CROSS-REFERENCE
BACKGROUND OF THE DISCLOSURE
[0002] Distinct populations of T cells modulate the immune system to maintain immune homeostasis
and tolerance. For example, regulatory T (Treg) cells prevent inappropriate responses
by the immune system by preventing pathological self-reactivity while cytotoxic T
cells target and destroy infected cells and/or cancerous cells. In some embodiments,
modulation of the different populations of T cells provides an option for treatment
of a disease or indication.
SUMMARY OF THE DISCLOSURE
[0003] Disclosed herein, in certain embodiments, are IL-15 conjugates and use in the treatment
of a cancer. In some embodiments, also described herein are methods of modulating
the interaction between IL-15 and IL-15 receptors to stimulate or expand specific
T cell populations. In additional cases, further described herein are pharmaceutical
compositions and kits comprising one or more IL-15 conjugates described herein.
[0004] Disclosed herein, in certain embodiments, are modified interleukin 15 (IL-15) polypeptides
comprising at least one post-translationally modified unnatural amino acid, wherein
the at least one unnatural amino acid is at a residue position that selectively decreases
the binding affinity of the modified IL-15 polypeptide with interleukin 15 receptor
α (IL-15R α), wherein decrease in binding affinity is relative to binding affinity
between a wild-type IL-15 polypeptide and the IL-15Rα, and wherein interaction of
the modified IL-15 polypeptide with interleukin 2/interleukin 15 receptor βγ (IL-2/IL-15R
βγ) is not significantly affected. In some embodiments, the residue position of the
at least one unnatural amino acid is selected from N1, W2, V3, N4, 16, S7, D8, K10,
K11, E13, D14, L15, Q17, S18, M19, H20, 121, D22, A23, T24, L25, Y26, E28, S29, D30,
V31, H32, P33, S34, C35, K36, V37, T38, K41, L44, E46, Q48, V49, S51, L52, E53, S54,
G55, D56, A57, S58, H60, D61, T62, V63, E64, N65, I67, I68, L69, N71, N72, S73, L74,
S75, S76, N77, G78, N79, V80, T81, E82, S83, G84, C85, K86, E87, C88, E89, E90, L91,
E92, E93, K94, N95, 196, K97, E98, L100, Q101, S102, V104, H105, Q108, M109, F110,
I111, N112, T113, and S114, wherein the residue positions correspond to the positions
as set forth in SEQ ID NO: 1. In some embodiments, the residue position of the at
least one unnatural amino acid is selected from D22, A23, T24, L25, Y26, L44, E46,
Q48, V49, E53, E89, E90, and E93; Y26, E46, V49, E53, and L25; A23, T24, E89, and
E93; D22, L44, Q48, and E90; L25, E53, N77, and S83; or L25 and E53. In some embodiments,
the residue position of the at least one unnatural amino acid is selected from E89,
E53, E93, V49, E46, Y26, L25, T24, A23, D22, 121, and L52, wherein the residue positions
correspond to the positions as set forth in SEQ ID NO: 1. In some embodiments, the
residue position of the at least one unnatural amino acid is selected from E46, Y26,
V49, E53, T24, N4, K11, N65, L69, S18, H20, and S83, wherein the residue positions
correspond to the positions as set forth in SEQ ID NO: 1. In some embodiments, the
residue position of the at least one unnatural amino acid is selected from E46, Y26,
V49, E53, and T24, wherein the residue positions correspond to the positions as set
forth in SEQ ID NO: 1. In some embodiments, the residue position of the at least one
unnatural amino acid is selected from E46, V49, E53, and T24, wherein the residue
positions correspond to the positions as set forth in SEQ ID NO: 1. In some embodiments,
the residue position of the at least one unnatural amino acid is selected from Y26,
V49, E53, and T24, wherein the residue positions correspond to the positions as set
forth in SEQ ID NO: 1. In some embodiments, the residue position of the at least one
unnatural amino acid is selected from V49, E53, and T24, wherein the residue positions
correspond to the positions as set forth in SEQ ID NO: 1. In some embodiments, the
residue position of the at least one unnatural amino acid is selected from E46 and
Y26, wherein the residue positions correspond to the positions as set forth in SEQ
ID NO: 1. In some embodiments, the residue position of the at least one unnatural
amino acid is E46, wherein the residue position correspond to the position as set
forth in SEQ ID NO: 1. In some embodiments, the residue position of the at least one
unnatural amino acid is Y26, wherein the residue position correspond to the position
as set forth in SEQ ID NO: 1. In some embodiments, the residue position of the at
least one unnatural amino acid is V49, wherein the residue position correspond to
the position as set forth in SEQ ID NO: 1. In some embodiments, the residue position
of the at least one unnatural amino acid is E53, wherein the residue position correspond
to the position as set forth in SEQ ID NO: 1. In some embodiments, the residue position
of the at least one unnatural amino acid is T24, wherein the residue positions correspond
to the position as set forth in SEQ ID NO: 1. In some embodiments, the residue position
of the at least one unnatural amino acid is selected from N4, K11, N65, L69, S18,
H20, and S83, wherein the residue positions correspond to the positions as set forth
in SEQ ID NO: 1. In some embodiments, the at least one unnatural amino acid comprises
p-acetyl-L-phenylalanine, p-iodo-L-phenylalanine, O-methyl-L-tyrosine, p-propargyloxyphenylalanine,
p-propargyl-phenylalanine, L-3-(2-naphthyl)alanine, 3-methyl-phenylalanine, O- 4-allyl-L-tyrosine,
4-propyl-L-tyrosine, tri-O-acetyl-GlcNAcp-serine, L-Dopa, fluorinated phenylalanine,
isopropyl-L-phenylalanine, p-azido-L-phenylalanine, p-acyl-L-phenylalanine, p-benzoyl-L-phenylalanine,
L-phosphoserine, phosphonoserine, phosphonotyrosine, p-bromophenylalanine, p-amino-L-
phenylalanine, isopropyl-L-phenylalanine, or N6-(2-azidoethoxy)-carbonyl-L-lysine.
In some embodiments, the at least one unnatural amino acid comprises an unnatural
amino acid as set forth in Figure 2C. In some embodiments, the at least one unnatural
amino acid is incorporated into the modified IL-15 polypeptide by an orthogonal tRNA
synthetase/tRNA pair. In some embodiments, the modified IL-15 polypeptide is conjugated
to a conjugating moiety through the at least one unnatural amino acid. In some embodiments,
the conjugating moiety comprises a water-soluble polymer, a protein, or a polypeptide.
In some embodiments, the water-soluble polymer comprises: polyethylene glycol (PEG),
polypropylene glycol) (PPG), copolymers of ethylene glycol and propylene glycol, poly(oxyethylated
polyol), poly(olefinic alcohol), poly(vinylpyrrolidone), poly(hydroxyalkylmethacrylamide),
poly(hydroxyalkylmethacrylate), poly(saccharides), poly(α-hydroxy acid), poly(vinyl
alcohol), polyphosphazene, polyoxazolines (POZ), poly(N-acryloylmorpholine), or a
combination thereof; or a polysaccharide. In some embodiments, the water-soluble polymer
comprises PEG. In some embodiments, the PEG is a linear PEG or a branched PEG. In
some embodiments, the water-soluble polymer comprises a glycan. In some embodiments,
the polysaccharide comprises dextran, polysialic acid (PSA), hyaluronic acid (HA),
amylose, heparin, heparan sulfate (HS), dextrin, or hydroxyethyl-starch (HES). In
some embodiments, the conjugating moiety comprises a saturated fatty acid. In some
embodiments, the saturated fatty acid comprises hexadecanoic acid, tetradecanoic acid,
or 15-azidopentadecanoic acid. In some embodiments, the protein comprises an albumin,
a transferrin, a transthyretin, or an Fc portion of an antibody. In some embodiments,
the polypeptide comprises a XTEN peptide, a glycine-rich homoamino acid polymer (HAP),
a PAS polypeptide, an elastin-like polypeptide (ELP), a CTP peptide, or a gelatin-like
protein (GLK) polymer. In some embodiments, the conjugating moiety is directly bound
to the at least one unnatural amino acid of the modified IL-15. In some embodiments,
the conjugating moiety is indirectly bound to the at least one unnatural amino acid
of the modified IL-15 through a linker. In some embodiments, the linker comprises
a homobifunctional linker. In some embodiments, the homobifunctional linker comprises
Lomant's reagent dithiobis (succinimidylpropionate) DSP, 3'3'-dithiobis(sulfosuccinimidyl
proprionate) (DTSSP), disuccinimidyl suberate (DSS), bis(sulfosuccinimidyl)suberate
(BS), disuccinimidyl tartrate (DST), disulfosuccinimidyl tartrate (sulfo DST), ethylene
glycobis(succinimidylsuccinate) (EGS), disuccinimidyl glutarate (DSG), N,N'-disuccinimidyl
carbonate (DSC), dimethyl adipimidate (DMA), dimethyl pimelimidate (DMP), dimethyl
suberimidate (DMS), dimethyl-3,3'-dithiobispropionimidate (DTBP), 1,4-di-(3'-(2'-pyridyldithio)propionamido)butane
(DPDPB), bismaleimidohexane (BMH), aryl halide-containing compound (DFDNB), such as
e.g. 1,5-difluoro-2,4-dinitrobenzene or 1,3-difluoro-4,6-dinitrobenzene, 4,4'-difluoro-3,3'-dinitrophenylsulfone
(DFDNPS), bis-[β-(4-azidosalicylamido)ethyl]disulfide (BASED), formaldehyde, glutaraldehyde,
1,4-butanediol diglycidyl ether, adipic acid dihydrazide, carbohydrazide, o-toluidine,
3,3'-dimethylbenzidine, benzidine, α,α'-p-diaminodiphenyl, diiodo-p-xylene sulfonic
acid, N,N'-ethylene-bis(iodoacetamide), or N,N'-hexamethylene-bis(iodoacetamide).
In some embodiments, the linker comprises a heterobifunctional linker. In some embodiments,
the heterobifunctional linker comprises N-succinimidyl 3-(2-pyridyldithio)propionate
(sPDP), long-chain N-succinimidyl 3-(2-pyridyldithio)propionate (LC-sPDP), water-soluble-long-chain
N-succinimidyl 3-(2-pyridyldithio) propionate (sulfo-LC-sPDP), succinimidyloxycarbonyl-α-methyl-α-(2-pyridyldithio)toluene
(sMPT), sulfosuccinimidyl-6-[α-methyl-α-(2-pyridyldithio)toluamido]hexanoate (sulfo-LC-sMPT),
succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (sMCC), sulfosuccinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate
(sulfo-sMCC), m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBs), m-maleimidobenzoyl-N-hydroxysulfosuccinimide
ester (sulfo-MBs), N-succinimidyl(4-iodoacteyl)aminobenzoate (sIAB), sulfosuccinimidyl(4-iodoacteyl)aminobenzoate
(sulfo-sIAB), succinimidyl-4-(p-maleimidophenyl)butyrate (sMPB), sulfosuccinimidyl-4-(p-maleimidophenyl)butyrate
(sulfo-sMPB), N-(y-maleimidobutyryloxy)succinimide ester (GMBs), N-(γ-maleimidobutyryloxy)sulfosuccinimide
ester (sulfo-GMBs), succinimidyl 6-((iodoacetyl)amino)hexanoate (sIAX), succinimidyl
6-[6-(((iodoacetyl)amino)hexanoyl)amino]hexanoate (sIAXX), succinimidyl 4-(((iodoacetyl)amino)methyl)cyclohexane-1-carboxylate
(sIAC), succinimidyl 6-(((((4-iodoacetyl)amino)methyl)cyclohexane-1-carbonyl)amino)
hexanoate (sIACX), p-nitrophenyl iodoacetate (NPIA), carbonyl-reactive and sulfhydryl-reactive
cross-linkers such as 4-(4-N-maleimidophenyl)butyric acid hydrazide (MPBH), 4-(N-maleimidomethyl)cyclohexane-1-carboxyl-hydrazide-8
(M
2C
2H), 3-(2-pyridyldithio)propionyl hydrazide (PDPH), N-hydroxysuccinimidyl-4-azidosalicylic
acid (NHs-AsA), N-hydroxysulfosuccinimidyl-4-azidosalicylic acid (sulfo-NHs-AsA),
sulfosuccinimidyl-(4-azidosalicylamido)hexanoate (sulfo-NHs-LC-AsA), sulfosuccinimidyl-2-(ρ-azidosalicylamido)ethyl-1,3'-dithiopropionate
(sAsD), N-hydroxysuccinimidyl-4-azidobenzoate (HsAB), N-hydroxysulfosuccinimidyl-4-azidobenzoate
(sulfo-HsAB), N-succinimidyl-6-(4'-azido-2'-nitrophenylamino)hexanoate (sANPAH), sulfosuccinimidyl-6-(4'-azido-2'-nitrophenylamino)hexanoate
(sulfo-sANPAH), N-5-azido-2-nitrobenzoyloxysuccinimide (ANB-NOs), sulfosuccinimidyl-2-(m-azido-o-nitrobenzamido)-ethyl-1,3'-dithiopropionate
(sAND), N-succinimidyl-4(4-azidophenyl) 1,3'-dithiopropionate (sADP), N-sulfosuccinimidyl(4-azidophenyl)-1,3'-dithiopropionate
(sulfo-sADP), sulfosuccinimidyl 4-(ρ-azidophenyl)butyrate (sulfo-sAPB), sulfosuccinimidyl
2-(7-azido-4-methylcoumarin-3-acetamide)ethyl-1,3'-dithiopropionate (sAED), sulfosuccinimidyl
7-azido-4-methylcoumain-3-acetate (sulfo-sAMCA), p-nitrophenyl diazopyruvate (ρNPDP),
ρ-nitrophenyl-2-diazo-3,3,3-trifluoropropionate (PNP-DTP), 1-(ρ-Azidosalicylamido)-4-(iodoacetamido)butane
(AsIB), N-[4-(ρ-azidosalicylamido)butyl]-3'-(2'-pyridyldithio)propionamide (APDP),
benzophenone-4-iodoacetamide, ρ-azidobenzoyl hydrazide (ABH), 4-(ρ-azidosalicylamido)butylamine
(AsBA), or p-azidophenyl glyoxal (APG). In some embodiments, the linker comprises
a cleavable or a non-cleavable dipeptide linker. In some embodiments, the dipeptide
linker comprises Val-Cit, Phe-Lys, Val-Ala, or Val-Lys. In some embodiments, the linker
comprises a maleimide group. In some embodiments, the linker comprises a spacer. In
some embodiments, the spacer comprises p-aminobenzyl alcohol (PAB), p-aminobenzyoxycarbonyl
(PABC), a derivative, or an analog thereof. In some embodiments, the conjugating moiety
is capable of extending the serum half-life of the modified IL-15 polypeptide. In
some embodiments, the decrease in binding affinity is about 10%, 20%, 30%, 40%, 50%,
60%, 70%, 80%, 90%, 95%, or 99% decrease in binding affinity to IL-15Rα relative to
a wild-type IL-15 polypeptide. In some embodiments, the decrease in binding affinity
to IL-15Rα is about 1-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold,
9-fold, 10-fold, or more relative to a wild-type IL-15 polypeptide. In some embodiments,
the modified IL-15 polypeptide is a functionally active fragment of a full-length
IL-15 polypeptide. In some embodiments, the modified IL-15 polypeptide is a recombinant
IL-15 polypeptide. In some embodiments, the modified IL-15 polypeptide is a recombinant
human IL-15 polypeptide. In some embodiments, the modified IL-15 polypeptide with
the decrease in binding affinity to IL-15Rα is capable of expanding effector T (Teff)
cell and Natural Killer (NK) cell populations.
[0005] Disclosed herein, in certain embodiments, are modified interleukin 15 (IL-15) polypeptides
comprising at least one post-translationally modified unnatural amino acid, wherein
the at least one unnatural amino acid is at a residue position that does not significantly
affect the binding affinity of the modified IL-15 polypeptide with interleukin 15
receptor α (IL-15R α) or IL-2/interleukin 15 receptor βγ (IL-2/IL-15R βγ). In some
embodiments, the modified IL-15 polypeptide comprises an extended half-life. In some
embodiments, the residue position of the at least one unnatural amino acid is selected
from N1, W2, V3, N4, 16, S7, D8, K10, K11, E13, D14, L15, Q17, S18, M19, H20, 121,
D22, A23, T24, L25, Y26, E28, S29, D30, V31, H32, P33, S34, C35, K36, V37, T38, K41,
L44, E46, Q48, V49, S51, L52, E53, S54, G55, D56, A57, S58, H60, D61, T62, V63, E64,
N65, 167, 168, L69, N71, N72, S73, L74, S75, S76, N77, G78, N79, V80, T81, E82, S83,
G84, C85, K86, E87, C88, E89, E90, L91, E92, E93, K94, N95, 196, K97, E98, L100, Q101,
S102, V104, H105, Q108, M109, F110, I111, N112, T113, and S114, wherein the residue
positions correspond to the positions as set forth in SEQ ID NO: 1. In some embodiments,
the residue position of the at least one unnatural amino acid is selected from D22,
A23, T24, L25, Y26, L44, E46, Q48, V49, E53, E89, E90, and E93; Y26, E46, V49, E53,
and L25; A23, T24, E89, and E93; D22, L44, Q48, and E90; L25, E53, N77, and S83; or
L25 and E53. In some embodiments, the residue position of the at least one unnatural
amino acid is selected from M1, S18, H20, K36, K41, G55, D56, S75, S76, N77, G78,V80,
T81, S83, and K86, wherein the residue positions correspond to the positions as set
forth in SEQ ID NO: 1. In some embodiments, the at least one unnatural amino acid
comprises p-acetyl-L-phenylalanine, p-iodo-L-phenylalanine, O-methyl-L-tyrosine, p-propargyloxyphenylalanine,
p- propargyl-phenylalanine, L-3-(2-naphthyl)alanine, 3-methyl-phenylalanine, O- 4-allyl-L-tyrosine,
4-propyl-L-tyrosine, tri-O-acetyl-GlcNAcp-serine, L-Dopa, fluorinated phenylalanine,
isopropyl-L-phenylalanine, p-azido-L-phenylalanine, p-acyl-L-phenylalanine, p-benzoyl-L-phenylalanine,
L-phosphoserine, phosphonoserine, phosphonotyrosine, p-bromophenylalanine, p-amino-L-
phenylalanine, isopropyl-L-phenylalanine, or N6-(2-azidoethoxy)-carbonyl-L-lysine.
In some embodiments, the at least one unnatural amino acid comprises an unnatural
amino acid as set forth in Figure 2C. In some embodiments, the at least one unnatural
amino acid is incorporated into the modified IL-15 polypeptide by an orthogonal tRNA
synthetase/tRNA pair. In some embodiments, the modified IL-15 polypeptide is conjugated
to a conjugating moiety through the at least one unnatural amino acid. In some embodiments,
the conjugating moiety comprises a water-soluble polymer, a protein, or a polypeptide.
In some embodiments, the water-soluble polymer comprises: polyethylene glycol (PEG),
polypropylene glycol) (PPG), copolymers of ethylene glycol and propylene glycol, poly(oxyethylated
polyol), poly(olefinic alcohol), poly(vinylpyrrolidone), poly(hydroxyalkylmethacrylamide),
poly(hydroxyalkylmethacrylate), poly(saccharides), poly(α-hydroxy acid), poly(vinyl
alcohol), polyphosphazene, polyoxazolines (POZ), poly(N-acryloylmorpholine), or a
combination thereof; or a polysaccharide. In some embodiments, the water-soluble polymer
comprises PEG. In some embodiments, the PEG is a linear PEG or a branched PEG. In
some embodiments, the water-soluble polymers comprise a glycan. In some embodiments,
the polysaccharide comprises dextran, polysialic acid (PSA), hyaluronic acid (HA),
amylose, heparin, heparan sulfate (HS), dextrin, or hydroxyethyl-starch (HES). In
some embodiments, the conjugating moiety comprises a saturated fatty acid. In some
embodiments, the saturated fatty acid comprises hexadecanoic acid, tetradecanoic acid,
or 15-azidopentadecanoic acid. In some embodiments, the protein comprises an albumin,
a transferrin, a transthyretin, or an Fc portion of an antibody. In some embodiments,
the polypeptide comprises a XTEN peptide, a glycine-rich homoamino acid polymer (HAP),
a PAS polypeptide, an elastin-like polypeptide (ELP), a CTP peptide, or a gelatin-like
protein (GLK) polymer. In some embodiments, the conjugating moiety is directly bound
to the at least one unnatural amino acid of the modified IL-15. In some embodiments,
the conjugating moiety is indirectly bound to the at least one unnatural amino acid
of the modified IL-15 through a linker. In some embodiments, the linker comprises
a homobifunctional linker. In some embodiments, the homobifunctional linker comprises
Lomant's reagent dithiobis (succinimidylpropionate) DSP, 3'3'-dithiobis(sulfosuccinimidyl
proprionate) (DTSSP), disuccinimidyl suberate (DSS), bis(sulfosuccinimidyl)suberate
(BS), disuccinimidyl tartrate (DST), disulfosuccinimidyl tartrate (sulfo DST), ethylene
glycobis(succinimidylsuccinate) (EGS), disuccinimidyl glutarate (DSG), N,N'-disuccinimidyl
carbonate (DSC), dimethyl adipimidate (DMA), dimethyl pimelimidate (DMP), dimethyl
suberimidate (DMS), dimethyl-3,3'-dithiobispropionimidate (DTBP), 1,4-di-(3'-(2'-pyridyldithio)propionamido)butane
(DPDPB), bismaleimidohexane (BMH), aryl halide-containing compound (DFDNB), such as
e.g. 1,5-difluoro-2,4-dinitrobenzene or 1,3-difluoro-4,6-dinitrobenzene, 4,4'-difluoro-3,3'-dinitrophenylsulfone
(DFDNPS), bis-[β-(4-azidosalicylamido)ethyl]disulfide (BASED), formaldehyde, glutaraldehyde,
1,4-butanediol diglycidyl ether, adipic acid dihydrazide, carbohydrazide, o-toluidine,
3,3'-dimethylbenzidine, benzidine, α,α'-p-diaminodiphenyl, diiodo-p-xylene sulfonic
acid, N,N'-ethylene-bis(iodoacetamide), or N,N'-hexamethylene-bis(iodoacetamide).
In some embodiments, the linker comprises a heterobifunctional linker. In some embodiments,
the heterobifunctional linker comprises N-succinimidyl 3-(2-pyridyldithio)propionate
(sPDP), long-chain N-succinimidyl 3-(2-pyridyldithio)propionate (LC-sPDP), water-soluble-long-chain
N-succinimidyl 3-(2-pyridyldithio) propionate (sulfo-LC-sPDP), succinimidyloxycarbonyl-α-methyl-α-(2-pyridyldithio)toluene
(sMPT), sulfosuccinimidyl-6-[α-methyl-α-(2-pyridyldithio)toluamido]hexanoate (sulfo-LC-sMPT),
succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (sMCC), sulfosuccinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate
(sulfo-sMCC), m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBs), m-maleimidobenzoyl-N-hydroxysulfosuccinimide
ester (sulfo-MBs), N-succinimidyl(4-iodoacteyl)aminobenzoate (sIAB), sulfosuccinimidyl(4-iodoacteyl)aminobenzoate
(sulfo-sIAB), succinimidyl-4-(p-maleimidophenyl)butyrate (sMPB), sulfosuccinimidyl-4-(p-maleimidophenyl)butyrate
(sulfo-sMPB), N-(y-maleimidobutyryloxy)succinimide ester (GMBs), N-(γ-maleimidobutyryloxy)sulfosuccinimide
ester (sulfo-GMBs), succinimidyl 6-((iodoacetyl)amino)hexanoate (sIAX), succinimidyl
6-[6-(((iodoacetyl)amino)hexanoyl)amino]hexanoate (sIAXX), succinimidyl 4-(((iodoacetyl)amino)methyl)cyclohexane-1-carboxylate
(sIAC), succinimidyl 6-(((((4-iodoacetyl)amino)methyl)cyclohexane-1-carbonyl)amino)
hexanoate (sIACX), p-nitrophenyl iodoacetate (NPIA), carbonyl-reactive and sulfhydryl-reactive
cross-linkers such as 4-(4-N-maleimidophenyl)butyric acid hydrazide (MPBH), 4-(N-maleimidomethyl)cyclohexane-1-carboxyl-hydrazide-8
(M
2C
2H), 3-(2-pyridyldithio)propionyl hydrazide (PDPH), N-hydroxysuccinimidyl-4-azidosalicylic
acid (NHs-AsA), N-hydroxysulfosuccinimidyl-4-azidosalicylic acid (sulfo-NHs-AsA),
sulfosuccinimidyl-(4-azidosalicylamido)hexanoate (sulfo-NHs-LC-AsA), sulfosuccinimidyl-2-(ρ-azidosalicylamido)ethyl-1,3'-dithiopropionate
(sAsD), N-hydroxysuccinimidyl-4-azidobenzoate (HsAB), N-hydroxysulfosuccinimidyl-4-azidobenzoate
(sulfo-HsAB), N-succinimidyl-6-(4'-azido-2'-nitrophenylamino)hexanoate (sANPAH), sulfosuccinimidyl-6-(4'-azido-2'-nitrophenylamino)hexanoate
(sulfo-sANPAH), N-5-azido-2-nitrobenzoyloxysuccinimide (ANB-NOs), sulfosuccinimidyl-2-(m-azido-o-nitrobenzamido)-ethyl-1,3'-dithiopropionate
(sAND), N-succinimidyl-4(4-azidophenyl)1,3'-dithiopropionate (sADP), N-sulfosuccinimidyl(4-azidophenyl)-1,3'-dithiopropionate
(sulfo-sADP), sulfosuccinimidyl 4-(ρ-azidophenyl)butyrate (sulfo-sAPB), sulfosuccinimidyl
2-(7-azido-4-methylcoumarin-3-acetamide)ethyl-1,3'-dithiopropionate (sAED), sulfosuccinimidyl
7-azido-4-methylcoumain-3-acetate (sulfo-sAMCA), p-nitrophenyl diazopyruvate (pNPDP),
ρ-nitrophenyl-2-diazo-3,3,3-trifluoropropionate (PNP-DTP), 1-(ρ-Azidosalicylamido)-4-(iodoacetamido)butane
(AsIB), N-[4-(ρ-azidosalicylamido)butyl]-3'-(2'-pyridyldithio)propionamide (APDP),
benzophenone-4-iodoacetamide, ρ-azidobenzoyl hydrazide (ABH), 4-(ρ-azidosalicylamido)butylamine
(AsBA), or p-azidophenyl glyoxal (APG). In some embodiments, the linker comprises
a cleavable or a non-cleavable dipeptide linker. In some embodiments, the dipeptide
linker comprises Val-Cit, Phe-Lys, Val-Ala, or Val-Lys. In some embodiments, the linker
comprises a maleimide group. In some embodiments, the linker comprises a spacer. In
some embodiments, the spacer comprises p-aminobenzyl alcohol (PAB), p-aminobenzyoxycarbonyl
(PABC), a derivative, or an analog thereof. In some embodiments, the modified IL-15
polypeptide is a functionally active fragment of a full-length IL-15 polypeptide.
In some embodiments, the modified IL-15 polypeptide is a recombinant IL-15 polypeptide.
In some embodiments, the modified IL-15 polypeptide is a recombinant human IL-15 polypeptide.
In some embodiments, the modified IL-15 polypeptide with the decrease in binding affinity
to IL-15Rα is capable of expanding effector T (Teff) cell and Natural Killer (NK)
cell populations.
[0006] Disclosed herein, in certain embodiments, are modified interleukin 15 (IL-15) polypeptides
comprising at least one post-translationally modified unnatural amino acid, wherein
the at least one unnatural amino acid is at a residue position that selectively decreases
the binding affinity of the modified IL-15 polypeptide with interleukin 2/interleukin
15 receptor β (IL-2/IL-15R β) but does not affect the interaction with the interleukin
15 receptor α (IL-15R α). In some embodiments, wherein the residue position of the
at least one unnatural amino acid is selected from V3, 16, K10, E28, S29, D30, V31,
H32, P33, S102, V104, H105, Q108, M109, I111, N112, T113, and S114, wherein the residue
positions correspond to the positions as set forth in SEQ ID NO: 1. In some embodiments,
the residue position of the at least one unnatural amino acid is selected from V3,
K10, S29, D30, H32, H105, Q108, M109, I111, N112, T113, and S114; E28, P33, S102,
and V104; or I6 and V31. In some embodiments, the residue position of the at least
one unnatural amino acid is selected from N1, N4, S7, D8, K11, D61, T62, E64, N65,
168, L69, and N72. In some embodiments, the residue position of the at least one unnatural
amino acid is selected from N4, S7, K11, and D61; D8, E64, N65, 168, and N72; or N1,
T62, and L69. In some embodiments, the at least one unnatural amino acid comprises
p-acetyl-L-phenylalanine, p-iodo-L-phenylalanine, O-methyl-L-tyrosine, p-propargyloxyphenylalanine,
p-propargyl-phenylalanine, L-3-(2-naphthyl)alanine, 3-methyl-phenylalanine, O- 4-allyl-L-tyrosine,
4-propyl-L-tyrosine, tri-O-acetyl-GlcNAcp-serine, L-Dopa, fluorinated phenylalanine,
isopropyl-L-phenylalanine, p-azido-L-phenylalanine, p-acyl-L-phenylalanine, p-benzoyl-L-phenylalanine,
L-phosphoserine, phosphonoserine, phosphonotyrosine, p-bromophenylalanine, p-amino-L-
phenylalanine, isopropyl-L-phenylalanine, or N6-(2-azidoethoxy)-carbonyl-L-lysine.
In some embodiments, the at least one unnatural amino acid comprises an unnatural
amino acid as set forth in Figs. 1-3. In some embodiments, the at least one unnatural
amino acid is incorporated into the modified IL-15 polypeptide by an orthogonal tRNA
synthetase/tRNA pair. In some embodiments, the modified IL-15 polypeptide is conjugated
to a conjugating moiety through the at least one unnatural amino acid. In some embodiments,
the conjugating moiety comprises a water-soluble polymer, a protein, or a polypeptide.
