaire.
9. Module à couple constant (1, 1a, 1b) selon la revendication 1, caractérisé en ce que la partie d'entraînement (46) de l'élément d'arbre extérieur (40) a une périphérie
extérieure de section transversale non circulaire, ou une périphérie intérieure de
section transversale non circulaire.