EP 4 498 661 A1

(19)

Européisches
Patentamt

European

Patent Office

Office européen
des brevets

(12)

(43) Date of publication:
29.01.2025 Bulletin 2025/05

(21) Application number: 24190414.3

(22) Date of filing: 23.07.2024

(51)

(52)

(11) EP 4 498 661 A1

EUROPEAN PATENT APPLICATION

International Patent Classification (IPC):
HO4L 69/166 (2022:01) GOG6F 9/455 (2018.01)
HO4L 47/36 (2022.01)

Cooperative Patent Classification (CPC):
HO04L 69/166; GO6F 9/45558; HO4L 47/36;
GO6F 2009/45595

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB

GRHRHUIEISITLILTLULV MC ME MK MT NL

NO PL PT RO RS SE SI SK SM TR
Designated Extension States:

BA

Designated Validation States:

GE KH MA MD TN

(30) Priority: 24.07.2023 US 202318225638

(71) Applicant: VMware LLC
Palo Alto, CA 94304 (US)

(72) Inventors:
* Mathew, Subin Cyriac
Palo Alto, 94304 (US)

Ang, Boon Seong

Palo Alto, 94304 (US)
Jiang, Wenyi

Palo Alto, 94304 (US)
Raman, Chidambareswaran
Palo Alto, 94304 (US)
Catrouillet, Jerome

Palo Alto, 94304 (US)

Song, Sichen

Palo Alto, 94304 (US)

Representative: Dilg, Haeusler, Schindelmann
Patentanwaltsgesellschaft mbH
Leonrodstrafe 58

80636 Miinchen (DE)

(54)

(57) Examples described herein include efficient
data packet transmission between virtual machines
(312, 342, 362), "VMs", on different hosts. An example
method includes generating a large data packet at a
source VM and determining a modified maximum seg-
ment size for efficient transmission. This modified size
replaces the default maximum segment size through a
TSO MSS override. Segmentation occurs based on the
modified size, and the data segments (290) are trans-
mitted to the destination VM (342, 362), even if on a
different host. Dynamic determination of the modified
size optimizes data transmission efficiency and network
performance. It accounts for network headers and en-
ables efficient transmission with or without large receiv-
ing offload, "LRO" support. Additionally, non-transitory
computer-readable media and servers implementing the
method are disclosed. These systems and methods
achieve streamlined data transmission, improving net-
work performance and reducing processing overhead.

UNDERLAY-BASED TCP SEGMENTATION OFFLOAD IN OVERLAY NETWORKS

~210

/
SERVER
SOURCE VM (TSO ENABLED)
™ 220
- 280

DATA (SIZE>MSS)

L. oama szEevss)

VM KERNEL
SPACE

(I ez]

[T4 DATA (sizE>MSS)

METADATA,
TSO = 1460

VNIC

QUTER HEADER

é !] _DATA(SIZEMSS) |
¥ METADATA:
| 260 TS0 = 1450
X
(S 5-4 o
= i E\j 4] DATASEG
% i S S \’\\
| 270 280

FIG. 2

Processed by Luminess, 75001 PARIS (FR)

1 EP 4 498 661 A1 2

Description
BACKGROUND

[0001] Modern computer networks attempt to optimize
data transmission efficiency and reduce strain on the
system’s central processing units ("CPUs") whenever
possible. To achieve these goals, network interface cards
("NICs") often employ a feature called Transmission
Control Protocol ("TCP") segmentation offload ("TSQO").
TSO assists in the efficient packaging and transmission
of data packets by offloading the segmentation process
from the CPU to the NIC hardware.

[0002] TSO is a widely supported feature in modem
NICs that helps optimize data transmission in computer
networks. By offloading the task of dividing and organiz-
ing data packets from the CPU to the NIC hardware, TSO
reduces the CPU workload and improves network per-
formance.

[0003] However, in certain network environments such
as overlay networks, TSO can face limitations. Overlay
networks separate the physical network infrastructure
from the virtual workloads running on top of it. In such
cases, when the physical, or underlay, network has a
much larger capacity for data transmission (known as
"maximum transmission unit" or "MTU") compared to the
overlay network, traditional TSO becomes a bottleneck.
[0004] The issue arises because traditional TSO uses
a smaller value for the TCP maximum segment size
("MSS") based on the limitations of the overlay network.
This results in the generation of a large number of small
packets when TSO is performed. Consequently, various
components in the network, including physical switches,
receiver NICs, and network functions at the receiver’s
virtualization layer, experience increased processing re-
quirements.

[0005] As a result, a need exists for systems and
methods that modifies the traditional TSO process based
on the capabilities of the underlying physical network. In
particular, a need exists for systems and methods for an
improved TSO method that dynamically adjusts the TCP
maximum segment size based on the underlying physical
network, and that maintains transparency of the physical
network to the virtual machines ("VMs"), ensuring seam-
less communication between the VMs and the underlying
network infrastructure.

SUMMARY

[0006] Examples described herein include systems
and methods for efficiently transmitting data packets
between virtual machines on different hosts. An example
method includes generating a large data packet at a
source VM. The method can include determining a mod-
ified maximum segment size for the data packet, which
can be based on various factors such as the underlying
physical network’s maximum segment size or a nego-
tiated end-to-end maximum segment size. The modified

10

20

25

30

35

40

45

50

55

maximum segment size can replace the default maxi-
mum segment size for the data packet, which can be
replaced by way of a TSO MSS override. The large data
packet can be segmented into data segments based on
the modified maximum segment size. These data seg-
ments can be transmitted to the destination VM, which
can be executing on a different physical host relative to
the source VM.

