

(11) **EP 4 481 720 A1**

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication: **25.12.2024 Bulletin 2024/52**

(21) Application number: 23799646.7

(22) Date of filing: 02.05.2023

(51) International Patent Classification (IPC): **G09G** 3/19^(2006.01) **G02F** 1/163^(2006.01)

(52) Cooperative Patent Classification (CPC): **G02F 1/163; G09G 3/19**

(86) International application number: PCT/KR2023/005958

(87) International publication number: WO 2023/214765 (09.11.2023 Gazette 2023/45)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA

Designated Validation States:

KH MA MD TN

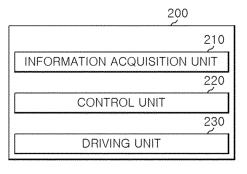
(30) Priority: 02.05.2022 KR 20220054106

(71) Applicant: SKC Co., Ltd.
Suwon-si, Gyeonggi-do 16338 (KR)

(72) Inventors:

 OH, Seung Bae Suwon-si Gyeonggi-do 16338 (KR)

 LA, Yong Sang Suwon-si Gyeonggi-do 16338 (KR)


(74) Representative: BCKIP Part mbB Siegfriedstraße 8 80803 München (DE)

(54) APPARATUS AND METHOD FOR DRIVING ELECTROCHROMIC DEVICE

(57) There is provided an apparatus for driving an electrochromic device comprises: a memory; and a processor is configured to obtain operating environment information including at least one of solar altitude, variable azimuth angle, and temperature according to an operating environment of an electrochromic device operating so that transmittance for a specific wavelength is adjusted through color change when electricity is applied, to generate a control signal corresponding to a capaci-

tance to be applied to the electrochromic device on a basis of the operating environment information, to apply the capacitance corresponding to the control signal to the electrochromic device to drive the electrochromic device so that the transmittance is adjusted, and to generate the control signal by reflecting climate characteristics obtained by analyzing the operating environment information.

FIG.2

EP 4 481 720 A1

Description

TECHNICAL FIELD

[0001] Embodiments relate to an apparatus and method for driving an electrochromic device that exhibits a light transmission variable function based on an electrochromic principle.

[0002] This work was supported by Korea Institute of Energy Technology Evaluation and Planning grant funded by the Korea government (Ministry of Trade, Industry and Energy) (Project unique No.: 1415181538; Project No.: 20192010107400; R&D project: Development of energy demand management core technology; Research Project Title: Development of energy self-sufficient smart window technology; and Project period: 2022.01.01. ~ 2022.09.30.).

BACKGROUND

10

20

50

[0003] With the recent increase in concerns for environmental protection, there has been a corresponding increase in interest in technologies that improve energy efficiency. For example, research and development on technologies such as a smart window and energy harvesting are being actively carried out.

[0004] The smart window refers to an active control technology that enhances energy efficiency by adjusting the transmittance of light from the outside, and can provide a comfortable environment to users. It is a foundation technology that can be commonly applied to various industries. The smart windows include an electrochromic device that undergoes an electrochemical oxidation or a reduction reaction with an applied power source, leading to changes in the intrinsic color of an electrochromic active material or an optical property, such as light transmittance.

[0005] When a film including this electrochromic device is applied to a window of an architectural structure, the amount of energy introduced into indoor areas may be adjusted by controlling the transmittance of a specific wavelength of solar rays through color change when electricity is applied.

[0006] The electrochromic device or film including the same according to the related art exhibited a nearly uniform characteristic of the chromic rate of the electrochromic device because a predetermined amount of electricity is supplied to the electrochromic device during the color change operation. There has been a problem where the uniform chromic rate of the electrochromic device has not satisfied diverse needs of consumer under various operating environments.

30 SUMMARY

[0007] According to an embodiment, there is provided an apparatus and method for driving an electrochromic device that is capable of allowing transmittance of the electrochromic device to be adjusted by varying capacitance applied to the electrochromic device according to solar altitude, azimuth angle, temperature, or the like that depends on an operating environment of the electrochromic device.

[0008] However, the problem to be solved by the present disclosure is not limited to that mentioned above, and other problems to be solved that are not mentioned may be clearly understood by those of ordinary skill in the art to which the present disclosure belongs from the following description.

[0009] There is provided an apparatus for driving an electrochromic device, according to a first aspect, the apparatus including information acquisition unit configured to obtain operating environment information including at least one of solar altitude, variable azimuth angle, and temperature according to an operating environment of the electrochromic device that operates so that transmittance for a specific wavelength is adjusted through color change when electricity is applied, a control unit configured to generate a control signal corresponding to a capacitance to be applied to the electrochromic device on a basis of the operating environment information obtained by the information acquisition unit, and a driving unit configured to apply the capacitance corresponding to the control signal to the electrochromic device to drive the electrochromic device so that the transmittance is adjusted, and the control unit further configured to generate the control signal by reflecting climate characteristics obtained by analyzing the operating environment information.

[0010] There is provided a method of driving an electrochromic device, according to a second aspect, performed by an apparatus for driving an electrochromic device that operates so that transmittance for a specific wavelength is adjusted through color change when electricity is applied, the method including obtaining operating environment information including at least one of solar altitude, variable azimuth angle, and temperature according to an operating environment of the electrochromic device, determining a capacitance to be applied to the electrochromic device on the basis of the obtained operating environment information, and applying the determined capacitance to the electrochromic device to drive the electrochromic device so that the transmittance is adjusted, and climate characteristics obtained by analyzing the operating environment information are reflected when the capacitance is determined.

[0011] There is provided a non-transitory computer-readable storage medium storing a computer program according to a third aspect, in which the computer program includes instructions for allowing a processor to perform the method of driving an electrochromic device.

[0012] According to an embodiment, there is an effect of creating a pleasant indoor environment in accordance with a changing operating environment by controlling the visible light transmittance and chromic rate by changing capacitance applied to an electrochromic device according to solar altitude, azimuth angle, temperature, or the like, which depends on an operating environment of the electrochromic device, so that the transmittance of the electrochromic device is adjusted.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013]

- FIG. 1 is a block diagram of an apparatus for driving an electrochromic device, according to an embodiment of the present disclosure.
 - FIG. 2 is a block diagram conceptually illustrating a function of an electrochromic device driving program according to an embodiment of the present disclosure.
 - FIG. 3 is a configuration diagram of an information acquisition unit illustrated in FIG. 2, according to an embodiment of the present disclosure.
 - FIG. 4 is a structural view of an electrochromic device according to an embodiment of the present disclosure.
 - FIG. 5 is a structural view of an electrochromic device according to another embodiment of the present disclosure.
 - FIG. 6 is a flowchart for describing a method of driving an electrochromic device according to an embodiment of the present disclosure.

DETAILED DESCRIPTION

[0014] The advantages and features of the embodiments and the methods of accomplishing the embodiments will be clearly understood from the following description taken in conjunction with the accompanying drawings. However, embodiments are not limited to those embodiments described, as embodiments may be implemented in various forms. It should be noted that the present embodiments are provided to make a full disclosure and also to allow those skilled in the art to know the full range of the embodiments. Therefore, the embodiments are to be defined only by the scope of the appended claims.

[0015] Terms used in the present specification will be briefly described, and the present disclosure will be described in detail.

[0016] In terms used in the present disclosure, general terms currently as widely used as possible while considering functions in the present disclosure are used. However, the terms may vary according to the intention or precedent of a technician working in the field, the emergence of new technologies, and the like. In addition, in certain cases, there are terms arbitrarily selected by the applicant, and in this case, the meaning of the terms will be described in detail in the description of the corresponding invention. Therefore, the terms used in the present disclosure should be defined based on the meaning of the terms and the overall contents of the present disclosure, not just the name of the terms.

[0017] Throughout the description of the present specification, in the case in which each film, window, panel, structure, layer, or the like is described as being formed "on" or "under" another film, window, panel, structure, layer, or the like, it means not only that one constituent element is "directly" formed on or under another constituent element, but also that one constituent element is "indirectly" formed on or under another constituent element with other element(s) interposed therebetween.

[0018] In addition, the reference for on or under with respect to each constituent element may be described with reference to the drawings. For the sake of description, the sizes of individual constituent elements in the appended drawings may be exaggeratingly depicted and do not indicate the actual sizes for the applications. In addition, like reference numerals indicate like constituent elements throughout the specification.

[0019] When it is described that a part in the overall specification "includes" a certain component, this means that other components may be further included instead of excluding other components unless specifically stated to the contrary. [0020] Throughout the specification, unless otherwise specified, singular expressions are to be interpreted as including both the singular and plural forms as understood from the context.

[0021] In addition, all numbers and expression related to the quantities of components, reaction conditions, and the like used herein are to be understood in all cases as being modified by the term "about," unless otherwise indicated.

[0022] The terms first, second, and the like are used herein to describe various constituent elements, and the constituent elements should not be limited by the terms. The terms are used only for the purpose of distinguishing one constituent element from another.

[0023] In addition, a term such as a "unit" or a "portion" used in the specification means a software component or a hardware component such as FPGA or ASIC, and the "unit" or the "portion" performs a certain role. However, the "unit" or the "portion" is not limited to software or hardware. The "portion" or the "unit" may be configured to be in an addressable storage medium, or may be configured to reproduce one or more processors. Thus, as an example, the "unit" or the

3

5

10

15

20

30

45

40

"portion" includes components (such as software components, object-oriented software components, class components, and task components), processes, functions, properties, procedures, subroutines, segments of program code, drivers, firmware, microcode, circuits, data, database, data structures, tables, arrays, and variables. The functions provided in the components and "unit" may be combined into a smaller number of components and "units" or may be further divided into additional components and "units". Hereinafter, the embodiment of the present disclosure will be described in detail with reference to the accompanying drawings so that those of ordinary skill in the art may easily implement the present disclosure. In the drawings, portions not related to the description are omitted in order to clearly describe the present disclosure.

[0024] FIG. 1 is a block diagram illustrating an apparatus for driving an electrochromic device, according to an embodiment of the present disclosure.

[0025] With reference to FIG. 1, an apparatus 100 of driving an electrochromic device may include a processor 110, a transceiver 120, a memory 130, a measurement device 140, and a transmittance adjusting device 150.