In some embodiments, the water-soluble polymer comprises: polyethylene glycol (PEG),
polypropylene glycol) (PPG), copolymers of ethylene glycol and propylene glycol, poly(oxyethylated
polyol), poly(olefinic alcohol), poly(vinylpyrrolidone), poly(hydroxyalkylmethacrylamide),
poly(hydroxyalkylmethacrylate), poly(saccharides), poly(α-hydroxy acid), poly(vinyl
alcohol), polyphosphazene, polyoxazolines (POZ), poly(N-acryloylmorpholine), or a
combination thereof; or a polysaccharide. In some embodiments, the water-soluble polymer
comprises PEG. In some embodiments, the PEG is a linear PEG or a branched PEG. In
some embodiments, the water-soluble polymer comprises a glycan. In some embodiments,
the polysaccharide comprises dextran, polysialic acid (PSA), hyaluronic acid (HA),
amylose, heparin, heparan sulfate (HS), dextrin, or hydroxyethyl-starch (HES). In
some embodiments, the conjugating moiety comprises a saturated fatty acid. In some
embodiments, the saturated fatty acid comprises hexadecanoic acid, tetradecanoic acid,
or 15-azidopentadecanoic acid. In some embodiments, the protein comprises an albumin,
a transferrin, a transthyretin, or an Fc portion of an antibody. In some embodiments,
the polypeptide comprises a XTEN peptide, a glycine-rich homoamino acid polymer (HAP),
a PAS polypeptide, an elastin-like polypeptide (ELP), a CTP peptide, or a gelatin-like
protein (GLK) polymer. In some embodiments, the conjugating moiety is directly bound
to the at least one unnatural amino acid of the modified IL-15. In some embodiments,
the conjugating moiety is indirectly bound to the at least one unnatural amino acid
of the modified IL-15 through a linker. In some embodiments, the linker comprises
a homobifunctional linker. In some embodiments, the homobifunctional linker comprises
Lomant's reagent dithiobis (succinimidylpropionate) DSP, 3'3'-dithiobis(sulfosuccinimidyl
proprionate) (DTSSP), disuccinimidyl suberate (DSS), bis(sulfosuccinimidyl)suberate
(BS), disuccinimidyl tartrate (DST), disulfosuccinimidyl tartrate (sulfo DST), ethylene
glycobis(succinimidylsuccinate) (EGS), disuccinimidyl glutarate (DSG), N,N'-disuccinimidyl
carbonate (DSC), dimethyl adipimidate (DMA), dimethyl pimelimidate (DMP), dimethyl
suberimidate (DMS), dimethyl-3,3'-dithiobispropionimidate (DTBP), 1,4-di-(3'-(2'-pyridyldithio)propionamido)butane
(DPDPB), bismaleimidohexane (BMH), aryl halide-containing compound (DFDNB), such as
e.g. 1,5-difluoro-2,4-dinitrobenzene or 1,3-difluoro-4,6-dinitrobenzene, 4,4'-difluoro-3,3'-dinitrophenylsulfone
(DFDNPS), bis-[β-(4-azidosalicylamido)ethyl]disulfide (BASED), formaldehyde, glutaraldehyde,
1,4-butanediol diglycidyl ether, adipic acid dihydrazide, carbohydrazide, o-toluidine,
3,3'-dimethylbenzidine, benzidine, α,α'-p-diaminodiphenyl, diiodo-p-xylene sulfonic
acid, N,N'-ethylene-bis(iodoacetamide), or N,N'-hexamethylene-bis(iodoacetamide).
In some embodiments, the linker comprises a heterobifunctional linker. In some embodiments,
the heterobifunctional linker comprises N-succinimidyl 3-(2-pyridyldithio)propionate
(sPDP), long-chain N-succinimidyl 3-(2-pyridyldithio)propionate (LC-sPDP), water-soluble-long-chain
N-succinimidyl 3-(2-pyridyldithio) propionate (sulfo-LC-sPDP), succinimidyloxycarbonyl-α-methyl-α-(2-pyridyldithio)toluene
(sMPT), sulfosuccinimidyl-6-[α-methyl-α-(2-pyridyldithio)toluamido]hexanoate (sulfo-LC-sMPT),
succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (sMCC), sulfosuccinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate
(sulfo-sMCC), m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBs), m-maleimidobenzoyl-N-hydroxysulfosuccinimide
ester (sulfo-MBs), N-succinimidyl(4-iodoacteyl)aminobenzoate (sIAB), sulfosuccinimidyl(4-iodoacteyl)aminobenzoate
(sulfo-sIAB), succinimidyl-4-(p-maleimidophenyl)butyrate (sMPB), sulfosuccinimidyl-4-(p-maleimidophenyl)butyrate
(sulfo-sMPB), N-(y-maleimidobutyryloxy)succinimide ester (GMBs), N-(γ-maleimidobutyryloxy)sulfosuccinimide
ester (sulfo-GMBs), succinimidyl 6-((iodoacetyl)amino)hexanoate (sIAX), succinimidyl
6-[6-(((iodoacetyl)amino)hexanoyl)amino]hexanoate (sIAXX), succinimidyl 4-(((iodoacetyl)amino)methyl)cyclohexane-1-carboxylate
(sIAC), succinimidyl 6-(((((4-iodoacetyl)amino)methyl)cyclohexane-1-carbonyl)amino)
hexanoate (sIACX), p-nitrophenyl iodoacetate (NPIA), carbonyl-reactive and sulfhydryl-reactive
cross-linkers such as 4-(4-N-maleimidophenyl)butyric acid hydrazide (MPBH), 4-(N-maleimidomethyl)cyclohexane-1-carboxyl-hydrazide-8
(M
2C
2H), 3-(2-pyridyldithio)propionyl hydrazide (PDPH), N-hydroxysuccinimidyl-4-azidosalicylic
acid (NHs-AsA), N-hydroxysulfosuccinimidyl-4-azidosalicylic acid (sulfo-NHs-AsA),
sulfosuccinimidyl-(4-azidosalicylamido)hexanoate (sulfo-NHs-LC-AsA), sulfosuccinimidyl-2-(ρ-azidosalicylamido)ethyl-1,3'-dithiopropionate
(sAsD), N-hydroxysuccinimidyl-4-azidobenzoate (HsAB), N-hydroxysulfosuccinimidyl-4-azidobenzoate
(sulfo-HsAB), N-succinimidyl-6-(4'-azido-2'-nitrophenylamino)hexanoate (sANPAH), sulfosuccinimidyl-6-(4'-azido-2'-nitrophenylamino)hexanoate
(sulfo-sANPAH), N-5-azido-2-nitrobenzoyloxysuccinimide (ANB-NOs), sulfosuccinimidyl-2-(m-azido-o-nitrobenzamido)-ethyl-1,3'-dithiopropionate
(sAND), N-succinimidyl-4(4-azidophenyl) 1,3'-dithiopropionate (sADP), N-sulfosuccinimidyl(4-azidophenyl)-1,3'-dithiopropionate
(sulfo-sADP), sulfosuccinimidyl 4-(ρ-azidophenyl)butyrate (sulfo-sAPB), sulfosuccinimidyl
2-(7-azido-4-methylcoumarin-3-acetamide)ethyl-1,3'-dithiopropionate (sAED), sulfosuccinimidyl
7-azido-4-methylcoumain-3-acetate (sulfo-sAMCA), p-nitrophenyl diazopyruvate (pNPDP),
ρ-nitrophenyl-2-diazo-3,3,3-trifluoropropionate (PNP-DTP), 1-(ρ-Azidosalicylamido)-4-(iodoacetamido)butane
(AsIB), N-[4-(ρ-azidosalicylamido)butyl]-3'-(2'-pyridyldithio)propionamide (APDP),
benzophenone-4-iodoacetamide, ρ-azidobenzoyl hydrazide (ABH), 4-(ρ-azidosalicylamido)butylamine
(AsBA), or p-azidophenyl glyoxal (APG). In some embodiments, the linker comprises
a cleavable or a non-cleavable dipeptide linker. In some embodiments, the dipeptide
linker comprises Val-Cit, Phe-Lys, Val-Ala, or Val-Lys. In some embodiments, the linker
comprises a maleimide group. In some embodiments, the linker comprises a spacer. In
some embodiments, the spacer comprises p-aminobenzyl alcohol (PAB), p-aminobenzyoxycarbonyl
(PABC), a derivative, or an analog thereof. In some embodiments, the conjugating moiety
is capable of extending the serum half-life of the modified IL-15 polypeptide. In
some embodiments, the decrease in binding affinity is about 10%, 20%, 30%, 40%, 50%,
60%, 70%, 80%, 90%, 95%, or 99% decrease in binding affinity to IL-15Rα relative to
a wild-type IL-15 polypeptide. In some embodiments, the decrease in binding affinity
to IL-15Rα is about 1-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold,
9-fold, 10-fold, or more relative to a wild-type IL-15 polypeptide. In some embodiments,
the modified IL-15 polypeptide is a functionally active fragment of a full-length
IL-15 polypeptide. In some embodiments, the modified IL-15 polypeptide is a recombinant
IL-15 polypeptide. In some embodiments, the modified IL-15 polypeptide is a recombinant
human IL-15 polypeptide. In some embodiments, the modified IL-15 polypeptide with
the decrease in binding affinity to IL-15Rα is capable of expanding effector T (Teff)
cell and Natural Killer (NK) cell populations.
[0007] Disclosed herein, in certain embodiments, are interleukin 15 (IL-15) conjugates comprising:
an isolated and purified IL-15 polypeptide; and a conjugating moiety that binds to
the isolated and purified IL-15 polypeptide at an amino acid position selected from
N4, E46, D61, E64, N65, 168 and L69, wherein the numbering of the amino acid residues
corresponds to SEQ ID NO: 1. In some embodiments, the amino acid position is N4. In
some embodiments, the amino acid position is E46. In some embodiments, the amino acid
position is D61. In some embodiments, the amino acid position is E64. In some embodiments,
the amino acid position is N65. In some embodiments, the amino acid position is 168.
In some embodiments, the amino acid position is L69. In some embodiments, the amino
acid residue is mutated to cysteine. In some embodiments, the amino acid residue is
mutated to lysine. In some embodiments, the amino acid residue selected from N4, E46,
N65, and L69 is further mutated to an unnatural amino acid. In some embodiments, the
unnatural amino acid comprises p-acetyl-L-phenylalanine, p-iodo-L-phenylalanine, O-methyl-L-tyrosine,
p-propargyloxyphenylalanine, p-propargyl-phenylalanine, L-3-(2-naphthyl)alanine, 3-methyl-phenylalanine,
O- 4-allyl-L-tyrosine, 4-propyl-L-tyrosine, tri-O-acetyl-GlcNAcp-serine, L-Dopa, fluorinated
phenylalanine, isopropyl-L-phenylalanine, p-azido-L-phenylalanine, p-acyl-L-phenylalanine,
p-benzoyl-L-phenylalanine, L-phosphoserine, phosphonoserine, phosphonotyrosine, p-bromophenylalanine,
p-amino-L- phenylalanine, isopropyl-L-phenylalanine, or N6-(2-azidoethoxy)-carbonyl-L-lysine.
In some embodiments, the at least one unnatural amino acid comprises an unnatural
amino acid as set forth in Figure 2C. In some embodiments, the IL-15 conjugate has
a decreased affinity to IL-15 receptor α (IL-15Rα) subunit relative to a wild-type
IL-15 polypeptide. In some embodiments, the decreased affinity is about 10%, 20%,
30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 99% decrease in binding affinity to IL-15Rα
relative to a wild-type IL-15 polypeptide. In some embodiments, the decreased affinity
to IL-15Rα is about 1-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold,
9-fold, 10-fold, or more relative to a wild-type IL-15 polypeptide. In some embodiments,
the conjugating moiety impairs or blocks the binding of IL-15 with IL-15Rα.
[0008] Disclosed herein, in certain embodiments, are pharmaceutical compositions comprising:
a modified IL-15 polypeptide or an IL-15 conjugate; and a pharmaceutically acceptable
excipient. In some embodiments, the pharmaceutical composition is formulated for parenteral
administration.
[0009] Disclosed herein, in certain embodiments, are methods of treating a proliferative
disease or condition in a subject in need thereof, comprising administering to the
subject a therapeutically effective amount of a modified IL-15 polypeptide or an IL-15
conjugate. In some embodiments, the proliferative disease or condition is a cancer.
In some embodiments, the cancer is a solid tumor cancer. In some embodiments, the
solid tumor cancer is bladder cancer, bone cancer, brain cancer, breast cancer, colorectal
cancer, esophageal cancer, eye cancer, head and neck cancer, kidney cancer, lung cancer,
melanoma, ovarian cancer, pancreatic cancer, or prostate cancer. In some embodiments,
the cancer is a hematologic malignancy. In some embodiments, the hematologic malignancy
is chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), follicular
lymphoma (FL), diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL),
Waldenstrom's macroglobulinemia, multiple myeloma, extranodal marginal zone B cell
lymphoma, nodal marginal zone B cell lymphoma, Burkitt's lymphoma, non-Burkitt high
grade B cell lymphoma, primary mediastinal B-cell lymphoma (PMBL), immunoblastic large
cell lymphoma, precursor B-lymphoblastic lymphoma, B cell prolymphocytic leukemia,
lymphoplasmacytic lymphoma, splenic marginal zone lymphoma, plasma cell myeloma, plasmacytoma,
mediastinal (thymic) large B cell lymphoma, intravascular large B cell lymphoma, primary
effusion lymphoma, or lymphomatoid granulomatosis. In some embodiments, methods further
comprise administering an additional therapeutic agent. In some embodiments, the modified
IL-15 polypeptide or the IL-15 conjugate and the additional therapeutic agent are
administered simultaneously. In some embodiments, the modified IL-15 polypeptide or
the IL-15 conjugate and the additional therapeutic agent are administered sequentially.
In some embodiments, the modified IL-15 polypeptide or the IL-15 conjugate is administered
prior to the additional therapeutic agent. In some embodiments, the modified IL-15
polypeptide or the IL-15 conjugate is administered after the administration of the
additional therapeutic agent. In some embodiments, the subject is a human.
[0010] Disclosed herein, in certain embodiments, are methods of expanding effector T (Teff)
cell and Natural Killer (NK) cell populations, comprising: (a) contacting a cell with
a modified IL-15 polypeptide or an IL-15 conjugate; and (b) interacting the IL-15
with IL-15Rβ and IL-15Rγ subunits to form an IL-15/IL-15Rβγ complex; wherein the IL-15
conjugate has a decreased affinity to IL-15Rα subunit, and wherein the IL-15/IL-15Rβγ
complex stimulates the expansion of Teff and NK cells. In some embodiments, the cell
is a eukaryotic cell. In some embodiments, the cell is a mammalian cell. In some embodiments,
the cell is a human cell. In some embodiments, the IL-15 conjugate comprises an isolated
and purified IL-15 polypeptide and a conjugating moiety that binds to the isolated
and purified IL-2 polypeptide at an amino acid residue selected from N4, E46, N65,
and L69, wherein the numbering of the amino acid residues corresponds to SEQ ID NO:
1. In some embodiments, the decreased affinity is about 10%, 20%, 30%, 40%, 50%, 60%,
70%, 80%, 90%, 95%, or 99% decrease in binding affinity to IL-15Rα relative to a wild-type
IL-15 polypeptide. In some embodiments, the decreased affinity to IL-15Rα is about
IL-15Rα 1-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold,
or more relative to a wild-type IL-15 polypeptide. In some embodiments, the conjugating
moiety impairs or blocks the binding of IL-15 with IL-15Rα.
[0011] Disclosed herein, in certain embodiments, are kits comprising a modified IL-15 polypeptide,
an IL-15 conjugate, or a pharmaceutical composition.
[0012] Disclosed herein, in certain embodiments, are kits comprising a polynucleic acid
molecule encoding a modified IL-15 polypeptide or an IL-15 polypeptide.
BRIEF DESCRIPTION OF THE DRAWINGS
[0013] Various aspects of the disclosure are set forth with particularity in the appended
claims. A better understanding of the features and advantages of the present disclosure
will be obtained by reference to the following detailed description that sets forth
illustrative embodiments, in which the principles of the disclosure are utilized,
and the accompanying drawings of which:
Fig. 1 illustrates exemplary unnatural amino acids. This figure is adapted from Fig.
2 of Young et al., "Beyond the canonical 20 amino acids: expanding the genetic lexicon,"
J. of Biological Chemistry 285(15): 11039-11044 (2010);
FIG. 2A-FIG. 2B illustrate exemplary unnatural amino acids. FIG. 2A illustrates exemplary
lysine derivatives. FIG. 2B illustrates exemplary phenylalanine derivatives.
FIG. 3A-FIG. 3D illustrate exemplary unnatural amino acids. These unnatural amino
acids (UAAs) have been genetically encoded in proteins (FIG. 3A - UAA #1-42; FIG.
3B - UAA # 43-89;
FIG. 3C - UAA # 90-128; FIG. 3D - UAA # 129-167). FIG. 3A-FIG. 3D are adopted from
Table 1 of Dumas et al., Chemical Science 2015, 6, 50-69.
FIG. 4 illustrates a graph of anion exchange chromatography.
FIG. 5 illustrates a graph of reverse phase chromatography.
FIG. 6 illustrates illustrates the EC50 values for exemplary IL-15 conjugates with
native potency in the CTLL2 proliferation assay. Results are plotted as percentage
of response.
FIG. 7 illustrates the EC50 values for exemplary IL-15 conjugates with reduced potency
in the CTLL2 proliferation assay. As shown here, site-specific pegylation contributes
to in vitro pharmacology. Results are plotted as percentage of response.
FIG. 8 illustrates the EC50 values for exemplary IL-15 conjugated to different PEG
sizes. Results are plotted as percentage of response.
FIG. 9A- FIG. 9C show response units (RU, Y-axis) versus time (s, X-axis) for rHuIL-15,
an IL-15 conjugated compounds binding to IL-15Rα. FIG. 9A: rHuIL-15; FIG. 9B: IL15
conjugates N77PEG30 and S83PEG30; and FIG. 9C: IL15 conjugates E46PEG30 and E53PEG30.
FIG. 10 shows response units (RU, Y-axis) versus time (s, X-axis) for rHuIL-15, an
IL-15 N77PEG30 binding to IL-15Rα and IL-2Rβ.
FIG. 11 shows response units (RU, Y-axis) versus time (s, X-axis) for rHuIL-15, an
IL-15 E53PEG30 binding to IL-15Rα and IL-2Rβ.
FIG. 12A- FIG. 12D illustrate STATS phosphorylation on NK and CD8+ T cells upon stimulation
with exemplary IL-15 PEG conjugates. FIG. 12A and FIG. 12C: half-life extension (S83PEG30
and N77PEG30); FIG. 12B and FIG. 12D: modulated interaction with IL-15Rα (V49PEG30,
E53PEG30 and L25PEG30).
FIG. 13 shows plasma concentration profiles of rHuIL-15, IL-15 S83PEG30, IL-15 V49PEG30
IL-15 L25 PEG30 and IL-15 N77 PEG30 at 0.3 mg/kg.
FIG. 14A- FIG. 14D shows percentage ofSTAT5 phosphorylation in CD8+ T cells (FIG.
14A), CD8 memory cells (FIG. 14B), NK cells (FIG. 14C), and Treg cells (FIG. 14D)
in mice dosed with rHuIL-15 or pegylated compounds.
FIG. 15A- FIG. 15D show increased expression of the early proliferation molecular
marker Ki67 in CD8+ T (FIG. 15A), NK cells (FIG. 15B), CD8+ Tmem (FIG. 15C) but not
Treg cells (FIG. 15D) in animals dosed with pegylated compounds.
FIG. 16A- FIG. 16C show induction of proliferation of CD8+ T cells (FIG. 16A), NK
cells (FIG. 16B), and CD8 memory T cells (FIG. 16C).
FIG. 17A-FIG. 17B show increased Ki67 expression in NK cells (FIG. 17A) and CD8+ T
(FIG. 17B) with increased dose of IL-15 L25PEG30 compound in mice.
DETAILED DESCRIPTION OF THE DISCLOSURE
[0014] Cancer is a complex group of diseases involving abnormal cell growth with the potential
to invade or spread to other parts of the body. Cancer therapies such as radiation
and chemotherapy that target cancer drivers and pathways can be successful. In some
instances, cancer cells are able to adapt to these therapies, limiting the efficacy
of such therapies. Immunotherapy, unlike surgery, chemotherapy, or radiation, stimulates
the immune system to recognize and kill tumor cells.
[0015] Several cytokines are used in immunotherapy for their ability to trigger an immune
response. However, current immunotherapies utilizing cytokines result in several adverse
effects including toxicity and uncontrolled cellular proliferation. Provided herein
are modified cytokines or cytokine conjugates for use in treatment of cancer with
ability to stimulate or expand specific T cell and NK populations resulting in improved
treatment and reduced adverse events.
[0016] Cytokines comprise a family of cell signaling proteins such as chemokines, interferons,
interleukins, lymphokines, and tumor necrosis factors. Cytokines are produced by immune
cells such as macrophages, B lymphocytes, T lymphocytes and mast cells, endothelial
cells, fibroblasts, and different stromal cells. In some instances, cytokines modulate
the balance between humoral and cell-based immune responses.
[0017] Interleukins are signaling proteins which modulate the development and differentiation
of T and B lymphocytes and hematopoietic cells. Interleukins are produced by helper
CD4 T lymphocytes, monocytes, macrophages, and endothelial cells. In some cases, there
are about 15 interleukins, interleukins 1-13, interleukin 15, and interleukin 17.
[0018] Interleukin-15 (IL-15) is a pleiotropic cytokine whose structure is a 14-15 kDa glycoprotein.
IL-15 transcription, translation and secretion are regulated through multiple complex
mechanisms. IL-15 and IL-15 receptor α (IL-15R α, CD215) proteins are co-expressed
predominantly by activated monocytes and dendritic cells (DCs). The transcription
of the heterodimer IL-15/IL-15Rα occurs following the interaction of monocytes/DCs
with type 1 or type 2 interferons (IFN) or CD40 ligation or agents that act through
Toll-like receptors (TLR) that activate NF-kB. Further, IL-15/IL-15Rα protein expression
is predominantly controlled at the levels of translation and secretion.
[0019] IL-15 signals through a heterotrimeric receptor comprising a unique α chain (IL-15R
α), a shared β subunit (IL-15R β, CD132) with IL-2 (CD122) and a common γ subunit
(CD132; IL-15R γ) shared with several cytokines. IL-15Rα has high affinity for IL-15
with a K
d about 10
-11 M.
[0020] In some embodiments, IL-15 signaling is utilized to modulate T cell responses and
subsequently for treatment of cancer. In some embodiments, IL-15 signaling is utilized
to simulate proliferation of activated CD4
-CD8
-, CD4
+CD8
+, CD4
+, and CD8
+ T cells and their differentiation in defined effector T-cell subsets. In some embodiments,
IL-15 signaling is utilized to simulate the generation and proliferation of natural
killer (NK) cells. In some embodiments, IL-15 signaling is utilized to promote maintenance
and survival of memory CD8 T cells, naive CD8 T cells, and NK cells. In some embodiments,
IL-15 signaling is utilized to induce formation of memory CD8 T cells. In some embodiments,
IL-15 signaling is utilized for priming NK cell target-specific activation. In some
embodiments, IL-15 signaling does not result in Treg expansion.
[0021] Described herein, in some embodiments, are modified IL-15 polypeptides for modulating
T cell responses and subsequently for treating cancer. In some embodiments, the modified
IL-15 polypeptide comprises decrease binding with interleukin 15 receptor α (IL-15Rα).
In some embodiments, the decrease in binding affinity is relative to binding affinity
between a wild-type IL-15 polypeptide and the IL-15Rα. In some embodiments, the modified
IL-15 polypeptide has little or no effect on interaction of the modified IL-15 polypeptide
with interleukin 2/interleukin 15 receptor βγ (IL-2/IL-15R βγ). In some embodiments,
the modified IL-15 polypeptide comprises one or more modifications that has little
or no effect on the binding affinity of the modified IL-15 polypeptide with the IL-15R
α and IL-15R βγ. In some embodiments, the modified IL-15 polypeptide comprises decrease
binding with IL-2/IL-15R βγ and IL-15R α interaction is unaffected.
[0022] Described herein are modified IL-15 polypeptides or IL-15 conjugates with improved
ability to stimulate an anti-tumor response. In some embodiments, the modified IL-15
polypeptides or IL-15 conjugates have improved safety profile. In some embodiments,
the modified IL-15 polypeptides or IL-15 conjugates comprise a site-specific pegylation
for increasing half-life. In some embodiments, the site-specific pegylation increases
half-life and has little or no effect on biological activity. In some embodiments,
signaling of the modified IL-15 polypeptides or IL-15 conjugates is biased to IL-15R
βγ. In some embodiments, the modified IL-15 polypeptides or IL-15 conjugates comprise
a site-specific pegylation for increasing half-life and reducing toxicity. In some
embodiments, the site-specific pegylation results in less dosing of the modified IL-15
polypeptides or IL-15 conjugates. In some embodiments, toxicity is reduced by the
modified IL-15 polypeptides or IL-15 conjugates blocking IL-15R α interaction. In
some embodiments, activity of the modified IL-15 polypeptides or IL-15 conjugates
is limited to a tumor site. In some embodiments, the modified IL-15 polypeptides or
IL-15 conjugates comprise a site-specific pegylation such that trans-presentation
of IL-15 is not required for natural killer (NK) and effector cell proliferation and
function. In some embodiments, the modified IL-15 polypeptides or IL-15 conjugates
comprise a site-specific pegylation such that clearance is inhibited or prohibited.
Modified IL-15 Polypeptides and IL-15 Conjugates
[0023] Described herein, in some embodiments, are modified IL-15 polypeptides. In some instances,
the modification is to a natural amino acid. In some instances, the modification is
to an unnatural amino acid. In some instances, described herein is an isolated and
modified IL-15 polypeptide that comprises at least one unnatural amino acid. In some
instances, the IL-15 polypeptide is an isolated and purified mammalian IL-15, for
example, a human IL-15 protein. In some cases, the IL-15 polypeptide is a human IL-15
protein. In some cases, the IL-15 polypeptide comprises about 80%, 85%, 90%, 95%,
96%, 97%, 98%, or 99% sequence identity to SEQ ID NO: 1 or 2. In some cases, the IL-15
polypeptide comprises or consists of the sequence of SEQ ID NO: 1 or 2.
[0024] In some instances, the modified IL-15 polypeptide is a truncated variant. In some
instances, the truncation is an N-terminal deletion. In other instances, the truncation
is a C-terminal deletion. In additional instances, the truncation comprises both N-terminal
and C-terminal deletions. For example, the truncation can be a deletion of at least
or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, or more residues from
either the N-terminus or the C-terminus, or both termini. In some cases, the modified
IL-15 polypeptide comprises an N-terminal deletion of at least or about 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, or more residues. In some cases, the modified
IL-15 polypeptide comprises an N-terminal deletion of at least or about 1, 2, 3, 4,
5, 6, 7, 8, 9, or 10 residues. In some cases, the modified IL-15 polypeptide comprises
an N-terminal deletion of at least or about 2 residues. In some cases, the modified
IL-15 polypeptide comprises an N-terminal deletion of at least or about 3 residues.
In some cases, the modified IL-15 polypeptide comprises an N-terminal deletion of
at least or about 4 residues. In some cases, the modified IL-15 polypeptide comprises
an N-terminal deletion of at least or about 5 residues. In some cases, the modified
IL-15 polypeptide comprises an N-terminal deletion of at least or about 6 residues.
In some cases, the modified IL-15 polypeptide comprises an N-terminal deletion of
at least or about 7 residues. In some cases, the modified IL-15 polypeptide comprises
an N-terminal deletion of at least or about 8 residues. In some cases, the modified
IL-15 polypeptide comprises an N-terminal deletion of at least or about 9 residues.
In some cases, the modified IL-15 polypeptide comprises an N-terminal deletion of
at least or about 10 residues.
[0025] In some embodiments, the modified IL-15 polypeptide is a functionally active fragment.
In some cases, the functionally active fragment comprises IL-15 region 5-114, 10-114,
15-114, 20-114, 1-110, 5-110, 10-110, 15-110, 20-110, 1-105, 5-105, 10-105, 15-105,
20-105, 1-100, 5-100, 10-100, 15-100, or 20-100, wherein the residue positions are
in reference to the positions in SEQ ID NO: 1. In some instances, the functionally
active fragment comprises IL-15 region 5-114, 10-114, 15-114, or 20-114, wherein the
residue positions are in reference to the positions in SEQ ID NO: 1. In some instances,
the functionally active fragment comprises IL-15 region 1-110, 5-110, 10-110, 15-110,
or 20-110, wherein the residue positions are in reference to the positions in SEQ
ID NO: 1. In some instances, the functionally active fragment comprises IL-15 region
1-105, 5-105, 10-105, 15-105, or 20-105, wherein the residue positions are in reference
to the positions in SEQ ID NO: 1. In some instances, the functionally active fragment
comprises IL-15 region 1-100, 5-100, 10-100, 15-100, or 20-100, wherein the residue
positions are in reference to the positions in SEQ ID NO: 1.
[0026] In some embodiments, the functionally active IL-15 fragment comprises an internal
deletion. In some cases, the internal deletion comprises a loop region. In some cases,
the internal deletion comprises a deletion of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, or more residues.