[0007] In an example implementation, the determina-
tion of the modified maximum segment size and its
replacement of the default maximum segment size can
be performed dynamically before handling any new large
data packet at the source VM. By proactively adjusting
the maximum segment size, the method can optimize
data transmission efficiency and network performance
on the fly, adjusting to the underlying physical network as
needed. These adjustments can be made dynamically,
such that changes to the underlying physical network are
accounted for before additional packets are sent.
[0008] In an example embodiment, the modified max-
imum segment size can account for the headers added
by both the underlying network and the overlay network,
ensuring accurate segmentation and efficient transmis-
sion. Moreover, if the destination VM supports large
receiving offload ("LRQ"), the transmitted data segments
can be processed at the destination VM without the need
for resegmentation. Alternatively, in an example where
the destination VM does not support LRO, it may require
resegmentation at the destination VM. Even in that ex-
ample, however, throughput would increase by way of
fewer packets being sent across the network.

[0009] This disclosure also includes example non-
transitory, computer-readable media containing instruc-
tions that, when executed by a hardware-based proces-
sor, perform some or all of the method stages described
above and elsewhere herein. In another example, a
server is disclosed. The server can include a memory
storage including a non-transitory, computer-readable
medium comprising instructions, and a hardware-based
processor that executes the instructions to carry out
stages. The processor can carry out some or all of the
method stages described above and elsewhere herein,
for example. In some examples, multiple servers are
utilized to perform various different stages of the method,
as described in conjunction with the drawings, below.
[0010] By employing the example systems and meth-
ods herein, efficient and streamlined data transmission
between VMs on different hosts can be achieved. This
can result in improved network performance, reduced
processing overhead, and enhanced overall efficiency of
data packet delivery.

[0011] Both the foregoing general description and the
following detailed description are exemplary and expla-
natory only and are not restrictive of the examples, as
claimed.

3 EP 4 498 661 A1 4

BRIEF DESCRIPTION OF THE DRAWINGS

[0012]

FIG. 1 is a flowchart of an example method for
efficiently transmitting data packets between VMs
on different hosts.

FIG. 2 is a flowchart of an example server sending a
data packet using TSO.

FIG. 3 is a flowchart of an example method for
efficiently transmitting data packets between VMs
on different hosts.

FIG. 4 is a graph showing throughput based on link
capacity using the methods described herein versus
without using those methods, for a VM that is LRO
enabled.

FIG. 5 is a graph showing throughput based on link
capacity using the methods described herein versus
without using those methods, for a VM that is not
LRO enabled.

DESCRIPTION OF THE EXAMPLES

[0013] Reference will now be made in detail to the
present examples, including examples illustrated in the
accompanying drawings. Wherever possible, the same
reference numbers will be used throughout the drawings
to refer to the same or like parts.

[0014] Examples described herein include efficient
data packet transmission between virtual machines
("VMs") on different hosts. An example method includes
generating a large data packet at a source VM and
determining a modified maximum segment size for effi-
cient transmission. This modified size replaces the de-
fault maximum segment size through a TSO MSS over-
ride. Segmentation occurs based on the modified size,
and the data segments are transmitted to the destination
VM, even if on a different host. Dynamic determination of
the modified size optimizes data transmission efficiency
and network performance. It accounts for network head-
ers and enables efficient transmission with or without
large receiving offload (LRO) support. Additionally,
non-transitory computer-readable media and servers
implementing the method are disclosed. These systems
and methods achieve streamlined data transmission,
improving network performance and reducing proces-
sing overhead.

[0015] Modem network interface cards offer a rich set
of offload features that reduce the CPU’s computational
load. TSO and LRO significantly reduce the number of
packets processed by the OS networking protocol stack
to improve TCP performance. With TSO, the operating
system ("OS") networking stack can pass a large TCP
send buffer directly to the physical NIC, which splits the
bufferinto smaller packets based on the MSS of that TCP
session. On the other hand, LRO enables NICs to ag-
gregate multiple TCP segments into a single large one
before passing them to the OS networking stack.

10

15

20

25

30

35

40

45

50

55

[0016] In the networking environment, traffic from the
client VMs can be encapsulated and sent through a
physical underlay, which the environment abstracts away
from the user to simplify network operations. The users
only need to configure the virtual network, or overlay, and
the networking environment translates the overlay con-
figuration into a set of underlay data forwarding rules.
[0017] TSO can be performed based on the MSS
metadata from the VM networking stack, which is not
underlay-aware. It is common to have an overlay MTU
much smaller than the underlay MTU. As MTU limits the
packet size, overlay MTU affects the MSS of an overlay
TCP flow. TSO can therefore produce a large number of
TCP packets whose size is much smaller than the under-
lay MTU. Processing a large number of small packets at
the receiver can be a burden for its physical NIC and
CPU.

[0018] FIG. 1 provides aflowchart of an example meth-
od for efficiently transmitting data packets between VMs
on different hosts. Stage 110 can include generating a
large data packet a source VM. In the described method,
stage 110 involves the handling of a data packet at the
source VM that requires transmission to a destination
entity, such as another VM within the virtualized environ-
ment. While the term "generation" is used in the context of
stage 110, it encompasses the action of preparing a
received data packet for subsequent transmission rather
than implying its creation from scratch at that VM.
[0019] During this stage, the source VM generates or
receives a large data packet, which can originate from
various sources within the virtualized environment or
even external systems. This data packet may contain a
substantial amount of information or a sizable payload
that exceeds the size thresholds typically supported by
TCP Segmentation Offload (TSO) methods. More spe-
cifically, the data packet may be larger than TCP max-
imum segment size ("MSS") based on the limitations of
the overlay network, even though the physical underlay
network might be able to handle the packet size.
[0020] In some traditional scenarios, TSO can be per-
formed based on the MSS metadata from the VM net-
working stack, which traditionally is not underlay-aware.
It is common to have an overlay maximum transmission
unit (MTU) much smaller than the underlay’s MTU. As
MTU limits the packet size, overlay MTU affects the MSS
of an overlay TCP flow. TSO can therefore produce a
large number of TCP packets whose size is much smaller
than the underlay MTU. Processing a large number of
small packets at the receiver can be a burden for its
physical NIC and CPU.