[0026] The processor 110 may control an overall operation of the apparatus 100 for driving an electrochromic device. **[0027]** The processor 110 may receive, using the transceiver 120, at least one of operating environment information including at least one of solar altitude, variable azimuth angle, and temperature, and installation environment information including at least one of fixed azimuth angle and latitude of an electrochromic device, according to an operating environment of the electrochromic device that operates so that transmittance for a specific wavelength is adjusted through color change when electricity is applied.

[0028] In the present disclosure, it is described that at least one of operating environment information or installation environment information is received through the transceiver 120, but the present disclosure is not limited thereto. That is, according to an embodiment, the apparatus 100 for driving an electrochromic device may include an input/output device (not illustrated), the apparatus 100 for driving an electrochromic device may receive at least one of operating environment information or installation environment information using the input/output device (not illustrated), and at least one of operating environment information or installation environment information may be generated within the apparatus 100 for driving an electrochromic device.

[0029] The processor 110 may obtain operating environment information including at least one of solar altitude, variable azimuth angle, and temperature according to an operating environment of an electrochromic device that operates so that transmittance for a specific wavelength is adjusted through color change when electricity is applied, generate a control signal corresponding to capacitance to be applied to the electrochromic device on the basis of the operating environment information, and apply the capacitance corresponding to the control signal to the electrochromic device to drive the electrochromic device so that the transmittance is adjusted, and the processor may reflect climate characteristics obtained by analyzing the operating environment information to generate the control signal.

[0030] The transceiver 120 may include a transmitter 121 and a receiver 122.

10

20

30

50

[0031] The memory 130 may store an electrochromic device driving program 200 and information required for execution of the electrochromic device driving program 200.

[0032] The measurement device 140 may include an altitude finder 141, an azimuth finder 142, and a thermometer 143, in which the altitude finder 141 may measure the altitude of the sun, the azimuth finder 142 may measure the variable azimuth angle or fixed azimuth angle of the electrochromic device, and the thermometer 143 may measure the temperature of the electrochromic device.

[0033] The transmittance adjusting device 150 may apply capacitance corresponding to the generated control signal to the electrochromic device so that transmittance of a window is adjusted.

[0034] In the present specification, the electrochromic device driving program 200 may mean software that includes instructions for receiving operating environment information including at least one of solar altitude, variable azimuth angle, and temperature according to an operating environment of an electrochromic device that operates so that transmittance for a specific wavelength is adjusted through color change when electricity is applied, generating a control signal corresponding to capacitance to be applied to the electrochromic device, and applying the capacitance corresponding to the control signal to the electrochromic device to drive the electrochromic device so that transmittance is adjusted.

[0035] The processor 110 may load the electrochromic device driving program 200 and information required for execution of the electrochromic device driving program 200 from the memory 130 in order to execute the electrochromic device driving program 200.

[0036] The processor 110 may execute the electrochromic device driving program 200 to apply capacitance corresponding to the control signal to the electrochromic device, thereby allowing the transmittance for a specific wavelength of the electrochromic device to be adjusted.

[0037] The function and/or operation of the electrochromic device driving program 200 will be described in more detail with reference to FIG. 2.

[0038] FIG. 2 is a block diagram conceptually illustrating a function of an electrochromic device driving program according to an embodiment of the present disclosure.

[0039] With reference to FIG. 2, the electrochromic device driving program 200 may include an information acquisition

unit 210, a control unit 220, and a driving unit 230.

10

20

30

45

50

[0040] The information acquisition unit 210, the control unit 220, and the driving unit 230 illustrated in FIG. 2 are conceptually divided for easily describing the function of the electrochromic device driving program 200, but the present disclosure is not limited thereto. According to embodiments, the functions of the information acquisition unit 210, the control unit 220, and the driving unit 230 may be mergeable/separable and may be implemented as a series of instructions included in one program. The functions of the information acquisition unit 210, the control unit 220, and the driving unit 230 included in the electrochromic device driving program 200 will be described below.

[0041] FIG. 3 is a configuration diagram of the apparatus for driving an electrochromic device illustrated in FIG. 1, according to an embodiment of the present disclosure.

[0042] According to an embodiment, as illustrated in the drawing, the apparatus 100 of driving an electrochromic device may include the measurement device 140, and may include, for example, the altitude finder 141, the azimuth finder 142, or the thermometer 143. When a film including an electrochromic device and the like is applied to a window, the altitude finder 141, the azimuth finder 142, and the thermometer 143 may be installed on an outer side of the window. Further, the transmitter 121 may be installed on an outer side of the window, and the receiver 122 may be installed on an inner side of the window.

[0043] The information acquisition unit 210 is configured to obtain operating environment information including at least one of solar altitude, variable azimuth angle, and temperature according to an operating environment of the electrochromic device that operates so that transmittance for a specific wavelength is adjusted through color change when electricity is applied.

[0044] For example, the apparatus 100 of driving an electrochromic device may include the altitude finder 141, the information acquisition unit 210 may be provided with solar altitude measured through the altitude finder 141 using the transmitter 121 and the receiver 122, and obtain and provide the solar altitude as operating environment information to the control unit 220.

[0045] A film including an electrochromic device and the like may be applied to a window, and when the window including the electrochromic device is a fixture of a fixed-type architectural structure or the like, the electrochromic device may also be said to have fixed azimuth angle. However, when the window including the electrochromic device is a fixture of a movable-type architectural structure or the like, the electrochromic device may also be said to have variable azimuth angle. In addition, when the electrochromic device has variable azimuth angle, the information acquisition unit 210 may be provided with the variable azimuth angle measured through the azimuth finder 142 using the transmitter 121 and the receiver 122, and obtain and provide the variable azimuth angle as operating environment information to the control unit 220. In addition, when the electrochromic device has fixed azimuth angle, the information acquisition unit 210 may be provided with the fixed azimuth angle measured through the azimuth finder 142 using the transmitter 121 and the receiver 122, and obtain and provide the fixed azimuth angle as installation environment information to the control unit 220, and the fixed azimuth angle of the azimuth finder 142 may be set in the control unit 220 independent of the measurement of the azimuth finder 142. In addition, the information acquisition unit 210 may be provided with temperature measured through the thermometer 143 using the transmitter 121 and the receiver 122, and obtain and provide the temperature as operating environment information to the control unit 220.

[0046] The control unit 220 is configured to generate a control signal corresponding to capacitance to be applied to the electrochromic device on the basis of the operating environment information obtained by the information acquisition unit 210. Here, the control unit 220 reflects climate characteristics obtained by analyzing the operating environment information to generate a control signal. For example, the control unit 220 may generate a control signal so that visible light transmittance of the electrochromic device reaches a preset transmittance or less within a predetermined period of time according to an altitude comparison result of comparing the solar altitude provided by the information acquisition unit 210 to a preset threshold altitude. Here, the control unit 220 may generate a control signal further on the basis of installation environment information including at least one of fixed azimuth angle and latitude of the electrochromic device. Alternatively, the control unit 220 may generate a control signal according to an azimuth angle comparison result of comparing variable azimuth angle or fixed azimuth angle to a preset threshold azimuth angle and an altitude comparison result. For example, the control unit 220 may generate a control signal according to a difference between the latitude of the electrochromic device and the solar altitude. Alternatively, the control unit 220 may generate a control signal according to a difference between the latitude of the electrochromic device and the solar altitude and temperature. Alternatively, the control unit 220 may generate a control signal according to a latitude and altitude comparison result of the electrochromic device and temperature. Alternatively, the control unit 220 may generate a control signal according to an azimuth angle comparison result of comparing variable azimuth angle or fixed azimuth angle to a preset threshold azimuth angle, and according to a position of the electrochromic device, temperature, and date and time.

[0047] The driving unit 230 is configured to apply capacitance corresponding to a control signal of the control unit 220 to the electrochromic device to drive the electrochromic device so that transmittance for a specific wavelength is adjusted. [0048] FIG. 4 is a structural view of an electrochromic device according to an embodiment of the present disclosure, and FIG. 5 is a structural view of an electrochromic device according to another embodiment of the present disclosure.

[0049] As illustrated in FIGS. 4 and 5, an electrochromic device 300 according to an embodiment may include a first base layer 310, a first barrier layer 320 on the first base layer 310, a light transmissive variable structure 330 on the first barrier layer 320, a second barrier layer 340 on the light transmissive variable structure 330, and a second base layer 350 on the second barrier layer 340. In addition, the electrochromic device 300 may further include a release film layer 360 on a surface opposite to a surface of the first base layer 310 on which the first barrier layer 320 is stacked. In addition, the electrochromic device 300 may further include a hard coating layer 370 on a surface opposite to a surface of the second base layer 350 on which the second barrier layer 340 is stacked.

[0050] The first base layer 310 and the second base layer 350 correspond to layers for maintaining transparency and durability, and may include a polymer resin. For example, the first base layer 310 and the second base layer 350 may each include at least one selected from the group consisting of a polyester-based resin, an acrylic-based resin, a polyolefin-based resin, and combinations thereof. For example, the first base layer 310 and the second base layer 350 may each include, but are not limited to, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), or polycarbonate (PC). As another example, the first base layer 310 and the second base layer 350 may each include polyethylene terephthalate (PET). With the first base layer 310 and the second base layer 350 including the polymer resin described above, a flexible electrochromic device having both durability and flexibility may be implemented.

10

20

30

45

50

[0051] The first base layer 310 and the second base layer 350 may each have a light transmittance of 80 % or more for light with a wavelength of 550 nm. For example, the first base layer 310 and the second base layer 350 may have a light transmittance of 85 % or more or 90 % or more for light with a wavelength of 550 nm, respectively.

[0052] The first base layer 310 and the second base layer 350 may each have a haze of 2.0 % or less, 1.8 % or less, or 1.5 % or less.

[0053] The first base layer 310 and the second base layer 350 may each exhibit transparency by being satisfied with light transmittance and haze in the ranges described above.

[0054] The first barrier layer 320 and the second barrier layer 340 serve to prevent impurities, including moisture or gases, from infiltrating the light transmissive variable structure 330 from the outside.