[0027] In some embodiments, an IL-15 polypeptide described herein comprises at least one
unnatural amino acid. In some instances, the residue position of the at least one
unnatural amino acid is selected from N1, W2, V3, N4, 16, S7, D8, K10, K11, E13, D14,
L15, Q17, S18, M19, H20, I21, D22, A23, T24, L25, Y26, T27, E28, S29, D30, V31, H32,
P33, S34, C35, K36, V37, T38, A39, K41, L44, L45, E46, Q48, V49, S51, L52, E53, S54,
G55, D56, A57, S58, H60, D61, T62, V63, E64, N65, 167, 168, L69, N71, N72, S73, L74,
S75, S76, N77, G78, N79, V80, T81, E82, S83, G84, C85, K86, E87, C88, E89, E90, L91,
E92, E93, K94, N95, 196, K97, E98, L100, Q101, S102, V104, H105, Q108, M109, F110,
I111, N112, T113, and S114, wherein the residue positions correspond to the positions
as set forth in SEQ ID NO: 1. In some embodiments, the residue position of the at
least one unnatural amino acid is selected from N1, W2, V3, N4, 16, S7, D8, K10, K11,
E13, D14, L15, Q17, S18, M19, H20, I21, D22, A23, T24, L25, Y26, E28, S29, D30, V31,
H32, P33, S34, C35, K36, V37, T38, K41, L44, E46, Q48, V49, S51, L52, E53, S54, G55,
D56, A57, S58, H60, D61, T62, V63, E64, N65, 167, 168, L69, N71, N72, S73, L74, S75,
S76, N77, G78, N79, V80, T81, E82, S83, G84, C85, K86, E87, C88, E89, E90, L91, E92,
E93, K94, N95, 196, K97, E98, L100, Q101, S102, V104, H105, Q108, M109, F110, I111,
N112, T113, and S114, wherein the residue positions correspond to the positions as
set forth in SEQ ID NO: 1. In some embodiments, the residue position of the at least
one unnatural amino acid is selected from E13, D14, L15, Q17, S18, M19, H20, I21,
S34, C35, K36, V37, T38, K41, L44, S51, L52, S54, G55, D56, A57, S58, H60, V63, 167,
N71, S73, L74, S75, S76, N77, G78, N79, V80, T81, E82, S83, G84, C85, K86, E87, C88,
L91, E92, K94, N95, 196, K97, E98, L100, Q101, and F110. In some embodiments, the
residue position of the at least one unnatural amino acid is selected from D14, Q17,
S18, K41, S51, L52, G55, D56, A57, S58, S75, S76, N77, N79, V80, T81, S83, G84, E92,
K94, N95, K97, and E98. In some embodiments, the residue position of the at least
one unnatural amino acid is selected from N1, N4, S7, D8, K11, D61, T62, E64, N65,
168, L69, and N72. In some embodiments, the residue position of the at least one unnatural
amino acid is selected from V3, I6, K10, E28, S29, D30, V31, H32, P33, S102, V104,
H105, Q108, M109, I111, N112, T113, and S114. In some embodiments, the residue position
of the at least one unnatural amino acid is selected from D22, A23, T24, L25, Y26,
L44, E46, Q48, V49, E53, E89, E90, and E93. In some embodiments, the residue position
of the at least one unnatural amino acid is selected from Y26, E46, V49, E53, and
L25. In some embodiments, the residue position of the at least one unnatural amino
acid is selected from V3, K10, S29, D30, H32, H105, Q108, M109, I111, N112, T113,
and S114. In some embodiments, the residue position of the at least one unnatural
amino acid is selected from N4, S7, K11, and D61. In some embodiments, the residue
position of the at least one unnatural amino acid is selected from L25, E53, N77,
and S83. In some embodiments, the residue position of the at least one unnatural amino
acid is selected from L25 and E53. In some embodiments, the residue position of the
at least one unnatural amino acid is selected from E46, Y26, V49, E53, T24, N4, K11,
N65, L69, S18, H20, and S83. In some embodiments, the residue position of the at least
one unnatural amino acid is selected from E46, Y26, V49, E53, and T24. In some embodiments,
the residue position of the at least one unnatural amino acid is selected from E46,
V49, E53, and T24. In some embodiments, the residue position of the at least one unnatural
amino acid is selected from Y26, V49, E53, and T24. In some embodiments, the residue
position of the at least one unnatural amino acid is selected from V49, E53, and T24.
In some embodiments, the residue position of the at least one unnatural amino acid
is selected from E46 and Y26. In some embodiments, the residue position of the at
least one unnatural amino acid is E46. In some embodiments, the residue position of
the at least one unnatural amino acid is L25. In some embodiments, the residue position
of the at least one unnatural amino acid is Y26. In some embodiments, the residue
position of the at least one unnatural amino acid is V49. In some embodiments, the
residue position of the at least one unnatural amino acid is E53. In some embodiments,
the residue position of the at least one unnatural amino acid is T24. In some embodiments,
the residue position of the at least one unnatural amino acid is N77. In some embodiments,
the residue position of the at least one unnatural amino acid is selected from N4,
K11, N65, L69, S18, H20, and S83. An exemplary amino acids sequence for IL-15 is illustrated
in Table 1 below.
NAME |
SEQUENCE |
SEQ ID NO. |
IL-15 |
 |
1 |
(mature form) |
IL-15 |
 |
2 |
GenBank: CAA71044.1 (precursor) |
[0028] In some instances, the at least one unnatural amino acid is located proximal to the
N-terminus. As used herein, proximal refers to a residue located at least 1 residue
away from the N-terminal residue and up to about 50 residues away from the N-terminal
residue. In some cases, the at least one unnatural amino acid is located within the
first 10, 20, 30, 40, or 50 residues from the N-terminal residue. In some cases, the
at least one unnatural amino acid is located within the first 10 residues from the
N-terminal residue. In some cases, the at least one unnatural amino acid is located
within the first 20 residues from the N-terminal residue. In some cases, the at least
one unnatural amino acid is located within the first 30 residues from the N-terminal
residue. In some cases, the at least one unnatural amino acid is located within the
first 40 residues from the N-terminal residue. In some cases, the at least one unnatural
amino acid is located within the first 50 residues from the N-terminal residue.
[0029] In some instances, the at least one unnatural amino acid is the N-terminal residue.
[0030] In some instances, the at least one unnatural amino acid is located proximal to the
C-terminus. As used herein, proximal refers to a residue located at least 1 residue
away from the C-terminal residue and up to about 50 residues away from the C-terminal
residue. In some cases, the at least one unnatural amino acid is located within the
first 10, 20, 30, 40, or 50 residues from the C-terminal residue. In some cases, the
at least one unnatural amino acid is located within the first 10 residues from the
C-terminal residue. In some cases, the at least one unnatural amino acid is located
within the first 20 residues from the C-terminal residue. In some cases, the at least
one unnatural amino acid is located within the first 30 residues from the C-terminal
residue. In some cases, the at least one unnatural amino acid is located within the
first 40 residues from the C-terminal residue. In some cases, the at least one unnatural
amino acid is located within the first 50 residues from the C-terminal residue.
[0031] In some instances, the at least one unnatural amino acid is the C-terminal residue.
[0032] In some embodiments, the modified IL-15 polypeptides comprising at least one unnatural
amino acid, wherein a residue position of the at least one unnatural amino acid is
at a residue position that selectively decreases the binding affinity of the IL-15
polypeptide with the interleukin 15 receptor α (IL-15R α). In some embodiments, the
decrease in binding affinity is relative to binding affinity between a wild-type IL-15
polypeptide and the IL-15Rα. In some embodiments, the binding of the modified IL-15
polypeptide to IL-15R α does not affect the interaction of the modified IL-15 polypeptide
with interleukin 2/ interleukin 15 receptor βγ (IL-2/IL-15R βγ) or improves the interaction
of the modified IL-15 polypeptide with IL-2/IL-15R βγ. In some instances, the residue
position of the at least one unnatural amino acid is selected from D22, A23, T24,
L25, Y26, L44, E46, Q48, V49, E53, E89, E90, and E93, wherein the residue positions
correspond to the positions as set forth in SEQ ID NO: 1. In some embodiments, the
residue position of the at least one unnatural amino acid is selected from Y26, E46,
V49, E53, and L25, wherein the residue positions correspond to the positions as set
forth in SEQ ID NO: 1. In some embodiments, the residue position of the at least one
unnatural amino acid is selected from A23, T24, E89, and E93, wherein the residue
positions correspond to the positions as set forth in SEQ ID NO: 1. In some embodiments,
the residue position of the at least one unnatural amino acid is selected from D22,
L44, Q48, and E90, wherein the residue positions correspond to the positions as set
forth in SEQ ID NO: 1. In some instances, the the residue position of the at least
one unnatural amino acid is Y26. In some instances, the the residue position of the
at least one unnatural amino acid is E46. In some instances, the the residue position
of the at least one unnatural amino acid is V49. In some instances, the the residue
position of the at least one unnatural amino acid is E53. In some instances, the the
residue position of the at least one unnatural amino acid is L25. In some embodiments,
the modified IL-15 polypeptide further comprises a PEG. In some cases, the PEG is
conjugated at a residue position selected from D22, A23, T24, L25, Y26, L44, E46,
Q48, V49, E53, E89, E90, and E93. In some embodiments, the modified IL-15 polypeptide
further comprises a PEG for increased half-life. In some cases, the PEG is conjugated
at a residue position selected from E13, D14, L15, Q17, S18, M19, H20, I21, S34, C35,
K36, V37, T38, K41, L44, S51, L52, S54, G55, D56, A57, S58, H60, V63, 167, N71, S73,
L74, S75, S76, N77, G78, N79, V80, T81, E82, S83, G84, C85, K86, E87, C88, L91, E92,
K94, N95, 196, K97, E98, L100, Q101, and F110, for increased half-life. In some cases,
the PEG is conjugated at a residue position selected from N71, N72, and N77. In some
cases, the residue conjugated to the PEG is mutated to a natural amino acid. In other
cases, the residue conjugated to the PEG is mutated to an unnatural amino acid. In
additional cases, the mutation at N71, N72, or N77 further improves a CMC condition
(e.g., yield, purity, stability, decreased aggregation, and/or improving protein folding),
potency, or a combination thereof.
[0033] In some instances, the modified IL-15 polypeptides comprising at least one unnatural
amino acid, wherein the at least one unnatural amino acid is at a residue position
that selectively decreases the binding affinity of the modified IL-15 polypeptide
with IL-2/IL-15R β, IL-15Rγ, or a combination thereof. In some embodiments, the modified
IL-15 has little or no effect on interaction with IL-15R α. In some embodiments, the
residue position of the at least one unnatural amino acid is selected from N1, V3,
N4, 16, S7, D8, K10, K11, E28, S29, D30, V31, H32, P33, D61, T62, E64, N65, 168, L69,
N72, S102, V104, H105, Q108, M109, I111, N112, T113, and S114, wherein the residue
positions correspond to the positions as set forth in SEQ ID NO: 1. In some embodiments,
the at least one unnatural amino acid is at a residue position that selectively decreases
the binding affinity of the modified IL-15 polypeptide with IL-2/IL-15R β. In some
instances, the residue position of the at least one unnatural amino acid is selected
from N1, N4, S7, D8, K11, D61, T62, E64, N65, 168, L69, and N72, wherein the residue
positions correspond to the positions as set forth in SEQ ID NO: 1. In some instances,
the residue position of the at least one unnatural amino acid is selected from N4,
S7, K11, and D61. In some instances, the residue position of the at least one unnatural
amino acid is selected from D8, E64, N65, 168, and N72. In some instances, the residue
position of the at least one unnatural amino acid is selected from N1, T62, and L69.
In some instances, the residue position of the at least one unnatural amino acid is
N4. In some instances, the residue position of the at least one unnatural amino acid
is S7. In some instances, the residue position of the at least one unnatural amino
acid is K11. In some instances, the residue position of the at least one unnatural
amino acid is D61. In some embodiments, the at least one unnatural amino acid is at
a residue position that selectively decreases the binding affinity of the modified
IL-15 polypeptide with IL-2/IL-15Rγ. In some instances, the residue position of the
at least one unnatural amino acid is selected from V3, 16, K10, E28, S29, D30, V31,
H32, P33, S102, V104, H105, Q108, M109, I111, N112, T113, and S114, wherein the residue
positions correspond to the positions as set forth in SEQ ID NO: 1. In some instances,
the residue position of the at least one unnatural amino acid is selected from V3,
K10, S29, D30, H32, H105, Q108, M109, I111, N112, T113, and S114. In some instances,
the residue position of the at least one unnatural amino acid is selected from E28,
P33, S102, and V104. In some instances, the residue position of the at least one unnatural
amino acid is selected from I6 and V31. In some instances, the residue position of
the at least one unnatural amino acid is V3. In some instances, the residue position
of the at least one unnatural amino acid is K10. In some instances, the residue position
of the at least one unnatural amino acid is S29. In some instances, the residue position
of the at least one unnatural amino acid is D30. In some instances, the residue position
of the at least one unnatural amino acid is H32. In some instances, the residue position
of the at least one unnatural amino acid is H105. In some instances, the residue position
of the at least one unnatural amino acid is Q108. In some instances, the residue position
of the at least one unnatural amino acid is M109. In some instances, the residue position
of the at least one unnatural amino acid is I111. In some instances, the residue position
of the at least one unnatural amino acid is N112. In some instances, the residue position
of the at least one unnatural amino acid is T113. In some instances, the residue position
of the at least one unnatural amino acid is S114. In some embodiments, the modified
IL-15 polypeptide further comprises a PEG. In some cases, the PEG is conjugated at
a residue position selected from N1, V3, N4, 16, S7, D8, K10, K11, E28, S29, D30,
V31, H32, P33, D61, T62, E64, N65, 168, L69, N72, S102, V104, H105, Q108, M109, I111,
N112, T113, and S114. In some embodiments, the modified IL-15 polypeptide further
comprises a PEG for increased half-life. In some cases, the PEG is conjugated at a
residue position selected from E13, D14, L15, Q17, S18, M19, H20, I21, S34, C35, K36,
V37, T38, K41, L44, S51, L52, S54, G55, D56, A57, S58, H60, V63, I67, N71, S73, L74,
S75, S76, N77, G78, N79, V80, T81, E82, S83, G84, C85, K86, E87, C88, L91, E92, K94,
N95, I96, K97, E98, L100, Q101, and F110 for increased half-life. In some cases, the
PEG is conjugated at a residue position selected from N71, N72, and N77. In some cases,
the residue conjugated to the PEG is mutated to a natural amino acid. In other cases,
the residue conjugated to the PEG is mutated to an unnatural amino acid. In additional
cases, the mutation at N71, N72, or N77 further improves a CMC condition (e.g., yield,
purity, stability, decreased aggregation, and/or improving protein folding), potency,
or a combination thereof.
[0034] In some cases, the modified IL-15 polypeptides comprising at least one unnatural
amino acid, wherein the at least one unnatural amino acid is at a residue position
that does not affect the binding affinity of the modified IL-15 polypeptide with the
IL-15R α and IL-15R βγ. In some embodiments, the modified IL-15 polypeptide further
comprises a PEG for increased half-life. In some embodiments, the modified IL-15 comprises
a PEG with no change in biological activity. In some embodiments, the residue is modified
for half-life extension. In some cases, the residue position of the at least one unnatural
amino acid is selected from E13, D14, L15, Q17, S18, M19, H20, I21, S34, C35, K36,
V37, T38, K41, L44, S51, L52, S54, G55, D56, A57, S58, H60, V63, 167, N71, S73, L74,
S75, S76, N77, G78, N79, V80, T81, E82, S83, G84, C85, K86, E87, C88, L91, E92, K94,
N95, 196, K97, E98, L100, Q101, and F110, wherein the residue positions correspond
to the positions as set forth in SEQ ID NO: 1. In some embodiments, the residue position
of the at least one unnatural amino acid is selected from D14, Q17, S18, K41, S51,
L52, G55, D56, A57, S58, S75, S76, N77, N79, V80, T81, S83, G84, E92, K94, N95, K97,
and E98, wherein the residue positions correspond to the positions as set forth in
SEQ ID NO: 1. In some embodiments, the residue position of the at least one unnatural
amino acid is selected from E13, L15, M19, H20, K36, V37, T38, S54, H60, 167, N71,
G78, K86, E87, and Q101, wherein the residue positions correspond to the positions
as set forth in SEQ ID NO: 1. In some embodiments, the residue position of the at
least one unnatural amino acid is selected from I21, S34, C35, L44, V63, S73, L74,
E82, C85, C88, L91, I96, L100, and F110, wherein the residue positions correspond
to the positions as set forth in SEQ ID NO: 1. In some embodiments, the residue position
of the at least one unnatural amino acid is selected from N71, N72, and N77, wherein
the residue positions correspond to the positions as set forth in SEQ ID NO: 1. In
some embodiments, the residue position of the at least one unnatural amino acid is
selected from N77 and S83. In some embodiments, the residue position of the at least
one unnatural amino acid is D14. In some embodiments, the residue position of the
at least one unnatural amino acid is Q17. In some embodiments, the residue position
of the at least one unnatural amino acid is S18. In some embodiments, the residue
position of the at least one unnatural amino acid is K41. In some embodiments, the
residue position of the at least one unnatural amino acid is S51. In some embodiments,
the residue position of the at least one unnatural amino acid is L52. In some embodiments,
the residue position of the at least one unnatural amino acid is G55. In some embodiments,
the residue position of the at least one unnatural amino acid is D56. In some embodiments,
the residue position of the at least one unnatural amino acid is A57. In some embodiments,
the residue position of the at least one unnatural amino acid is S58. In some embodiments,
the residue position of the at least one unnatural amino acid is S75. In some embodiments,
the residue position of the at least one unnatural amino acid is S76. In some embodiments,
the residue position of the at least one unnatural amino acid is N77. In some embodiments,
the residue position of the at least one unnatural amino acid is N79. In some embodiments,
the residue position of the at least one unnatural amino acid is V80. In some embodiments,
the residue position of the at least one unnatural amino acid is T81. In some embodiments,
the residue position of the at least one unnatural amino acid is S83. In some embodiments,
the residue position of the at least one unnatural amino acid is G84. In some embodiments,
the residue position of the at least one unnatural amino acid is E92. In some embodiments,
the residue position of the at least one unnatural amino acid is K94. In some embodiments,
the residue position of the at least one unnatural amino acid is N95. In some embodiments,
the residue position of the at least one unnatural amino acid is K97. In some embodiments,
the residue position of the at least one unnatural amino acid is E98. In some cases,
the mutation at N71, N72, or N77 comprises a mutation to a natural amino acid. In
some cases, the mutation at N71, N72, or N77 further improves a CMC condition (e.g.,
yield, purity, stability, decreased aggregation, and/or improving protein folding),
potency, or a combination thereof.
[0035] In some embodiments, the IL-15 polypeptide comprising at least one unnatural amino
acid is further conjugated to a conjugating moiety to generate an IL-15 conjugate.
In some cases, the amino acid position of the at least one unnatural amino acid is
at N1, W2, V3, N4, 16, S7, D8, K10, K11, E13, D14, L15, Q17, S18, M19, H20, 121, D22,
A23, T24, L25, Y26, T27, E28, S29, D30, V31, H32, P33, S34, C35, K36, V37, T38, A39,
K41, L44, L45, E46, Q48, V49, S51, L52, E53, S54, G55, D56, A57, S58, H60, D61, T62,
V63, E64, N65, 167, 168, L69, N71, N72, S73, L74, S75, S76, N77, G78, N79, V80, T81,
E82, S83, G84, C85, K86, E87, C88, E89, E90, L91, E92, E93, K94, N95, 196, K97, E98,
L100, Q101, S102, V104, H105, Q108, M109, F110, I111, N112, T113, or S114, wherein
the residue positions correspond to the positions as set forth in SEQ ID NO: 1. In
some cases, the amino acid position of the at least one unnatural amino acid is at
N1, W2, V3, N4, 16, S7, D8, K10, K11, E13, D14, L15, Q17, S18, M19, H20, I21, D22,
A23, T24, L25, Y26, E28, S29, D30, V31, H32, P33, S34, C35, K36, V37, T38, K41, L44,
E46, Q48, V49, S51, L52, E53, S54, G55, D56, A57, S58, H60, D61, T62, V63, E64, N65,
I67, I68, L69, N71, N72, S73, L74, S75, S76, N77, G78, N79, V80, T81, E82, S83, G84,
C85, K86, E87, C88, E89, E90, L91, E92, E93, K94, N95, 196, K97, E98, L100, Q101,
S102, V104, H105, Q108, M109, F110, I111, N112, T113, or S114. In some cases, the
conjugating moiety is bound to the at least one unnatural amino acid. In some cases,
the conjugating moiety is bound to the N-terminal or the C-terminal amino acid residue.
In some instances, the conjugating moiety is directly bound to the at least one unnatural
amino acid or a terminal residue. In other instances, the conjugating moiety is indirectly
bound to the at least one unnatural amino acid or a terminal residue via a linker
described
infra.
[0036] In some embodiments, the decreased affinity of the IL-15 polypeptide or IL-15 conjugate
to an IL-15 receptor α (IL-15Rα) subunit relative to a wild-type IL-15 polypeptide
is about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 99%. In some embodiments,
the decreased affinity is about 10%. In some embodiments, the decreased affinity is
about 20%. In some embodiments, the decreased affinity is about 40%. In some embodiments,
the decreased affinity is about 50%. In some embodiments, the decreased affinity is
about 60%. In some embodiments, the decreased affinity is about 80%. In some embodiments,
the decreased affinity is about 90%. In some embodiments, the decreased affinity is
about 95%. In some embodiments, the decreased affinity is 100%.
[0037] In some embodiments, the decreased affinity of the IL-15 polypeptide or IL-15 conjugate
to an IL-15 receptor α (IL-15Rα) subunit relative to a wild-type IL-15 polypeptide
is about 1-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold,
or more. In some embodiments, the decreased affinity is about 1-fold. In some embodiments,
the decreased affinity is about 2-fold. In some embodiments, the decreased affinity
is about 4-fold. In some embodiments, the decreased affinity is about 5-fold. In some
embodiments, the decreased affinity is about 6-fold. In some embodiments, the decreased
affinity is about 8-fold. In some embodiments, the decreased affinity is about 10-fold.
[0038] In some embodiments, the IL-15 polypeptide or IL-15 conjugate does not interact with
IL-15Rα.
[0039] In some embodiments, the decreased affinity of the IL-15 polypeptide or IL-15 conjugate
to an IL-2 receptor (IL-2R) subunit relative to a wild-type IL-15 polypeptide is about
10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 99%. In some embodiments, the
IL-2R subunit is IL-2R βγ. In some embodiments, the decreased affinity is about 10%.
In some embodiments, the decreased affinity is about 20%. In some embodiments, the
decreased affinity is about 40%. In some embodiments, the decreased affinity is about
50%. In some embodiments, the decreased affinity is about 60%. In some embodiments,
the decreased affinity is about 80%. In some embodiments, the decreased affinity is
about 90%. In some embodiments, the decreased affinity is about 95%. In some embodiments,
the decreased affinity is 100%.
[0040] In some embodiments, the decreased affinity of the IL-15 polypeptide or IL-15 conjugate
to an IL-2 receptor (IL-2R) subunit relative to a wild-type IL-15 polypeptide is about
1-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, or
more. In some embodiments, the IL-2R subunit is IL-2R βγ. In some embodiments, the
decreased affinity is about 1-fold. In some embodiments, the decreased affinity is
about 2-fold. In some embodiments, the decreased affinity is about 4-fold. In some
embodiments, the decreased affinity is about 5-fold. In some embodiments, the decreased
affinity is about 6-fold. In some embodiments, the decreased affinity is about 8-fold.
In some embodiments, the decreased affinity is about 10-fold.
[0041] In some embodiments, the IL-15 polypeptide or IL-15 conjugate does not interact with
IL-2Rα.
[0042] In some embodiments, the IL-15 polypeptide or IL-15 conjugate has an enhanced half-life.
In some instances, the enhanced half-life is compared to a half-life of a wild-type
IL-15 protein or wild-type IL-15 conjugate.
[0043] In some cases, the enhanced half-life of the IL-15 polypeptide or IL-15 conjugate
is at least 90 minutes, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours,
9 hours, 10 hours, 11 hours, 12 hours, 18 hours, 24 hours, 36 hours, 48 hours, 3 days,
4 days, 5 days, 6 days, 7 days, 10 days, 12 days, 14 days, 21 days, 28 days, 30 days,
or longer than the half-life of the wild-type IL-15 protein or wild-type IL-15 conjugate.
In some cases, the enhanced half-life of the IL-15 polypeptide or IL-15 conjugate
is at least 90 minutes or longer than the half-life of the wild-type IL-15 protein
or wild-type IL-15 conjugate. In some cases, the enhanced half-life of the IL-15 polypeptide
or IL-15 conjugate is at least 2 hours or longer than the half-life of the wild-type
IL-15 protein or wild-type IL-15 conjugate. In some cases, the enhancehalf-life of
the IL-15 polypeptide or IL-15 conjugate is at least 3 hours or longer than the half-life
of the wild-type IL-15 protein or wild-type IL-15 conjugate. In some cases, the enhanced
half-life of the IL-15 polypeptide or IL-15 conjugate is at least 4 hours or longer
than the half-life of the wild-type IL-15 protein or wild-type IL-15 conjugate. In
some cases, the enhanced half-life of the IL-15 polypeptide or IL-15 conjugate is
at least 5 hours or longer than the half-life of the wild-type IL-15 protein or wild-type
IL-15 conjugate. In some cases, the enhanced half-life of the IL-15 polypeptide or
IL-15 conjugate is at least 6 hours or longer than the half-life of the wild-type
IL-15 protein or wild-type IL-15 conjugate. In some cases, the enhanced half-life
of the IL-15 polypeptide or IL-15 conjugate is at least 10 hours or longer than the
half-life of the wild-type IL-15 protein or wild-type IL-15 conjugate. In some cases,
the enhanced half-life of the IL-15 polypeptide or IL-15 conjugate is at least 12
hours or longer than thehalf-life of the wild-type IL-15 protein or wild-type IL-15
conjugate. In some cases, the enhanced half-life of the IL-15 polypeptide or IL-15
conjugate is at least 18 hours or longer than the half-life of the wild-type IL-15
protein or wild-type IL-15 conjugate. In some cases, the enhanced half-life of the
IL-15 polypeptide or IL-15 conjugate is at least 24 hours or longer than the half-life
of the wild-type IL-15 protein or wild-type IL-15 conjugate. In some cases, the enhanced
half-life of the IL-15 polypeptide or IL-15 conjugate is at least 36 hours or longer
than the half-life of the wild-type IL-15 protein or wild-type IL-15 conjugate. In
some cases, the enhanced half-life of the IL-15 polypeptide or IL-15 conjugate is
at least 48 hours or longer than the half-life of the wild-type IL-15 protein or wild-type
IL-15 conjugate. In some cases, the enhanced half-life of the IL-15 polypeptide or
IL-15 conjugate is at least 3 days or longer than the half-life of the wild-type IL-15
protein or wild-type IL-15 conjugate. In some cases, the enhanced half-life of the
IL-15 polypeptide or IL-15 conjugate is at least 4 days or longer than the half-life
of the wild-type IL-15 protein or wild-type IL-15 conjugate. In some cases, the enhanced
half-life of the IL-15 polypeptide or IL-15 conjugate is at least 5 days or longer
than the half-life of the wild-type IL-15 protein or wild-type IL-15 conjugate. In
some cases, the enhanced half-life of the IL-15 polypeptide or IL-15 conjugate is
at least 6 days or longer than the half-life of the wild-type IL-15 protein or wild-type
IL-15 conjugate. In some cases, the enhanced half-life of the IL-15 polypeptide or
IL-15 conjugate is at least 7 days or longer than the half-life of the wild-type IL-15
protein or wild-type IL-15 conjugate. In some cases, the enhanced half-life of the
IL-15 polypeptide or IL-15 conjugate is at least 10 days or longer than thhalf-life
of the wild-type IL-15 protein or wild-type IL-15 conjugate. In some cases, the enhanced
half-life of the IL-15 polypeptide or IL-15 conjugate is at least 12 days or longer
than the half-life of the wild-type IL-15 protein or wild-type IL-15 conjugate. In
some cases, the enhanced half-life of the IL-15 polypeptide or IL-15 conjugate is
at least 14 days or longer than the half-life of the wild-type IL-15 protein or wild-type
IL-15 conjugate. In some cases, the enhanced half-life of the IL-15 polypeptide or
IL-15 conjugate is at least 21 days or longer than the half-life of the wild-type
IL-15 protein or wild-type IL-15 conjugate. In some cases, the enhanced half-life
of the IL-15 polypeptide or IL-15 conjugate is at least 28 days or longer than the
half-life of the wild-type IL-15 protein or wild-type IL-15 conjugate. In some cases,
the enhanced half-life of the IL-15 polypeptide or IL-15 conjugate is at least 30
days or longer than the half-life of the wild-type IL-15 protein or wild-type IL-15
conjugate.
[0044] In some cases, the enhanced half-life of the IL-15 polypeptide or IL-15 conjugate
is about 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 9 hours, 10 hours, 11 hours,
12 hours, 18 hours, 24 hours, 36 hours, 48 hours, 3 days, 4 days, 5 days, 6 days,
7 days, 10 days, 12 days, 14 days, 21 days, 28 days, or 30 days compared to the half-life
of the wild-type IL-15 protein or wild-type IL-15 conjugate. In some cases, the biologically
active IL-15 polypeptide or IL-15 conjugate has an enhanced half-life of about 90
minutes. In some cases, the biologically active IL-15 polypeptide or IL-15 conjugate
has an enhanced half-life of about 2 hours. In some cases, the biologically active
IL-15 polypeptide or IL-15 conjugate has an enhanced half-life of about 3 hours. In
some cases, the biologically active IL-15 polypeptide or IL-15 conjugate has an enhanced
half-life of about 4 hours. In some cases, the biologically active IL-15 polypeptide
or IL-15 conjugate has an enhanced half-life of about 5 hours. In some cases, the
biologically active IL-15 polypeptide or IL-15 conjugate has an enhanced half-life
of about 6 hours. In some cases, the biologically active IL-15 polypeptide or IL-15
conjugate has an enhanced half-life of about 7 hours. In some cases, the biologically
active IL-15 polypeptide or IL-15 conjugate has an enhanced half-life of about 8 hours.
In some cases, the biologically active IL-15 polypeptide or IL-15 conjugate has an
enhanced half-life of about 9 hours. In some cases, the biologically active IL-15
polypeptide or IL-15 conjugate has an enhanced half-life of about 10 hours. In some
cases, the biologically active IL-15 polypeptide or IL-15 conjugate has an enhanced
half-life of about 11 hours. In some cases, the biologically active IL-15 polypeptide
or IL-15 conjugate has an enhanced half-life of about 12 hours. In some cases, the
biologically active IL-15 polypeptide or IL-15 conjugate has an enhanced half-life
of about 18 hours. In some cases, the biologically active IL-15 polypeptide or IL-15
conjugate has an enhanced half-life of about 24 hours. In some cases, the biologically
active IL-15 polypeptide or IL-15 conjugate has an enhanced half-life of about 36
hours. In some cases, the biologically active IL-15 polypeptide or IL-15 conjugate
has an enhanced half-life of about 48 hours. In some cases, the biologically active
IL-15 polypeptide or IL-15 conjugate has an enhanced half-life of about 3 days. In
some cases, the biologically active IL-15 polypeptide or IL-15 conjugate has an enhanced
half-life of about 4 days. In some cases, the biologically active IL-15 polypeptide
or IL-15 conjugate has an enhanced half-life of about 5 days. In some cases, the biologically
active IL-15 polypeptide or IL-15 conjugate has an enhanced half-life of about 6 days.