[0021] Instage 120 ofthe disclosed method, a modified
MSS for the data packet can be determined based on the
path MTU of the underlying physical system. This step
involves determining the modified MSS to optimize trans-
mission efficiency within the network infrastructure. For
example, the underlying physical system, comprising
network components and devices, sets an MTU that
specifies the maximum size of individual packets trans-

5 EP 4 498 661 A1 6

mitted over the network. Taking this into consideration,
the method dynamically determines an appropriate mod-
ified MSS for the data packet independent of the overlay
limitations, ensuring efficient transmission without frag-
mentation or data loss.

[0022] The determination of the modified MSS ac-
counts for the constraints imposed by the path’s MTU.
Various techniques and algorithms can be employed in
the determination process to determine the modified
MSS based on the MTU of the data-routing path of the
underlying physical system. One example approach in-
volves probing the network to obtain the MTU, which
entails sending test packets with different sizes and
analyzing the responses received. By measuring the
maximum packet size that can be transmitted without
fragmentation or errors, the method can determine the
appropriate modified MSS for the data packet.

[0023] Additionally, the determination process may
utilize preconfigured MTU values specific to the network
environment. These values can be predetermined based
on the characteristics of the network infrastructure or
obtained from network configuration settings. By lever-
aging these preconfigured MTU values, the method can
expedite the determination of the modified MSS, saving
time and resources in the process. By determining the
MSS based on the path’s MTU, the method optimizes
transmission efficiency without being constrained by de-
fault limits originating from within the virtualized environ-
ment.

[0024] Stage 130 of the method can include replacing
the default MSS for the data packet with the modified
MSS determined at stage 120. Stage 130 can be imple-
mented at the hypervisor kernel level, such that the
virtualized components running on top of the hypervisor
remain unaware of any change in MSS. To be clear,
references to the "hypervisor" with respect to this stage
are intended to refer to the hypervisor that controls the
execution and resource allocation of the source VM. That
is, stage 130 can be performed by the hypervisor rather
than being performed by a gateway or other external
component for handling network-traffic communications.
[0025] In addition, although the term "replacing" is
used to describe adding a modified MSS, this term is
explicitly not intended to necessarily include displacing,
deleting, or otherwise removing the original MSS. To the
contrary, "replacing" can mean adding the modified MSS
to the packet header while leaving the original MSS in
place or moving the original MSS to another location in
the data packet header-in this example, the modified
MSS is replacing the original MSS as the operable
MSS for data packet transmission while the original
MSS remains in an encapsulation header field of the
packet header. While this disclosure mentions of adding
or modifying a MSS value to or in "the data packet," it
should be understood that such a description includes
adding or modifying values within metadata associated
with the data packet, such as an encapsulation header,
rather than altering the payload of the data packet itself.

10

15

20

25

30

35

40

45

50

55

[0026] By default, the MSS represents the maximum
size of a TCP segment within the standard TCP/IP pro-
tocol based on the limitations of the overlay network.
However, to accommodate the specific requirements
and optimizations identified during the previous stages,
the method replaces the default MSS with a modified
value. The modified MSS reflects the optimized segment
size that aligns with the determined path’s maximum
MTU, but can also include other network characteristics
as well. This replacement allows for more efficient trans-
mission and reduces the likelihood of packet fragmenta-
tion or unnecessary overhead.

[0027] At the hypervisor kernel level, the necessary
modifications are made to the network stack or relevant
components to ensure that the data packets transmitted
by the VMs adhere to the newly set modified MSS. This
can include, for example, inserting information into a
packet header indicating the modified MSS value. In
another example, this stage includes supplying addi-
tional metadata that indicates the modified MSS value.
[0028] At stage 140, the large data packet can be
segmented into smaller data segments based on the
modified MSS as previously provided by the hypervisor.
Each segment is sized according to the modified MSS
established in the previous stages of the method. This
segmentation process occurs at a physical uplink com-
ponent, or components, of the hypervisor and is designed
to facilitate efficient transmission of the data within the
network by minimizing the number of packets transmitted
across the physical network.

[0029] For example, if the modified MSS is set to a
specific value, the large data packet will be divided into
segments of equal or smaller sizes to ensure compliance
with the modified MSS. These segments are tailored to fit
within the network’s maximum MTU and prevent frag-
mentation or loss of data during transmission.

[0030] The segmentation process can take place at
one or more physical uplink components of the hypervi-
soror network infrastructure, which typically include NICs
or other network devices responsible for transmitting
data between hypervisors residing on different physical
servers. These components are equipped with the ne-
cessary capabilities to segment the large data packetinto
smaller data segments based on the modified MSS.
[0031] At stage 150 of the example method, the seg-
mented data segments are transmitted from the source
host to a destination host that executes the destination
VM. The destination host can be a different physical
server within the networking environment. This stage
of the method involves the transfer of the segmented
data over the network to ensure reliable delivery and
effective communication between VMs.

[0032] The transmission process can follow estab-
lished networking protocols and mechanisms, such as
TCP, for segmenting the original data packet and trans-
mitting the data segments. These protocols ensure the
reliable and orderly delivery of the segmented data seg-
ments from the source to the destination VM. During

7 EP 4 498 661 A1 8

transmission, the network infrastructure routes the seg-
mented data segments through various network compo-
nents, such as switches, routers, and other networking
devices. The network infrastructure ensures that the data
segments reach the intended destination VM on the other
host.

[0033] Upon receiving the segmented data segments,
the destination VM’s physical uplink component(s) reas-
sembles them into the original large data packet. This
reassembly process aligns with the modified MSS and
ensures that the data is reconstructed accurately. If the
destination VM supports LRO, the transmitted data seg-
ments can be processed at the destination VM without
the need for resegmentation. This can include, for ex-
ample, restoring the original MSS that is stored in an
encapsulation field (or other field) of the header of the
data packet. Alternatively, the destination VM does not
support LRO, it may require resegmentation at the des-
tination VM. Even in that example, however, overall
throughput would increase by way of fewer packets being
sent across the network.