[0055] The first barrier layer 320 may include two or more layers. For example, the first barrier layer 320 may include two layers, or may include three layers.

[0056] The second barrier layer 340 may include two or more layers. For example, the second barrier layer 340 may include two layers, or may include three layers.

[0057] The first barrier layer 320 may include at least one selected from the group consisting of metal oxides, metal nitrides, metal oxynitrides, metalloid oxides, metalloid nitrides, metalloid oxynitrides, and combinations thereof. For example, the first barrier layer 320 may include at least one selected from the group consisting of metal nitrides, metalloid oxynitrides, metalloid oxynitrides, and combinations thereof. For example, the first barrier layer 320 may include a metal nitride or a metalloid nitride.

[0058] The second barrier layer 340 may include at least one selected from the group consisting of metal oxides, metal nitrides, metal oxynitrides, metalloid oxides, metalloid nitrides, metalloid oxynitrides, and combinations thereof. For example, the second barrier layer 340 may include at least one selected from the group consisting of metal nitrides, metalloid oxynitrides, metalloid nitrides, metalloid oxynitrides, and combinations thereof. For example, the second barrier layer 340 may include a metal nitride or a metalloid nitride.

[0059] The first barrier layer 320 and the second barrier layer 340 may be deposited on the first base layer 310 and the second base layer 350 by a vacuum deposition method, respectively. For example, the first barrier layer 320 and the second barrier layer 340 may be deposited on the first base layer 310 and the second base layer 350 by a sputtering deposition method, respectively. In this case, the deposition raw material may be one or more of a metal or a metalloid, and is not particularly limited in type, but may include, for example, at least one selected from magnesium (Mg), silicon (Si), indium (In), titanium (Ti), bismuth (Bi), germanium (Ge), and aluminum (Al). The deposition reaction gas may include oxygen (O₂) gas or nitrogen (N₂) gas. When oxygen gas is used as the reaction gas, a barrier layer including a metal oxide or a metalloid oxide may be formed, and when nitrogen gas is used as the reaction gas, a barrier layer including a metal nitride or a metalloid nitride may be formed. When oxygen gas and nitrogen gas are appropriately mixed and used as the reaction gas, a barrier layer including a metal oxynitride or a metalloid oxynitride may be formed.

[0060] The light transmissive variable structure 330 may include a first electrode layer 331, a first chromic layer 333 on the first electrode layer 331, an electrolyte layer 335 on the first chromic layer 333, a second chromic layer 337 on the electrolyte layer 335, and a second electrode layer 339 on the second chromic layer 337.

[0061] The light transmissive variable structure 330 may be a structure in which the first electrode layer 331, the first chromic layer 333, the electrolyte layer 335, the second chromic layer 337, and the second electrode layer 339 are sequentially stacked. For example, the light transmissive variable structure 330 may be a stacked structure whose light transmittance reversibly changes when a predetermined voltage is applied.

[0062] When a voltage is applied to the first electrode layer 331 and the second electrode layer 339, the overall light transmittance increases and then decreases due to specific ions or electrons that move through the electrolyte layer 335 from the second chromic layer 337 to the first chromic layer 333. When the light transmittance of the second chromic layer

337 decreases, the light transmittance of the first chromic layer 331 also decreases, and when the light transmittance of the second chromic layer 337 increases, the light transmittance of the first chromic layer 331 also increases.

[0063] The first electrode layer 331 and the second electrode layer 339 may each include a transparent electrode or a reflective electrode. For example, one of the first electrode layer 331 or the second electrode layer 339 may be a transparent electrode and the other may be a reflective electrode. Alternatively, both the first electrode layer 331 and the second electrode layer 339 may be transparent electrodes.

[0064] The first electrode layer 331 may be deposited and formed on the first barrier layer 320 by a sputtering method. In addition, the second electrode layer 339 may be deposited and formed on the second barrier layer 340 by a sputtering method.

[0065] The first chromic layer 333 is a layer whose light transmittance changes when a voltage is applied between the first electrode layer 331 and the second electrode layer 339, and is a layer that imparts variability in light transmittance to the electrochromic device 300.

[0066] The first chromic layer 333 includes at least one layer, and two or more layers of different materials may be applied, as necessary.

[0067] The first chromic layer 333 may include at least one selected from the group consisting of titanium oxide (TiO), vanadium oxide (V_2O_5), niobium oxide (Nb_2O_5), chromium oxide (Cr_2O_3), manganese oxide (Nb_2O_5), iron oxide (Nb_2O_5), cobalt oxide (Nb_2O_5), nickel oxide (Nb_2O_5), rhodium oxide (Nb_2O_5), tantalum oxide (Nb_2O_5), iridium oxide (Nb_2O_5), tungsten oxide (Nb_2O_5), viologen, and combinations thereof.

[0068] The first chromic layer 333 may be formed by depositing a raw material on one surface of the first electrode layer 331 by a sputtering method, or by applying a raw material by a wet coating method, followed by drying. For example, the first chromic layer 333 may be formed by applying a raw material to one surface of the first electrode layer 331 by a wet coating method, followed by drying.

[0069] The first electrode layer 331 and the first chromic layer 333 have an initial transmittance of 90 % or more. As such, an initial transmittance of 90 % or more exhibits that each layer has been applied very uniformly and is very transparent. [0070] The electrolyte layer 330 is a layer that serves as an ion transport path between the first chromic layer 333 and the second chromic layer 337, and the type of electrolyte used in the electrolyte layer is not particularly limited. For example, the electrolyte layer 330 may include hydrogen ions or Group 1 element ions. For example, the electrolyte layer 330 may include a lithium salt compound. The lithium salt compound may be, but is not limited to, LiClO₄, LiBF₄, LiAsF₆, LiPF₆, LiTFSi, LiFSi, and the like. In addition, the electrolyte layer 330 may include a polymer resin. For example, the electrolyte layer 330 may include an acrylic-based resin, an epoxy-based resin, a silicone-based resin, a polyimide-based resin, or a polyurethane-based resin, but is not limited thereto. For example, the acrylic-based resin may be a thermosetting acrylic-based resin, a photocurable acrylic-based resin, or the like, and the polyurethane-based resin may be a thermosetting polyurethane-based resin, a photocurable polyurethane-based resin, an aqueous polyurethane-based resin, or the like. [0071] The electrolyte layer 335 may be formed by applying a raw material to one surface of either the first chromic layer 333 or the second chromic layer 335 by a wet coating method, followed by drying. When the electrolyte layer 335 is applied by a wet coating method, the thickness of the coating film may be easily controlled, which is advantageous in terms of enhancing ionic conductivity or chromic rate.

[0072] The thickness of the electrolyte layer 335 may be 30 μ m to 200 μ m, 50 μ m to 200 μ m, 50 μ m to 150 μ m, 70 μ m to 130 μ m, or 80 μ m to 120 μ m. When the thickness of the electrolyte layer 335 satisfies the above ranges, the ion transport path between the first chromic layer 333 and the second chromic layer 335 is secured at an appropriate length while the durability is imparted to the electrochromic device 300, thereby implementing the light transmission change performance at an appropriate rate.

[0073] The second chromic layer 337 is a layer whose light transmittance changes when a voltage is applied between the first electrode layer 331 and the second electrode layer 339, and is a layer that imparts variability in light transmittance to the electrochromic device.

[0074] The second chromic layer 337 includes at least one layer, and two or more layers of different materials may be applied, as necessary.

[0075] The second chromic layer 337 may include at least one selected from the group consisting of nickel oxide (e.g., NiO, NiO₂), manganese oxide (e.g., MnO₂), cobalt oxide (e.g., CoO₂), iridium-magnesium oxide, nickel-magnesium oxide, titanium-vanadium oxide, and combinations thereof. Alternatively, the second chromic layer 337 may include, but is not limited to, a Prussian blue-based pigment.

50

[0076] The second chromic layer 337 may be formed by depositing a raw material on one surface of the second electrode layer 339 by a sputtering method, or by applying a raw material by a wet coating method, followed by drying. For example, the second chromic layer 337 may be formed by applying a raw material to one surface of the second electrode layer 339 by a wet coating method, followed by drying.

[0077] The second chromic layer 337 may have an initial transmittance of 50 % or less. As such, an initial transmittance of 50 % or less may mean that the color appears dark blue or pale indigo when viewed with the naked eye.

[0078] The first chromic layer 333 may include a material having a chromogenic property complementary to the

electrochromic material included in the second chromic layer 337. The complementary chromogenic property means that the types of reactions by which the electrochromic material develops color are different from each other. For example, when an oxidizing chromic material is used in the first chromic layer 333, a reducing chromic material may be used in the second chromic layer 337. Alternatively, when a reducing chromic material is used in the first chromic layer 333, an oxidizing chromic material may be used in the second chromic layer 337. An oxidizing chromic material refers to a material that changes color when an oxidation reaction takes place, and a reducing chromic material refers to a material that changes color when a reduction reaction takes place. That is, when an oxidation reaction takes place in a chromic layer to which an oxidizing chromic material is applied, a coloration reaction takes place, and when a reduction reaction takes place, a decoloration reaction takes place. When a reduction reaction takes place in a chromic layer to which a reducing chromic material is applied, a coloration reaction takes place in a chromic layer to which a reducing chromic material is applied, a coloration reaction takes place in a chromic layer to which a reducing chromic material is applied, a coloration reaction takes place in a chromic layer to which a reducing chromic material is applied, a coloration reaction takes place in a chromic layer to which a reducing chromic material is applied, a coloration reaction takes place in a chromic layer to which a reducing chromic material is applied, a coloration reaction takes place in a chromic layer to which a reducing chromic material is applied in each chromic layer, so that the coloration or decoloration may be carried out simultaneously in both layers. In addition, coloration or decoloration may be alternated according to the polarity of the voltage applied to the electrochromic device 300.

10

20

30

45

50

[0079] The release film layer 360 may include a polyester-based resin including polyethylene terephthalate (PET), polyethylene naphthalate (PEN), or polycarbonate (PC). The release film layer 360 serves to protect the electrochromic device 300 from external moisture or impurities when the electrochromic device 300 is stored and moved. When the electrochromic device 300 is later applied to a transparent window or the like, the electrochromic device 300 may be used after the release film layer 360 is removed, as necessary.