In some cases, the biologically active IL-15 polypeptide or IL-15 conjugate has an
enhanced half-life of about 7 days. In some cases, the biologically active IL-15 polypeptide
or IL-15 conjugate has an enhanced half-life of about 10 days. In some cases, the
biologically active IL-15 polypeptide or IL-15 conjugate has an enhanced half-life
of about 12 days. In some cases, the biologically active IL-15 polypeptide or IL-15
conjugate has an enhanced half-life of about 14 days. In some cases, the biologically
active IL-15 polypeptide or IL-15 conjugate has an enhanced half-life of about 21
days. In some cases, the biologically active IL-15 polypeptide or IL-15 conjugate
has an enhanced half-life of about 28 days. In some cases, the biologically active
IL-15 polypeptide or IL-15 conjugate has an enhanced half-life of about 30 days.
[0045] In some embodiments, the modified IL-15 polypeptide retains significant signaling
potency with interleukin 15 receptor βγ (IL-15Rβγ) signaling complex. In some cases,
the signaling potency is compared to a signaling potency between a wild-type IL-15
polypeptide and IL-15Rβγ. In some cases, a difference in receptor signaling potency
between the modified IL-15/IL-15Rβγ complex and the wild-type IL-15/IL-15Rβγ complex
is less than 1000-fold, less than 500-fold, less than 200-fold, less than 100-fold,
less than 50-fold, less than 10-fold, less than 5-fold, less than 4-fold, less than
3-fold, less than 2-fold, or less than 1-fold. In some cases, a difference in receptor
signaling potency between the modified IL-15/IL-15Rβγ complex and the wild-type IL-15/IL-15Rβγ
complex is greater than 10-fold, greater than 20-fold, greater than 30-fold, greater
than 40-fold, greater than 50-fold, greater than 100-fold, greater than 200-fold,
greater than 300-fold, greater than 400-fold, or greater than 500-fold. In some instances,
the modified IL-15 polypeptide is a partial agonist, e.g., an agonist that activates
a receptor (e.g., an IL-15βγ signaling complex) but has only a partial efficacy at
the receptor relative to a full agonist. In some instances, the modified IL-15 polypeptide
is a full agonist, e.g., an agonist that activates a receptor (e.g., an IL-15βγ signaling
complex) at a maximum response.
[0046] In some instances, the receptor signaling potency is measured by an EC50 value. In
some instances, the modified IL-15 polypeptide provides an EC50 value that is less
than 1000-fold, less than 500-fold, less than 200-fold, less than 100-fold, less than
50-fold, less than 10-fold, less than 5-fold, less than 4-fold, less than 3-fold,
less than 2-fold, or less than 1-fold different than an EC50 value of the wild-type
IL-15/IL-15Rβγ complex. In some instances, the modified IL-15 polypeptide provides
an EC50 value that is greater than 10-fold, greater than 20-fold, greater than 30-fold,
greater than 40-fold, greater than 50-fold, greater than 100-fold, greater than 200-fold,
greater than 300-fold, greater than 400-fold, or greater than 500-fold different than
an EC50 value of the wild-type IL-15/IL-15Rβγ complex.
[0047] In some instances, the receptor signaling potency is measured by an ED50 value. In
some instances, the modified IL-15 polypeptide provides an ED50 value that is less
than 1000-fold, less than 500-fold, less than 200-fold, less than 100-fold, less than
50-fold, less than 10-fold, less than 5-fold, less than 4-fold, less than 3-fold,
less than 2-fold, or less than 1-fold different than an EC50 value of the wild-type
IL-15/IL-15Rβγ complex. In some instances, the modified IL-15 polypeptide provides
an ED50 value that is greater than 10-fold, greater than 20-fold, greater than 30-fold,
greater than 40-fold, greater than 50-fold, greater than 100-fold, greater than 200-fold,
greater than 300-fold, greater than 400-fold, or greater than 500-fold different than
an EC50 value of the wild-type IL-15/IL-15Rβγ complex.
[0048] In some embodiments, an IL-15 polypeptide is modified (e.g., pegylated) to extend
half-life, improve stability, improve purification yield, improve purity, decrease
aggregation, improve protein folding, or a combination thereof, during the Chemistry,
Manufacturing and Controls (CMC) stage. In some cases, the IL-15 polypeptide is modified
at an amino acid position: N71, N72, or N77, wherein the residue positions correspond
to the positions as set forth in SEQ ID NO: 1. In some cases, the IL-15 polypeptide
is modified at residue N77, e.g., via pegylation, to extend half-life, improve stability,
improve purification yield, improve purity, decrease aggregation, improve protein
folding, or a combination thereof, during the CMC stage. In some cases, the IL-15
polypeptide is further modified at position N1, W2, V3, N4, 16, S7, D8, K10, K11,
E13, D14, L15, Q17, S18, M19, H20, I21, D22, A23, T24, L25, Y26, E28, S29, D30, V31,
H32, P33, S34, C35, K36, V37, T38, K41, L44, E46, Q48, V49, S51, L52, E53, S54, G55,
D56, A57, S58, H60, D61, T62, V63, E64, N65, I67, I68, L69, N71, N72, S73, L74, S75,
S76, N77, G78, N79, V80, T81, E82, S83, G84, C85, K86, E87, C88, E89, E90, L91, E92,
E93, K94, N95, I96, K97, E98, L100, Q101, S102, V104, H105, Q108, M109, F110, I111,
N112, T113, or S114. In some cases, the IL-15 polypeptide is further modified at a
position D22, A23, T24, L25, Y26, L44, E46, Q48, V49, E53, E89, E90, or E93, wherein
the modification impairs interaction with IL-15Rα. In some cases, the IL-15 polypeptide
is further modified at a position N1, N4, S7, D8, K11, D61, T62, E64, N65, I68, L69,
or N72, wherein the modification impairs interaction with IL-15Rβ. In some cases,
the IL-15 polypeptide is further modified at a position V3, 16, K10, E28, S29, D30,
V31, H32, P33, S102, V104, H105, Q108, M109, I111, N112, T113, or S114, wherein the
modification impairs interaction with IL-15Rγ. In some cases, the IL-15 polypeptide
is further modified at a position E13, D14, L15, Q17, S18, M19, H20, I21, S34, C35,
K36, V37, T38, K41, L44, S51, L52, S54, G55, D56, A57, S58, H60, V63, I67, N71, S73,
L74, S75, S76, N77, G78, N79, V80, T81, E82, S83, G84, C85, K86, E87, C88, L91, E92,
K94, N95, I96, K97, E98, L100, Q101, or F110, wherein the modification improves half-life
extension. In some cases, the IL-15 polypeptide is further modified at one or more
of the above positions for impairs interaction with IL-15Rα, impairs interaction with
IL-15Rβ, impairs interaction with IL-15Ry, improves half-life extension, or a combination
thereof.
IL-15 conjugate precursors
[0049] Disclosed herein are IL-15 conjugate precursors, comprising a modified IL-15 polypeptide,
wherein one or more amino acids have been mutated from the wild type amino acid. Such
precursors are often used with the methods disclosed herein for the treatment of diseases
or conditions. In some embodiments, an IL-15 precursor is not conjugated. Such mutations
variously comprise additions, deletions, or substitutions. In some cases, the addition
comprises inclusion of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more residues at the N-terminus,
the C-terminus, or an internal region of the IL-15 polypeptide. In additional cases,
the deletion comprises removal of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more residues
from the N-terminus, the C-terminus, or within an internal region of the IL-15 polypeptide.
Natural and Unnatural Amino Acids
[0050] In some embodiments, an amino acid residue disclosed herein (e.g., within an IL-15
polypeptide) is mutated to lysine, cysteine, histidine, arginine, aspartic acid, glutamic
acid, serine, threonine, or tyrosine prior to binding to (or reacting with) a conjugating
moiety. For example, the side chain of lysine, cysteine, histidine, arginine, aspartic
acid, glutamic acid, serine, threonine, or tyrosine may bind to a conjugating moiety
disclosed herein. In some instances, the amino acid residue is mutated to cysteine,
lysine, or histidine. In some cases, the amino acid residue is mutated to cysteine.
In some cases, the amino acid residue is mutated to lysine. In some cases, the amino
acid residue is mutated to histidine. In some cases, the amino acid residue is mutated
to tyrosine. In some cases, the amino acid residue is mutated to tryptophan. In some
instances, the amino acid residue is located proximal to the Nor C-terminus, at the
N- or C-terminus, or at an internal residue position. In some instances, the amino
acid residue is the N- or C-terminal residue and the mutation is to cysteine or lysine.
In some instances, the amino acid residue is located proximal to the N- or C-terminal
residue (e.g., within 50, 40, 30, 20, or 10 residues from the N- or C-terminal residue)
and the mutation is to cysteine or lysine.
[0051] In some instances, an amino acid residue is added to the N- or C-terminal residue,
i.e., the IL-15 polypeptide comprises an additional amino acid residue at either the
N- or C-terminus and the additional amino acid residue is cysteine or lysine. In some
cases, the additional amino acid residue is cysteine. In some cases, the additional
amino acid is conjugated to a conjugating moiety.
[0052] In some embodiments, an amino acid residue described herein (e.g., within an IL-15
polypeptide) is mutated to an unnatural amino acid. In some embodiments, an unnatural
amino acid is not conjugated with a conjugating moiety. In some embodiments, an IL-15
polypeptide disclosed herein comprises an unnatural amino acid, wherein the IL-15
is conjugated to the protein, wherein the point of attachment is not the unnatural
amino acid.
[0053] In some embodiments, an amino acid residue disclosed herein (e.g., within an IL-15
polypeptide) is mutated to an unnatural amino acid prior to binding to a conjugating
moiety. In some cases, the mutation to an unnatural amino acid prevents or minimizes
a self-antigen response of the immune system. As used herein, the term "unnatural
amino acid" refers to an amino acid other than the 20 amino acids that occur naturally
in protein. Non-limiting examples of unnatural amino acids include: p-acetyl-L-phenylalanine,
p-iodo-L-phenylalanine, p-methoxyphenylalanine, O-methyl-L-tyrosine, p-propargyloxyphenylalanine,
p- propargyl-phenylalanine, L-3-(2-naphthyl)alanine, 3-methyl-phenylalanine, O- 4-allyl-L-tyrosine,
4-propyl-L-tyrosine, tri-O-acetyl-GlcNAcp-serine, L-Dopa, fluorinated phenylalanine,
isopropyl-L-phenylalanine, p-azido-L-phenylalanine, p-acyl-L-phenylalanine, p-benzoyl-L-phenylalanine,
p-Boronophenylalanine, O-propargyltyrosine, L-phosphoserine, phosphonoserine, phosphonotyrosine,
p-bromophenylalanine, selenocysteine, p-amino-L- phenylalanine, isopropyl-L-phenylalanine,
N6-[(2-azidoethoxy)carbonyl]-L-lysine (AzK), an unnatural analogue of a tyrosine amino
acid; an unnatural analogue of a glutamine amino acid; an unnatural analogue of a
phenylalanine amino acid; an unnatural analogue of a serine amino acid; an unnatural
analogue of a threonine amino acid; an alkyl, aryl, acyl, azido, cyano, halo, hydrazine,
hydrazide, hydroxyl, alkenyl, alkynl, ether, thiol, sulfonyl, seleno, ester, thioacid,
borate, boronate, phospho, phosphono, phosphine, heterocyclic, enone, imine, aldehyde,
hydroxylamine, keto, or amino substituted amino acid, or a combination thereof; an
amino acid with a photoactivatable cross-linker; a spin-labeled amino acid; a fluorescent
amino acid; a metal binding amino acid; a metal-containing amino acid; a radioactive
amino acid; a photocaged and/or photoisomerizable amino acid; a biotin or biotin-analogue
containing amino acid; a keto containing amino acid; an amino acid comprising polyethylene
glycol or polyether; a heavy atom substituted amino acid; a chemically cleavable or
photocleavable amino acid; an amino acid with an elongated side chain; an amino acid
containing a toxic group; a sugar substituted amino acid; a carbon-linked sugar-containing
amino acid; a redox-active amino acid; an a-hydroxy containing acid; an amino thio
acid; an α, α disubstituted amino acid; a β-amino acid; a cyclic amino acid other
than proline or histidine, and an aromatic amino acid other than phenylalanine, tyrosine
or tryptophan.
[0054] In some embodiments, the unnatural amino acid comprises a selective reactive group,
or a reactive group for site-selective labeling of a target polypeptide. In some instances,
the chemistry is a biorthogonal reaction (e.g., biocompatible and selective reactions).
In some cases, the chemistry is a Cu(I)-catalyzed or "copper-free" alkyne-azide triazole-forming
reaction, the Staudinger ligation, inverse-electron-demand Diels-Alder (IEDDA) reaction,
"photo-click" chemistry, or a metal-mediated process such as olefin metathesis and
Suzuki-Miyaura or Sonogashira cross-coupling.
[0055] In some embodiments, the unnatural amino acid comprises a photoreactive group, which
crosslinks, upon irradiation with, e.g., UV.
[0056] In some embodiments, the unnatural amino acid comprises a photo-caged amino acid.
[0057] In some instances, the unnatural amino acid is a para-substituted,
meta-substituted, or an ortho-substituted amino acid derivative.
[0058] In some instances, the unnatural amino acid comprises p-acetyl-L-phenylalanine, p-azidomethyl-L-phenylalanine
(pAMF), p-iodo-L-phenylalanine, O-methyl-L-tyrosine, p-methoxyphenylalanine, p-propargyloxyphenylalanine,
p-propargyl-phenylalanine, L-3-(2-naphthyl)alanine, 3-methyl-phenylalanine, O- 4-allyl-L-tyrosine,
4-propyl-L-tyrosine, tri-O-acetyl-GlcNAcp-serine, L-Dopa, fluorinated phenylalanine,
isopropyl-L-phenylalanine, p-azido-L-phenylalanine, p-acyl-L-phenylalanine, p-benzoyl-L-phenylalanine,
L-phosphoserine, phosphonoserine, phosphonotyrosine, p-bromophenylalanine, p-amino-L-phenylalanine,
or isopropyl-L-phenylalanine.
[0059] In some cases, the unnatural amino acid is 3-aminotyrosine, 3-nitrotyrosine, 3,4-dihydroxyphenylalanine,
or 3-iodotyrosine.
[0060] In some cases, the unnatural amino acid is phenylselenocysteine.
[0061] In some instances, the unnatural amino acid is a benzophenone, ketone, iodide, methoxy,
acetyl, benzoyl, or azide containing phenylalanine derivative.
[0062] In some instances, the unnatural amino acid is a benzophenone, ketone, iodide, methoxy,
acetyl, benzoyl, or azide containing lysine derivative.
[0063] In some instances, the unnatural amino acid comprises an aromatic side chain.
[0064] In some instances, the unnatural amino acid does not comprise an aromatic side chain.
[0065] In some instances, the unnatural amino acid comprises an azido group.
[0066] In some instances, the unnatural amino acid comprises a Michael-acceptor group. In
some instances, Michael-acceptor groups comprise an unsaturated moiety capable of
forming a covalent bond through a 1,2-addition reaction. In some instances, Michael-acceptor
groups comprise electron-deficient alkenes or alkynes. In some instances, Michael-acceptor
groups include but are not limited to alpha,beta unsaturated: ketones, aldehydes,
sulfoxides, sulfones, nitriles, imines, or aromatics.
[0067] In some instances, the unnatural amino acid is dehydroalanine.
[0068] In some instances, the unnatural amino acid comprises an aldehyde or ketone group.
[0069] In some instances, the unnatural amino acid is a lysine derivative comprising an
aldehyde or ketone group.
[0070] In some instances, the unnatural amino acid is a lysine derivative comprising one
or more O, N, Se, or S atoms at the beta, gamma, or delta position. In some instances,
the unnatural amino acid is a lysine derivative comprising O, N, Se, or S atoms at
the gamma position.
[0071] In some instances, the unnatural amino acid is a lysine derivative wherein the epsilon
N atom is replaced with an oxygen atom.
[0072] In some instances, the unnatural amino acid is a lysine derivative that is not naturally-occurring
post-translationally modified lysine.
[0073] In some instances, the unnatural amino acid is an amino acid comprising a side chain,
wherein the sixth atom from the alpha position comprises a carbonyl group. In some
instances, the unnatural amino acid is an amino acid comprising a side chain, wherein
the sixth atom from the alpha position comprises a carbonyl group, and the fifth atom
from the alpha position is a nitrogen. In some instances, the unnatural amino acid
is an amino acid comprising a side chain, wherein the seventh atom from the alpha
position is an oxygen atom.
[0074] In some instances, the unnatural amino acid is a serine derivative comprising selenium.
In some instances, the unnatural amino acid is selenoserine (2-amino-3-hydroselenopropanoic
acid). In some instances, the unnatural amino acid is 2-amino-3-((2-((3-(benzyloxy)-3-oxopropyl)amino)ethyl)selanyl)propanoic
acid. In some instances, the unnatural amino acid is 2-amino-3-(phenylselanyl)propanoic
acid. In some instances, the unnatural amino acid comprises selenium, wherein oxidation
of the selenium results in the formation of an unnatural amino acid comprising an
alkene.
[0075] In some instances, the unnatural amino acid comprises a cyclooctynyl group.
[0076] In some instances, the unnatural amino acid comprises a transcycloctenyl group.
[0077] In some instances, the unnatural amino acid comprises a norbornenyl group.
[0078] In some instances, the unnatural amino acid comprises a cyclopropenyl group.
[0079] In some instances, the unnatural amino acid comprises a diazirine group.
[0080] In some instances, the unnatural amino acid comprises a tetrazine group.
[0081] In some instances, the unnatural amino acid is a lysine derivative, wherein the side-chain
nitrogen is carbamylated. In some instances, the unnatural amino acid is a lysine
derivative, wherein the side-chain nitrogen is acylated. In some instances, the unnatural
amino acid is 2-amino-6-{[(tert-butoxy)carbonyl]amino}hexanoic acid. In some instances,
the unnatural amino acid is 2-amino-6-{[(tert-butoxy)carbonyl]amino}hexanoic acid.
In some instances, the unnatural amino acid is N6-Boc-N6-methyllysine. In some instances,
the unnatural amino acid is N6-acetyllysine. In some instances, the unnatural amino
acid is pyrrolysine. In some instances, the unnatural amino acid is N6-trifluoroacetyllysine.
In some instances, the unnatural amino acid is 2-amino-6-{[(benzyloxy)carbonyl]amino}hexanoic
acid. In some instances, the unnatural amino acid is 2-amino-6-{[(p-iodobenzyloxy)carbonyl]amino}hexanoic
acid. In some instances, the unnatural amino acid is 2-amino-6-{[(p-nitrobenzyloxy)carbonyl]amino
} hexanoic acid. In some instances, the unnatural amino acid is N6-prolyllysine. In
some instances, the unnatural amino acid is 2-amino-6-{[(cyclopentyloxy)carbonyl]amino}hexanoic
acid. In some instances, the unnatural amino acid is N6-(cyclopentanecarbonyl)lysine.
In some instances, the unnatural amino acid is N6-(tetrahydrofuran-2-carbonyl)lysine.
In some instances, the unnatural amino acid is N6-(3-ethynyltetrahydrofuran-2-carbonyl)lysine.
In some instances, the unnatural amino acid is N6-((prop-2-yn-1-yloxy)carbonyl)lysine.
In some instances, the unnatural amino acid is 2-amino-6-{[(2-azidocyclopentyloxy)carbonyl]amino}hexanoic
acid. In some instances, the unnatural amino acid is N6-[(2-azidoethoxy)carbonyl]lysine.
In some instances, the unnatural amino acid is 2-amino-6-{[(2-nitrobenzyloxy)carbonyl]amino}hexanoic
acid. In some instances, the unnatural amino acid is 2-amino-6-{[(2-cyclooctynyloxy)carbonyl]amino}hexanoic
acid. In some instances, the unnatural amino acid is N6-(2-aminobut-3-ynoyl)lysine.
In some instances, the unnatural amino acid is 2-amino-6-((2-aminobut-3-ynoyl)oxy)hexanoic
acid. In some instances, the unnatural amino acid is N6-(allyloxycarbonyl)lysine.
In some instances, the unnatural amino acid is N6-(butenyl-4-oxycarbonyl)lysine. In
some instances, the unnatural amino acid is N6-(pentenyl-5-oxycarbonyl)lysine. In
some instances, the unnatural amino acid is N6-((but-3-yn-1-yloxy)carbonyl)-lysine.
In some instances, the unnatural amino acid is N6-((pent-4-yn-1-yloxy)carbonyl)-lysine.
In some instances, the unnatural amino acid is N6-(thiazolidine-4-carbonyl)lysine.
In some instances, the unnatural amino acid is 2-amino-8-oxononanoic acid. In some
instances, the unnatural amino acid is 2-amino-8-oxooctanoic acid. In some instances,
the unnatural amino acid is N6-(2-oxoacetyl)lysine.
[0082] In some instances, the unnatural amino acid is N6-propionyllysine. In some instances,
the unnatural amino acid is N6-butyryllysine, In some instances, the unnatural amino
acid is N6-(but-2-enoyl)lysine, In some instances, the unnatural amino acid is N6-((bicyclo[2.2.1]hept-5-en-2-yloxy)carbonyl)lysine.
In some instances, the unnatural amino acid is N6-((spiro[2.3]hex-1-en-5-ylmethoxy)carbonyl)lysine.
In some instances, the unnatural amino acid is N6-(((4-(1-(trifluoromethyl)cycloprop-2-en-1-yl)benzyl)oxy)carbonyl)lysine.
In some instances, the unnatural amino acid is N6-((bicyclo[2.2.1]hept-5-en-2-ylmethoxy)carbonyl)lysine.
In some instances, the unnatural amino acid is cysteinyllysine. In some instances,
the unnatural amino acid is N6-((1-(6-nitrobenzo[d][1,3]dioxol-5-yl)ethoxy)carbonyl)lysine.
In some instances, the unnatural amino acid is N6-((2-(3-methyl-3H-diazirin-3-yl)ethoxy)carbonyl)lysine.
In some instances, the unnatural amino acid is N6-((3-(3-methyl-3H-diazirin-3-yl)propoxy)carbonyl)lysine.
In some instances, the unnatural amino acid is N6-((meta nitrobenyloxy)N6-methylcarbonyl)lysine.
In some instances, the unnatural amino acid is N6-((bicyclo[6.1.0]non-4-yn-9-ylmethoxy)carbonyl)-lysine.
In some instances, the unnatural amino acid is N6-((cyclohept-3-en-1-yloxy)carbonyl)-L-lysine.
[0083] In some instances, the unnatural amino acid is 2-amino-3-(((((benzyloxy)carbonyl)amino)methyl)selanyl)propanoic
acid.
[0084] In some embodiments, the unnatural amino acid is incorporated into the IL-15 polypeptide
by a repurposed amber, opal, or ochre stop codon.
[0085] In some embodiments, the unnatural amino acid is incorporated into the IL-15 polypeptide
by a 4-base codon.
[0086] In some embodiments, the unnatural amino acid is incorporated into the IL-15 polypeptide
by a repurposed rare sense codon or a repurposed common sense codon.
[0087] In some embodiments, the unnatural amino acid is incorporated into the IL-15 polypeptide
by a synthetic codon comprising an unnatural nucleic acid.
[0088] In some instances, the unnatural amino acid is incorporated into the IL-15 by an
orthogonal, modified synthetase/tRNA pair. Such orthogonal pairs comprise an unnatural
synthetase that is capable of charging the unnatural tRNA with the unnatural amino
acid, while minimizing charging of a) other endogenous amino acids onto the unnatural
tRNA and b) unnatural amino acids onto other endogenous tRNAs. Such orthogonal pairs
comprise tRNAs that are capable of being charged by the unnatural synthetase, while
avoiding being charged with other endogenous amino acids by endogenous synthetases.
In some embodiments, such pairs are identified from various organisms, such as bacteria,
yeast, Archaea, or human sources. In some embodiments, an orthogonal synthetase/tRNA
pair comprises components from a single organism. In some embodiments, an orthogonal
synthetase/tRNA pair comprises components from two different organisms. In some embodiments,
an orthogonal synthetase/tRNA pair comprising components that prior to modification,
promote translation of two different amino acids. In some embodiments, an orthogonal
synthetase is a modified alanine synthetase. In some embodiments, an orthogonal synthetase
is a modified arginine synthetase. In some embodiments, an orthogonal synthetase is
a modified asparagine synthetase. In some embodiments, an orthogonal synthetase is
a modified aspartic acid synthetase. In some embodiments, an orthogonal synthetase
is a modified cysteine synthetase. In some embodiments, an orthogonal synthetase is
a modified glutamine synthetase. In some embodiments, an orthogonal synthetase is
a modified glutamic acid synthetase. In some embodiments, an orthogonal synthetase
is a modified alanine glycine. In some embodiments, an orthogonal synthetase is a
modified histidine synthetase. In some embodiments, an orthogonal synthetase is a
modified leucine synthetase. In some embodiments, an orthogonal synthetase is a modified
isoleucine synthetase. In some embodiments, an orthogonal synthetase is a modified
lysine synthetase. In some embodiments, an orthogonal synthetase is a modified methionine
synthetase. In some embodiments, an orthogonal synthetase is a modified phenylalanine
synthetase. In some embodiments, an orthogonal synthetase is a modified proline synthetase.
In some embodiments, an orthogonal synthetase is a modified serine synthetase. In
some embodiments, an orthogonal synthetase is a modified threonine synthetase. In
some embodiments, an orthogonal synthetase is a modified tryptophan synthetase. In
some embodiments, an orthogonal synthetase is a modified tyrosine synthetase. In some
embodiments, an orthogonal synthetase is a modified valine synthetase. In some embodiments,
an orthogonal synthetase is a modified phosphoserine synthetase. In some embodiments,
an orthogonal tRNA is a modified alanine tRNA. In some embodiments, an orthogonal
tRNA is a modified arginine tRNA. In some embodiments, an orthogonal tRNA is a modified
asparagine tRNA. In some embodiments, an orthogonal tRNA is a modified aspartic acid
tRNA. In some embodiments, an orthogonal tRNA is a modified cysteine tRNA. In some
embodiments, an orthogonal tRNA is a modified glutamine tRNA. In some embodiments,
an orthogonal tRNA is a modified glutamic acid tRNA. In some embodiments, an orthogonal
tRNA is a modified alanine glycine. In some embodiments, an orthogonal tRNA is a modified
histidine tRNA. In some embodiments, an orthogonal tRNA is a modified leucine tRNA.
In some embodiments, an orthogonal tRNA is a modified isoleucine tRNA. In some embodiments,
an orthogonal tRNA is a modified lysine tRNA. In some embodiments, an orthogonal tRNA
is a modified methionine tRNA. In some embodiments, an orthogonal tRNA is a modified
phenylalanine tRNA. In some embodiments, an orthogonal tRNA is a modified proline
tRNA. In some embodiments, an orthogonal tRNA is a modified serine tRNA. In some embodiments,
an orthogonal tRNA is a modified threonine tRNA. In some embodiments, an orthogonal
tRNA is a modified tryptophan tRNA. In some embodiments, an orthogonal tRNA is a modified
tyrosine tRNA. In some embodiments, an orthogonal tRNA is a modified valine tRNA.
In some embodiments, an orthogonal tRNA is a modified phosphoserine tRNA.
[0089] In some embodiments, the unnatural amino acid is incorporated into the IL-15 polypeptide
by an aminoacyl (aaRS or RS)-tRNA synthetase-tRNA pair. Exemplary aaRS-tRNA pairs
include, but are not limited to,
Methanococcus jannaschii (
Mj-Tyr) aaRS/tRNA pairs,
E. coli TyrRS (
Ec- Tyr)/
B. stearothermophilus tRNA
CUA pairs,
E. coli LeuRS (
Ec-Leu)/
B. stearothermophilus tRNA
CUA pairs, and pyrrolysyl-tRNA pairs. In some instances, the unnatural amino acid is
incorporated into the cytokine (e.g., the IL polypeptide) by a
Mj-
TyrRS/tRNA pair. Exemplary UAAs that can be incorporated by a
Mj-TyrRS/tRNA pair include, but are not limited to, para-substituted phenylalanine derivatives
such
as p-aminophenylalanine and
p-methoyphenylalanine; meta-substituted tyrosine derivatives such as 3-aminotyrosine,
3-nitrotyrosine, 3,4-dihydroxyphenylalanine, and 3-iodotyrosine; phenylselenocysteine;
p-boronopheylalanine; and o-nitrobenzyltyrosine.
[0090] In some instances, the unnatural amino acid is incorporated into the IL-15 polypeptide
by a
Ec-Tyr/tRNA
CUA or a
Ec-
Leu/tRNA
CUA pair. Exemplary UAAs that can be incorporated by a
Ec-Tyr/tRNA
CUA or a
Ec-
Leu/tRNA
CUA pair include, but are not limited to, phenylalanine derivatives containing benzophenoe,
ketone, iodide, or azide substituents; O-propargyltyrosine; α-aminocaprylic acid,
O-methyl tyrosine, O-nitrobenzyl cysteine; and 3-(naphthalene-2-ylamino)-2-amino-propanoic
acid.
[0091] In some instances, the unnatural amino acid is incorporated into the IL-15 polypeptide
by a pyrrolysyl-tRNA pair. In some cases, the PylRS is obtained from an archaebacterial,
e.g., from a methanogenic archaebacterial. In some cases, the PylRS is obtained from
Methanosarcina barkeri, Methanosarcina mazei, or
Methanosarcina acetivorans. Exemplary UAAs that can be incorporated by a pyrrolysyl-tRNA pair include, but are
not limited to, amide and carbamate substituted lysines such as 2-amino-6-((R)-tetrahydrofuran-2-carboxamido)hexanoic
acid,
N-ε-
D-prolyl-
L-lysine, and
N-ε-cyclopentyloxycarbonyl-
L-lysine;
N-ε-Acryloyl-
L-lysine;
N-ε-[(1-(6-nitrobenzo[d][1,3]dioxol-5-yl)ethoxy)carbonyl]-
L-lysine; and
N-ε-(1-methylcyclopro-2-enecarboxamido)lysine.
[0092] In some instances, an unnatural amino acid is incorporated into an IL-15 polypeptide
by a synthetase disclosed in
US 9,988,619 and
US 9,938,516. Exemplary UAAs that can be incorporated by such synthetases include para-methylazido-L-phenylalanine,
aralkyl, heterocyclyl, heteroaralkyl unnatural amino acids, and others. In some embodiments,
such UAAs comprise pyridyl, pyrazinyl, pyrazolyl, triazolyl, oxazolyl, thiazolyl,
thiophenyl, or other heterocycle. Such amino acids in some embodiments comprise azides,
tetrazines, or other chemical group capable of conjugation to a coupling partner,
such as a water soluble moiety. In some embodiments, such synthetases are expressed
and used to incorporate UAAs into cytokines in-vivo. In some embodiments, such synthetases
are used to incorporate UAAs into cytokines using a cell-free translation system.