[0034] In some example networking systems, TSO is
not necessarily performed immediately after the VM net-
working stack sends a large TCP packet with its virtua-
lized network adapter ("vNIC"). Instead, the vNIC of the
VM can simply mark the MSS as packet metadata. The
packet is then passed to the vSwitch of the hypervisor.
TSO is only performed when a large TCP packet is
switched to the uplink of the vSwitch. In this example,
the packet should already be encapsulated, and the
uplink physical NIC of the hypervisor will segment it into
a set of smaller packets before transmitting them on the
wire. An example of this infrastructure is shown in FIG. 2.
[0035] In more detail, FIG. 2 depicts a server 210
executing a source VM 220. The source VM 220 includes
various components, including a VM user space 230, a
VM kernel space 240, and a vNIC 250. The VM user
space 230 can represent the portion of the source VM
220 that encompasses the user-level applications, pro-
cesses, and services. It provides a runtime environment
where user applications can execute and interact with the
underlying virtualization infrastructure.

[0036] In the VM user space 230, various software
programs and applications run, enabling users to utilize
specific functionalities or services provided by the source
VM 220. In the example of FIG. 2, the application layer of
the VM user space 230 has generated a data packet 280
with a size that exceeds the MSS associated with the
components of the VM 220. This data packetis passed to
the VM kernel space 240.

[0037] The VM kernel space 240 includes the core
operating system components and functionalities that
drive the operation of the source VM 220. It hosts the
VM kernel, which is responsible for managing system
resources, scheduling tasks, handling memory manage-
ment, and facilitating communication between the user
space and the underlying hypervisor or virtualization
platform. The VM kernel space 240 provides an essential

10

15

20

25

30

35

40

45

50

55

layer of abstraction and control, enabling the source VM
220 to efficiently utilize the physical resources of the
server 210.

[0038] As shown, the VM kernel space 240 includes
TCP, IP, and Ethernet elements. TCP is responsible for
establishing reliable, connection-oriented communica-
tion between network endpoints. IP, which stands for
Internet Protocol, handles the addressing and routing
of data packets across the network. Ethernet, a widely
used networking technology, provides the physical trans-
mission and reception of data packets within the network
infrastructure. Each of these components can optionally
append or modify metadata associated with the data
packet 280, as illustrated by the shaded areas added
to the lefthand-side of the data packet 280.

[0039] The vNIC 250 of FIG. 2 enables network com-
munication between the source VM 220 and other com-
ponents in the network. It functions as a virtual repre-
sentation of a physical NIC, allowing the source VM 220
to send and receive data packets over the network. The
VNIC 250 acts as the intermediary between the VM kernel
space 240 and the underlying physical network infra-
structure, providing network connectivity to the source
VM 220. It encapsulates network-related operations and
protocols, allowing the source VM 220 to seamlessly
exchange data with other VMs, physical hosts, or exter-
nal networks.

[0040] FIG. 2 also shows components related to a
hypervisor executing on the server 210, including a ker-
nel layer 260 and a physical uplink layer 270. The kernel
can be located within the hypervisor and is responsible
for managing and overseeing various virtualization func-
tions. In the context of network operations, the kernel
layer 260 performs virtual network encapsulation of the
data packet 280. This process can include adding an
outer header to the data packet 280, encapsulating it
within additional metadata that enables virtualized net-
work functionality.

[0041] The physical uplink layer 270 can perform TSO,
segmenting the data packet 280 into smaller segments
290 of data that fall within an allowable MSS range. The
physical uplink layer 270 can be situated at the network
interface level. It can segment the data packet 280 into
data segments 290 that fall within an allowable MSS
range as indicated in the metadata appended to the data
packet 280. In this particularexample, the MSS for TSO is
1460 bytes, based on the limitations of the virtualized
overlay rather than the physical underlay.

[0042] After the physical uplink layer 270 performs
TSO and creates appropriately sized data segments
290, it can transmit those data segments 290 across
the network to another server hosing a destination VM.
[0043] While the example of FIG. 2 involves using a
TSO MSS based on the limitations of the virtualized
overlay, FIG. 3 provides an example that includes mod-
ifying the MSS based on the capabilities of the physical
underlay.

[0044] In more detail, FIG. 3 depicts a source server

9 EP 4 498 661 A1 10

310 and a destination server 340. The source server 310
includes a source VM 312, which generates data to be
sent elsewhere. Destination server 340 includes two
different destinations VMs 342, 362. One destination
VM 342 is LRO enabled, which allows it to process large
data packets. Meanwhile, destination VM 362 is LRO
disabled, meaning it cannot process the same size data
packets, and instead requires further segmentation of
data packets before processing. The example of FIG. 3
provides examples of sending data from a source VM 312
to both of the destination VMs 342, 362.

[0045] The various VMs 312,342, 362 shownin FIG. 3
include various respective components, including a VM
user space 314, 344, 364, a VM kernel space 318, 346,
366, and a vNIC 318, 348, 368. The VM user space 314,
344, 364 can represent the portion of the VM 312, 342,
362 that encompasses the user-level applications, pro-
cesses, and services. It provides a runtime environment
where user applications can execute and interact with the
underlying virtualization infrastructure.

[0046] In the VM user space 314, 344, 364, various
software programs and applications run, enabling users
to utilize specific functionalities or services provided by
the respective VM 312, 342, 362. In the example of FIG.
3, the application layer of the source VM’s 312 user space
314 has generated a data packet 380 with a size that
exceeds the MSS associated with the components of the
VM 312. This data packet is passed to the VM kernel
space 316.