[0080] The hard coating layer 370 may include an acrylic-based resin, a silicone-based resin, a polyurethane-based resin, an epoxy-based resin, or a polyimide-based resin. For example, the hard coating layer 370 may have a pencil hardness of 3H or more, 4H or more, or 5H or more, but is not limited thereto. The hard coating layer 370 serves to protect the electrochromic device from external impacts, and may impart excellent hardness because of its resistance to scratches or the like.

[0081] The electrochromic device 300 may be applied through a way of simply attaching the electrochromic device to a structure such as a conventional transparent window. For example, the electrochromic device 300 may be attached to one surface of a window, and the window may have a flat surface or a curved surface. In addition, the electrochromic device 300 may be attached to the entire surface of the window, or only a portion of the window. Alternatively, the electrochromic device 300 may be inserted into the window. For example, the electrochromic device 300 may be applied through a way of interposing the electrochromic device 300 between glass substrates. For example, the electrochromic device 300 may be applied by interposing two polyvinyl butyral films (PVB films) between laminated glasses of a window, and interposing the electrochromic device 300 between the two PVB films, and may be stably inserted into the window by compression with heat

[0082] The electrochromic device 300 may adjust the transmittance of infrared rays and ultraviolet rays as well as visible light upon coloration and decoloration. When power is applied to the electrochromic device 300, an electric field is formed between the first electrode layer 331 and the second electrode layer 339, causing coloration and decoloration, which may adjust the transmittance for each wavelength of solar rays. Therefore, it is useful to implement an insulation function and a sunshade function. In addition, the electrochromic device 300 may be manufactured with a large area at a low cost and has low power consumption. Therefore, it is suitable for use in a smart window, a smart mirror, and other next generation architectural window materials.

[0083] FIG. 6 is a flowchart for describing a method of driving the electrochromic device 300 according to an embodiment of the present disclosure.

[0084] Hereinafter, with reference to the accompanying drawings, a process in which transmittance for a specific wavelength is adjusted through color change of the electrochromic device 300 according to an embodiment of the present disclosure will be described.

[0085] First, the information acquisition unit 210 of the apparatus 100 of driving an electrochromic device is configured to obtain operating environment information including at least one of solar altitude, variable azimuth angle, and temperature according to an operating environment of the electrochromic device 300, and provides the obtained operating environment information to the control unit 220. Here, the altitude finder 141 may measure and provide solar altitude to the transmitter 121, the azimuth finder 142 may measure and provide variable azimuth angle of the electrochromic device 300 to the transmitter 121, and the thermometer 143 may measure and provide temperature to the transmitter 121. Then, the transmitter 121 may transmit the operating environment information measured by the altitude finder 141, the azimuth finder 142, and/or the thermometer 143, the receiver 122 may receive the operating environment information transmitted from the transmitter 121, and the information acquisition unit 210 may obtain and provide the operating environment information to the control unit 220 (S610).

[0086] The control unit 220 is configured to generate a control signal corresponding to capacitance to be applied to the electrochromic device 300 on the basis of the operating environment information obtained by the information acquisition unit 210. Here, the control unit 220 reflects climate characteristics obtained by analyzing the operating environment information to generate a control signal. For example, the control unit 220 may generate a control signal so that visible light

transmittance of the electrochromic device 300 reaches a preset transmittance or less within a predetermined period of time according to an altitude comparison result of comparing the solar altitude provided by the information acquisition unit 210 to a preset threshold altitude (S630).

[0087] Then, the driving unit 230 of the apparatus 100 of driving an electrochromic device is configured to apply capacitance corresponding to the control signal of the control unit 220 to the electrochromic device 300 to drive the electrochromic device so that the transmittance for a specific wavelength is adjusted (S640).

[0088] The weather data observed in Busan in the year of 2000 is exemplified in Table 1.

10

15

20

30

35

40

45

50

55

[Table 1]

Date		Starting at 40 deg. or more (Time/Elevation angle)	Starting at 40 deg. or less (Time/Elevation angle)
Spring Equinox	3.20	10 o'clock, 40 deg.	15 o'clock, 40 deg.
Summer solstice	6.21	9 o'clock, 44 deg.	16 o'clock, 42 deg.
Autumnal equinox	9.23	10 o'clock, 32 deg.	15 o'clock, 37 deg.
Winter solstice	12.22	None (Max. 31 deg.)	

[0089] With reference to the weather data exemplified in Table 1, it can be easily inferred that blocking the light introduced into indoor areas through glass windows of an architectural structure and the like during the season of hot solar rays will help to create a pleasant indoor environment. In step S630, the control unit 220 may generate a control signal that may start a color change at a solar altitude of 40 degrees or more to reach a visible light transmittance of 15 % or less within 10 minutes, and in step S640, the driving unit 230 may adjust the visible light transmittance by applying capacitance corresponding to the control signal to the electrochromic device 300 according to the control signal.

[0090] Meanwhile, after step S610, the control unit 220 may obtain installation environment information including at least one of fixed azimuth angle and latitude of the electrochromic device 300, and may generate a control signal on the basis of the installation environment information obtained in step S630 (S620, S630).

[0091] The weather data including the azimuth angle (indicating the horizontal angle with respect to true north) for Busan observed in the year of 2000 is shown in Table 2.

[Table 2]

Date		Starting at 280 deg. or more (Time/Azimuth angle)
Spring Equinox	3.20	None (Max. 274 deg.)
Summer solstice	6.21	17 o'clock, 278 deg.
Beginning of hottest period	7.11	17 o'clock, 276 deg.
End of hottest period	8.10	18 o'clock, 278 deg.
Autumnal equinox	9.23	None (Max. 275 deg.)
Winter solstice	12.22	None (Max. 47 deg.)

[0092] With reference to the weather data exemplified in Table 2, it can be inferred that the electrochromic device 300 may be subjected to maintenance of color change and subsequent decoloration during the hot daytime hours of solar rays in summer to maintain indoor pleasantness, and that heating costs may be reduced through sufficient introduction of solar rays into indoor areas in spring, fall, and winter. In step S630, the control unit 220 may generate a control signal so that the color change is maintained at an azimuth angle of 90 to 270 degrees at a solar altitude of 40 degrees or more, and decoloration takes place at a solar altitude of 40 degrees or less or an azimuth angle of 280 degrees or more, and in step S640, the driving unit 230 may apply capacitance corresponding to the control signal to the electrochromic device 300 to adjust the visible light transmittance according to the control signal.

[0093] In addition, the electrochromic device 300 may need to have its color change drive controlled differently depending on the latitude of the installation area. Seoul area is exemplified in Table 3 and Busan area is exemplified in Table 4 as operation state information for each latitude of the installation area.

[Table 3]

5	Latitude	Operation started to Target reached	Date		Operation started (Time/Elevation angle)	Time to target (Time/Elevation angle)	Free time
	37 deg. north la-	42 to 45 deg.	Beginning of spring	2.3	None (Max. 35 deg.)	None	-
10	titude		Spring Equi- nox	3.20	10:30 (10 to 11 o'clock, 37 to 45 deg.)	11:00	30 min.
70			Summer sol- stice	6.21	9:00 (42 deg.)	9:15 (9 to 10 o'clock, 42 to 54 deg.)	15 min.
			Beginning of hottest period	7.11	9:05 (9 to 10 o'clock, 41 to 52 deg.)	9:20 (9 to 10 o'clock, 41 to 52 deg.)	15 min.
15			End of hottest period	8.10	9:30 (9 to 10 o'clock, 37 to 47 deg.)	9:40 (9 to 10 o'clock, 37 to 48 deg.)	10 min.
20			Autumnal equinox	9.23	None (Max. 36 deg.)	10:45 (10 to 11 o'clock, 39 to 47 deg.)	25 min.
			Beginning of winter	11.7	None (Max. 28 deg.)	None	-
25			Winter sol- stice	12.22	None (Max. 38 deg.)	None	_

[Table 4]

30	Latitude	Operation started to Target reached	Date		Operation started (Time/Elevation angle)	Time to target (Time/Elevation angle)	Free time
	35 deg. north la-	40 to 43 deg.	Beginning of spring	2.3	None (Max. 38 deg.)	None	-
35	titude		Spring Equinox	3.20	10:00 (40 deg.)	10:20 (10 to 11 o'clock, 40 to 48 deg.)	20 min.
			Summer sol- stice	6.21	8:40 (8 to 9 o'clock, 31 to 44 deg.)	8:55 (8 to 9 o'clock, 31 to 44 deg.)	15 min.
40			Beginning of hottest period	7.11	8:50 (8 to 9 o'clock, 30 to 42 deg.)	9:05 (9 to 10 o'clock, 42 to 54 deg.)	15 min.
			End of hottest period	8.10	9:05 (9 to 10 o'clock, 39 to 51 deg.)	9:20 (9 to 10 o'clock, 39 to 51 deg.)	15 min.
45			Autumnal equinox	9.23	9:50 (9 to 10 o'clock, 32 to 42 deg.)	10:05 (10 to 11 o'clock, 42 to 50 deg.)	15 min.
50			Beginning of winter	11.7	None (Max. 28 deg.)	None	-
			Winter sol- stice	12.22	None (Max. 38 deg.)	None	-

[0094] With reference to the operation state information exemplified in Table 3 and FIG. 4, in step S630, the control unit 220 may generate a control signal that starts a color change operation at a solar altitude that is 5 degrees higher than the latitude of an installation area to reach a visible light transmittance of 15% or less before the solar altitude reaches an altitude that is 8 degrees higher than the latitude. In step S640, the driving unit 230 may apply capacitance corresponding to

the control signal to the electrochromic device 300 to adjust the visible light transmittance according to the control signal. **[0095]** The operation state information for each color change start time and decoloration start time for Seoul area shown in Table 3 is exemplified in Table 5.