[0093] In some instances, an unnatural amino acid is incorporated into an IL-15 polypeptide
by a naturally occurring synthetase. In some embodiments, an unnatural amino acid
is incorporated into a cytokine by an organism that is auxotrophic for one or more
amino acids. In some embodiments, synthetases corresponding to the auxotrophic amino
acid are capable of charging the corresponding tRNA with an unnatural amino acid.
In some embodiments, the unnatural amino acid is selenocysteine, or a derivative thereof.
In some embodiments, the unnatural amino acid is selenomethionine, or a derivative
thereof. In some embodiments, the unnatural amino acid is an aromatic amino acid,
wherein the aromatic amino acid comprises an aryl halide, such as an iodide. In embodiments,
the unnatural amino acid is structurally similar to the auxotrophic amino acid.
[0094] In some instances, the unnatural amino acid comprises an unnatural amino acid illustrated
in FIG. 1.
[0095] In some instances, the unnatural amino acid comprises a lysine or phenylalanine derivative
or analogue. In some instances, the unnatural amino acid comprises a lysine derivative
or a lysine analogue. In some instances, the unnatural amino acid comprises a pyrrolysine
(Pyl). In some instances, the unnatural amino acid comprises a phenylalanine derivative
or a phenylalanine analogue. In some instances, the unnatural amino acid is an unnatural
amino acid described in
Wan, et al., "Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic
code expansion tool," Biocheim Biophys Aceta 1844(6): 1059-4070 (2014). In some instances, the unnatural amino acid comprises an unnatural amino acid illustrated
in
FIG. 2 (e.g.,
FIG. 2A and
FIG. 2B).
[0097] In some embodiments, an unnatural amino acid incorporated into an IL-15 polypeptide
is disclosed in
US 9,840,493;
US 9,682,934;
US 2017/0260137;
US 9,938,516; or
US 2018/0086734. Exemplary UAAs that can be incorporated by such synthetases include para-methylazido-L-phenylalanine,
aralkyl, heterocyclyl, and heteroaralkyl, and lysine derivative unnatural amino acids.
In some embodiments, such UAAs comprise pyridyl, pyrazinyl, pyrazolyl, triazolyl,
oxazolyl, thiazolyl, thiophenyl, or other heterocycle. Such amino acids in some embodiments
comprise azides, tetrazines, or other chemical group capable of conjugation to a coupling
partner, such as a water soluble moiety. In some embodiments, a UAA comprises an azide
attached to an aromatic moiety via an alkyl linker. In some embodiments, an alkyl
linker is a C
1-C
10 linker. In some embodiments, a UAA comprises a tetrazine attached to an aromatic
moiety via an alkyl linker. In some embodiments, a UAA comprises a tetrazine attached
to an aromatic moiety via an amino group. In some embodiments, a UAA comprises a tetrazine
attached to an aromatic moiety via an alkylamino group. In some embodiments, a UAA
comprises an azide attached to the terminal nitrogen (e.g., N6 of a lysine derivative,
or N5, N4, or N3 of a derivative comprising a shorter alkyl side chain) of an amino
acid side chain via an alkyl chain. In some embodiments, a UAA comprises a tetrazine
attached to the terminal nitrogen of an amino acid side chain via an alkyl chain.
In some embodiments, a UAA comprises an azide or tetrazine attached to an amide via
an alkyl linker. In some embodiments, the UAA is an azide or tetrazine-containing
carbamate or amide of 3-aminoalanine, serine, lysine, or derivative thereof. In some
embodiments, such UAAs are incorporated into cytokines in-vivo. In some embodiments,
such UAAs are incorporated into cytokines in a cell-free system.
Conjugating Moieties
[0098] In certain embodiments, disclosed herein are conjugating moieties that are bound
to one or more modified IL-15 polypeptide described
supra. In some embodiments, the conjugating moiety is a molecule that perturbs the interaction
of IL-15 with its receptor. In some embodiments, the conjugating moiety is any molecule
that when bond to IL-15, enables IL-15 conjugate to modulate an immune response. In
some embodiments, the conjugating moiety is bound to the IL-15 through a covalent
bond. In some instances, an IL-15 described herein is attached to a conjugating moiety
with a triazole group. In some instances, an IL-15 described herein is attached to
a conjugating moiety with a dihydropyridazine or pyridazine group. In some instances,
the conjugating moiety comprises a water-soluble polymer. In other instances, the
conjugating moiety comprises a protein or a binding fragment thereof. In additional
instances, the conjugating moiety comprises a peptide. In additional instances, the
conjugating moiety comprises a nucleic acid. In additional instances, the conjugating
moiety comprises a small molecule. In additional instances, the conjugating moiety
comprises a bioconjugate (e.g., a TLR agonist such as a TLR1, TLR2, TLR3, TLR4, TLR5,
TLR6, TLR7, TLR8, or TLR9 agonist; or a synthetic ligand such as Pam3Cys, CFA, MALP2,
Pam2Cys, FSL-1, Hib-OMPC, Poly I:C, poly A:U, AGP, MPL A, RC-529, MDF2β, CFA, or Flagellin).
In some cases, the conjugating moiety increases serum half-life, and/or improves stability.
In some cases, the conjugating moiety reduces cytokine interaction with one or more
cytokine receptor domains or subunits. In additional cases, the conjugating moiety
blocks IL-15 interaction with one or more IL-15 domains or subunits with its cognate
receptor(s). In some embodiments, IL-15 conjugates described herein comprise multiple
conjugating moieties. In some embodiments, a conjugating moiety is attached to an
unnatural or natural amino acid in the IL-15 polypeptide. In some embodiments, an
IL-15 conjugate comprises a conjugating moiety attached to a natural amino acid. In
some embodiments, an IL-15 conjugate is attached to an unnatural amino acid in the
cytokine peptide. In some embodiments, a conjugating moiety is attached to the N or
C terminal amino acid of the IL-15 polypeptide. Various combinations sites are disclosed
herein, for example, a first conjugating moiety is attached to an unnatural or natural
amino acid in the IL-15 polypeptide, and a second conjugating moiety is attached to
the N or C terminal amino acid of the IL-15 polypeptide. In some embodiments, a single
conjugating moiety is attached to multiple residues of the IL-15 polypeptide (e.g.
a staple). In some embodiments, a conjugating moiety is attached to both the N and
C terminal amino acids of the IL-15 polypeptide.
Water-Soluble Polymers
[0099] In some embodiments, a conjugating moiety descried herein is a water-soluble polymer.
In some embodiments, the water-soluble polymer is a nonpeptidic, nontoxic, and biocompatible.
As used herein, a substance is considered biocompatible if the beneficial effects
associated with use of the substance alone or with another substance (e.g., an active
agent such as an IL-15 moiety) in connection with living tissues (e.g., administration
to a patient) outweighs any deleterious effects as evaluated by a clinician, e.g.,
a physician. In some embodiments, a water-soluble polymer is further non-immunogenic.
In some embodiments, a substance is considered non-immunogenic if the intended use
of the substance in vivo does not produce an undesired immune response (e.g., the
formation of antibodies) or, if an immune response is produced, that such a response
is not deemed clinically significant or important as evaluated by a clinician, e.g.,
a physician, a toxicologist, or a clinical development specialist.
[0100] In some embodiments, the water-soluble polymer is characterized as having from about
2 to about 300 termini. Exemplary water soluble polymers include, but are not limited
to, poly(alkylene glycols) such as polyethylene glycol ("PEG"), polypropylene glycol)
("PPG"), copolymers of ethylene glycol and propylene glycol and the like, poly(oxyethylated
polyol), poly(olefinic alcohol), poly(vinylpyrrolidone), poly(hydroxyalkylmethacrylamide),
poly(hydroxyalkylmethacrylate), poly(saccharides), poly(α-hydroxy acid), poly(vinyl
alcohol), polyphosphazene, polyoxazolines ("POZ") (which are described in
WO 2008/106186), poly(N-acryloylmorpholine), and combinations of any of the foregoing.
[0101] In some embodiments, the water-soluble polymer is not limited to a particular structure.
In some embodiments, the water-soluble polymer is linear (e.g., an end capped, e.g.,
alkoxy PEG or a bifunctional PEG), branched or multi-armed (e.g., forked PEG or PEG
attached to a polyol core), a dendritic (or star) architecture, each with or without
one or more degradable linkages. Moreover, the internal structure of the water-soluble
polymer can be organized in any number of different repeat patterns and can be selected
from the group consisting of homopolymer, alternating copolymer, random copolymer,
block copolymer, alternating tripolymer, random tripolymer, and block tripolymer.
[0102] In some embodiments, the weight-average molecular weight of the water-soluble polymer
in the IL-21 conjugate is from about 100 Daltons to about 150,000 Daltons. Exemplary
ranges include, for example, weight-average molecular weights in the range of greater
than 5,000 Daltons to about 100,000 Daltons, in the range of from about 6,000 Daltons
to about 90,000 Daltons, in the range of from about 10,000 Daltons to about 85,000
Daltons, in the range of greater than 10,000 Daltons to about 85,000 Daltons, in the
range of from about 20,000 Daltons to about 85,000 Daltons, in the range of from about
53,000 Daltons to about 85,000 Daltons, in the range of from about 25,000 Daltons
to about 120,000 Daltons, in the range of from about 29,000 Daltons to about 120,000
Daltons, in the range of from about 35,000 Daltons to about 120,000 Daltons, and in
the range of from about 40,000 Daltons to about 120,000 Daltons.
[0103] Exemplary weight-average molecular weights for the water-soluble polymer include
about 100 Daltons, about 200 Daltons, about 300 Daltons, about 400 Daltons, about
500 Daltons, about 600 Daltons, about 700 Daltons, about 750 Daltons, about 800 Daltons,
about 900 Daltons, about 1,000 Daltons, about 1,500 Daltons, about 2,000 Daltons,
about 2,200 Daltons, about 2,500 Daltons, about 3,000 Daltons, about 4,000 Daltons,
about 4,400 Daltons, about 4,500 Daltons, about 5,000 Daltons, about 5,500 Daltons,
about 6,000 Daltons, about 7,000 Daltons, about 7,500 Daltons, about 8,000 Daltons,
about 9,000 Daltons, about 10,000 Daltons, about 11,000 Daltons, about 12,000 Daltons,
about 13,000 Daltons, about 14,000 Daltons, about 15,000 Daltons, about 20,000 Daltons,
about 22,500 Daltons, about 25,000 Daltons, about 30,000 Daltons, about 35,000 Daltons,
about 40,000 Daltons, about 45,000 Daltons, about 50,000 Daltons, about 55,000 Daltons,
about 60,000 Daltons, about 65,000 Daltons, about 70,000 Daltons, and about 75,000
Daltons. Branched versions of the water-soluble polymer (e.g., a branched 40,000 Dalton
water-soluble polymer comprised of two 20,000 Dalton polymers) having a total molecular
weight of any of the foregoing can also be used. In one or more embodiments, the conjugate
will not have any PEG moieties attached, either directly or indirectly, with a PEG
having a weight average molecular weight of less than about 6,000 Daltons.
[0104] PEGs will typically comprise a number of (OCH
2CH
2) monomers [or (CH
2CH
2O) monomers, depending on how the PEG is defined]. As used herein, the number of repeating
units is identified by the subscript "n" in "(OCH
2CH
2)
n." Thus, the value of (n) typically falls within one or more of the following ranges:
from 2 to about 3400, from about 100 to about 2300, from about 100 to about 2270,
from about 136 to about 2050, from about 225 to about 1930, from about 450 to about
1930, from about 1200 to about 1930, from about 568 to about 2727, from about 660
to about 2730, from about 795 to about 2730, from about 795 to about 2730, from about
909 to about 2730, and from about 1,200 to about 1,900. For any given polymer in which
the molecular weight is known, it is possible to determine the number of repeating
units (i.e., "n") by dividing the total weight-average molecular weight of the polymer
by the molecular weight of the repeating monomer.
[0105] In some embodiments, the water-soluble polymer is an end-capped polymer, that is,
a polymer having at least one terminus capped with a relatively inert group, such
as a lower C
1-6 alkoxy group, or a hydroxyl group. When the polymer is PEG, for example, a methoxy-PEG
(commonly referred to as mPEG) may be used, which is a linear form of PEG wherein
one terminus of the polymer is a methoxy (-OCH
3) group, while the other terminus is a hydroxyl or other functional group that can
be optionally chemically modified.
[0106] In some embodiments, exemplary water-soluble polymers include, but are not limited
to, linear or branched discrete PEG (dPEG) from Quanta Biodesign, Ltd; linear, branched,
or forked PEGs from Nektar Therapeutics; linear, branched, or Y-shaped PEG derivatives
from JenKem Technology.
[0107] In some embodiments, IL-15 polypeptide described herein is conjugated to a water-soluble
polymer selected from poly(alkylene glycols) such as polyethylene glycol ("PEG"),
polypropylene glycol) ("PPG"), copolymers of ethylene glycol and propylene glycol
and the like, poly(oxyethylated polyol), poly(olefinic alcohol), poly(vinylpyrrolidone),
poly(hydroxyalkylmethacrylamide), poly(hydroxyalkylmethacrylate), poly(saccharides),
poly(α-hydroxy acid), poly(vinyl alcohol), polyphosphazene, polyoxazolines ("POZ"),
poly(N-acryloylmorpholine), and a combination thereof. In some embodiments, the IL-15
polypeptide is conjugated to PEG (e.g., PEGylated). In some embodiments, the IL-15
polypeptide is conjugated to PPG. In some embodiments, the IL-15 polypeptide is conjugated
to POZ. In some instances, the IL-15 polypeptide is conjugated to PVP.
[0108] In some instances, a water-soluble polymer comprises a polyglycerol (PG). In some
cases, the polyglycerol is a hyperbranched PG (HPG) (e.g., as described by
Imran, et al. "Influence of architecture of high molecular weight linear and branched
polyglycerols on their biocompatibility and biodistribution," Biomaterials 33:9135-9147
(2012)). In other cases, the polyglycerol is a linear PG (LPG). In additional cases, the
polyglycerol is a midfunctional PG, a linear-block-hyperbranched PG (e.g., as described
by
Wurm et. Al., "Squaric acid mediated synthesis and biological activity of a library
of linear and hyperbranched poly(glycerol)-protein conjugates," Biomacromolecules
13:1161-1171 (2012)), or a side-chain functional PG (e.g., as described by
Li, et. al., "Synthesis of linear polyether polyol derivatives as new materials for
bioconjugation," Bioconjugate Chem. 20:780-789 (2009).
[0109] In some instances, an IL-15 polypeptide described herein is conjugated to a PG, e.g.,
a HPG, a LPG, a midfunctional PG, a linear-block-hyperbranched PG, or a side-chain
functional PG.
[0110] In some embodiments, a water-soluble polymer is a degradable synthetic PEG alternative.
Exemplary degradable synthetic PEG alternatives include, but are not limited to, poly[oligo(ethylene
glycol)methyl methacrylate] (POEGMA); backbone modified PEG derivatives generated
by polymerization of telechelic, or di-end-functionalized PEG-based macromonomers;
PEG derivatives comprising comonomers comprising degradable linkage such as poly[(ethylene
oxie)-co-(methylene ethylene oxide)] [P(EO-co-MEO)], cyclic ketene acetals such as
5,6-benzo-2-methylene-1,3-dioxepane (BMDO), 2-methylene-1,3- dioxepane (MDO), and
2-methylene-4-phenyl-1,3-dioxolane (MPDL) copolymerized with OEGMA; or poly-(ε-caprolactone)-graft-poly(ethylene
oxide) (PCL-g-PEO).
[0111] In some instances, an IL-15 polypeptide described herein is conjugated to a degradable
synthetic PEG alternative, such as for example, POEGM; backbone modified PEG derivatives
generated by polymerization of telechelic, or di-end-functionalized PEG-based macromonomers;
P(EO-co-MEO); cyclic ketene acetals such as BMDO, MDO, and MPDL copolymerized with
OEGMA; or PCL-g-PEO.
[0112] In some embodiments, a water-soluble polymer comprises a poly(zwitterions). Exemplary
poly(zwitterions) include, but are not limited to, poly(sulfobetaine methacrylate)
(PSBMA), poly(carboxybetaine methacrylate) (PCBMA), and poly(2-methyacryloyloxyethyl
phosphorylcholine) (PMPC). In some instances, an IL-15 polypeptide is conjugated to
a poly(zwitterion) such as PSBMA, PCBMA, or PMPC.
[0113] In some embodiments, a water-soluble polymer comprises a polycarbonate. Exemplary
polycarbones include, but are not limited to, pentafluorophenyl 5-methyl-2-oxo-1,3-dioxane-5-carboxylate
(MTC-OC
6F
5). In some instances, an IL-15 polypeptide described herein is conjugated to a polycarbonate
such as MTC-OC
6F
5.
[0114] In some embodiments, a water-soluble polymer comprises a polymer hybrid, such as
for example, a polycarbonate/PEG polymer hybrid, a peptide/protein-polymer conjugate,
or a hydroxylcontaining and/or zwitterionic derivatized polymer (e.g., a hydroxylcontaining
and/or zwitterionic derivatized PEG polymer). In some instances, an IL-15 polypeptide
described herein is conjugated to a polymer hybrid such as a polycarbonate/PEG polymer
hybrid, a peptide/protein-polymer conjugate, or a hydroxylcontaining and/or zwitterionic
derivatized polymer (e.g., a hydroxylcontaining and/or zwitterionic derivatized PEG
polymer).
[0115] In some embodiments, a water-soluble polymer comprises a polysaccharide. Exemplary
polysaccharides include, but are not limited to, dextran, polysialic acid (PSA), hyaluronic
acid (HA), amylose, heparin, heparan sulfate (HS), dextrin, or hydroxyethyl-starch
(HES). In some embodiments, an IL-15 polypeptide is conjugated to dextran. In some
embodiments, an IL-15 polypeptide is conjugated to PSA. In some embodiments, an IL-15
polypeptide is conjugated to HA. In some embodiments, an IL-15 polypeptide is conjugated
to amylose. In some embodiments, an IL-15 polypeptide is conjugated to heparin. In
some embodiments, an IL-15 polypeptide is conjugated to HS. In some embodiments, an
IL-15 polypeptide is conjugated to dextrin. In some embodiments, an IL-15 polypeptide
is conjugated to HES.
[0116] In some embodiments, a water-soluble polymer comprises a glycan. Exemplary classes
of glycans include
N-linked glycans, O-linked glycans, glycolipids, O-GlcNAc, and glycosaminoglycans.
In some embodiments, an IL-15 polypeptide is conjugated to a glycan. In some embodiments,
an IL-15 polypeptide is conjugated to
N-linked glycans. In some embodiments, an IL-15 polypeptide is conjugated to O-linked
glycans. In some embodiments, an IL-15 polypeptide is conjugated to glycolipids. In
some embodiments, an IL-15 polypeptide is conjugated to O-GlcNAc. In some embodiments,
an IL-15 polypeptide is conjugated to glycosaminoglycans.
[0117] In some embodiments, a water-soluble polymer comprises a polyoxazoline polymer. A
polyoxazoline polymer is a linear synthetic polymer, and similar to PEG, comprises
a low polydispersity. In some embodiments, a polyoxazoline polymer is a polydispersed
polyoxazoline polymer, characterized with an average molecule weight. In some embodiments,
the average molecule weight of a polyoxazoline polymer includes, for example, 1000,
1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000,
10,000, 12,000, 20,000, 35,000, 40,000, 50,000, 60,000, 100,000, 200,000, 300,000,
400,000, or 500,000 Da. In some embodiments, a polyoxazoline polymer comprises poly(2-methyl
2-oxazoline) (PMOZ), poly(2-ethyl 2-oxazoline) (PEOZ), or poly(2-propyl 2-oxazoline)
(PPOZ). In some embodiments, an IL-15 polypeptide is conjugated to a polyoxazoline
polymer. In some embodiments, an IL-15 polypeptide is conjugated to PMOZ. In some
embodiments, an IL-15 polypeptide is conjugated to PEOZ. In some embodiments, an IL-15
polypeptide is conjugated to PPOZ.
[0118] In some embodiments, a water-soluble polymer comprises a polyacrylic acid polymer.
In some embodiments, an IL-15 polypeptide is conjugated to a polyacrylic acid polymer.
[0119] In some embodiments, a water-soluble polymer comprises polyamine. Polyamine is an
organic polymer comprising two or more primary amino groups. In some embodiments,
a polyamine includes a branched polyamine, a linear polyamine, or cyclic polyamine.
In some embodiments, a polyamine is a low-molecular-weight linear polyamine. Exemplary
polyamines include putrescine, cadaverine, spermidine, spermine, ethylene diamine,
1,3-diaminopropane, hexamethylenediamine, tetraethylmethylenediamine, and piperazine.
In some embodiments, an IL-15 polypeptide is conjugated to polyamine. In some embodiments,
an IL-15 polypeptide is conjugated to putrescine, cadaverine, spermidine, spermine,
ethylene diamine, 1,3-diaminopropane, hexamethylenediamine, tetraethylmethylenediamine,
or piperazine.
Lipids
[0120] In some embodiments, a conjugating moiety descried herein is a lipid. In some instances,
the lipid is a fatty acid. In some cases, the fatty acid is a saturated fatty acid.
In other cases, the fatty acid is an unsaturated fatty acid. Exemplary fatty acids
include, but are not limited to, fatty acids comprising from about 6 to about 26 carbon
atoms, from about 6 to about 24 carbon atoms, from about 6 to about 22 carbon atoms,
from about 6 to about 20 carbon atoms, from about 6 to about 18 carbon atoms, from
about 20 to about 26 carbon atoms, from about 12 to about 26 carbon atoms, from about
12 to about 24 carbon atoms, from about 12 to about 22 carbon atoms, from about 12
to about 20 carbon atoms, or from about 12 to about 18 carbon atoms. In some cases,
the lipid binds to one or more serum proteins, thereby increasing serum stability
and/or serum half-life.
[0121] In some embodiments, the lipid is conjugated to an IL-15 polypeptide described herein.
In some instances, the lipid is a fatty acid, e.g., a saturated fatty acid or an unsaturated
fatty acid. In some cases, the fatty acid is from about 6 to about 26 carbon atoms,
from about 6 to about 24 carbon atoms, from about 6 to about 22 carbon atoms, from
about 6 to about 20 carbon atoms, from about 6 to about 18 carbon atoms, from about
20 to about 26 carbon atoms, from about 12 to about 26 carbon atoms, from about 12
to about 24 carbon atoms, from about 12 to about 22 carbon atoms, from about 12 to
about 20 carbon atoms, or from about 12 to about 18 carbon atoms. In some cases, the
fatty acid comprises about 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, or 26 carbon atoms in length. In some cases, the fatty acid comprises
caproic acid (hexanoic acid), enanthic acid (heptanoic acid), caprylic acid (octanoic
acid), pelargonic acid (nonanoic acid), capric acid (decanoic acid), undecylic acid
(undecanoic acid), lauric acid (dodecanoic acid), tridecylic acid (tridecanoic acid),
myristic acid (tetradecanoic acid), pentadecylic acid (pentadecanoic acid), palmitic
acid (hexadecanoic acid), margaric acid (heptadecanoic acid), stearic acid (octadecanoic
acid), nonadecylic acid (nonadecanoic acid), arachidic acid (eicosanoic acid), heneicosylic
acid (heneicosanoic acid), behenic acid (docosanoic acid), tricosylic acid (tricosanoic
acid), lignoceric acid (tetracosanoic acid), pentacosylic acid (pentacosanoic acid),
or cerotic acid (hexacosanoic acid).
[0122] In some embodiments, the IL-15 lipid conjugate enhances serum stability and/or serum
half-life.
Proteins
[0123] In some embodiments, a conjugating moiety descried herein is a protein or a binding
fragment thereof. Exemplary proteins include albumin, transferrin, or transthyretin.
In some embodiments, the protein or a binding fragment thereof comprises an antibody,
or its binding fragments thereof. In some embodiments, an IL-15 conjugate comprises
a protein or a binding fragment thereof. In some embodiments, an IL-15 conjugate comprising
a protein or a binding fragment thereof has an increased serum half-life, and/or stability.
In some embodiments, an IL-15 conjugate comprising a protein or a binding fragment
thereof has a reduced IL-15 interaction with one or more IL-15R/IL-2R subunits. In
additional cases, the protein or a binding fragment thereof blocks IL-15 interaction
with one or more IL-15R/IL-2R subunits.
[0124] In some embodiments, the conjugating moiety is albumin. Albumin is a family of water-soluble
globular proteins. It is commonly found in blood plasma, comprising about 55-60% of
all plasma proteins. Human serum albumin (HSA) is a 585 amino acid polypeptide in
which the tertiary structure is divided into three domains, domain I (amino acid residues
1-195), domain II (amino acid residues 196-383), and domain III (amino acid residues
384-585). Each domain further comprises a binding site, which can interact either
reversibly or irreversibly with endogenous ligands such as long- and medium-chain
fatty acids, bilirubin, or hemin, or exogenous compounds such as heterocyclic or aromatic
compounds.
[0125] In some embodiments, an IL-15 polypeptide is conjugated to albumin. In some embodiments,
the IL-15 polypeptide is conjugated to human serum albumin (HSA). In additional cases,
the IL-15 polypeptide is conjugated to a functional fragment of albumin.
[0126] In some embodiments, the conjugating moiety is transferrin. Transferrin is a 679
amino acid polypeptide that is about 80 kDa in size and comprises two Fe
3+ binding sites with one at the N-terminal domain and the other at the C-terminal domain.
In some embodiments, human transferrin has a half-life of about 7-12 days.
[0127] In some embodiments, an IL-15 polypeptide is conjugated to transferrin. In some embodiments,
the IL-15 polypeptide is conjugated to human transferrin. In additional cases, the
IL-15 polypeptide is conjugated to a functional fragment of transferrin.
[0128] In some embodiments, the conjugating moiety is transthyretin (TTR). Transthyretin
is a transport protein located in the serum and cerebrospinal fluid which transports
the thyroid hormone thyroxine (T
4) and retinol-binding protein bound to retinol.
[0129] In some embodiments, an IL-15 polypeptide is conjugated to transthyretin (via one
of its termini or via an internal hinge region). In some embodiments, the IL-15 polypeptide
is conjugated to a functional fragment of transthyretin.
[0130] In some embodiments, the conjugating moiety is an antibody, or its binding fragments
thereof. In some embodiments, an antibody or its binding fragments thereof comprise
a humanized antibody or binding fragment thereof, murine antibody or binding fragment
thereof, chimeric antibody or binding fragment thereof, monoclonal antibody or binding
fragment thereof, monovalent Fab', divalent Fab
2, F(ab)'
3 fragments, single-chain variable fragment (scFv), bis-scFv, (scFv)
2, diabody, minibody, nanobody, triabody, tetrabody, humabody, disulfide stabilized
Fv protein (dsFv), single-domain antibody (sdAb), Ig NAR, camelid antibody or binding
fragment thereof, bispecific antibody or biding fragment thereof, or a chemically
modified derivative thereof.
[0131] In some instances, the conjugating moiety comprises a scFv, bis-scFv, (scFv)
2, dsFv, or sdAb. In some cases, the conjugating moiety comprises a scFv. In some cases,
the conjugating moiety comprises a bis-scFv. In some cases, the conjugating moiety
comprises a (scFv)
2. In some cases, the conjugating moiety comprises a dsFv. In some cases, the conjugating
moiety comprises a sdAb.
[0132] In some embodiments, the conjugating moiety comprises an Fc portion of an antibody,
e.g., of IgG, IgA, IgM, IgE, or IgD. In some embodiments, the moiety comprises an
Fc portion of IgG (e.g., IgG
1, IgG
3, or IgG
4).
[0133] In some embodiments, an IL-15 polypeptide is conjugated to an antibody, or its binding
fragments thereof. In some embodiments, the IL-15 polypeptide is conjugated to a humanized
antibody or binding fragment thereof, murine antibody or binding fragment thereof,
chimeric antibody or binding fragment thereof, monoclonal antibody or binding fragment
thereof, monovalent Fab', divalent Fab
2, F(ab)'
3 fragments, single-chain variable fragment (scFv), bis-scFv, (scFv)
2, diabody, minibody, nanobody, triabody, tetrabody, humabody, disulfide stabilized
Fv protein (dsFv), single-domain antibody (sdAb), Ig NAR, camelid antibody or binding
fragment thereof, bispecific antibody or biding fragment thereof, or a chemically
modified derivative thereof. In additional cases, the IL-15 polypeptide is conjugated
to an Fc portion of an antibody. In additional cases, the IL-15 polypeptide is conjugated
to an Fc portion of IgG (e.g., IgG
1, IgG
3, or IgG
4).
[0134] In some embodiments, an IL-15 polypeptide is conjugated to a water-soluble polymer
(e.g., PEG) and an antibody or binding fragment thereof. In some cases, the antibody
or binding fragments thereof comprises a humanized antibody or binding fragment thereof,
murine antibody or binding fragment thereof, chimeric antibody or binding fragment
thereof, monoclonal antibody or binding fragment thereof, monovalent Fab', divalent
Fab
2, F(ab)'
3 fragments, single-chain variable fragment (scFv), bis-scFv, (scFv)
2, diabody, minibody, nanobody, triabody, tetrabody, humabody, disulfide stabilized
Fv protein (dsFv), single-domain antibody (sdAb), Ig NAR, camelid antibody or binding
fragment thereof, bispecific antibody or biding fragment thereof, or a chemically
modified derivative thereof. In some cases, the antibody or binding fragments thereof
comprises a scFv, bis-scFv, (scFv)
2, dsFv, or sdAb. In some cases, the antibody or binding fragments thereof comprises
a scFv. In some cases, the antibody or binding fragment thereof guides the IL-15 conjugate
to a target cell of interest and the water-soluble polymer enhances stability and/or
serum half-life.
[0135] In some instances, one or more IL-15 polypeptide - water-soluble polymer (e.g., PEG)
conjugates are further bound to an antibody or binding fragments thereof. In some
instances, the ratio of the IL-15 conjugate to the antibody is about 1:1, 2:1, 3:1,
4:1, 5:1, 6:1, 7:1, 8:1, 9:1, 10:1, 11:1, or 12:1. In some cases, the ratio of the
IL-15 conjugate to the antibody is about 1:1. In other cases, the ratio of the IL-15
conjugate to the antibody is about 2:1, 3:1, or 4:1. In additional cases, the ratio
of the IL-15 conjugate to the antibody is about 6:1 or higher.