[0047] TheVMKkernel space 316,346,366 includes the
core operating system components and functionalities
that drive the operation of the respective VMs 312, 342,
362. It hosts the VM kernel, which is responsible for
managing system resources, scheduling tasks, handling
memory management, and facilitating communication
between the user space and the underlying hypervisor
or virtualization platform. The VM kernel space 316, 346,
366 provides an essential layer of abstraction and con-
trol, enabling the VMs 312, 342, 362to efficiently utilize
the physical resources of the servers 310, 340.

[0048] As shown, the VM kernel space 316, 346, 366
includes TCP, IP, and Ethernet elements. TCP is respon-
sible for establishing reliable, connection-oriented com-
munication between network endpoints. IP, on the other
hand, handles the addressing and routing of data packets
across the network. Ethernet, a widely used networking
technology, provides the physical transmission and re-
ception of data packets within the network infrastructure.
Each of these components can optionally append or
modify metadata associated with the data packet 380
after it is created by the application layer at stage 381.
The shaded areas added to the lefthand-side of the data
packet 280 are intended to represented appended or
modified metadata of the data packet 380 in this example.
Similarly, stages 395 and 398 can include processing and
removing the metadata as necessary before providing
the data packet (or packets) to the respective application
layer.

10

15

20

25

30

35

40

45

50

55

[0049] The vNIC 318, 348, 368 of each respective VM
312, 342, 362 enables network communication between
the VMs 312, 342, 362 and other components in the
network. It functions as a virtual representation of a
physical NIC, allowing the VMs 312, 342, 362 to send
and receive data packets over the network. The vNIC
318, 348, 368 acts as the intermediary between the VM
kernel space 316, 346, 366 and the underlying physical
network infrastructure, providing network connectivity to
the VMs 312, 342, 362. It encapsulates network-related
operations and protocols, allowing the VMs 312, 342, 362
to seamlessly exchange data with other VMs, physical
hosts, or external networks. These functions can be
represented by stage 382 in the example of the source
VM 312, and stages 394 and 397 in the example of the
destination VMs 342, 362.

[0050] FIG. 3 also shows components related to hy-
pervisors executing on the servers 310, 340, including a
kernel layer 320, 350 and a physical uplink layer 322,
352. Each kernel can be located within a respective
hypervisor and is responsible for managing and over-
seeing various virtualization functions. In the context of
network operations, the kernel layer 320, 350 performs
virtual network encapsulation of the data packet 380.
This process can include adding an outer header to
the data packet 280, encapsulating it within additional
metadata that enables virtualized network functionality.
This process can be represented by stage 383, for ex-
ample.

[0051] Inthe example of FIG. 3, at stage 383 the kernel
layer 320 of the hypervisor overrides the TSO MSS
previously set in the metadata at stage 381. More spe-
cifically, the TSO MSS in this example was originally set
to 1460 bytes, similar to the example of FIG. 2. This MSS
limit can be implemented based on the limitations of the
virtualized overlay components. However, in this exam-
ple, the physical underlay components are capable of
sending larger data packets. As a result, the kernel layer
320 overrides the TSO MSS and sets a new value-in this
example, 8760 bytes. The override step can be per-
formed by modifying or inserting new metadata ap-
pended to the data packet 380 to create a modified data
packet 390. Although the kernel layer 320 includes an
element titled "NSX encapsulation," this element can be
any overlay module of the kernel layer and is not specific
to any particular platform.

[0052] The override step at stage 383 can be per-
formed by the hypervisor that controls the execution
and resource allocation of the source VM, rather than
being performed by a gateway or other external compo-
nent for handling network-traffic communications. In ad-
dition, this step can include creating or modifying packet
metadata to include the new MSS value. The new MSS
value is then passed to the physical uplink layer as packet
metadata. The original MSS can be saved in the encap-
sulation header so that the packet can be resegmented at
the receiver side, such as where the receiving VM does
not support LRO.

1 EP 4 498 661 A1 12

[0053] The modified data packet 390, which can in-
clude the new MSS value as packet metadata, can then
be passed to the physical uplink layer 322 at stage 384.
The physical uplink layer 322 can be the hypervisor
software which understands the capabilities of the phy-
sical NIC and adjusts the packets based on those cap-
abilities before sending and after receiving the packets to
orfrom the physical NIC. For example, the physical uplink
layer 322 is responsible for performing TSO if the physi-
cal NIC does not support TSO. If the physical NIC sup-
ports TSO, the physical uplink layer will pass the large
packet to the physical NIC, but will also inform it of the
MSS for that packet, as a buffer descriptor or other form of
metadata, so that the physical NIC can perform the TSO.
[0054] In this example, at stage 391, the hypervisor of
the source VM 310 transmits the modified data packet
390 to the hypervisor of the destination VM 340. The
physical uplink layer 352 of the destination VM 340 can
then transfer the data packet 390 to the kernel layer 350.
At the kernel layer 350 of the receiving hypervisor, the
TSO MSS can be overridden again, this time to return the
value to its original value as set by the source VM 312. By
returning the TSO MSS value to the original value, the
MSS modification remains invisible to the VMs 312, 342,
362 involved in the data transmission process.

[0055] FIG. 3 shows two variations in an example
method depending upon whether the receiving VM
342, 362 supports LRO. For example, if the receiving
VM 342 supports LRO, then at stage 393 the kernel layer
350 can transmit data packet 390 in its large form; that is,
without segmenting the data packet 390. In that example,
the vNIC 348 of the destination VM 342 provides the LRO
functionality and handles the data packet 390, passing it
tothe VM kernel space 346 at stage 394. The data packet
390 can then be stripped of any headers or other meta-
datathatare notrequired for the application layer, and the
resulting data packet 390 can then be passed to the
application layer at stage 395. At that point, the transmis-
sion procedure is complete for the data packet 380
created at the source VM 312.