5 [Table 5]

30

40

45

50

55

	Latitude	Color change started	Decoloration stared	Date		Color change started (Time/Elevation angle)	Decoloration stared (Time/Elevati on angle)
10	37 deg. north la-	42 deg. solar al-	27 deg. solar altitude	Beginning of spring	2.3	None (Max. 38 deg.)	Decoloration main- tained
	titude	titude		Spring Equi- nox	3.20	10:00 (40 deg.)	16:15 (16 to 17 o'clock, 30 to 19 deg.)
15				Summer sol- stice	6.21	8:40 (8 to 9 o'clock, 31 to 44 deg.)	17:25 (17 to 18 o'clock, 32 to 20 deg.)
				Beginning of hottest peri- od	7.11	8:50 (9 to 10 o'clock, 30 to 42 deg.)	17:25 (17 to 18 o'clock, 32 to 20 deg.)
20				End of hot- test period	8.10	9:05 (9 to 10 o'clock, 39 to 51 deg.)	16:55 (16 to 17 o'clock, 37 to 48 deg.)
				Autumnal equinox	9.23	9:50 (9 to 10 o'clock, 32 to 42 deg.)	16:00 (27 deg.)
25				Beginning of winter	11.7	None (Max. 38 deg.)	Decoloration main- tained
				Winter sol- stice	12.22	None (Max. 31 deg.)	Decoloration main- tained

[0096] With reference to the operation state information exemplified in Table 5, it is necessary to allow decoloration in conjunction with solar altitude in spring, autumn, and winter in Korea, when it is required to introduce solar rays into indoor areas, and to block the hot solar heat in the middle of the day. In step S630, the control unit 220 may generate a control signal to start a color change operation at a solar altitude that is 5 degrees higher than the latitude of an installation area to allow a decoloration operation to be started at a solar altitude that is 10 degrees lower than the latitude, or to allow decoloration to take place at a solar altitude that is 10 degrees lower than the latitude of the installation area when the outside temperature is 20 degrees or less. In step S640, the driving unit 230 may apply capacitance corresponding to the control signal to the electrochromic device 300 to adjust the visible light transmittance according to the control signal.

[0097] The operation state information exemplified in Table 6 is an example of changes in temperature and solar altitude for Busan area.

[Table 6]

5	Latitude	Average temperature of color change started	Decoloration stared solar altitude	Date		Average temperature / Maximum temperature	Decoloration stared (Time/Elevati on angle)
	North la- titude 35	30 °C	30 deg.	Beginning of spring	2.3	3.1 °C/ 8 °C	No color change, deco- loration maintained
10	deg.			Spring Equinox	3.20	9.6 °C/ 14.3 °C	No color change, deco- loration maintained
				Summer solstice	6.21	16.5 °C/ 20.7 °C	Temperature-dependent operation, 17 o'clock (30 deg.)
15				Beginning of hottest period	7.11	23.2 °C/ 26.1 °C	Temperature-dependent operation, 17 o'clock (30 deg.)
20				End of hottest period	8.10	26.4 °C/ 29.8 °C	Temperature-dependent operation, 16: 40 (16 to 17 o'clock, 39 to 26 deg.)
				Autumnal equinox	9.23	21.2 °C/ 25.3 °C	Temperature-dependent operation, 15: 40 (15 to 16 o'clock, 37 to 27 deg.)
25				Beginning of winter	11.7	14.2 °C/ 19.0 °C	Temperature-dependent operation, 14: 10 (14 to 15 o'clock, 31 to 24 deg.)
30				Winter solstice	12.22	5.5 °C/ 10.2 °C	No color change, deco- loration maintained

[0098] With reference to the operation state information exemplified in Table 6, in step S630, the control unit 220 may generate a control signal to start a decoloration operation when a condition of an outdoor temperature of 15 °C or less and a solar altitude of 30 °C or less is simultaneously satisfied after a color change at an outdoor temperature of 15 °C or more. In step S640, the driving unit 230 may apply capacitance corresponding to the control signal to the electrochromic device 300 to adjust the visible light transmittance according to the control signal.

[0099] The operation state information exemplified in Table 7 is an example of changes in solar altitude, temperature, time, and elevation angle for Busan area.

[Table 7]

40

45	Latitude	Color change started Azimut h angle	Decoloration stared Azimuth angle	Date		Average/ Maximum Temperatu re	Color change started (Time/ Azimut h angle)	Decoloration stared (Time/Azimu th angle)
	North la- titude 35	100 deg.	280 deg.	Summer solstice	6.21	16.5 °C/ 20.7 °C	10 o'clock/ 100 deg.	17:00 (278 deg.)
50	deg.			Beginning of hottest period	7.11	23.2 °C/ 26.1 °C	10 o'clock/ 101 deg.	17:30 (17 to 18 o'clock, 276 to 284 deg.)
55				End of hottest period	8.10	26.4 °C/ 29.8 °C	9 o'clock/ 98 deg.	18:15 (18 to 19 o'clock, 278 to 287 deg.)

[0100] With reference to the operation state information exemplified in Table 7, in step S630, the control unit 220 may

generate a control signal to maintain a color change operation when a condition of an outdoor temperature of 18 °C or more and an azimuth angle of 100 degrees or more and less than 280 degrees are simultaneously satisfied in June to August in the summer season. In step S640, the driving unit 230 may apply capacitance corresponding to the control signal to the electrochromic device 300 to adjust the visible light transmittance according to the control signal.

[0101] Meanwhile, according to the embodiment described above, each step included in the method of driving an electrochromic device performed by the apparatus for driving an electrochromic device that operates so that transmittance for a specific wavelength is adjusted through color change when electricity is applied may be implemented on a computer-readable recording medium that records a computer program including instructions for performing the steps described above.

[0102] As described above, according to an embodiment of the present disclosure, there is an effect of creating a pleasant indoor environment in accordance with a changing operating environment by controlling the visible light transmittance and chromic rate by changing capacitance applied to an electrochromic device according to solar altitude, azimuth angle, temperature, or the like, which depends on an operating environment of the electrochromic device, so that the transmittance of the electrochromic device is adjusted.

[0103] Combinations of steps in each flowchart attached to the present disclosure may be executed by computer program instructions. Since the computer program instructions can be mounted on a processor of a general-purpose computer, a special purpose computer, or other programmable data processing equipment, the instructions executed by the processor of the computer or other programmable data processing equipment create a means for performing the functions described in each step of the flowchart. The computer program instructions can also be stored on a computer-usable or computer-readable storage medium which can be directed to a computer or other programmable data processing equipment to implement a function in a specific manner. Accordingly, the instructions stored on the computer-usable or computer-readable recording medium can also produce an article of manufacture containing an instruction means which performs the functions described in each step of the flowchart. The computer program instructions can also be mounted on a computer or other programmable data processing equipment. Accordingly, a series of operational steps are performed on a computer or other programmable data processing equipment to create a computer-executable process, and it is also possible for instructions to perform a computer or other programmable data processing equipment to provide steps for performing the functions described in each step of the flowchart.

[0104] In addition, each step may represent a module, a segment, or a portion of codes which contains one or more executable instructions for executing the specified logical function(s). It should also be noted that in some alternative embodiments, the functions mentioned in the steps may occur out of order. For example, two steps illustrated in succession may in fact be performed substantially simultaneously, or the steps may sometimes be performed in a reverse order depending on the corresponding function.

[0105] The above description is merely exemplary description of the technical scope of the present disclosure, and it will be understood by those skilled in the art that various changes and modifications can be made without departing from original characteristics of the present disclosure. Therefore, the embodiments disclosed in the present disclosure are intended to explain, not to limit, the technical scope of the present disclosure, and the technical scope of the present disclosure is not limited by the embodiments. The protection scope of the present disclosure should be interpreted based on the following claims and it should be appreciated that all technical scopes included within a range equivalent thereto are included in the protection scope of the present disclosure.

Claims

1. An apparatus for driving an electrochromic device comprising:

a memory in which an electrochromic device driving program is stored; and

a processor configured to load the electrochromic device driving program from the memory, and to execute the electrochromic device driving program,

wherein the processor is configured to obtain operating environment information including at least one of solar altitude, variable azimuth angle, and temperature according to an operating environment of the electrochromic device that operates so that transmittance for a specific wavelength is adjusted through color change when electricity is applied,

to generate a control signal corresponding to a capacitance to be applied to the electrochromic device on a basis of the operating environment information,

to apply the capacitance corresponding to the control signal to the electrochromic device to drive the electrochromic device so that the transmittance is adjusted, and

to generate the control signal by reflecting climate characteristics obtained by analyzing the operating environment information.

13

55

50

10

20

30

40

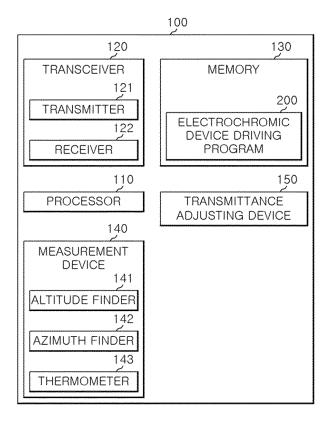
45

- 2. The apparatus of claim 1, wherein the processor is configured to generate the control signal so that visible light transmittance of the electrochromic device reaches a preset transmittance or less within a predetermined period of time according to an altitude comparison result of comparing the solar altitude to a preset threshold altitude.
- 5 **3.** The apparatus of claim 2, wherein the processor is configured to generate the control signal further on the basis of installation environment information including at least one of fixed azimuth angle and latitude of the electrochromic device.
- 4. The apparatus of claim 3, wherein the processor is configured to generate the control signal according to an azimuth angle comparison result of comparing the variable azimuth angle or the fixed azimuth angle to a preset threshold azimuth angles and the altitude comparison result.
 - 5. The apparatus of claim 3, wherein the processor is configured to generate the control signal according to a difference between the latitude of the electrochromic device and the solar altitude.