[0136] In some embodiments, the one or more IL-15 polypeptide - water-soluble polymer (e.g.,
PEG) conjugates are directly bound to the antibody or binding fragments thereof. In
other instances, the IL-15 conjugate is indirectly bound to the antibody or binding
fragments thereof with a linker. Exemplary linkers include homobifunctional linkers,
heterobifunctional linkers, maleimide-based linkers, zero-trace linkers, self-immolative
linkers, spacers, and the like.
[0137] In some embodiments, the antibody or binding fragments thereof is bound either directly
or indirectly to the IL-15 polypeptide portion of the IL-15 polypeptide - water-soluble
polymer (e.g., PEG) conjugate. In such cases, the conjugation site of the antibody
to the IL-15 polypeptide is at a site that will not impede binding of the IL-15 polypeptide
with the IL-15R. In additional cases, the conjugation site of the antibody to the
IL-15 polypeptide is at a site that partially blocks binding of the IL-15 polypeptide
with the IL-15R. In other embodiments, the antibody or binding fragments thereof is
bound either directly or indirectly to the water-soluble polymer portion of the IL-15
polypeptide - water-soluble polymer (e.g., PEG) conjugate.
Peptides
[0138] In some embodiments, a conjugating moiety descried herein is a peptide. In some embodiments,
the peptide is a non-structured peptide. In some embodiments, a cytokine (e.g., an
interleukin, IFN, or TNF) polypeptide is conjugated to a peptide. In some embodiments,
the IL-15 conjugate comprising a peptide has an increased serum half-life, and/or
stability. In some embodiments, the IL-15 conjugate comprising a peptide has a reduced
IL-15 interaction with one or more IL-15R subunits. In additional cases, the peptide
blocks IL-15 interaction with one or more IL-15R subunits.
[0139] In some embodiments, the conjugating moiety is a XTEN
™ peptide (Amunix Operating Inc.) and the modification is referred to as XTENylation.
XTENylation is the genetic fusion of a nucleic acid encoding a polypeptide of interest
with a nucleic acid encoding a XTEN
™ peptide (Amunix Operating Inc.), a long unstructured hydrophilic peptide comprising
different percentage of six amino acids: Ala, Glu, Gly, Ser, and Thr. In some embodiments,
a XTEN
™ peptide is selected based on properties such as expression, genetic stability, solubility,
aggregation resistance, enhanced half-life, increased potency, and/or increased in
vitro activity in combination with a polypeptide of interest. In some embodiments,
a cytokine (e.g., an interleukin, IFN, or TNF) polypeptide is conjugated to a XTEN
peptide. In some embodiments, an IL-15 polypeptide is conjugated to a XTEN peptide.
[0140] In some embodiments, the conjugating moiety is a glycine-rich homoamino acid polymer
(HAP) and the modification is referred to as HAPylation. HAPylation is the genetic
fusion of a nucleic acid encoding a polypeptide of interest with a nucleic acid encoding
a glycine-rich homoamino acid polymer (HAP). In some embodiments, the HAP polymer
comprises a (Gly
4Ser)
n repeat motif and sometimes are about 50, 100, 150, 200, 250, 300, or more residues
in length. In some embodiments, a cytokine (e.g., an interleukin, IFN, or TNF) polypeptide
is conjugated to HAP. In some embodiments, an IL-15 polypeptide is conjugated to HAP.
[0141] In some embodiments, the conjugating moiety is a PAS polypeptide and the modification
is referred to as PASylation. PASylation is the genetic fusion of a nucleic acid encoding
a polypeptide of interest with a nucleic acid encoding a PAS polypeptide. A PAS polypeptide
is a hydrophilic uncharged polypeptide consisting of Pro, Ala and Ser residues. In
some embodiments, the length of a PAS polypeptide is at least about 100, 200, 300,
400, 500, or 600 amino acids. In some embodiments, a cytokine (e.g., an interleukin,
IFN, or TNF) polypeptide is conjugated to a PAS polypeptide. In some embodiments,
an IL-15 polypeptide is conjugated to a PAS polypeptide.
[0142] In some embodiments, the conjugating moiety is an elastin-like polypeptide (ELP)
and the modification is referred to as ELPylation. ELPylation is the genetic fusion
of a nucleic acid encoding a polypeptide of interest with a nucleic acid encoding
an elastin-like polypeptide (ELPs). An ELP comprises a VPGxG repeat motif in which
x is any amino acid except proline. In some embodiments, a cytokine (e.g., an interleukin,
IFN, or TNF) polypeptide is conjugated to ELP. In some embodiments, an IL-15 polypeptide
is conjugated to ELP.
[0143] In some embodiments, the conjugating moiety is a CTP peptide. A CTP peptide comprises
a 31 amino acid residue peptide FQSSSS*KAPPPS*LPSPS*RLPGPS*DTPILPQ in which the S*
denotes O-glycosylation sites (OPKO). In some embodiments, a CTP peptide is genetically
fused to a cytokine polypeptide (e.g., an IL-15 polypeptide). In some embodiments,
a cytokine polypeptide (e.g., an IL-15 polypeptide) is conjugated to a CTP peptide.
[0144] In some embodiments, a cytokine (e.g., an IL-15 polypeptide) is modified by glutamylation.
Glutamylation (or polyglutamylation) is a reversible posttranslational modification
of glutamate, in which the γ-carboxy group of glutamate forms a peptide-like bond
with the amino group of a free glutamate in which the α-carboxy group extends into
a polyglutamate chain.
[0145] In some embodiments, an IL-15 polypeptide is modified by a gelatin-like protein (GLK)
polymer. In some embodiments, the GLK polymer comprises multiple repeats of Gly-Xaa-Yaa
wherein Xaa and Yaa primarily comprise proline and 4-hydroxyproline, respectively.
In some embodiments, the GLK polymer further comprises amino acid residues Pro, Gly,
Glu, Qln, Asn, Ser, and Lys. In some embodiments, the length of the GLK polymer is
about 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 150 residues or longer.
Additional Conjugating Moieties
[0146] In some embodiments, the conjugating moiety comprises an extracellular biomarker.
In some embodiments, the extracellular biomarker is a tumor antigen. In some embodiments,
exemplary extracellular biomarker comprises CD19, PSMA, B7-H3, B7-H6, CD70, CEA, CSPG4,
EGFRvIII, EphA3, EpCAM, EGFR, ErbB2 (HER2), FAP, FRα, GD2, GD3, Lewis-Y, mesothelin,
Muc1, Muc 16, ROR1, TAG72, VEGFR2, CD11, Gr-1, CD204, CD16, CD49b, CD3, CD4, CD8,
and B220. In some embodiments, the conjugating moiety is bond or conjugated to the
IL-15. In some embodiments, the conjugating moiety is genetically fused, for example,
at the N-terminus or the C-terminus, of the IL-15.
[0147] In some embodiments, the conjugating moiety comprises a molecule from a post-translational
modification. In some embodiments, examples of post-translational modification include
myristoylation, palmitoylation, isoprenylation (or prenylation) (e.g., farnesylation
or geranylgeranylation), glypiation, acylation (e.g., O-acylation, N-acylation, S-acylation),
alkylation (e.g., additional of alkyl groups such as methyl or ethyl groups), amidation,
glycosylation, hydroxylation, iodination, nucleotide addition, oxidation, phosphorylation,
succinylation, sulfation, glycation, carbamylation, glutamylation, or deamidation.
In some embodiments, the IL-15 is modified by a post-translational modification such
as myristoylation, palmitoylation, isoprenylation (or prenylation) (e.g., farnesylation
or geranylgeranylation), glypiation, acylation (e.g., O-acylation, N-acylation, S-acylation),
alkylation (e.g., additional of alkyl groups such as methyl or ethyl groups), amidation,
glycosylation, hydroxylation, iodination, nucleotide addition, oxidation, phosphorylation,
succinylation, sulfation, glycation, carbamylation, glutamylation, or deamidation.
Linkers
[0148] In some embodiments, useful functional reactive groups for conjugating or binding
a conjugating moiety to an IL-15 polypeptide described herein include, for example,
zero or higher-order linkers. In some instances, an unnatural amino acid incorporated
into an interleukin described herein comprises a functional reactive group. In some
instances, a linker comprises a functional reactive group that reacts with an unnatural
amino acid incorporated into an interleukin described herein. In some instances, a
conjugating moiety comprises a functional reactive group that reacts with an unnatural
amino acid incorporated into an interleukin described herein. In some instances, a
conjugating moiety comprises a functional reactive group that reacts with a linker
(optionally pre-attached to a cytokine peptide) described herein. In some embodiments,
a linker comprises a reactive group that reacts with a natural amino acid in an IL-15
polypeptide described herein. In some cases, higher-order linkers comprise bifunctional
linkers, such as homobifunctional linkers or heterobifunctional linkers. Exemplary
homobifuctional linkers include, but are not limited to, Lomant's reagent dithiobis
(succinimidylpropionate) DSP, 3'3'-dithiobis(sulfosuccinimidyl proprionate (DTSSP),
disuccinimidyl suberate (DSS), bis(sulfosuccinimidyl)suberate (BS), disuccinimidyl
tartrate (DST), disulfosuccinimidyl tartrate (sulfo DST), ethylene glycobis(succinimidylsuccinate)
(EGS), disuccinimidyl glutarate (DSG), N,N'-disuccinimidyl carbonate (DSC), dimethyl
adipimidate (DMA), dimethyl pimelimidate (DMP), dimethyl suberimidate (DMS), dimethyl-3,3'-dithiobispropionimidate
(DTBP), 1,4-di-3'-(2'-pyridyldithio)propionamido)butane (DPDPB), bismaleimidohexane
(BMH), aryl halide-containing compound (DFDNB), such as e.g. 1,5-difluoro-2,4-dinitrobenzene
or 1,3-difluoro-4,6-dinitrobenzene, 4,4'-difluoro-3,3'-dinitrophenylsulfone (DFDNPS),
bis-[β-(4-azidosalicylamido)ethyl]disulfide (BASED), formaldehyde, glutaraldehyde,
1,4-butanediol diglycidyl ether, adipic acid dihydrazide, carbohydrazide, o-toluidine,
3,3'-dimethylbenzidine, benzidine, α,α'-p-diaminodiphenyl, diiodo-p-xylene sulfonic
acid, N,N'-ethylene-bis(iodoacetamide), or N,N'-hexamethylene-bis(iodoacetamide).
[0149] In some embodiments, the bifunctional linker comprises a heterobifunctional linker.
Exemplary heterobifunctional linker include, but are not limited to, amine-reactive
and sulfhydryl cross-linkers such as N-succinimidyl 3-(2-pyridyldithio)propionate
(sPDP), long-chain N-succinimidyl 3-(2-pyridyldithio)propionate (LC-sPDP), water-soluble-long-chain
N-succinimidyl 3-(2-pyridyldithio) propionate (sulfo-LC-sPDP), succinimidyloxycarbonyl-α-methyl-α-(2-pyridyldithio)toluene
(sMPT), sulfosuccinimidyl-6-[α-methyl-α-(2-pyridyldithio)toluamido]hexanoate (sulfo-LC-sMPT),
succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (sMCC), sulfosuccinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate
(sulfo-sMCC), m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBs), m-maleimidobenzoyl-N-hydroxysulfosuccinimide
ester (sulfo-MBs), N-succinimidyl(4-iodoacteyl)aminobenzoate (sIAB), sulfosuccinimidyl(4-iodoacteyl)aminobenzoate
(sulfo-sIAB), succinimidyl-4-(p-maleimidophenyl)butyrate (sMPB), sulfosuccinimidyl-4-(p-maleimidophenyl)butyrate
(sulfo-sMPB), N-(γ-maleimidobutyryloxy)succinimide ester (GMBs), N-(γ-maleimidobutyryloxy)sulfosuccinimide
ester (sulfo-GMBs), succinimidyl 6-((iodoacetyl)amino)hexanoate (sIAX), succinimidyl
6-[6-(((iodoacetyl)amino)hexanoyl)amino]hexanoate (sIAXX), succinimidyl 4-(((iodoacetyl)amino)methyl)cyclohexane-1-carboxylate
(sIAC), succinimidyl 6-((((4-iodoacetyl)amino)methyl)cyclohexane-1-carbonyl)amino)
hexanoate (sIACX), p-nitrophenyl iodoacetate (NPIA), carbonyl-reactive and sulfhydryl-reactive
cross-linkers such as 4-(4-N-maleimidophenyl)butyric acid hydrazide (MPBH), 4-(N-maleimidomethyl)cyclohexane-1-carboxyl-hydrazide-8
(M
2C
2H), 3-(2-pyridyldithio)propionyl hydrazide (PDPH), amine-reactive and photoreactive
cross-linkers such as N-hydroxysuccinimidyl-4-azidosalicylic acid (NHs-AsA), N-hydroxysulfosuccinimidyl-4-azidosalicylic
acid (sulfo-NHs-AsA), sulfosuccinimidyl-(4-azidosalicylamido)hexanoate (sulfo-NHs-LC-AsA),
sulfosuccinimidyl-2-(ρ-azidosalicylamido)ethyl-1,3'-dithiopropionate (sAsD), N-hydroxysuccinimidyl-4-azidobenzoate
(HsAB), N-hydroxysulfosuccinimidyl-4-azidobenzoate (sulfo-HsAB), N-succinimidyl-6-(4'-azido-2'-nitrophenylamino)hexanoate
(sANPAH), sulfosuccinimidyl-6-(4'-azido-2'-nitrophenylamino)hexanoate (sulfo-sANPAH),
N-5-azido-2-nitrobenzoyloxysuccinimide (ANB-NOs), sulfosuccinimidyl-2-(m-azido-o-nitrobenzamido)-ethyl-1,3'-dithiopropionate
(sAND), N-succinimidyl-4(4-azidophenyl)1,3'-dithiopropionate (sADP), N-sulfosuccinimidyl(4-azidophenyl)-1,3'-dithiopropionate
(sulfo-sADP), sulfosuccinimidyl 4-(ρ-azidophenyl)butyrate (sulfo-sAPB), sulfosuccinimidyl
2-(7-azido-4-methylcoumarin-3-acetamide)ethyl-1,3'-dithiopropionate (sAED), sulfosuccinimidyl
7-azido-4-methylcoumain-3-acetate (sulfo-sAMCA), p-nitrophenyl diazopyruvate (pNPDP),
ρ-nitrophenyl-2-diazo-3,3,3-trifluoropropionate (PNP-DTP), sulfhydryl-reactive and
photoreactive cross-linkers such as1-(ρ-Azidosalicylamido)-4-(iodoacetamido)butane
(AsIB), N-[4-(ρ-azidosalicylamido)butyl]-3'-(2'-pyridyldithio)propionamide (APDP),
benzophenone-4-iodoacetamide, benzophenone-4-maleimide carbonyl-reactive and photoreactive
cross-linkers such as p-azidobenzoyl hydrazide (ABH), carboxylate-reactive and photoreactive
cross-linkers such as 4-(ρ-azidosalicylamido)butylamine (AsBA), and arginine-reactive
and photoreactive cross-linkers such as p-azidophenyl glyoxal (APG).
[0150] In some instances, the reactive functional group comprises a nucleophilic group that
is reactive to an electrophilic group present on a binding moiety (e.g., on a conjugating
moiety or on IL-15). Exemplary electrophilic groups include carbonyl groups-such as
aldehyde, ketone, carboxylic acid, ester, amide, enone, acyl halide or acid anhydride.
In some embodiments, the reactive functional group is aldehyde. Exemplary nucleophilic
groups include hydrazide, oxime, amino, hydrazine, thiosemicarbazone, hydrazine carboxylate,
and arylhydrazide. In some embodiments, an unnatural amino acid incorporated into
an interleukin described herein comprises an electrophilic group.
[0151] In some embodiments, the linker is a cleavable linker. In some embodiments, the cleavable
linker is a dipeptide linker. In some embodiments, the dipeptide linker is valine-citrulline
(Val-Cit), phenylalanine-lysine (Phe-Lys), valine-alanine (Val-Ala) and valine-lysine
(Val-Lys). In some embodiments, the dipeptide linker is valine-citrulline.
[0152] In some embodiments, the linker is a peptide linker comprising, e.g., at least 2,
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 20, 25, 30, 35, 40, 45, 50, or more amino acids.
In some instances, the peptide linker comprises at most 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 15, 20, 25, 30, 35, 40, 45, 50, or less amino acids. In additional cases,
the peptide linker comprises about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 20, 25,
30, 35, 40, 45, or 50 amino acids.
[0153] In some embodiments, the linker comprises a self-immolative linker moiety. In some
embodiments, the self-immolative linker moiety comprises p-aminobenzyl alcohol (PAB),
p-aminobenzyoxycarbonyl (PABC), or derivatives or analogs thereof. In some embodiments,
the linker comprises a dipeptide linker moiety and a self-immolative linker moiety.
In some embodiments, the self-immolative linker moiety is such as described in
U.S. Patent No. 9089614 and WIPO Application No.
WO2015038426.
[0154] In some embodiments, the cleavable linker is glucuronide. In some embodiments, the
cleavable linker is an acid-cleavable linker. In some embodiments, the acid-cleavable
linker is hydrazine. In some embodiments, the cleavable linker is a reducible linker.
[0155] In some embodiments, the linker comprises a maleimide group. In some instances, the
maleimide group is also referred to as a maleimide spacer. In some instances, the
maleimide group further comprises a caproic acid, forming maleimidocaproyl (mc). In
some cases, the linker comprises maleimidocaproyl (mc). In some cases, linker is maleimidocaproyl
(mc). In other instances, the maleimide group comprises a maleimidomethyl group, such
as succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (sMCC) or sulfosuccinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate
(sulfo-sMCC) described above.
Conjugation chemistry
[0157] Various conjugation reactions are used to conjugate linkers, conjugation moieties,
and unnatural amino acids incorporated into IL-15 polypeptides described herein. Such
conjugation reactions are often compatible with aqueous conditions, such as "bioorthogonal"
reactions. In some embodiments, conjugation reactions are mediated by chemical reagents
such as catalysts, light, or reactive chemical groups found on linkers, conjugation
moieties, or unnatural amino acids. In some embodiments, conjugation reactions are
mediated by enzymes. In some embodiments, a conjugation reaction used herein is described
in
Gong, Y., Pan, L. Tett. Lett. 2015, 56, 2123. In some embodiments, a conjugation reaction used herein is described in
Chen, X.; Wu. Y-W. Org. Biomol. Chem. 2016, 14, 5417.
[0158] In some embodiments described herein, a conjugation reaction comprises reaction of
a ketone or aldehyde with a nucleophile. In some embodiments, a conjugation reaction
comprises reaction of a ketone with an aminoxy group to form an oxime. In some embodiments,
a conjugation reaction comprises reaction of a ketone with an aryl or heteroaryl amine
group to form an imine. In some embodiments, a conjugation reaction comprises reaction
of an aldehyde with an aryl or heteroaryl amine group to form an imine. In some embodiments,
a conjugation reaction described herein results in an IL-15 polypeptide comprising
a linker or conjugation moiety attached via an oxime. In some embodiments, a conjugation
reaction comprises a Pictet-Spengler reaction of an aldehyde or ketone with a tryptamine
nucleophile. In some embodiments, a conjugation reaction comprises a hydrazino-Pictet-Spengler
reaction. In some embodiments, a conjugation reaction comprises a Pictet-Spengler
ligation.
[0159] In some embodiments described herein, a conjugation reaction described herein comprises
reaction of an azide and a phosphine (Staudinger ligation). In some embodiments, the
phosphine is an aryl phosphine. In some embodiments, the aryl phosphine comprises
an ortho ester group. In some embodiments, the phosphine comprises the structure methyl
2-(diphenylphosphaneyl)benzoate. In some embodiments, a conjugation reaction described
herein results in IL-15 polypeptide comprising a linker or conjugation moiety attached
via an arylamide. In some embodiments, a conjugation reaction described herein results
in an IL-15 polypeptide comprising a linker or conjugation moiety attached via an
amide.
[0160] In some embodiments described herein, a conjugation reaction described herein comprises
a 1,3-dipolar cycloaddition reaction. In some embodiments, the 1,3-dipolar cycloaddition
reaction comprises reaction of an azide and a phosphine ("Click" reaction). In some
embodiments, the conjugation reaction is catalyzed by copper. In some embodiments,
a conjugation reaction described herein results in an IL-15 polypeptide comprising
a linker or conjugation moiety attached via a triazole. In some embodiments, a conjugation
reaction described herein comprises reaction of an azide with a strained olefin. In
some embodiments, a conjugation reaction described herein comprises reaction of an
azide with a strained alkyne. In some embodiments, a conjugation reaction described
herein comprises reaction of an azide with a cycloalkyne, for example, OCT, DIFO,
DIFBO, DIBO, BARAC, TMTH, or other strained cycloalkyne, the structures of which are
shown in
Gong, Y., Pan, L. Tett. Lett. 2015, 56, 2123. In some embodiments, a 1,3-dipolar cycloaddition reaction is catalyzed by light
("photoclick"). In some embodiments, a conjugation reaction described herein comprises
reaction of a terminal allyl group with a tetrazole and light. In some embodiments,
a conjugation reaction described herein comprises reaction of a terminal alkynyl group
with a tetrazole and light. In some embodiments, a conjugation reaction described
herein comprises reaction of an O-allyl amino acid with a tetrazine and light. In
some embodiments, a conjugation reaction described herein comprises reaction of O-allyl
tyrosine with a tetrazine and light.
[0161] In some embodiments described herein, a conjugation reaction described herein comprises
an inverse-electron demand cycloaddition reaction comprising a diene and a dienophile.
In some embodiments, the diene comprises a tetrazine. In some embodiments, the dienophile
comprises an alkene. In some embodiments, the dienophile comprises an alkyne. In some
embodiments, the alkyne is a strained alkyne. In some embodiments, the alkene is a
strained diene. In some embodiments, the alkyne is a trans-cyclooctyne. In some embodiments,
the alkyne is a cyclooctene. In some embodiments, the alkene is a cyclopropene. In
some embodiments, the alkene is a fluorocyclopropene. In some embodiments, a conjugation
reaction described herein results in the formation of an IL-15 polypeptide attached
to a linker or conjugation moiety via a 6-membered ring heterocycle comprising two
nitrogen atoms in the ring.
[0162] In some embodiments described herein, a conjugation reaction described herein comprises
an olefin metathesis reaction. In some embodiments, a conjugation reaction described
herein comprises reaction of an alkene and an alkyne with a ruthenium catalyst. In
some embodiments, a conjugation reaction described herein comprises reaction of two
alkenes with a ruthenium catalyst. In some embodiments, a conjugation reaction described
herein comprises reaction of two alkynes with a ruthenium catalyst. In some embodiments,
a conjugation reaction described herein comprises reaction of an alkene or alkyne
with a ruthenium catalyst and an amino acid comprising an allyl group. In some embodiments,
a conjugation reaction described herein comprises reaction of an alkene or alkyne
with a ruthenium catalyst and an amino acid comprising an allyl sulfide or selenide.
In some embodiments, a ruthenium catalyst is Hoveda-Grubbs 2
nd generation catalyst. In some embodiments, an olefin metathesis reaction comprises
reaction of one or more strained alkenes or alkynes.
[0163] In some embodiments described herein, a conjugation reaction described herein comprises
a (4+2+ cycloadditiona reaction with an alkene.
[0164] In some embodiments described herein, a conjugation reaction described herein comprises
a cross-coupling reaction. In some embodiments, cross-coupling reactions comprise
transition metal catalysts, such as iridium, gold, ruthenium, rhodium, palladium,
nickel, platinum, or other transition metal catalyst and one or more ligands. In some
embodiments, transition metal catalysts are water-soluble. In some embodiments described
herein, a conjugation reaction described herein comprises a Suzuki-Miyaura cross-coupling
reaction. In some embodiments described herein, a conjugation reaction described herein
comprises reaction of an aryl halide (or triflate, or tosylate), an aryl or alkenyl
boronic acid, and a palladium catalyst. In some embodiments described herein, a conjugation
reaction described herein comprises a Sonogashira cross-coupling reaction. In some
embodiments described herein, a conjugation reaction described herein comprises reaction
of an aryl halide (or triflate, or tosylate), an alkyne, and a palladium catalyst.
In some embodiments, cross-coupling reactions result in attachment of a linker or
conjugating moiety to an IL-15 polypeptide via a carbon-carbon bond.
[0165] In some embodiments described herein, a conjugation reaction described herein comprises
a deprotection or "uncaging" reaction of a reactive group prior to conjugation. In
some embodiments, a conjugation reaction described herein comprises uncaging of a
reactive group with light, followed by a conjugation reaction. In some embodiments,
a reactive group is protected with an aralkyl moiety comprising one or more nitro
groups. In some embodiments, uncaging of a reactive group results in a free amine,
sulfide, or other reactive group. In some embodiments, a conjugation reaction described
herein comprises uncaging of a reactive group with a transition metal catalyst, followed
by a conjugation reaction. In some embodiments, the transition metal catalyst comprises
palladium and one or more ligands. In some embodiments, a reactive group is protected
with an allyl moiety. In some embodiments, a reactive group is protected with an allylic
carbamate. In some embodiments, a reactive group is protected with a propargylic moiety.
In some embodiments, a reactive group is protected with a propargyl carbamate. In
some embodiments, a reactive group is protected with a dienophile, wherein exposure
to a diene (such as a tetrazine) results in deprotection of the reactive group.
[0166] In some embodiments described herein, a conjugation reaction described herein comprises
a ligand-directed reaction, wherein a ligand (optionally) attached to a reactive group)
facilitates the site of conjugation between the reactive group and the IL-15 polypeptide.
In some embodiments, the ligand is cleaved during or after reaction of the IL-15 polypeptide
with the reactive group. In some embodiments, the conjugation site of the IL-15 polypeptide
is a natural amino acid. In some embodiments, the conjugation site of the IL-15 polypeptide
is a lysine, cysteine, or serine. In some embodiments, the conjugation site of the
IL-15 polypeptide is an unnatural amino acid described herein. In some embodiments
the reactive group comprises a leaving group, such as an electron-poor aryl or heteroaryl
group. In some embodiments the reactive group comprises a leaving group, such as an
electron-poor alkyl group that is displaced by the IL-15 polypeptide. In some embodiments,
a conjugation reaction described herein comprises reaction of a radical trapping agent
with a radical species. In some embodiments, a conjugation reaction described herein
comprises an oxidative radical addition reaction. In some embodiments, a radical trapping
agent is an arylamine. In some embodiments, a radical species is a tyrosyl radical.
In some embodiments, radical species are generated by a ruthenium catalyst (such as
[Ru(bpy)
3]) and light.
[0167] Enzymatic reactions are optionally used for conjugation reactions described herein.
Exemplary enzymatic conjugations include SortA-mediated conjugation, a TGs-mediated
conjugation, or an FGE-mediated conjugation. In some embodiments, a conjugation reaction
described herein comprises native protein ligation (NPL) of a terminal 1-amino-2-thio
group with a thioester to form an amide bond.
[0168] Various conjugation reactions are described herein for reacting a linker or conjugating
moiety with an IL-15 polypeptide, wherein the reaction occurs with a natural ("canonical")
amino acid in the IL-15 polypeptide. In some embodiments, the natural amino acid is
found at a conjugation position is found in a wild type sequence, or alternatively
the position has been mutated. In some embodiments, a conjugation reaction comprises
formation of a disulfide bond at an IL-15 residue. In some embodiments, a conjugation
reaction comprises a 1,4 Michael addition reaction of a cysteine or lysine. In some
embodiments, a conjugation reaction comprises a cyanobenzothiazole ligation of an
IL-15. In some embodiments, a conjugation reaction comprises crosslinking with an
acetone moiety, such as 1,3-dichloro-2-propionone. In some embodiments, a conjugation
reaction comprises a 1,4 Michael addition to a dehydroalanine, formed by reaction
of cysteine with O-mesitylenesulfonylhydroxylamine. In some embodiments a conjugation
reaction comprises reaction of a tyrosine with a triazolinedione (TAD), or TAD derivative.
In some embodiments a conjugation reaction comprises reaction of a tryptophan with
a rhodium carbenoid.
Methods of Use
Proliferative Diseases or Conditions
[0169] In some embodiments, described herein is a method of treating a proliferative disease
or condition in a subject in need thereof, which comprises administering to the subject
a therapeutically effective amount of an IL-15 conjugate described herein. In some
embodiments, the IL-15 conjugate comprises an isolated and purified IL-15 polypeptide
and a conjugating moiety, wherein the IL-15 conjugate has a decreased affinity to
an IL-15 receptor α (IL-15Rα) subunit relative to a wild-type IL-15 polypeptide. In
some embodiments, the IL-15 conjugate comprises an isolated and purified IL-15 polypeptide;
and a conjugating moiety that binds to the isolated and purified IL-15 polypeptide
at an amino acid position selected from N1, W2, V3, N4, 16, S7, D8, K10, K11, E13,
D14, L15, Q17, S18, M19, H20, 121, D22, A23, T24, L25, Y26, T27, E28, S29, D30, V31,
H32, P33, S34, C35, K36, V37, T38, A39, K41, L44, L45, E46, Q48, V49, S51, L52, E53,
S54, G55, D56, A57, S58, H60, D61, T62, V63, E64, N65, 167, 168, L69, N71, N72, S73,
L74, S75, S76, N77, G78, N79, V80, T81, E82, S83, G84, C85, K86, E87, C88, E89, E90,
L91, E92, E93, K94, N95, 196, K97, E98, L100, Q101, S102, V104, H105, Q108, M109,
F110, I111, N112, T113, and S114, wherein the numbering of the amino acid residues
corresponds to SEQ ID NO: 1. In some embodiments, the IL-15 conjugate comprises an
isolated and purified IL-15 polypeptide; and a conjugating moiety that binds to the
isolated and purified IL-15 polypeptide at an amino acid position selected from N1,
W2, V3, N4, 16, S7, D8, K10, K11, E13, D14, L15, Q17, S18, M19, H20, I21, D22, A23,
T24, L25, Y26, E28, S29, D30, V31, H32, P33, S34, C35, K36, V37, T38, K41, L44, E46,
Q48, V49, S51, L52, E53, S54, G55, D56, A57, S58, H60, D61, T62, V63, E64, N65, 167,
168, L69, N71, N72, S73, L74, S75, S76, N77, G78, N79, V80, T81, E82, S83, G84, C85,
K86, E87, C88, E89, E90, L91, E92, E93, K94, N95, 196, K97, E98, L100, Q101, S102,
V104, H105, Q108, M109, F110, I111, N112, T113, and S114.