[0056] In another example, the destination VM 362
does not support LRO. In that example, at stage 396,
the kernel space 350 passes the large data packet 390 to
the vNIC 368 of the destination VM 362. The vNIC 368
can then segment the data packet 390 into smaller data
segments that fall within the TSO MSS of 1460 bytes, as
shown. The smaller-sized data segments can then be
passed to the VM kernel space 366 at stage 397. These
data segments can then be stripped of any headers or
other metadata that are not required for the application
layer, and the resulting data segments can then be
passed to the application layer at stage 398.

[0057] Although FIG. 3 shows only one data packet
390 sent between the source server 310 and destination
server 340, the method can include sending multiple data
packets 390. For example, the overall package of data
being sent between the servers 310, 340 can be 2 MB.
With a maximum packet size of 1460 byes, this overall

10

15

20

25

30

35

40

45

50

55

data package would require the transmission of 1437
individual packets. But with a maximum packet size of
8760 bytes based on the limits of the physical compo-
nents involved in the transmission path, the same data
packet would require only 240 individual packets. This
greatly reduces the load on the physical components in
the network and makes data transmission faster and
more efficient.

[0058] FIG. 4 shows example results from a real-world
test of a system as reflected in FIG. 3, with an LRO-
enabled destination VM. As the link capacity increases,
the system moves from being "network-bounded" to
being "CPU-bounded." As shown in the graphs of FIG.
4, before the link capacity reaches 11 Gb/s, both the
baseline and the improved design described herein have
the TCP throughput reaching the link capacity. Mean-
while, CPU usage gradually increases as throughput
increases. The link capacity limits the TCP throughput.
In this case, the improved design shows a large CPU
usage reduction while achieving the same throughput.
For example, at link capacity being 11Gb/s, both imple-
mentations achieve 98% bandwidth utilization. However,
the improved design uses 49.6% of a CPU core while the
baseline already fully uses CPU.

[0059] Dynamic TSO MSS overriding achieves re-
duced CPU utilization by sending a smaller number of
larger packets to the underlay. When encapsulated pack-
ets reach the destination hypervisor, each packet must
go throughput a set of NSX processing steps, including
decapsulation, switching, and applying firewall checks.
Thus, a reduced number of packets results in a reduced
CPU load. The saved CPU resources can be used by the
workload VMs to achieve improved performance.
[0060] As the link capacity increases beyond 11Gb/s,
the baseline implementation is limited by the CPU and
has its TCP throughput remain at 11Gb/s. For the im-
proved design, the throughput increases with the link
capacity until 21Gb/s. Afterward, the improved design
starts to be bounded by the CPU, and the TCP throughput
stays the same.

[0061] When both implementations are CPU bounded,
the improved design as described herein achieves higher
throughput. The existing implementation can achieve at
most 11.1Gb/s while 21.4Gb/s is achieved with dynamic
TSO MSS overriding. More efficient use of the CPU
contributes to these throughput improvements.

[0062] FIG. 5 shows a similar graph showing results
froma similar test, butfora systemwhere LRO is disabled
at the destination VM. When the LRO is disabled at the
destination VM, each packet passed to its OS networking
stack must comply with its MTU, which can be a 1500-
byte limit forexample. Compared to having LRO enabled,
performance decreases due to the increased number of
I/0O operations. The performance improvement of the
improved design over the baseline is also reduced when
LRO is disabled, due to the overhead of software-based
packet re-segmentation at the vNIC back end. These
experiment results when LRO is disabled are shown in

13 EP 4 498 661 A1 14

FIG. 5.

[0063] Nevertheless, the experimental results look si-
milarto those of FIG. 4. Thatis, compared to the baseline,
dynamic TSO MSS overriding reduces the CPU load and
can achieve higher throughput. The baseline design is
CPU bounded at 6.9Gb/s while the improved design
reaches 12.7Gb/s. An 84% improvement is achieved.
Therefore, disabling LRO reduces the throughput im-
provement of the improved design from 92% to 84% in
the example experiment. The decrease is likely due to
software-based re-segmentation only being applied
when LRO is disabled. Throughput is still significantly
improved in this case, thanks to the reduced number of
packets processed by the networking stack at the hyper-
visor kernel.

[0064] Other examples of the disclosure will be appar-
ent to those skilled in the art from consideration of the
specification and practice of the examples disclosed
herein. Though some of the described methods have
been presented as a series of steps, it should be appre-
ciated that one or more steps can occur simultaneously,
in an overlapping fashion, orin a different order. The order
of steps presented is only illustrative of the possibilities
and those steps can be executed or performed in any
suitable fashion. Moreover, the various features of the
examples described here are not mutually exclusive.
Rather any feature of any example described here can
be incorporated into any other suitable example. It is
intended that the specification and examples be consid-
ered as exemplary only, with a true scope and spirit of the
disclosure being indicated by the following claims.

Claims

1. A method for efficiently transmitting data packets
(280, 380, 390) between virtual machines (312,
342, 362), "VMs", on different hosts, comprising:

generating a data packet (280, 380, 390) at a
source VM (312) on a source host, the data
packet (280, 380, 390) including in a header
field a value indicating a default maximum seg-
ment size, "default MSS",;

receiving the data packet (280, 380, 390) at a
hypervisor that controls the execution and re-
source allocation of the source VM (312);
determining, by the hypervisor, a modified max-
imum segment size ("modified MSS") for the
data packet (280, 380, 390);

replacing, by the hypervisor, the default MSS for
the data packet (280, 380, 390) with the modified
MSS;

segmenting, at the source host, the data packet
(280, 380, 390) into data segments (290) based
on the modified MSS; and

transmitting the data segments (290) to the
destination VM (342, 362).

10

15

20

25

30

35

40

45

50

55

2. Themethod of claim 1, comprising at least one of the
following featues:

wherein the modified MSS is determined based
on an underlay maximum segment size, the
underlay maximum segment size correspond-
ing to a maximum segment size associated with
an underlying physical network supporting at
least the source VM (312);

wherein the modified MSS is determined based
on an end-to-end maximum segment size ne-
gotiated by the source VM (312) and destination
VM (342, 362).