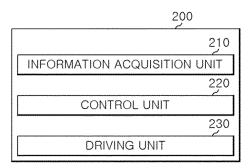
15

25

35


45

50


- **6.** The apparatus of claim 3, wherein the processor is configured to generate the control signal according to a difference between the latitude of the electrochromic device, the solar altitude and the temperature.
- 7. The apparatus of claim 3, wherein the processor is configured to generate the control signal according to the latitude of the electrochromic device, the altitude comparison result, and the temperature.
 - **8.** The apparatus of claim 3, wherein the processor is configured to generate the control signal according to an azimuth angle comparison result of comparing the variable azimuth angle or the fixed azimuth angle to a preset threshold azimuth angle, a position of the electrochromic device, the temperature, and a date and time.
 - **9.** A method for driving an electrochromic device, performed by an apparatus for driving an electrochromic device that operates so that transmittance for a specific wavelength is adjusted through color change when electricity is applied, the method comprising:
- obtaining operating environment information including at least one of solar altitude, variable azimuth angle, and temperature according to an operating environment of the electrochromic device;
 - determining a capacitance to be applied to the electrochromic device on a basis of the obtained operating environment information; and
 - applying the determined capacitance to the electrochromic device to drive the electrochromic device so that the transmittance is adjusted,
 - wherein the determining the capacitance, climate characteristics obtained by analyzing the operating environment information are reflected.
- **10.** The method of claim 9, wherein applying the determined capacitance, the electrochromic device is driven so that visible light transmittance of the electrochromic device reaches a preset transmittance or less within a predetermined period of time according to an altitude comparison result of comparing the solar altitude to a preset threshold altitude.
 - **11.** The method of claim 10, wherein the determining the capacitance, the capacitance is determined further on the basis of installation environment information including at least one of fixed azimuth angle and latitude of the electrochromic device.
 - **12.** The method of claim 11, wherein the determining the capacitance, the capacitance is determined according to an azimuth angle comparison result of comparing the variable azimuth angle or the fixed azimuth angle to a preset threshold azimuth angles and the altitude comparison result.
 - **13.** The method of claim 11, wherein the determining the capacitance, the capacitance is determined according to a difference between the latitude of the electrochromic device and the solar altitude.
 - **14.** The method of claim 11, wherein the determining the capacitance, the capacitance is determined according to a difference between the latitude of the electrochromic device, the solar altitude and the temperature.
 - **15.** The method of claim 11, wherein the determining the capacitance, the capacitance is determined according to the latitude of the electrochromic device, the altitude comparison result, and the temperature.

- 16. The method of claim 11, wherein the determining the capacitance, the capacitance is determined according to an azimuth angle comparison result of comparing the variable azimuth angle or the fixed azimuth angle to a preset threshold azimuth angle, a position of the electrochromic device, the temperature, and a date and time.17. A non-transitory computer-readable storage medium storing a computer program, wherein the computer program, when executed by a processor, comprises an instruction for causing the processor to perform a method comprising:
 - obtaining operating environment information including at least one of solar altitude, variable azimuth angle, and temperature according to an operating environment of an electrochromic device;
 - determining a capacitance to be applied to the electrochromic device on a basis of the obtained operating environment information; and
 - applying the determined capacitance to the electrochromic device to drive the electrochromic device so that the transmittance is adjusted, and
 - wherein the determining the capacitance, climate characteristics obtained by analyzing the operating environment information are reflected.

FIG. 1

FIG.2

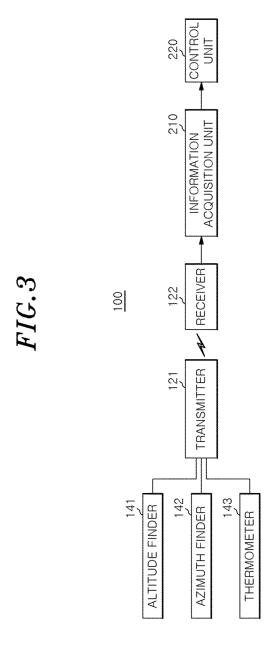
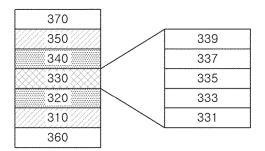
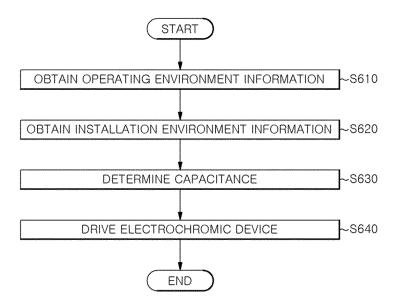



FIG.4


300

350	
340	10000000000000000000000000000000000000
330	
320	**************************************
310	

FIG.5

FIG.6

INTERNATIONAL SEARCH REPORT International application No. PCT/KR2023/005958 5 A. CLASSIFICATION OF SUBJECT MATTER G09G 3/19(2006.01)i; G02F 1/163(2006.01)i According to International Patent Classification (IPC) or to both national classification and IPC 10 FIELDS SEARCHED В. Minimum documentation searched (classification system followed by classification symbols) G09G 3/19(2006.01); B60J 3/04(2006.01); B60R 16/023(2006.01); E06B 7/12(2006.01); G01S 19/14(2010.01); G02F 1/163(2006.01); H02S 10/00(2014.01); H04W 4/021(2018.01) Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched 15 Korean utility models and applications for utility models: IPC as above Japanese utility models and applications for utility models: IPC as above Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) eKOMPASS (KIPO internal) & keywords: 전기변색소자(electrochromic device), 환경(environment), 방위각(azimuth), 온도 (temperature), 코도(altitude) 20 C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Category* Citation of document, with indication, where appropriate, of the relevant passages KR 10-2021-0122310 A (VIEW, INC.) 08 October 2021 (2021-10-08) X See paragraphs [0060], [0063], [0067], [0077], [0091], [0118], [0174] and [0183]; and 1-17 25 figures 4-5, 9 and 18. KR 10-2187022 B1 (LEE, Chun Sik) 04 December 2020 (2020-12-04) Α See claim 10; and figure 11. 1-17 KR 10-2019-0081944 A (YURA CORPORATION CO., LTD.) 09 July 2019 (2019-07-09) 30 See claims 2 and 4; and figure 1. A 1-17 KR 10-2011-0097697 A (KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY) 31 August 2011 (2011-08-31) See paragraph [0115]; and figure 11. A 1 - 1735 KR 10-2019-0122789 A (SWITCH MATERIALS INC.) 30 October 2019 (2019-10-30) See claim 1. Α 1-17 See patent family annex. Further documents are listed in the continuation of Box C. 40 later document published after the international filing date or priority Special categories of cited documents: date and not in conflict with the application but cited to under principle or theory underlying the invention document defining the general state of the art which is not considered "A" to be of particular relevance document cited by the applicant in the international application document of particular relevance; the claimed invention cannot be earlier application or patent but published on or after the international considered novel or cannot be considered to involve an inventive step "E" when the document is taken alone document of particular relevance; the claimed invention cannot be document which may throw doubts on priority claim(s) or which is 45 considered to involve an inventive step when the document is combined with one or more other such documents, such combination cited to establish the publication date of another citation or other special reason (as specified) being obvious to a person skilled in the art "O" document referring to an oral disclosure, use, exhibition or other document member of the same patent family document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search Date of mailing of the international search report 50 24 July 2023 24 July 2023 Name and mailing address of the ISA/KR Authorized officer

Form PCT/ISA/210 (second sheet) (July 2022)

ro, Seo-gu, Daejeon 35208

Facsimile No. +82-42-481-8578

55

Korean Intellectual Property Office

Government Complex-Daejeon Building 4, 189 Cheongsa-

Telephone No.

INTERNATIONAL SEARCH REPORT International application No. Information on patent family members PCT/KR2023/005958 5 Publication date Publication date Patent document Patent family member(s) cited in search report (day/month/year) (day/month/year) KR 10-2021-0122310 08 October 2021 AU2013-249621 **A**1 30 October 2014 Α AU 2013-249621 B2 07 September 2017 AU 2013-249706 B2 20 October 2016 10 AU 2014-219076 **A**1 10 September 2015 AU 2014-219076 B2 23 November 2017 2015-227056 AUA1 08 September 2016 AU2015-227056 B2 01 October 2020 AU2015-255913 A124 November 2016 15 ΑU 2015-255913 08 October 2020 B2 AU2015-324000 06 April 2017 A1 AU 2015-324000 B2 06 May 2021 2015-353569 25 May 2017 AU **A**1 AU 2015-353569 B2 17 December 2020 20 AU2015-353606 A125 May 2017 ΑU 2015-353606 B2 21 May 2020 AU2015-360714 A129 June 2017 AU2016-334038 A1 10 May 2018 AU2016-346328 A1 17 May 2018 25 2016-346328 B2 28 April 2022 AU2017-200334 02 February 2017 AUA1 2017-257789 22 November 2018 AU A1 2017-257789 30 June 2022 AU B2 AU 2017-260101 A1 22 November 2018 30 AU2017-260101 B2 22 July 2021 $\mathbf{A}\mathbf{U}$ 2017-270472 21 December 2017 A1 2017-270472 19 December 2019 AU AU2017-363581 **A**1 20 June 2019 AU2017-376447 **A**1 04 July 2019 35 ΑU 2018-201341 15 March 2018 A1 2018-201341 05 March 2020 ΑU B2 AU 2018-201341 C1 19 November 2020 2018-203436 07 June 2018 AU A1 29 November 2018 AU 2018-260906 **A**1 40 AU2019-240134 **A**1 08 October 2020 AU2019-320784 04 March 2021 AU2020-202011 09 April 2020 **A**1 03 March 2022 AU2020-202011 B2 AU2020-202135 A116 April 2020 45 ΑU 2020-202135 B2 28 October 2021 2020-202135 **B9** 11 November 2021 AUAU 2020-220165 A1 10 September 2020 ΑU 2020-220165 B2 27 January 2022 ΑU 2020-224620 A1 02 September 2021 50 AU 2020-226999 A117 September 2020 A U2020-250299 **A**1 05 November 2020 AU 2020-250299 17 March 2022 AU 2020-273368 **A**1 17 December 2020 ΑU 2020-273368 B2 08 December 2022 ΑU 2020-357759 21 April 2022 **A**1 55 ΑU 2021-200070 18 March 2021 A1