[0170] In some embodiments, the IL-15 conjugate preferentially interact with the IL-15Rβ
and IL-15Kβγ subunits to form an IL-15/IL-15Rβγ complex. In some embodiments, the
IL-15/IL-15Rβγ complex stimulates and/or enhances expansion of Teff cells (e.g., CD8
+ Teff cells) and/or NK cells. In additional cases, the expansion of Teff cells skews
the TeffTreg ratio toward the Teff population.
[0171] In some embodiments, the proliferative disease or condition is a cancer. In some
embodiments, the cancer is a solid tumor. In some embodiments, an IL-15 conjugate
described herein is administered to a subject in need thereof, for treating a solid
tumor. In such cases, the subject has a bladder cancer, a bone cancer, a brain cancer,
a breast cancer, a colorectal cancer, an esophageal cancer, an eye cancer, a head
and neck cancer, a kidney cancer, a lung cancer, a melanoma, an ovarian cancer, a
pancreatic cancer, or a prostate cancer. In some embodiments, the IL-15 conjugate
is administered to a subject for the treatment of a bladder cancer. In some embodiments,
the IL-15 conjugate is administered to a subject for the treatment of a breast cancer.
In some embodiments, the IL-15 conjugate is administered to a subject for the treatment
of a colorectal cancer. In some embodiments, the IL-15 conjugate is administered to
a subject for the treatment of an esophageal cancer. In some embodiments, the IL-15
conjugate is administered to a subject for the treatment of a head and neck cancer.
In some embodiments, the IL-15 conjugate is administered to a subject for the treatment
of a kidney cancer. In some embodiments, the IL-15 conjugate is administered to a
subject for the treatment of a lung cancer. In some embodiments, the IL-15 conjugate
is administered to a subject for the treatment of a melanoma. In some embodiments,
the IL-15 conjugate is administered to a subject for the treatment of an ovarian cancer.
In some embodiments, the IL-15 conjugate is administered to a subject for the treatment
of a pancreatic cancer. In some embodiments, the IL-15 conjugate is administered to
a subject for the treatment of a prostate cancer. In some embodiments, the IL-15 conjugate
is administered to a subject for the treatment of a metastatic cancer. In additional
cases, the IL-15 conjugate is administered to a subject for the treatment of a relapsed
or refractory cancer.
[0172] In some embodiments, the cancer is a hematologic malignancy. In some embodiments,
an IL-15 conjugate described herein is administered to a subject in need thereof,
for treating a hematologic malignancy. In some embodiments, the subject has chronic
lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), follicular lymphoma
(FL), diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), Waldenstrom's
macroglobulinemia, multiple myeloma, extranodal marginal zone B cell lymphoma, nodal
marginal zone B cell lymphoma, Burkitt's lymphoma, non-Burkitt high grade B cell lymphoma,
primary mediastinal B-cell lymphoma (PMBL), immunoblastic large cell lymphoma, precursor
B-lymphoblastic lymphoma, B cell prolymphocytic leukemia, lymphoplasmacytic lymphoma,
splenic marginal zone lymphoma, plasma cell myeloma, plasmacytoma, mediastinal (thymic)
large B cell lymphoma, intravascular large B cell lymphoma, primary effusion lymphoma,
or lymphomatoid granulomatosis. In some embodiments, the IL-15 conjugate is administered
to a subject for the treatment of CLL. In some embodiments, the IL-15 conjugate is
administered to a subject for the treatment of SLL. In some embodiments, the IL-15
conjugate is administered to a subject for the treatment of FL. In some embodiments,
the IL-15 conjugate is administered to a subject for the treatment of DLBCL. In some
embodiments, the IL-15 conjugate is administered to a subject for the treatment of
MCL. In some embodiments, the IL-15 conjugate is administered to a subject for the
treatment of Waldenstrom's macroglobulinemia. In some embodiments, the IL-15 conjugate
is administered to a subject for the treatment of multiple myeloma. In some embodiments,
the IL-15 conjugate is administered to a subject for the treatment of Burkitt's lymphoma.
In some embodiments, the IL-15 conjugate is administered to a subject for the treatment
of a metastatic hematologic malignancy. In additional cases, the IL-15 conjugate is
administered to a subject for the treatment of a relapsed or refractory hematologic
malignancy.
[0173] In some embodiments, an additional therapeutic agent is further administered to the
subject. In some embodiments, the additional therapeutic agent is administered simultaneously
with an IL-15 conjugate. In other cases, the additional therapeutic agent and the
IL-15 conjugate are administered sequentially, e.g., the IL-15 conjugate is administered
prior to the additional therapeutic agent or that the IL-15 conjugate is administered
after administration of the additional therapeutic agent.
[0174] In some embodiments, the additional therapeutic agent comprises a chemotherapeutic
agent, an immunotherapeutic agent, a targeted therapy, radiation therapy, or a combination
thereof. Illustrative additional therapeutic agents include, but are not limited to,
alkylating agents such as altretamine, busulfan, carboplatin, carmustine, chlorambucil,
cisplatin, cyclophosphamide, dacarbazine, lomustine, melphalan, oxalaplatin, temozolomide,
or thiotepa; antimetabolites such as 5-fluorouracil (5-FU), 6-mercaptopurine (6-MP),
capecitabine, cytarabine, floxuridine, fludarabine, gemcitabine, hydroxyurea, methotrexate,
or pemetrexed; anthracyclines such as daunorubicin, doxorubicin, epirubicin, or idarubicin;
topoisomerase I inhibitors such as topotecan or irinotecan (CPT-11); topoisomerase
II inhibitors such as etoposide (VP-16), teniposide, or mitoxantrone; mitotic inhibitors
such as docetaxel, estramustine, ixabepilone, paclitaxel, vinblastine, vincristine,
or vinorelbine; or corticosteroids such as prednisone, methylprednisolone, or dexamethasone.
[0175] In some cases, the additional therapeutic agent comprises a first-line therapy. As
used herein, "first-line therapy" comprises a primary treatment for a subject with
a cancer. In some instances, the cancer is a primary or local cancer. In other instances,
the cancer is a metastatic or recurrent cancer. In some cases, the first-line therapy
comprises chemotherapy. In other cases, the first-line treatment comprises immunotherapy,
targeted therapy, or radiation therapy. A skilled artisan would readily understand
that different first-line treatments may be applicable to different type of cancers.
[0176] In some embodiments, an IL-15 conjugate is administered with an additional therapeutic
agent selected from an alkylating agent such as altretamine, busulfan, carboplatin,
carmustine, chlorambucil, cisplatin, cyclophosphamide, dacarbazine, lomustine, melphalan,
oxalaplatin, temozolomide, or thiotepa; an antimetabolite such as 5-fluorouracil (5-FU),
6-mercaptopurine (6-MP), capecitabine, cytarabine, floxuridine, fludarabine, gemcitabine,
hydroxyurea, methotrexate, or pemetrexed; an anthracycline such as daunorubicin, doxorubicin,
epirubicin, or idarubicin; a topoisomerase I inhibitor such as topotecan or irinotecan
(CPT-11); a topoisomerase II inhibitor such as etoposide (VP-16), teniposide, or mitoxantrone;
a mitotic inhibitor such as docetaxel, estramustine, ixabepilone, paclitaxel, vinblastine,
vincristine, or vinorelbine; or a corticosteroid such as prednisone, methylprednisolone,
or dexamethasone.
[0177] In some instances, an IL-15 conjugate described herein is administered with an inhibitor
of the enzyme poly ADP ribose polymerase (PARP). Exemplary PARP inhibitors include,
but are not limited to, olaparib (AZD-2281, Lynparza
®, from Astra Zeneca), rucaparib (PF-01367338, Rubraca
®, from Clovis Oncology), niraparib (MK-4827, Zejula
®, from Tesaro), talazoparib (BMN-673, from BioMarin Pharmaceutical Inc.), veliparib
(ABT-888, from AbbVie), CK-102 (formerly CEP 9722, from Teva Pharmaceutical Industries
Ltd.), E7016 (from Eisai), iniparib (BSI 201, from Sanofi), and pamiparib (BGB-290,
from BeiGene). In some cases, the IL-15 conjugate is administered in combination with
a PARP inhibitor such as olaparib, rucaparib, niraparib, talazoparib, veliparib, CK-102,
E7016, iniparib, or pamiparib.
[0178] In some embodiments, an IL-15 conjugate described herein is administered with a tyrosine
kinase inhibitor (TKI). Exemplary TKIs include, but are not limited to, afatinib,
alectinib, axitinib, bosutinib, cabozantinib, ceritinib, cobimetinib, crizotinib,
dabrafenib, dasatinib, erlotinib, gefitinib, ibrutinib, imatinib, lapatinib, lenvatinib,
nilotinib, nintedanib, osimertinib, pazopanib, ponatinib, regorafenib, ruxolitinib,
sorafenib, sunitinib, tofacitinib, and vandetanib.
[0179] In some instances, an IL-15 conjugate described herein is administered with an immune
checkpoint modulator. Exemplary checkpoint modulators include:
PD-L1 modulators such as Genentech's MPDL3280A (RG7446), Avelumab (Bavencio) from
Merck/Pfizer, durvalumab (Imfinzi) from AstraZeneca, Anti-mouse PD-L1 antibody Clone
10F.9G2 (Cat # BE0101) from BioXcell, anti-PD-L1 monoclonal antibody MDX-1105 (BMS-936559),
BMS-935559 and BMS-986192 from Bristol-Meyer's Squibb, MSB0010718C, mouse anti-PD-L1
Clone 29E.2A3, CX-072 from XytomX Therapeutics, FAZ053 from Novartis Pharmaceuticals,
KN035 from 3D Medicine, LY3300054 from Eli Lilly, and AstraZeneca's MEDI4736;
PD-L2 modulators such as GlaxoSmithKline's AMP-224 (Amplimmune), and rHIgM12B7;
PD-1 modulators such as anti-mouse PD-1 antibody Clone J43 (Cat # BE0033-2) from BioXcell,
anti-mouse PD-1 antibody Clone RMP1-14 (Cat # BE0146) from BioXcell, mouse anti-PD-1
antibody Clone EH12, Merck's MK-3475 anti-mouse PD-1 antibody (Keytruda, pembrolizumab,
lambrolizumab), AnaptysBio's anti-PD-1 antibody known as ANB011, antibody MDX-1 106
(ONO-4538), Bristol-Myers Squibb's human IgG4 monoclonal antibody nivolumab (Opdivo®, BMS-936558, MDX1106), AstraZeneca's AMP-514 and AMP-224, sintilimab (IBI-308) from
Eli Lilly/Innovent Biologics, AGEN 2034 from Agenus, BGB-A317 from BeiGene, Bl-754091
from Boehringer-Ingelheim Pharmaceuticals, CBT-501 (genolimzumab) from CBT Pharmaceuticals,
INCSHR1210 from Incyte, JNJ-63723283 from Janssen Research & Development, MEDI0680
from MedImmune, PDR001 from Novartis Pharmaceuticals, PF-06801591 from Pfizer, REGN2810
from Regeneron Pharmaceuticals, and Pidilizumab (CT-011) from CureTech Ltd;
CTLA-4 modulators such as Bristol Meyers Squibb's anti-CTLA-4 antibody ipilimumab
(also known as Yervoy®, MDX-010, BMS-734016 and MDX-101), anti-CTLA4 antibody clone 9H10 from Millipore,
Pfizer's tremelimumab (CP-675,206, ticilimumab), AGEN 1884 from Agenus, and anti-CTLA4
antibody clone BNI3 from Abeam;
LAG3 modulators such as anti-Lag-3 antibody clone eBioC9B7W (C9B7W) from eBioscience,
anti-Lag3 antibody LS-B2237 from LifeSpan Biosciences, IMP701 and LAG525 from Novartis
Pharmaceuticals, IMP321 (ImmuFact) from Immutep, anti-Lag3 antibody BMS-986016, BMS-986016
from Bristol-Myers Squibb, REGN3767 from Regeneron Pharmaceuticals, and the LAG-3
chimeric antibody A9H12;
B7-H3 modulators such as MGA271;
KIR modulators such as Lirilumab (IPH2101) from Bristol-Myers Squibb;
CD137 modulators such as urelumab (BMS-663513, Bristol-Myers Squibb), PF-05082566
(anti-4-1BB, PF-2566, Pfizer), or XmAb-5592 (Xencor);
PS modulators such as Bavituximab;
OX40 modulators such as BMS-986178 from Bristol-Myers Squibb, GSK3174998 from GlaxoSmithKline,
INCAGN1949 from Agenus, MEDI0562 from MedImmune, PF-04518600 from Pfizer, or RG7888
from Genentech;
GITR modulators such as GWN323 from Novartis Pharmaceuticals, INCAGN1876 from Agenus,
or TRX518 from Leap Therapeutics;
TIM3 modulators such as MBG453 from Novartis Pharmaceuticals, or TSR-042 from TESARO;
and modulators such as an antibody or fragments (e.g., a monoclonal antibody, a human,
humanized, or chimeric antibody) thereof, RNAi molecules, or small molecules to CD52,
CD30, CD20, CD33, CD27, ICOS, BTLA (CD272), CD160, 2B4, LAIR1, TIGHT, LIGHT, DR3,
CD226, CD2, or SLAM.
[0180] In some instances, the IL-15 conjugate is administered in combination with pembrolizumab,
nivolumab, tremelimumab, or ipilimumab.
[0181] In some instances, an IL-15 conjugate described herein is administered with an antibody
such as alemtuzumab, trastuzumab, ibritumomab tiuxetan, brentuximab vedotin, ado-trastuzumab
emtansine, or blinatumomab.
[0182] In some instances, an IL-15 conjugate is administered with an additional therapeutic
agent selected from an anti-VEGFR antibody. Exemplary anti-VEGFR antibodies include,
but are not limited to, bevacizumab or ramucirumab. In some instances, the IL-15 conjugate
enhances the ADCC effect of the additional therapeutic agent.
[0183] In some instances, an IL-15 conjugate is administered with an additional therapeutic
agent selected from cetuximab, imgatuzumab, matuzumab (EMD 72000), tomuzotuximab,
or panitumumab. In some instances, the IL-15 conjugate enhances the ADCC effect of
the additional therapeutic agent.
[0184] In some instances, an IL-15 conjugate is administered with an additional therapeutic
agent selected from an additional cytokine (e.g., either a native cytokine or an engineered
cytokine such as a PEGylated and/or fusion cytokine). In some instances, the additional
cytokine enhances and/or synergizes T effector cell expansion and/or proliferation.
In some cases, the additional cytokine comprises IL-1β, IL-2, IL-6, IL-7, IL-10, IL-12,
IL-18, IL-21, or TNFα. In some cases, the additional cytokine is IL-2. In some cases,
the additional cytokine is IL-21. In some cases, the additional cytokine is IL-10.
In some cases, the additional cytokine is TNFα.
[0185] In some instances, an IL-15 conjugate is administered with an additional therapeutic
agent selected from a receptor agonist. In some instances, the receptor agonist comprises
a Toll-like receptor (TLR) ligand. In some cases, the TLR ligand comprises TLR1, TLR2,
TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, or TLR9. In some cases, the TLR ligand comprises
a synthetic ligand such as, for example, Pam3Cys, CFA, MALP2, Pam2Cys, FSL-1, Hib-OMPC,
Poly I:C, poly A:U, AGP, MPL A, RC-529, MDF2β, CFA, or Flagellin. In some cases, the
IL-21 conjugate is administered with one or more TLR agonists selected from TLR1,
TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, and TLR9. In some cases, the IL-15 conjugate
is administered with one or more TLR agonists selected from Pam3Cys, CFA, MALP2, Pam2Cys,
FSL-1, Hib-OMPC, Poly I:C, poly A:U, AGP, MPL A, RC-529, MDF2β, CFA, and Flagellin.
[0186] In some embodiments, an IL-15 conjugate described herein is used in conjunction with
an adoptive T cell transfer (ACT) therapy. In one embodiment, ACT involves identification
of autologous T lymphocytes in a subject with, e.g., anti-tumor activity, expansion
of the autologous T lymphocytes
in vitro, and subsequent reinfusion of the expanded T lymphocytes into the subject. In another
embodiment, ACT comprises use of allogeneic T lymphocytes with, e.g., anti-tumor activity,
expansion of the T lymphocytes in vitro, and subseqent infusion of the expanded allogeneic
T lymphocytes into a subject in need thereof. In some embodiments, an IL-15 conjugate
described herein is used in conjunction with an autologous T lymphocytes as part of
an ACT therapy. In other instances, an IL-15 conjugate described herein is used in
conjunction with an allogeneic T lymphocytes as part of an ACT therapy. In some embodiments,
the IL-15 conjugate is administered simultaneously with the ACT therapy to a subject
in need thereof. In other cases, the IL-15 conjugate is administered sequentially
with the ACT therapy to a subject in need thereof.
[0187] In some embodiments, an IL-15 conjugate described herein is used for an ex vivo activation
and/or expansion of an autologous and/or allogenic T cell transfer. In such cases,
the IL-15 conjugate is used to activate and/or expand a sample comprising autologous
and/or allogenic T cells and the IL-15 conjugate is optionally removed from the sample
prior to administering the sample to a subject in need thereof.
[0188] In some embodiments, an IL-15 conjugate described herein is administered with a vaccine.
In some instances, an IL-21 conjugate is utilized in combination with an oncolytic
virus. In such cases, the IL-21 conjugate acts as a stimulatory agent to modulate
the immune response. In some instances, the IL-21 conjugate is used with an oncolytic
virus as part of an adjuvant therapy. Exemplary oncolytic viruses include T-Vec (Amgen),
G47Δ (Todo et al.), JX-594 (Sillajen), CG0070 (Cold Genesys), and Reolysin (Oncolytics
Biotech). In some cases, the IL-21 conjugate is used in combination with an oncolytic
virus such as T-Vec, G47Δ, JX-594, CG0070, or Reolysin.
[0189] In some embodiments, an IL-15 conjugate is administered in combination with a radiation
therapy.
Methods of Cell Population Expansion
[0190] In some embodiments, additionally described herein are methods of expanding lymphocyte
populations, e.g., effector T (Teff) cell, memory T (Tmem) cell, and/or Natural Killer
(NK) cell populations. In some embodiments, the method comprises contacting a cell
with a cytokine conjugate described herein, and interacting the cytokine with a cytokine
receptor to form a complex, wherein the complex stimulates expansion of a distinct
lymphocyte population.
[0191] In some embodiments, the method of expanding effector T (Teff) cell, memory T (Tmem)
cell, and/or Natural Killer (NK) cell populations, comprising: (a) contacting a cell
with a modified IL-15 polypeptide or an IL-15 conjugate; and interacting the IL-15
with IL-15Rβ and IL-15Rγ subunits to form an IL-15/IL-15Rβγ complex; wherein the IL-15
conjugate has a decreased affinity to IL-15Rα subunit, and wherein the IL-15/IL-15Rβγ
complex stimulates the expansion of Teff, Tmem, and NK cells. As described herein,
in some embodiments, the modified IL-15 polypeptide comprise at least one post-translationally
modified unnatural amino acid at a residue position selected from N1, W2, V3, N4,
16, S7, D8, K10, K11, E13, D14, L15, Q17, S18, M19, H20, I21, D22, A23, T24, L25,
Y26, T27, E28, S29, D30, V31, H32, P33, S34, C35, K36, V37, T38, A39, K41, L44, L45,
E46, Q48, V49, S51, L52, E53, S54, G55, D56, A57, S58, H60, D61, T62, V63, E64, N65,
167, 168, L69, N71, N72, S73, L74, S75, S76, N77, G78, N79, V80, T81, E82, S83, G84,
C85, K86, E87, C88, E89, E90, L91, E92, E93, K94, N95, I96, K97, E98, L100, Q101,
S102, V104, H105, Q108, M109, F110, I111, N112, T113, and S114, wherein the residue
positions correspond to the positions as set forth in SEQ ID NO: 1. In some embodiments,
the residue position is selected from N1, W2, V3, N4, 16, S7, D8, K10, K11, E13, D14,
L15, Q17, S18, M19, H20, I21, D22, A23, T24, L25, Y26, E28, S29, D30, V31, H32, P33,
S34, C35, K36, V37, T38, K41, L44, E46, Q48, V49, S51, L52, E53, S54, G55, D56, A57,
S58, H60, D61, T62, V63, E64, N65, 167, 168, L69, N71, N72, S73, L74, S75, S76, N77,
G78, N79, V80, T81, E82, S83, G84, C85, K86, E87, C88, E89, E90, L91, E92, E93, K94,
N95, 196, K97, E98, L100, Q101, S102, V104, H105, Q108, M109, F110, I111, N112, T113,
and S114. In some embodiments, the residue position is selected from E13, D14, L15,
Q17, S18, M19, H20, I21, S34, C35, K36, V37, T38, K41, L44, S51, L52, S54, G55, D56,
A57, S58, H60, V63, 167, N71, S73, L74, S75, S76, N77, G78, N79, V80, T81, E82, S83,
G84, C85, K86, E87, C88, L91, E92, K94, N95, 196, K97, E98, L100, Q101, and F110.
In some embodiments, the residue position is selected from D14, Q17, S18, K41, S51,
L52, G55, D56, A57, S58, S75, S76, N77, N79, V80, T81, S83, G84, E92, K94, N95, K97,
and E98. In some embodiments, the residue position is selected from N1, N4, S7, D8,
K11, D61, T62, E64, N65, 168, L69, and N72. In some embodiments, the residue position
is selected from V3, 16, K10, E28, S29, D30, V31, H32, P33, S102, V104, H105, Q108,
M109, I111, N112, T113, and S114. In some embodiments, the residue position is selected
from D22, A23, T24, L25, Y26, L44, E46, Q48, V49, E53, E89, E90, and E93. In some
embodiments, the residue position is selected from Y26, E46, V49, E53, and L25. In
some embodiments, the residue position is selected from V3, K10, S29, D30, H32, H105,
Q108, M109, I111, N112, T113, and S114. In some embodiments, the residue position
is selected from N4, S7, K11, and D61. In some embodiments, the residue position is
selected from L25, E53, N77, and S83. In some embodiments, the residue position is
selected from L25 and E53. In some embodiments, the residue position is selected from
E46, Y26, V49, E53, T24, N4, K11, N65, L69, S18, H20, and S83. In some embodiments,
the residue position is selected from E46, Y26, V49, E53, and T24. In some embodiments,
the residue position is selected from E46, V49, E53, and T24. In some embodiments,
the residue position is selected from Y26, V49, E53, and T24. In some embodiments,
the residue position is selected from V49, E53, and T24. In some embodiments, the
residue position is selected from E46 and Y26. In some embodiments, the residue position
is E46. In some embodiments, the residue position is L25. In some embodiments, the
residue position is Y26. In some embodiments, the residue position is V49. In some
embodiments, the residue position is E53. In some embodiments, the residue position
is T24. In some embodiments, the residue position is N77. In some embodiments, the
residue position is S83.
[0192] Methods of expanding effector T (Teff) cell, memory T (Tmem) cells, and/or Natural
Killer (NK) cell populations as described herein, in some embodiments, comprise contacting
a cell with an IL-15 conjugate. As described herein, in some embodiments, the interleukin
15 (IL-15) conjugates comprise: an isolated and purified IL-15 polypeptide; and a
conjugating moiety that binds to the isolated and purified IL-15 polypeptide at an
amino acid position selected from N1, W2, V3, N4, 16, S7, D8, K10, K11, E13, D14,
L15, Q17, S18, M19, H20, I21, D22, A23, T24, L25, Y26, T27, E28, S29, D30, V31, H32,
P33, S34, C35, K36, V37, T38, A39, K41, L44, L45, E46, Q48, V49, S51, L52, E53, S54,
G55, D56, A57, S58, H60, D61, T62, V63, E64, N65, 167, 168, L69, N71, N72, S73, L74,
S75, S76, N77, G78, N79, V80, T81, E82, S83, G84, C85, K86, E87, C88, E89, E90, L91,
E92, E93, K94, N95, 196, K97, E98, L100, Q101, S102, V104, H105, Q108, M109, F110,
I111, N112, T113, and S114, wherein the residue positions correspond to the positions
as set forth in SEQ ID NO: 1. In some embodiments, the residue position is selected
from N1, W2, V3, N4, 16, S7, D8, K10, K11, E13, D14, L15, Q17, S18, M19, H20, I21,
D22, A23, T24, L25, Y26, E28, S29, D30, V31, H32, P33, S34, C35, K36, V37, T38, K41,
L44, E46, Q48, V49, S51, L52, E53, S54, G55, D56, A57, S58, H60, D61, T62, V63, E64,
N65, 167, 168, L69, N71, N72, S73, L74, S75, S76, N77, G78, N79, V80, T81, E82, S83,
G84, C85, K86, E87, C88, E89, E90, L91, E92, E93, K94, N95, 196, K97, E98, L100, Q101,
S102, V104, H105, Q108, M109, F110, I111, N112, T113, and S114. In some embodiments,
the residue position is selected from E13, D14, L15, Q17, S18, M19, H20, I21, S34,
C35, K36, V37, T38, K41, L44, S51, L52, S54, G55, D56, A57, S58, H60, V63, 167, N71,
S73, L74, S75, S76, N77, G78, N79, V80, T81, E82, S83, G84, C85, K86, E87, C88, L91,
E92, K94, N95, 196, K97, E98, L100, Q101, and F110. In some embodiments, the residue
position is selected from D14, Q17, S18, K41, S51, L52, G55, D56, A57, S58, S75, S76,
N77, N79, V80, T81, S83, G84, E92, K94, N95, K97, and E98. In some embodiments, the
residue position is selected from N1, N4, S7, D8, K11, D61, T62, E64, N65, 168, L69,
and N72. In some embodiments, the residue position is selected from V3, 16, K10, E28,
S29, D30, V31, H32, P33, S102, V104, H105, Q108, M109, I111, N112, T113, and S114.
In some embodiments, the residue position is selected from D22, A23, T24, L25, Y26,
L44, E46, Q48, V49, E53, E89, E90, and E93. In some embodiments, the residue position
is selected from Y26, E46, V49, E53, and L25. In some embodiments, the residue position
is selected from V3, K10, S29, D30, H32, H105, Q108, M109, I111, N112, T113, and S114.
In some embodiments, the residue position is selected from N4, S7, K11, and D61. In
some embodiments, the residue position is selected from L25, E53, N77, and S83. In
some embodiments, the residue position is selected from L25 and E53. In some embodiments,
the residue position is selected from E46, Y26, V49, E53, T24, N4, K11, N65, L69,
S18, H20, and S83. In some embodiments, the residue position is selected from E46,
Y26, V49, E53, and T24. In some embodiments, the residue position is selected from
E46, V49, E53, and T24. In some embodiments, the residue position is selected from
Y26, V49, E53, and T24. In some embodiments, the residue position is selected from
V49, E53, and T24. In some embodiments, the residue position is selected from E46
and Y26. In some embodiments, the residue position is E46. In some embodiments, the
residue position is L25. In some embodiments, the residue position is Y26. In some
embodiments, the residue position is V49. In some embodiments, the residue position
is E53. In some embodiments, the residue position is T24. In some embodiments, the
residue position is N77. In some embodiments, the residue position is S83.
IL-15 Polypeptide Production
[0193] In some embodiments, an IL-15 polypeptides described herein, either containing a
natural amino acid mutation or an unnatural amino acid mutation, are generated recombinantly
or are synthesized chemically. In some embodiments, the IL-15 polypeptides described
herein are generated recombinantly, for example, either by a host cell system, or
in a cell-free system.
[0194] In some embodiments, the IL-15 polypeptides are generated recombinantly through a
host cell system. In some embodiments, the host cell is a eukaryotic cell (e.g., mammalian
cell, insect cells, yeast cells or plant cell), a prokaryotic cell (e.g., gram-positive
bacterium or a gram-negative bacterium), or an archaeal cell. In some cases, a eukaryotic
host cell is a mammalian host cell. In some cases, a mammalian host cell is a stable
cell line, or a cell line that has incorporated a genetic material of interest into
its own genome and has the capability to express the product of the genetic material
after many generations of cell division. In other cases, a mammalian host cell is
a transient cell line, or a cell line that has not incorporated a genetic material
of interest into its own genome and does not have the capability to express the product
of the genetic material after many generations of cell division.
[0195] Exemplary mammalian host cells include 293T cell line, 293A cell line, 293FT cell
line, 293F cells , 293 H cells, A549 cells, MDCK cells, CHO DG44 cells, CHO-S cells,
CHO-K1 cells, Expi293F
™ cells, Flp-In
™ T-REx
™ 293 cell line, Flp-In
™-293 cell line, Flp-In
™-3T3 cell line, Flp-In
™-BHK cell line, Flp-In
™-CHO cell line, Flp-In
™-CV-1 cell line, Flp-In
™-Jurkat cell line, FreeStyle
™ 293-F cells, FreeStyle
™ CHO-S cells, GripTite
™ 293 MSR cell line, GS-CHO cell line, HepaRG
™ cells, T-REx
™ Jurkat cell line, Per.C6 cells, T-REx
™-293 cell line, T-REx
™-CHO cell line, and T-REx
™-HeLa cell line.
[0196] In some embodiments, an eukaryotic host cell is an insect host cell. Exemplary insect
host cell include
Drosophila S2 cells, Sf9 cells, Sf21 cells, High Five
™ cells, and expresSF+
® cells.
[0197] In some embodiments, a eukaryotic host cell is a yeast host cell. Exemplary yeast
host cells include
Pichia pastoris yeast strains such as GS115, KM71H, SMD1168, SMD1168H, and X-33, and
Saccharomyces cerevisiae yeast strain such as INVSc1.
[0198] In some embodiments, a eukaryotic host cell is a plant host cell. In some embodiments,
the plant cells comprise a cell from algae. Exemplary plant cell lines include strains
from Chlamydomonas reinhardtii 137c, or Synechococcus elongatus PPC 7942.
[0199] In some embodiments, a host cell is a prokaryotic host cell. Exemplary prokaryotic
host cells include BL21, Maehl
™, DH10B
™, TOP10, DH5α, DH10Bac
™, OmniMax
™, MegaX
™, DH12S
™, INV110, TOP10F', INVαF, TOP10/P3, ccdB Survival, PIR1, PIR2, Stbl2
™, Stbl3
™, or Stbl4
™.
