(12) CORRECTED EUROPEAN PATENT APPLICATION

(15) Correction information:

Corrected version no 1 (W1 A2) Corrections, see Bibliography INID code(s) 71

(48) Corrigendum issued on: **16.04.2025 Bulletin 2025/16**

(43) Date of publication: **05.03.2025 Bulletin 2025/10**

(21) Application number: 24211120.1

(22) Date of filing: 11.06.2015

(51) International Patent Classification (IPC): A61K 47/69 (2017.01)

(52) Cooperative Patent Classification (CPC):
 A61K 9/0065; A61K 31/357; A61K 31/65;
 A61K 31/7048; A61K 47/58; A61K 47/6901;
 C08G 18/4277; C08G 18/73; C08G 63/08;
 Y02A 50/30

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 11.06.2014 US 201462010992 P

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 20160645.6 / 3 725 357 15806017.8 / 3 155 024

(71) Applicants:

- Massachusetts Institute of Technology Cambridge, MA 02139 (US)
- The Brigham and Women's Hospital, Inc. Boston, MA 02115 (US)
- (72) Inventors:
 - Bellinger, Andrew Wellesley, MA, 02181 (US)
 - Zhang, Shiyi Shanghai, 021108 (CN)
 - Traverso, Carlo Giovanni Etobicoke, Ontario, M9B 1M1 (CA)
 - Langer, Robert S.
 Newton, MA, 02459 (US)

- Mo, Stacy Darien, IL, 60561 (US)
- Grant, Tyler
 Cambridge, MA, 02139 (US)
- Jafari, Mousa Boston, MA, 02125 (US)
- Glettig, Dean Liang Cambridge, MA, 02139 (US)
- Diciccio, Angela San Franciso, CA, 94158 (US)
- Wood Jr., Lowell L., Bellevue, WA, 98004 (US)
- Eckhoff, Philip A. Kirkland, WA, 98033 (US)
- (74) Representative: Hoffmann Eitle
 Patent- und Rechtsanwälte PartmbB
 Arabellastraße 30
 81925 München (DE)

Remarks:

- •This application was filed on 06-11-2024 as a divisional application to the application mentioned under INID code 62.
- •Claims filed after the date of receipt of the application (Rule 68(4) EPC).

(54) RESIDENCE STRUCTURES AND RELATED METHODS

(57) Residence structures, systems, and related methods are generally provided. Certain embodiments comprise administering (e.g., orally) a residence structure to a subject (e.g., a patient) such that the residence structure is retained at a location internal to the subject for a particular amount of time (e.g., at least about 24 hours) before being released. The residence structure may be, in some cases, a gastric residence structure. In some embodiments, the structures and systems described herein comprise one or more materials configured for

high levels of active substances (e.g., a therapeutic agent) loading, high active substance and/or structure stability in acidic environments, mechanical flexibility and strength in an internal orifice (e.g., gastric cavity), easy passage through the GI tract until delivery to at a desired internal orifice (e.g., gastric cavity), and/or rapid dissolution/degradation in a physiological environment (e.g., intestinal environment) and/or in response to a chemical stimulant (e.g., ingestion of a solution that induces rapid dissolution/degradation). In certain embodiments, the

structure has a modular design, combining a material configured for controlled release of therapeutic, diagnostic, and/or enhancement agents with a structural material necessary for gastric residence but configured for controlled and/or tunable degradation/dissolution to determine the time at which retention shape integrity is lost and the structure passes out of the gastric cavity. For example, in certain embodiments, the residence structure comprises a first elastic component, a second component configured to release an active substance (e.g., a therapeutic agent), and, optionally, a linker. In some such embodiments, the linker may be configured to degrade such that the residence structure breaks apart and is released from the location internally of the subject after a predetermined amount of time.

<u>110</u> <u>130</u> <u>120</u>

FIG. 1B