INTERNATIONAL SEARCH REPORT International application No. Information on patent family members PCT/KR2023/005958 5 Publication date Patent document Publication date Patent family member(s) cited in search report (day/month/year) (day/month/year) AU2021-201145 **A**1 11 March 2021 2021-201145 14 July 2022 AUB2 AU 2021-205049 A112 August 2021 10 AU 2021-205049 B2 16 February 2023 AU 2021-215134 A1 02 September 2021 AU 2021-250838 04 November 2021 A1 17 February 2022 AU 2022-200523 A1AU2022-202275 A121 April 2022 15 ΑU 2022-203439 09 June 2022 **A**1 AU2022-203521 16 June 2022 A1 AU 2022-203541 16 June 2022 A1 2022-204730 21 July 2022 AU **A**1 AU 2022-231771 **A**1 06 October 2022 20 AU2023-201196 **A**1 06 April 2023 BR 112022010397 A2 23 August 2022 CA170770 S 15 February 2018 CA2870627 A1 24 October 2013 CA2870627 C 14 December 2021 25 2870673 24 October 2013 CA A12871047 31 October 2013 CAA1 13 February 2014 2880920 CA **A**1 2902106 28 August 2014 CA A1 31 December 2014 CA 2916862 A1 30 CA 2941526 A1 11 September 2015 CA2941526C 28 February 2023 CA2948668 **A**1 12 November 2015 CA 2963096 **A**1 07 April 2016 CA 2968665 **A**1 02 June 2016 35 CA 2968840 02 June 2016 A1 2970300 16 June 2016 CA A1CA 2980477 29 September 2016 A1 CA 2991419 12 January 2017 A1 2991761 12 January 2017 CA **A**1 40 23 March 2017 CA2998861 **A**1 CA3000852 13 April 2017 3001233 13 April 2017 CA**A**1 3003639 04 May 2017 CA**A**1 14 September 2017 CA3017138 **A**1 45 3022396 02 November 2017 CA A1 3023072 09 November 2017 CA A1 01 March 2018 CA 3034630 A1 CA 3038974 **A**1 05 April 2018 CA 3039342 A1 12 April 2018 50 CA3039606 A112 April 2018 CA3044823**A**1 31 May 2018 CA3045443 A1 07 June 2018 CA 3047093 **A**1 21 June 2018 CA 3047110 **A**1 21 June 2018 CA 3062815 01 November 2018 A155 CA 3062817 01 November 2018 A1

INTERNATIONAL SEARCH REPORT International application No. Information on patent family members PCT/KR2023/005958 5 Publication date Patent document Publication date Patent family member(s) cited in search report (day/month/year) (day/month/year) CA3062818 A101 November 2018 3066285 07 November 2019 CA A1CA3094479 A126 September 2019 10 CA 3102449 **A**1 12 December 2019 CA3102958 **A**1 19 December 2019 CA 3103480 26 December 2019 A1 CA3109581 A120 February 2020 CA3129952 A127 August 2020 15 CA 3139813 12 November 2020 **A**1 CA 3152920 08 April 2021 A1CA 3155214 29 April 2021 A1 3156883 11 September 2015 CA **A**1 CA3163059 **A**1 15 July 2021 20 CA3165657 **A**1 05 August 2021 CA 3167832 **A**1 19 August 2021 CA3169817 A121 October 2021 CA3169820 A1 12 May 2022 CA 3169821 A1 07 April 2022 25 3169929 25 November 2021 CA **A**1 3171879 07 April 2022 CAA1 07 April 2022 3171898 CA **A**1 03 February 2022 CA 3173667 **A**1 31 December 2014 CA 3193219 **A**1 30 CN 103238107 A 07 August 2013 CN 103238107 В 07 June 2019 CN 103261960 21 August 2013 A CN 103261960 В 08 August 2017 CN 103492940 A 01 January 2014 35 CN 103492940 В 15 February 2017 CN 103547965 29 January 2014 A CN 103547965 В 08 August 2017 CN 103649826 19 March 2014 A CN 01 May 2018 103649826 В 40 CN 104114804 Α 22 October 2014 CN 104246594 A 24 December 2014 CN 104246594 В 24 September 2019 28 January 2015 CN 104321497 Α CN 104321497 В 24 August 2016 45 CN 104321696 A 28 January 2015 18 October 2019 CN 104321696 В CN 04 February 2015 104335595 Α CN 104335595 В 18 September 2018 CN 104364706 A 18 February 2015 50 CN 104364706 В 18 August 2017 CN 104603686 A 06 May 2015 CN 104603686 В 08 March 2017 CN 105143586 A 09 December 2015 CN 105143586 В 16 November 2018 CN 105431772 A 23 March 2016 55 CN 105431772 В 16 April 2019

INTERNATIONAL SEARCH REPORT International application No. Information on patent family members PCT/KR2023/005958 5 Publication date Patent document Publication date Patent family member(s) cited in search report (day/month/year) (day/month/year) CN106125444 A 16 November 2016 106125444 14 August 2020 CN В CN 106164973 A 23 November 2016 10 CN 106164973 В 01 January 2021 CN 106462023 A 22 February 2017 CN 106462023 В 24 December 2019 19 April 2017 CN 106575064 A CN 106575064 В 07 May 2021 15 CN 106796380 31 May 2017 A CN 106796380 В 03 September 2021 CN 106837094 A 13 June 2017 CN 25 June 2021 106837094 В CN 27 June 2017 106896613 A 20 CN 106896613 В 07 August 2020 CN 107109892 A 29 August 2017 CN 107109892 В 12 June 2020 CN 107110704 A 29 August 2017 CN 107110704 В 24 December 2021 25 CN 107111287 29 August 2017 Α 107111287 03 May 2022 CN В 107112620 29 August 2017 CN A 107112620 В 31 December 2019 CN CN 107209432 A 26 September 2017 30 CN 107209432 В 03 September 2021 CN 107272296 20 October 2017 A CN 107340664 10 November 2017 A CN 107340664 В 22 January 2021 CN 107390446 A 24 November 2017 35 CN 107390446 В 04 March 2022 CN 107533267 A 02 January 2018 CN 107850815 27 March 2018 Α CN 107850815 03 September 2021 В CN 27 March 2018 107851413 A 40 CN 107851413 В 26 November 2021 CN 108139644 A 08 June 2018 CN 108291424 17 July 2018 A 108291424 В 12 June 2020 CN 31 July 2018 CN 108351251 A 45 CN 108351251 В 09 July 2021 31 July 2018 CN 108352144 Α CN 14 December 2021 108352144B CN 108388058 A 10 August 2018 CN 108388058 В 21 May 2021 50 CN 108922149 A 30 November 2018 CN 108922149 В 18 June 2021 CN 109060126 A 21 December 2018 CN 109060126 В 03 December 2021 CN 109313498 A 05 February 2019 CN 109314307 A 05 February 2019 55

Form PCT/ISA/210 (patent family annex) (July 2022)

CN

109314307

В

15 October 2021

International application No.

INTERNATIONAL SEARCH REPORT

5

10

15

20

25

30

35

40

45

50

55

Information on patent family members PCT/KR2023/005958 Patent document Publication date Publication date Patent family member(s) cited in search report (day/month/year) (day/month/year) CN109653669 A 19 April 2019 21 May 2019 CN 109791338A CN 109844631 A 04 June 2019 CN 109844631 В 01 July 2022 CN 109863425 A 07 June 2019 CN 109863425 01 July 2022 21 June 2019 CN 109923482 A CN 109923482 В 01 November 2022 CN 110058472 26 July 2019 A CN 110058472 19 April 2022 В CN 11010007206 August 2019 A CN 110100072В 16 November 2021 CN 110114719 A 09 August 2019 CN 110114719 В 15 November 2022 CN 110168185 A 23 August 2019 CN 110187583 Α 30 August 2019 CN 110214293 A 06 September 2019 CN 110609428 Α 24 December 2019 CN 110609428 В 10 March 2023 110709765 17 January 2020 CN A 110709784 17 January 2020 CN A 11071636221 January 2020 CN A 110716362 18 November 2022 CN В

CN

110720120

110832828

111061110

111106426

111106426

111550172

111550172

111550173

112004984

112055927

112236576

112243522

112243522

112262341

112272787

112313909

112313909

112615135

112627704

112731720

112771241

113204147

113219756

113219757

113227891

113267933

113362585

A

A

A

A

В

A

В

A

A

A

A

В

Α

A

Α

В

Α

A

A

A

A

A

A

A

A

Α

21 January 2020

21 February 2020

24 April 2020

05 May 2020

03 December 2021

18 August 2020

23 December 2022

18 August 2020

27 November 2020

08 December 2020

15 January 2021

19 January 2021

01 November 2022 22 January 2021

26 January 2021

02 February 2021

24 January 2023

06 April 2021

09 April 2021

30 April 2021

07 May 2021

03 August 2021

06 August 2021

06 August 2021

06 August 2021

17 August 2021

07 September 2021

INTERNATIONAL SEARCH REPORT International application No. Information on patent family members PCT/KR2023/005958 5 Publication date Patent document Publication date Patent family member(s) cited in search report (day/month/year) (day/month/year) CN113574832 A 29 October 2021 11358807502 November 2021 CN A CN 113608392 A 05 November 2021 10 CN 113655669 A 16 November 2021 CN 113889744 A 04 January 2022 CN 113934066 A 14 January 2022 14 January 2022 CN 113940014 A CN 113960844 A 21 January 2022 15 CN 114089575 25 February 2022 A CN 01 March 2022 114114777 A 05 April 2022 CN 114278210A CN 10 June 2022 114609841 A 24 June 2022 CN 114667763 A 20 CN 114675460 28 June 2022 CN 114687657 01 July 2022 CN 114729559 Α 08 July 2022 CN 114730117 A 08 July 2022 CN 114930239 A 19 August 2022 25 CN 115087846 20 September 2022 A 04 October 2022 CN 115144933 A 115185133 14 October 2022 CN A 115315563 08 November 2022 CN A 115380507 22 November 2022 CN A 30 CN 115398355 A 25 November 2022 CN 115398464 25 November 2022 CN 115461676 09 December 2022 A CN 115485614 A 16 December 2022 CN 115632483 A 20 January 2023 35 CN 115662040 31 January 2023 A CN 31 January 2023 115668048 A CN 115694661 03 February 2023 Α CN 115968454 14 April 2023 A CN 115987709 18 April 2023 A 40 EP 2517332 A2 31 October 2012 EP 2517332 31 October 2012 ΕP 2517332 26 September 2018 18 September 2013 EP 2638429 A1EP 2638429 A4 10 May 2017 45 ΕP 2638429 **B**1 24 February 2021 EP 2649490 16 October 2013 A2 EP 2649490 02 April 2014 A4 EP 2649490 **B**1 11 July 2018 EP 2686728 A2 22 January 2014 50 EP 2686728 A4 20 August 2014 EΡ 2686729 A2 22 January 2014 EP 2686729 A4 10 September 2014 EP 2686729 **B**1 08 May 2019 ΕP 2686730 A2 22 January 2014 EP 2686730 27 August 2014 A4