3. The method of claim 1 or 2, wherein the default MSS
is inserted into an other portion of the data packet
(280, 380, 390).

4. The method of claim 3, wherein the other portion of
the data packet (280, 380, 390) is an encapsulation
header field.

5. The method of any of claims 1 to 4, comprising at
least one of the following features:

wherein the destination VM (342, 362) is cap-
able of large receiving offload, "LRO",, and
wherein the method further comprises, at the
destination VM (342, 362), processing the trans-
mitted data segments (290) without performing
resegmentation on those data segments (290);
wherein determining and replacing are per-
formed before handling a new data packet
(280, 380, 390) generated at the source VM
(312).

6. A non-transitory, computer-readable medium con-
taining instructions that, when executed by a hard-
ware-based processor, cause the processor to per-
form stages for efficiently transmitting data packets
(280, 380, 390) between virtual machines (312, 342,
362), "VMs", on different hosts, the stages compris-

ing:

generating a data packet (280, 380, 390) at a
source VM (312) on a source host, the data
packet (280, 380, 390) including in a header
field a value indicating a default maximum seg-
ment size, "default MSS";

receiving the data packet (280, 380, 390) at a
hypervisor that controls the execution and re-
source allocation of the source VM (312);
determining, by the hypervisor, a modified max-
imum segment size, "modified MSS" for the data
packet (280, 380, 390);

replacing, by the hypervisor, the default MSS for
the data packet (280, 380, 390) with the modified
MSS;

7.

10.

1.

15 EP 4 498 661 A1 16

segmenting, at the source host, the data packet
(280, 380, 390) into data segments (290) based
on the modified MSS; and
transmitting the data segments (290) to the
destination VM (342, 362).

The non-transitory, computer-readable medium of
claim 6, comprising at least one of the following
features:

wherein the modified MSS is determined based
on an underlay maximum segment size, the
underlay maximum segment size correspond-
ing to a maximum segment size associated with
an underlying physical network supporting at
least the source VM (312);

wherein the modified MSS is determined based
on an end-to-end maximum segment size ne-
gotiated by the source VM (312) and destination
VM (342, 362).

The non-transitory, computer-readable medium of
claim 6 or 7, wherein the default MSS is inserted
into an other portion of the data packet (280, 380,
390).

The non-transitory, computer-readable medium of
claim 8, wherein the other portion of the data packet
(280, 380, 390) is an encapsulation header field.

The non-transitory, computer-readable medium of
any of claims 6 to 9, comprising at least one of the
following features:

wherein the destination VM (342, 362) is cap-
able of large receiving offload, "LRO", and
wherein the stages further comprise, at the des-
tination VM (342, 362), processing the trans-
mitted data segments (290) without performing
resegmentation on those data segments (290);
wherein determining and replacing are per-
formed before handling a new data packet
(280, 380, 390) generated at the source VM
(312).

A server for efficiently transmitting data packets
(280, 380, 390) between virtual machines (312,
342, 362), "VMs", comprising:

a memory storage including a non-transitory,
computer-readable medium comprising instruc-
tions; and

a hardware-based processor that executes the
instructions to carry out stages comprising:

generating a data packet (280, 380, 390) at
a source VM (312) on a source host, the
data packet (280, 380, 390) including in a

10

15

20

25

30

35

40

45

50

55

12,

13.

14.

15.

header field a value indicating a default
maximum segment size ("default MSS");
receiving the data packet (280, 380, 390) at
a hypervisor that controls the execution and
resource allocation of the source VM (312);
determining, by the hypervisor, a modified
maximum segment size ("modified MSS")
for the data packet (280, 380, 390);
replacing, by the hypervisor, the default
MSS for the data packet (280, 380, 390)
with the modified MSS;

segmenting, at the source host, the data
packet (280, 380, 390) into data segments
(290) based on the modified MSS; and
transmitting the data segments (290) to the
destination VM (342, 362).

The server of claim 11, comprising at least one of the
following features:

wherein the modified MSS is determined based
on an underlay maximum segment size, the
underlay maximum segment size correspond-
ing to a maximum segment size associated with
an underlying physical network supporting at
least the source VM (312);

wherein the modified MSS is determined based
on an end-to-end maximum segment size ne-
gotiated by the source VM (312) and destination
VM (342, 362).

Theserverofclaim 11 or 12, wherein the default MSS
is inserted into an other portion of the data packet
(280, 380, 390).

The server of claim 13, wherein the other portion of
the data packet (280, 380, 390) is an encapsulation
header field.

The server of any of claims 11 to 14, wherein deter-
mining and replacing are performed before handling
a new data packet (280, 380, 390) generated at the
source VM (312).

EP 4 498 661 A1

GENERATE LARGE DATA
PACKAGE AT SOURCE VM

110

v

DETERMINE MODIFIED MAXIMUM SEGMENT
SIZE FOR DATA PACKET BASED ON PATH
MAXIMUM TRANSMISSION UNIT OF
UNDERLYING PHYSICAL SYSTEM

120

v

REPLACE DEFAULT MAXIMUM SEGMENT
SIZE FOR DATA PACKET WITH MODIFIED
MAXIMUM SEGMENT SIZE

130

v

SEGMENT LARGE DATA PACKET INTO
DATA SEGMENTS BASED ON MODIFIED
MAXIMUM SEGMENT SIZE

/140

A 4

TRANSMIT DATA SEGMENTS TO
DESTINATION VM ON ANOTHER HOST

/150

FIG. 1

10

EP 4 498 661 A1

/210

SERVER

SOURCE VM (TSO ENABLED) /
3} 220”7
g% / DATA (SIZE>MSS)
> 280
- v
'] DATA (SIZE>MSS)
m
= LU
rQ v
Us DATA (SIZE>MSS)
1))
p=
S
\
DATA (SIZE>MSS)
" : v
O E49] DATA (SIZE>MSS)
z 250 '
> METADATA:
TSO = 1460
OUTER HEADER
d L\ 4
Z NSX ENCAPSULATION DATA (SIZE>MSS)
L
X METADATA:
| _— 260 TSO = 1460
Ly —
OZ| [rritvisris, ;"‘;é'f:;é":;éia
N \/\“(2\\ 7(jTS‘OK\\‘K\\‘K(,
C>I-J o Ej?’.‘\ E\z‘\ E\zz’; rly ‘.\)/LQ ‘.\)/LQ :\)ﬂ*
i 270
T 290
FIG. 2 v