Form PCT/ISA/210 (patent family annex) (July 2022)

55

EP

2686730

В1

06 May 2020

INTERNATIONAL SEARCH REPORT International application No. Information on patent family members PCT/KR2023/005958 5 Publication date Patent document Publication date Patent family member(s) cited in search report (day/month/year) (day/month/year) ΕP 2791451 A122 October 2014 EP 2791451 A4 06 May 2015 EP 26 September 2018 2791451 **B**1 10 EΡ 2791451 B2 20 July 2022 EP 2837205 A1 18 February 2015 EP 2837205 06 January 2016 A4 EP 15 February 2017 2837205 B1 25 February 2015 EP 2839336 A115 EP 2839336 24 February 2016 A4 25 February 2015 EP 2839337 A1ΕP 25 November 2015 2839337 A4 EP 2839337 13 December 2017 **B**1 EP 04 March 2015 2841671 **A**1 20 EP 2841671 08 June 2016 EP 2841987 04 March 2015 EP 2841987 A4 16 March 2016 ΕP 2841987 B1 22 January 2020 EP 2880492 A1 10 June 2015 25 ΕP 2880492 27 April 2016 A4 ΕP 2880492 06 October 2021 **B**1 ΕP 2959088 30 December 2015 **A**1 EP 2959088 **B**1 02 January 2019 EP 04 May 2016 3014349 **A**1 30 01 March 2017 EP 3014349 A4 EP 3014349 B1 22 August 2018 EP 3114640 11 January 2017 A1 ΕP 3114640 A4 19 July 2017 EP 3114640 **B**1 02 November 2022 35 ΕP 3140694 15 March 2017 **A**1 ΕP 3140694 02 May 2018 A4 EP 3140694 **B**1 29 July 2020 EP 3161552 03 May 2017 A1 EP 21 March 2018 3161552 A4 40 EP 3161552 **B**1 15 January 2020 EP 3195301 **A**1 26 July 2017 ΕP 3195301 18 July 2018 A4 ΕP 3195301 31 March 2021 **B**1 09 August 2017 EP 3201582 **A**1 45 ΕP 3201582 30 May 2018 A4 EP 3223532 27 September 2017 A1 EP 3223532 09 October 2019 **B**1 EP 3224442 **A**1 04 October 2017 EP 3224442 A4 12 December 2018 50 EP 3224442 B1 04 January 2023 EΡ 3224901 **A**1 04 October 2017 EP 3224901 A4 10 October 2018 EP 3230943 **A**1 18 October 2017 ΕP 3230943 A4 04 July 2018 EP 3230943 **B**1 07 July 2021 55

Form PCT/ISA/210 (patent family annex) (July 2022)

EP

3234691

Α1

25 October 2017

INTERNATIONAL SEARCH REPORT International application No. Information on patent family members PCT/KR2023/005958 5 Publication date Patent document Publication date Patent family member(s) cited in search report (day/month/year) (day/month/year) EP 3234691 A4 01 August 2018 EP 3234691 27 July 2022 **B**1 EP 3271782 A124 January 2018 10 EΡ 3271782 A4 21 November 2018 EP 3320391 A1 16 May 2018 EP 3320391 20 February 2019 A4 EP 16 March 2022 3320391 B1 EP 3320534 A116 May 2018 15 EP 3320534 27 November 2019 A4 EP 25 July 2018 3350651 A1ΕP 22 May 2019 3350651 A4 EP 3359930 15 August 2018 **A**1 EP 3359930 A4 14 August 2019 20 EP 3360125 **A**1 15 August 2018 EP 3360125 A4 01 May 2019 EP 3360125 **B**1 22 September 2021 ΕP 3364241 A1 22 August 2018 EP 3364241 B1 03 June 2020 25 ΕP 3368736 05 September 2018 A1ΕP 3368736 03 July 2019 A4 ΕP 3415984 19 December 2018 **A**1 EP 3415984 **B**1 04 August 2021 EP 02 January 2019 3422095 **A**1 30 EP 3425450 **A**1 09 January 2019 EP 3425450 B1 24 November 2021 EP 3426874 **A**1 16 January 2019 ΕP 3426874 A4 01 January 2020 EP 3426874 **B**1 13 July 2022 35 ΕP 3434853 30 January 2019 **A**1 ΕP 3444664 20 February 2019 A1EP 3449341 A106 March 2019 EP 3449341 04 December 2019 A4 EP 3453072 13 March 2019 **A**1 40 EP 3453072 A4 01 January 2020 EP 3470611 **A**1 17 April 2019 ΕP 3470611 **B**1 01 September 2021 ΕP 3492973 05 June 2019 **A**1 26 June 2019 EP 3500891 **A**1 45 ΕP 3500891 25 March 2020 A4 EP 07 August 2019 3519889 A1 EP 29 April 2020 3519889 A4 EP 3520067 **A**1 07 August 2019 EP 3520067 A4 04 November 2020 50 EP 3522456 A107 August 2019 EΡ 3522456 **B**1 05 May 2021 EP 3523614 A1 14 August 2019

Form PCT/ISA/210 (patent family annex) (July 2022)

55

EP

ΕP

EP

EP

3523614

3545159

3545159

3548965

A4

A1

A4

A1

10 June 2020

02 October 2019

17 June 2020

09 October 2019

INTERNATIONAL SEARCH REPORT International application No. Information on patent family members PCT/KR2023/005958 5 Publication date Patent document Publication date Patent family member(s) cited in search report (day/month/year) (day/month/year) 05 August 2020 EP 3548965 A4 EP 3548965 04 January 2023 B1 EP 3555701 A2 23 October 2019 10 EΡ 3555701A4 27 May 2020 EP 3568562 A1 20 November 2019 EP 3568562 02 December 2020 A4 EP 3587723 A101 January 2020 EP 3594743 A115 January 2020 15 EP 3611707 19 February 2020 **A**1 EP 04 March 2020 3616000 A1ΕP 3616000 16 December 2020 A4 EP 04 March 2020 3616008**A**1 EP 3616008 A4 09 December 2020 20 EP 3616189 A2 04 March 2020 EP 3616189 A4 09 December 2020 EP 3705937 A109 September 2020 ΕP 3705937 B1 15 March 2023 EP 3751089 A1 16 December 2020 25 ΕP 3766162 20 January 2021 A13768934 27 January 2021 EP A1 ΕP 3768935 27 January 2021 **A**1 24 February 2021 EP 3781971 A1 EP 12 January 2022 3781971 A4 30 10 March 2021 EP 3788769 **A**1 EP 3803506 A2 14 April 2021 EP 3803815 14 April 2021 A1 ΕP 3811574 **A**1 28 April 2021 EP 3837414 **A**1 23 June 2021 35 ΕP 3848924 14 July 2021 A1 ΕP 3859444 04 August 2021 A1EP 3869265 A2 25 August 2021 EP 3869265 10 November 2021 A3 EP 08 September 2021 3876030 **A**1 40 EP 3887902 **A**1 06 October 2021 EP 3926572 22 December 2021 ΕP 3926572 22 December 2021 A4 29 December 2021 EP 3928477 **A**1 29 December 2021 EP 3929394 A1 45 ΕP 3929394 29 December 2021 A4 EP 29 December 2021 3929395 A1 29 December 2021 EP 3929395 A4 05 January 2022 EP 3933498 **A**1 EP 3933498 A4 05 January 2022 26 January 2022 50 EP 3944013 A1 EΡ 3966963 A2 16 March 2022 EP 3995885 **A**1 11 May 2022

Form PCT/ISA/210 (patent family annex) (July 2022)

55

EP

ΕP

EP

EP

4038449

4038929

4040230

4040230

A1

A1

A2

A3

10 August 2022

10 August 2022

10 August 2022

17 August 2022

INTERNATIONAL SEARCH REPORT International application No. Information on patent family members PCT/KR2023/005958 Patent document Publication date Publication date Patent family member(s) cited in search report (day/month/year) (day/month/year) 4048851 EP **A**1 31 August 2022 EP 4070583 12 October 2022 A1 EP 09 November 2022 4086697 A1 10 EΡ 4089262 **A**1 16 November 2022 EP 4097425 A1 07 December 2022 EP 4103809 **A**1 21 December 2022 EP 4104016 21 December 2022 A1EP 18 January 2023 4118497 A115 EP 4120012 18 January 2023 A1EР 4127829 08 February 2023 A1ΕP 412813008 February 2023 **A**1 22 February 2023 EP 4136504 **A**1 EP 4145379 08 March 2023 **A**1 20 EP 4147091 **A**1 15 March 2023 EP 4154060 **A**1 29 March 2023 EP 4170123 A126 April 2023 2718671 T3 03 July 2019 10-2187022 04 December 2020 KR **B**1 None 25 KR 10-2019-0081944 09 July 2019 KR 10-2127158 **B**1 26 June 2020 A 10-2011-0097697 31 August 2011 KR 10-1199504 В1 14 November 2012 KR A KR 10-2019-0122789 30 October 2019 CN 110573939 13 December 2019 EP 3590005 **A**1 08 January 2020 JP 2020-510572 A 09 April 2020 30 JP 7295801 B2 21 June 2023 US 2020-0207187 02 July 2020 A1wo 07 September 2018 2018-157241 **A**1 35 40 45 50 55