1"

EP 4 498 661 A1

€ 9Old 16g” d g
2] R09vL:'SSW OINO, BG = Nmm\ S=
 IECEIENERK [C 0
" =9 Vet 0SL; =9
iace—1 ||l 06¢€ i =
@ om\xw WWS_ MMM/
— w X ||l [Eoav] Foori-sSWorioRi| &
766 — {INOILVINSJVONZ XSN} | T viva [R LdO 3AINIO m 3
B e e 0 e e 4 f 3 '
96¢ Y m | 5
® = :
f (Gov) viva R Per, s sswost -0 S5 Om:
€68 0se—"| €8¢ *
e , S SR
<o . -
(ssw<3zis) vivalli | s || [@oavy <F<oﬁ s ||[GoavvavalH] P s
|_~L6€ [NOLvINIWO3ISN) © Ve v6e ONT; y o :\\\Nmm 8le ©
08¥lL = SSW OSL 08%l =SS OSL / 09¥l = SSW OS.L
v WIVAYLEW wwm\ - m VIVavL3n 8ve - m YIVavidan \ » m
oy e ox & gie e
m 2 m m
s0c” 58| [Eoavnvva[l] . B38| ([E@avy vivafH] qu
\ me ; . ; | (1] & J) LgeE . : —— (111 &
gee” | EdOL) - MENTETE] | mmm\ faor) [[GNgaHlT) | ™ e80T (O] [(GNeaHLT) | ™
< : < <
o35 vival| - 66¢ o 02| [Gowvmviva ez [@ouv viva 0
93s viva] 2 T e < re— |2 c
(43Av NOILLVOMddY) | \ YAV NOLLYOIddV] [osc (¥3AVINOILVOIddv) [mm
Z|| ose py 0
(a31gvsia od1) WA NOILYNILS3Ia |[(a319vN3a OdT) WA NOILYNILS3A (@319vN3 0S1) WA 304N0S
[[/ _OvE _0LE 7
298" HIAYIS NOILYNILS3A e’/ / ¥3A¥3s 30WN0S zie”

12

== NN
o O O

THROUGHPUT (GB/S)
(e] on o

EP 4 498 661 A1

TCP THROUGHPUT VS LINK CAPACITY

-
-
»
-

-
-
-
-

-
-
-
- ®

/

---- TSO OVERRIDE|]

— BASELINE
5 10 15 20 25
LINK CAPACITY (Gbls)
CPU USAGE VS LINK CAPACITY
/-ﬁ . ;_ ----- ;- ----- L
/ < et
/ ""_ ,..r"
: -~ TSO OVERRIDE| |
— BASELINE
5 10 15 20 25

LINK CAPACITY (Gb/s)

FIG. 4

13

7 14
3 12 e :
5 10 e
S . e
o 6 -
i -~ TSO OVERRIDE
T 4 — BASELINE |-
2 4 6 8 10 12 14
LINK CAPACITY (Gbls)
00 CPU USAGE VS LINK CAPACITY
80 =
g | L |
o 60 e
0o e
o | |
40 o --- TSO OVERRIDE|—
— BASELINE
20 il | | |
2 4 6 8 10 12 14

EP 4 498 661 A1

TCP THROUGHPUT VS LINK CAPACITY

LINK CAPACITY (Gb/s)

FIG. 5

14

10

15

20

25

30

35

40

45

50

55

9

Europaisches
Patentamt

European

Office européen
des brevets

Patent Office EU ROPEAN SEARCH REPORT

EP 4 498 661 A1

Application Number

EP 24 19 0414

DOCUMENTS CONSIDERED TO BE RELEVANT

Citation of document with indication, where appropriate, Relevant CLASSIFICATION OF THE

=

Category of relevant passages to claim APPLICATION (IPC)
US 2019/132296 Al (JIANG WENYI [US] ET AL) |1-15 INV.
2 May 2019 (2019-05-02) H04L69/166
* abstract * GO06F9/455
* figures 1, 2 * H041.47/36
* paragraph [0016] - paragraph [0041] =*
TECHNICAL FIELDS
SEARCHED (IPC)
HO4L
GO6F
The present search report has been drawn up for all claims
Place of search Date of completion of the search Examiner
The Hague 9 October 2024 Hornik, Valentin

EPQ FORM 1503 03.82 (P04C01)

CATEGORY OF CITED DOCUMENTS

X : particularly relevant if taken alone

Y : particularly relevant if combined with another
document of the same category

A : technological background

O : non-written disclosure

P :intermediate document

T : theory or principle underlying the invention

E : earlier patent document, but published on, or
after the filing date

D : document cited in the application

L : document cited for other reasons

& : member of the same patent family, corresponding
document

15

10

15

20

25

30

35

40

45

50

55

EPO FORM P0459

EP 4 498 661 A1

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.

EP 24 19 0414

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report.

The members are as contained in the European Patent Office EDP file on

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

09-10-2024
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2019132296 Al 02-05-2019 uUs 2019132296 Al 02-05-2019
us 2022191181 A1l 16-06-2022
us 2023396598 Al 07-12-2023

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

16

	bibliography
	abstract
	description
	claims
	drawings
	search report