[0200] In some embodiments, suitable polynucleic acid molecules or vectors for the production
of an IL-15 polypeptide described herein include any suitable vectors derived from
either a eukaryotic or prokaryotic sources. Exemplary polynucleic acid molecules or
vectors include vectors from bacteria (e.g.,
E. coli)
, insects, yeast (e.g.,
Pichia pastoris)
, algae, or mammalian source. Bacterial vectors include, for example, pACYC177, pASK75,
pBAD vector series, pBADM vector series, pET vector series, pETM vector series, pGEX
vector series, pHAT, pHAT2, pMal-c2, pMal-p2, pQE vector series, pRSET A, pRSET B,
pRSET C, pTrcHis2 series, pZA31-Luc, pZE21-MCS-1, pFLAG ATS, pFLAG CTS, pFLAG MAC,
pFLAG Shift-12c, pTAC-MAT-1, pFLAG CTC, or pTAC-MAT-2.
[0201] Insect vectors include, for example, pFastBac1, pFastBac DUAL, pFastBac ET, pFastBac
HTa, pFastBac HTb, pFastBac HTc, pFastBac M30a, pFastBact M30b, pFastBac, M30c, pVL1392,
pVL1393, pVL1393 M10, pVL1393 M11, pVL1393 M12, FLAG vectors such as pPolh-FLAG1 or
pPolh-MAT 2, or MAT vectors such as pPolh-MAT1, or pPolh-MAT2.
[0202] Yeast vectors include, for example, Gateway
® pDEST
™ 14 vector, Gateway
® pDEST
™ 15 vector, Gateway
®pDEST
™ 17 vector, Gateway
® pDEST
™ 24 vector, Gateway
® pYES-DEST52 vector, pBAD-DEST49 Gateway
® destination vector, pAO815
Pichia vector, pFLD1
Pichi pastoris vector, pGAPZA, B, & C
Pichia pastoris vector, pPIC3.5K
Pichia vector, pPIC6 A, B, & C
Pichia vector, pPIC9K
Pichia vector, pTEF1/Zeo, pYES2 yeast vector, pYES2/CT yeast vector, pYES2/NT A, B, & C
yeast vector, or pYES3/CT yeast vector.
[0203] Algae vectors include, for example, pChlamy-4 vector or MCS vector.
[0204] Mammalian vectors include, for example, transient expression vectors or stable expression
vectors. Exemplary mammalian transient expression vectors include p3xFLAG-CMV 8, pFLAG-Myc-CMV
19, pFLAG-Myc-CMV 23, pFLAG-CMV 2, pFLAG-CMV 6a,b,c, pFLAG-CMV 5.1, pFLAG-CMV 5a,b,c,
p3xFLAG-CMV 7.1, pFLAG-CMV 20, p3xFLAG-Myc-CMV 24, pCMV-FLAG-MAT1, pCMV-FLAG-MAT2,
pBICEP-CMV 3, or pBICEP-CMV 4. Exemplary mammalian stable expression vectors include
pFLAG-CMV 3, p3xFLAG-CMV 9, p3xFLAG-CMV 13, pFLAG-Myc-CMV 21, p3xFLAG-Myc-CMV 25,
pFLAG-CMV 4, p3xFLAG-CMV 10, p3xFLAG-CMV 14, pFLAG-Myc-CMV 22, p3xFLAG-Myc-CMV 26,
pBICEP-CMV 1, or pBICEP-CMV 2.
[0205] In some embodiments, a cell-free system is used for the production of an IL-15 polypeptide
described herein. In some embodiments, a cell-free system comprises a mixture of cytoplasmic
and/or nuclear components from a cell (e.g., composed of fully purified recombinant
components or partially purified components) and is suitable for in vitro nucleic
acid synthesis. In some instances, a cell-free system utilizes prokaryotic cell components.
In other instances, a cell-free system utilizes eukaryotic cell components. Nucleic
acid synthesis is obtained in a cell-free system based on, for example, Drosophila
cell, Xenopus egg, Archaea, or HeLa cells. Exemplary cell-free systems include E.
coli S30 Extract system, E. coli T7 S30 system, or PURExpress
®, XpressCF, and XpressCF+.
[0206] Cell-free translation systems variously comprise components such as plasmids, mRNA,
DNA, tRNAs, synthetases, release factors, ribosomes, chaperone proteins, translation
initiation and elongation factors, natural and/or unnatural amino acids, and/or other
components used for protein expression. Such components are optionally modified to
improve yields, increase synthesis rate, increase protein product fidelity, or incorporate
unnatural amino acids. In some embodiments, cytokines described herein are synthesized
using cell-free translation systems described in
US 8,778,631;
US 2017/0283469;
US 2018/0051065;
US 2014/0315245; or
US 8,778,631. In some embodiments, cell-free translation systems comprise modified release factors,
or even removal of one or more release factors from the system. In some embodiments,
cell-free translation systems comprise a reduced protease concentration. In some embodiments,
cell-free translation systems comprise modified tRNAs with re-assigned codons used
to code for unnatural amino acids. In some embodiments, the synthetases described
herein for the incorporation of unnatural amino acids are used in cell-free translation
systems. In some embodiments, tRNAs are pre-loaded with unnatural amino acids using
enzymatic or chemical methods before being added to a cell-free translation system.
In some embodiments, components for a cell-free translation system are obtained from
modified organisms, such as modified bacteria, yeast, or other organism.
[0207] In some embodiments, an IL-15 polypeptide is generated as a circularly permuted form,
either via an expression host system or through a cell-free system.
Production of IL-15 Polypeptide Comprising an Unnatural Amino Acid
[0208] An orthogonal or expanded genetic code can be used in the present disclosure, in
which one or more specific codons present in the nucleic acid sequence of an IL-15
polypeptide are allocated to encode the unnatural amino acid so that it can be genetically
incorporated into the IL-15 by using an orthogonal tRNA synthetase/tRNA pair. The
orthogonal tRNA synthetase/tRNA pair is capable of charging a tRNA with an unnatural
amino acid and is capable of incorporating that unnatural amino acid into the polypeptide
chain in response to the codon.
[0209] In some embodiments, the codon is the codon amber, ochre, opal or a quadruplet codon.
In some cases, the codon corresponds to the orthogonal tRNA which will be used to
carry the unnatural amino acid. In some cases, the codon is amber. In other cases,
the codon is an orthogonal codon.
[0211] In some instances, a codon used in the present disclosure is a recoded codon, e.g.,
a synonymous codon or a rare codon that is replaced with alternative codon. In some
cases, the recoded codon is as described in
Napolitano, et al., "Emergent rules for codon choice elucidated by editing rare arginine
codons in Escherichia coli," PNAS, 113(38): E5588-5597 (2016). In some cases, the recoded codon is as described in
Ostrov et al., "Design, synthesis, and testing toward a 57-codon genome," Science
353(6301): 819-822 (2016).
[0212] In some embodiments, unnatural nucleic acids are utilized leading to incorporation
of one or more unnatural amino acids into the IL-15. Exemplary unnatural nucleic acids
include, but are not limited to, uracil-5-yl, hypoxanthin-9-yl (I), 2-aminoadenin-9-yl,
5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine,
6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl
derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine,
5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine
and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl,
8-hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo,
5-trifiuoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and
7-methyladenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine
and 3-deazaguanine and 3-deazaadenine. Certain unnatural nucleic acids, such as 5-substituted
pyrimidines, 6-azapyrimidines and N-2 substituted purines, N-6 substituted purines,
O-6 substituted purines, 2-aminopropyladenine, 5-propynyluracil, 5-propynylcytosine,
5-methylcytosine, those that increase the stability of duplex formation, universal
nucleic acids, hydrophobic nucleic acids, promiscuous nucleic acids, size-expanded
nucleic acids, fluorinated nucleic acids, 5-substituted pyrimidines, 6-azapyrimidines
and N-2, N-6 and 0-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil
and 5-propynylcytosine. 5-methylcytosine (5-me-C), 5- hydroxymethyl cytosine, xanthine,
hypoxanthine, 2-aminoadenine, 6-methyl, other alkyl derivatives of adenine and guanine,
2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine
and 2-thiocytosine, 5-halouracil, 5-halocytosine, 5-propynyl (-C≡C-CH
3) uracil, 5-propynyl cytosine, other alkynyl derivatives of pyrimidine nucleic acids,
6-azo uracil, 6-azo cytosine, 6-azo thymine, 5-uracil (pseudouracil), 4-thiouracil,
8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines
and guanines, 5 -halo particularly 5-bromo, 5-trifluoromethyl, other 5-substituted
uracils and cytosines, 7-methylguanine, 7- methyladenine, 2-F-adenine, 2-amino-adenine,
8-azaguanine, 8-azaadenine, 7-deazaguanine, 7- deazaadenine, 3-deazaguanine, 3-deazaadenine,
tricyclic pyrimidines, phenoxazine cytidine( [5,4-b][1,4]benzoxazin-2(3H)-one), phenothiazine
cytidine (1H-pyrimido[5,4-b][1,4]benzothiazin-2(3H)-one), G-clamps, phenoxazine cytidine
(
e.g. 9- (2-aminoethoxy)-H-pyrimido[5,4-b][1,4]benzoxazin-2(3H)-one), carbazole cytidine
(2H-pyrimido[4,5-b]indol-2-one), pyridoindole cytidine (H-pyrido[3',2':4,5]pyrrolo[2,3-d]pyrimidin-2-one),
those in which the purine or pyrimidine base is replaced with other heterocycles,
7-deaza-adenine, 7-deazaguanosine, 2-aminopyridine, 2-pyridone, , azacytosine, 5-bromocytosine,
bromouracil, 5-chlorocytosine, chlorinated cytosine, cyclocytosine, cytosine arabinoside,
5- fluorocytosine, fluoropyrimidine, fluorouracil, 5,6-dihydrocytosine, 5-iodocytosine,
hydroxyurea, iodouracil, 5-nitrocytosine, 5- bromouracil, 5-chlorouracil, 5- fluorouracil,
and 5-iodouracil, 2-amino-adenine, 6-thio-guanine, 2-thio-thymine, 4-thio-thymine,
5-propynyl-uracil, 4-thio-uracil, N4-ethylcytosine, 7-deazaguanine, 7-deaza-8- azaguanine,
5-hydroxycytosine, 2'-deoxyuridine, 2-amino-2'-deoxyadenosine, and those described
in
U.S. Patent Nos. 3,687,808;
4,845,205;
4,910,300;
4,948,882;
5,093,232;
5,130,302;
5,134,066;
5,175,273;
5,367,066;
5,432,272;
5,457,187;
5,459,255;
5,484,908;
5,502,177;
5,525,711;
5,552,540;
5,587,469;
5,594,121;
5,596,091;
5,614,617;
5,645,985;
5,681,941;
5,750,692;
5,763,588;
5,830,653 and
6,005,096;
WO 99/62923;
Kandimalla et al., (2001) Bioorg. Med. Chem. 9:807-813;
The Concise Encyclopedia of Polymer Science and Engineering, Kroschwitz, J.I., Ed.,
John Wiley & Sons, 1990, 858- 859;
Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613; and
Sanghvi, Chapter 15, Antisense Research and Applications, Crookeand Lebleu Eds., CRC
Press, 1993, 273-288. Additional base modifications can be found, for example, in
U.S. Pat. No. 3,687,808;
Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613; and
Sanghvi, Chapter 15, Antisense Research and Applications, pages 289-302, Crooke and
Lebleu ed., CRC Press, 1993.
[0213] Unnatural nucleic acids comprising various heterocyclic bases and various sugar moieties
(and sugar analogs) are available in the art, and the nucleic acids in some cases
include one or several heterocyclic bases other than the principal five base components
of naturally-occurring nucleic acids. For example, the heterocyclic base includes,
in some cases, uracil-5-yl, cytosin-5-yl, adenin-7-yl, adenin-8-yl, guanin-7-yl, guanin-8-yl,
4- aminopyrrolo [2.3-d] pyrimidin-5-yl, 2-amino-4-oxopyrolo [2, 3-d] pyrimidin-5-yl,
2- amino-4-oxopyrrolo [2.3-d] pyrimidin-3-yl groups, where the purines are attached
to the sugar moiety of the nucleic acid via the 9-position, the pyrimidines via the
1 -position, the pyrrolopyrimidines via the 7-position and the pyrazolopyrimidines
via the 1-position.
[0214] In some embodiments, nucleotide analogs are also modified at the phosphate moiety.
Modified phosphate moieties include, but are not limited to, those with modification
at the linkage between two nucleotides and contains, for example, a phosphorothioate,
chiral phosphorothioate, phosphorodithioate, phosphotriester, aminoalkylphosphotriester,
methyl and other alkyl phosphonates including 3'-alkylene phosphonate and chiral phosphonates,
phosphinates, phosphoramidates including 3'-amino phosphoramidate and aminoalkylphosphoramidates,
thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and
boranophosphates. It is understood that these phosphate or modified phosphate linkage
between two nucleotides are through a 3'-5' linkage or a 2'-5' linkage, and the linkage
contains inverted polarity such as 3'-5' to 5'-3' or 2'-5' to 5'-2'. Various salts,
mixed salts and free acid forms are also included. Numerous
United States patents teach how to make and use nucleotides containing modified phosphates
and include but are not limited to, 3,687,808;
4,469,863;
4,476,301;
5,023,243;
5,177,196;
5,188,897;
5,264,423;
5,276,019;
5,278,302;
5,286,717;
5,321,131;
5,399,676;
5,405,939;
5,453,496;
5,455,233;
5,466,677;
5,476,925;
5,519,126;
5,536,821;
5,541,306;
5,550,111;
5,563,253;
5,571,799;
5,587,361; and
5,625,050.
[0215] In some embodiments, unnatural nucleic acids include 2',3'-dideoxy-2',3'-didehydro-nucleosides
(
PCT/US2002/006460), 5'-substituted DNA and RNA derivatives (
PCT/US2011/033961;
Saha et al., J. Org Chem., 1995, 60, 788-789;
Wang et al., Bioorganic & Medicinal Chemistry Letters, 1999, 9, 885-890; and
Mikhailov et al., Nucleosides & Nucleotides, 1991, 10(1-3), 339-343; Leonid et al., 1995, 14(3-5), 901-905; and
Eppacher et al., Helvetica Chimica Acta, 2004, 87, 3004-3020;
PCT/JP2000/004720;
PCT/JP2003/002342;
PCT/JP2004/013216;
PCT/JP2005/020435;
PCT/JP2006/315479;
PCT/JP2006/324484;
PCT/JP2009/056718;
PCT/JP2010/067560), or 5'-substituted monomers made as the monophosphate with modified bases (
Wang et al., Nucleosides Nucleotides & Nucleic Acids, 2004, 23 (1 & 2), 317-337).
[0216] In some embodiments, unnatural nucleic acids include modifications at the 5'-position
and the 2'-position of the sugar ring (
PCT/US94/02993), such as 5'-CH
2-substituted 2'-O-protected nucleosides (
Wu et al., Helvetica Chimica Acta, 2000, 83, 1127-1143 and
Wu et al., Bioconjugate Chem. 1999, 10, 921-924). In some cases, unnatural nucleic acids include amide linked nucleoside dimers have
been prepared for incorporation into oligonucleotides wherein the 3' linked nucleoside
in the dimer (5' to 3') comprises a 2'-OCH
3 and a 5'-(S)-CH
3 (
Mesmaeker et al., Synlett, 1997, 1287-1290). Unnatural nucleic acids can include 2'-substituted 5'-CH
2 (or O) modified nucleosides (
PCT/US92/01020). Unnatural nucleic acids can include 5'-methylenephosphonate DNA and RNA monomers,
and dimers (
Bohringer et al., Tet. Lett., 1993, 34, 2723-2726;
Collingwood et al., Synlett, 1995, 7, 703-705; and
Hutter et al., Helvetica Chimica Acta, 2002, 85, 2777-2806). Unnatural nucleic acids can include 5'-phosphonate monomers having a 2'-substitution
(
US2006/0074035) and other modified 5'-phosphonate monomers (
WO1997/35869). Unnatural nucleic acids can include 5'-modified methylenephosphonate monomers (
EP614907 and
EP629633). Unnatural nucleic acids can include analogs of 5' or 6'-phosphonate ribonucleosides
comprising a hydroxyl group at the 5' and/or 6'-position (
Chen et al., Phosphorus, Sulfur and Silicon, 2002, 777, 1783-1786;
Jung et al., Bioorg. Med. Chem., 2000, 8, 2501-2509;
Gallier et al., Eur. J. Org. Chem., 2007, 925-933; and
Hampton et al., J. Med. Chem., 1976, 19(8), 1029-1033). Unnatural nucleic acids can include 5'-phosphonate deoxyribonucleoside monomers
and dimers having a 5'-phosphate group (
Nawrot et al., Oligonucleotides, 2006, 16(1), 68-82). Unnatural nucleic acids can include nucleosides having a 6'-phosphonate group wherein
the 5' or/and 6'-position is unsubstituted or substituted with a thio-tert-butyl group
(SC(CH
3)
3) (and analogs thereof); a methyleneamino group (CH
2NH
2) (and analogs thereof) or a cyano group (CN) (and analogs thereof) (
Fairhurst et al., Synlett, 2001, 4, 467-472;
Kappler et al., J. Med. Chem., 1986, 29, 1030-1038;
Kappler et al., J. Med. Chem., 1982, 25, 1179-1184;
Vrudhula et al., J. Med. Chem., 1987, 30, 888-894;
Hampton et al., J. Med. Chem., 1976, 19, 1371-1377;
Geze et al., J. Am. Chem. Soc, 1983, 105(26), 7638-7640; and
Hampton et al., J. Am. Chem. Soc, 1973, 95(13), 4404-4414).
[0217] In some embodiments, unnatural nucleic acids also include modifications of the sugar
moiety. In some cases, nucleic acids contain one or more nucleosides wherein the sugar
group has been modified. Such sugar modified nucleosides may impart enhanced nuclease
stability, increased binding affinity, or some other beneficial biological property.
In certain embodiments, nucleic acids comprise a chemically modified ribofuranose
ring moiety. Examples of chemically modified ribofuranose rings include, without limitation,
addition of substituent groups (including 5' and/or 2' substituent groups; bridging
of two ring atoms to form bicyclic nucleic acids (BNA); replacement of the ribosyl
ring oxygen atom with S, N(R), or C(R
1)(R
2) (R = H, C
1-C
12 alkyl or a protecting group); and combinations thereof. Examples of chemically modified
sugars can be found in
WO2008/101157,
US2005/0130923, and
WO2007/134181.
[0218] In some instances, a modified nucleic acid comprises modified sugars or sugar analogs.
Thus, in addition to ribose and deoxyribose, the sugar moiety can be pentose, deoxypentose,
hexose, deoxyhexose, glucose, arabinose, xylose, lyxose, or a sugar "analog" cyclopentyl
group. The sugar can be in a pyranosyl or furanosyl form. The sugar moiety may be
the furanoside of ribose, deoxyribose, arabinose or 2'-O-alkylribose, and the sugar
can be attached to the respective heterocyclic bases either in [alpha] or [beta] anomeric
configuration. Sugar modifications include, but are not limited to, 2'-alkoxy-RNA
analogs, 2'-amino-RNA analogs, 2'-fluoro-DNA, and 2'-alkoxy- or amino-RNA/DNA chimeras.
For example, a sugar modification may include 2'-O-methyl-uridine or 2'-O-methyl-cytidine.
Sugar modifications include 2'-O-alkyl-substituted deoxyribonucleosides and 2'-O-ethyleneglycol
like ribonucleosides. The preparation of these sugars or sugar analogs and the respective
"nucleosides" wherein such sugars or analogs are attached to a heterocyclic base (nucleic
acid base) is known. Sugar modifications may also be made and combined with other
modifications.
[0219] Modifications to the sugar moiety include natural modifications of the ribose and
deoxy ribose as well as unnatural modifications. Sugar modifications include, but
are not limited to, the following modifications at the 2' position: OH; F; O-, S-,
or N-alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein
the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C
1 to C
10, alkyl or C
2 to C
10 alkenyl and alkynyl. 2' sugar modifications also include but are not limited to -
O[(CH
2)
nO]
m CH
3, -O(CH
2)
nOCH
3, -O(CH
2)
nNH
2, -O(CH
2)
nCH
3, -O(CH
2)
nONH
2, and - O(CH
2)
nON[(CH
2)n CH
3)]
2, where n and m are from 1 to about 10.
[0220] Other modifications at the 2' position include but are not limited to: C
1 to C
10 lower alkyl, substituted lower alkyl, alkaryl, aralkyl, O-alkaryl, O-aralkyl, SH,
SCH
3, OCN, Cl, Br, CN, CF
3, OCF
3, SOCH
3, SO
2 CH
3, ONO
2, NO
2, N
3, NH
2, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted
silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving
the pharmacokinetic properties of an oligonucleotide, or a group for improving the
pharmacodynamic properties of an oligonucleotide, and other substituents having similar
properties. Similar modifications may also be made at other positions on the sugar,
particularly the 3' position of the sugar on the 3' terminal nucleotide or in 2'-5'
linked oligonucleotides and the 5' position of the 5' terminal nucleotide. Modified
sugars also include those that contain modifications at the bridging ring oxygen,
such as CH
2 and S. Nucleotide sugar analogs may also have sugar mimetics such as cyclobutyl moieties
in place of the pentofuranosyl sugar. There are numerous United States patents that
teach the preparation of such modified sugar structures and which detail and describe
a range of base modifications, such as
U.S. Patent Nos. 4,981,957;
5,118,800;
5,319,080;
5,359,044;
5,393,878;
5,446,137;
5,466,786;
5,514,785;
5,519,134;
5,567,811;
5,576,427;
5,591,722;
5,597,909;
5,610,300;
5,627,053;
5,639,873;
5,646,265;
5,658,873;
5,670,633;
4,845,205;
5,130,302;
5,134,066;
5,175,273;
5,367,066;
5,432,272;
5,457,187;
5,459,255;
5,484,908;
5,502,177;
5,525,711;
5,552,540;
5,587,469;
5,594,121,
5,596,091;
5,614,617;
5,681,941; and
5,700,920, each of which is herein incorporated by reference in its entirety.
[0221] Examples of nucleic acids having modified sugar moieties include, without limitation,
nucleic acids comprising 5'-vinyl, 5'-methyl (R or S), 4'-S, 2'-F, 2'-OCH
3, and 2'-O(CH
2)
2OCH
3 substituent groups. The substituent at the 2' position can also be selected from
allyl, amino, azido, thio, O-allyl, O-(C
1-C
10 alkyl), OCF
3, O(CH
2)
2SCH
3, O(CH
2)
2-O-N(R
m)(R
n), and O-CH
2-C(=O)-N(R
m)(R
n), where each R
m and R
n is, independently, H or substituted or unsubstituted C
1-C
10 alkyl.
[0222] In certain embodiments, nucleic acids described herein include one or more bicyclic
nucleic acids. In certain such embodiments, the bicyclic nucleic acid comprises a
bridge between the 4' and the 2' ribosyl ring atoms. In certain embodiments, nucleic
acids provided herein include one or more bicyclic nucleic acids wherein the bridge
comprises a 4' to 2' bicyclic nucleic acid. Examples of such 4' to 2' bicyclic nucleic
acids include, but are not limited to, one of the formulae: 4'-(CH
2)-O-2' (LNA); 4'-(CH
2)-S-2'; 4'-(CH
2)
2-O-2' (ENA); 4'-CH(CH
3)-O-2' and 4'-CH(CH
2OCH
3)-O-2', and analogs thereof (see,
U.S. Patent No. 7,399,845); 4'-C(CH
3)(CH
3)-O-2'and analogs thereof, (see
WO2009/006478,
WO2008/150729,
US2004/0171570,
U.S. Patent No. 7,427,672,
Chattopadhyaya et al., J. Org. Chem., 209, 74, 118-134, and
WO2008/154401). Also see, for example:
Singh et al., Chem. Commun., 1998, 4, 455-456;
Koshkin et al., Tetrahedron, 1998, 54, 3607-3630;
Wahlestedt et al., Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 5633-5638;
Kumar et al., Bioorg. Med. Chem. Lett., 1998, 8, 2219-2222;
Singh et al., J. Org. Chem., 1998, 63, 10035-10039;
Srivastava et al., J. Am. Chem. Soc., 2007, 129(26) 8362-8379;
Elayadi et al., Curr. Opinion Invens. Drugs, 2001, 2, 558-561;
Braasch et al., Chem. Biol, 2001, 8, 1-7;
Oram et al., Curr. Opinion Mol. Ther., 2001, 3, 239-243;
U.S. Patent Nos. 4,849,513;
5,015,733;
5,118,800;
5,118,802;
7,053,207;
6,268,490;
6,770,748;
6,794,499;
7,034,133;
6,525,191;
6,670,461; and
7,399,845; International Publication Nos.
WO2004/106356,
WO1994/14226,
WO2005/021570,
WO2007/090071, and
WO2007/134181; U.S. Patent Publication Nos.
US2004/0171570,
US2007/0287831, and
US2008/0039618;
U.S. Provisional Application Nos. 60/989,574,
61/026,995,
61/026,998,
61/056,564,
61/086,231,
61/097,787, and
61/099,844; and International Applications Nos.
PCT/US2008/064591,
PCT US2008/066154,
PCT US2008/068922, and
PCT/DK98/00393.
[0223] In certain embodiments, nucleic acids comprise linked nucleic acids. Nucleic acids
can be linked together using any inter nucleic acid linkage. The two main classes
of inter nucleic acid linking groups are defined by the presence or absence of a phosphorus
atom. Representative phosphorus containing inter nucleic acid linkages include, but
are not limited to, phosphodiesters, phosphotriesters, methylphosphonates, phosphoramidate,
and phosphorothioates (P=S). Representative non-phosphorus containing inter nucleic
acid linking groups include, but are not limited to, methylenemethylimino (-CH
2-N(CH
3)-O-CH
2-), thiodiester (-O-C(O)-S-), thionocarbamate (-O-C(O)(NH)-S-); siloxane (-O-Si(H)
2-O-); and N,N*-dimethylhydrazine (-CH
2-N(CH
3)-N(CH
3)). In certain embodiments, inter nucleic acids linkages having a chiral atom can
be prepared as a racemic mixture, as separate enantiomers, e.g., alkylphosphonates
and phosphorothioates. Unnatural nucleic acids can contain a single modification.
Unnatural nucleic acids can contain multiple modifications within one of the moieties
or between different moieties.
[0224] Backbone phosphate modifications to nucleic acid include, but are not limited to,
methyl phosphonate, phosphorothioate, phosphoramidate (bridging or non-bridging),
phosphotriester, phosphorodithioate, phosphodithioate, and boranophosphate, and may
be used in any combination. Other non- phosphate linkages may also be used.
[0225] In some embodiments, backbone modifications (
e.g., methylphosphonate, phosphorothioate, phosphoroamidate and phosphorodithioate internucleotide
linkages) can confer immunomodulatory activity on the modified nucleic acid and/or
enhance their stability
in vivo.
[0226] In some instances, a phosphorous derivative (or modified phosphate group) is attached
to the sugar or sugar analog moiety in and can be a monophosphate, diphosphate, triphosphate,
alkylphosphonate, phosphorothioate, phosphorodithioate, phosphoramidate or the like.
Exemplary polynucleotides containing modified phosphate linkages or non-phosphate
linkages can be found in
Peyrottes et al., 1996, Nucleic Acids Res. 24: 1841-1848;
Chaturvedi et al., 1996, Nucleic Acids Res. 24:2318-2323; and
Schultz et al., (1996) Nucleic Acids Res. 24:2966-2973;
Matteucci, 1997, "Oligonucleotide Analogs: an Overview" in Oligonucleotides as Therapeutic
Agents, (Chadwick and Cardew, ed.) John Wiley and Sons, New York, NY;
Zon, 1993, "Oligonucleoside Phosphorothioates" in Protocols for Oligonucleotides
and Analogs, Synthesis and Properties, Humana Press, pp. 165-190;
Miller et al., 1971, JACS 93:6657-6665;
Jager et al., 1988, Biochem. 27:7247-7246;
Nelson et al., 1997, JOC 62:7278-7287;
U.S. Patent No. 5,453,496; and
Micklefield, 2001, Curr. Med. Chem. 8: 1157-1179.
[0227] In some cases, backbone modification comprises replacing the phosphodiester linkage
with an alternative moiety such as an anionic, neutral or cationic group. Examples
of such modifications include: anionic internucleoside linkage; N3' to P5' phosphoramidate
modification; boranophosphate DNA; prooligonucleotides; neutral internucleoside linkages
such as methylphosphonates; amide linked DNA; methylene(methylimino) linkages; formacetal
and thioformacetal linkages; backbones containing sulfonyl groups; morpholino oligos;
peptide nucleic acids (PNA); and positively charged deoxyribonucleic guanidine (DNG)
oligos (
Micklefield, 2001, Current Medicinal Chemistry 8: 1157-1179). A modified nucleic acid may comprise a chimeric or mixed backbone comprising one
or more modifications,
e.g. a combination of phosphate linkages such as a combination of phosphodiester and phosphorothioate
linkages.
[0228] Substitutes for the phosphate include, for example, short chain alkyl or cycloalkyl
internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside
linkages, or one or more short chain heteroatomic or heterocyclic internucleoside
linkages. These include those having morpholino linkages (formed in part from the
sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone
backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl
backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino
backbones; sulfonate and sulfonamide backbones; amide backbones; and others having
mixed N, O, S and CH
2 component parts. Numerous United States patents disclose how to make and use these
types of phosphate replacements and include but are not limited to
U.S. Patent Nos. 5,034,506;
5,166,315;
5,185,444;
5,214,134;
5,216,141;
5,235,033;
5,264,562;
5,264,564;
5,405,938;
5,434,257;
5,466,677;
5,470,967;
5,489,677;
5,541,307;
5,561,225;
5,596,086;
5,602,240;
5,610,289;
5,602,240;
5,608,046;
5,610,289;
5,618,704;
5,623,070;
5,663,312;
5,633,360;
5,677,437; and
5,677,439. It is also understood in a nucleotide substitute that both the sugar and the phosphate
moieties of the nucleotide can be replaced, by for example an amide type linkage (aminoethylglycine)
(PNA).
United States Patent Nos. 5,539,082;
5,714,331; and
5,719,262 teach how to make and use PNA molecules, each of which is herein incorporated by
reference. See also
Nielsen et al., Science, 1991, 254, 1497-1500. It is also possible to link other types of molecules (conjugates) to nucleotides
or nucleotide analogs to enhance for example, cellular uptake. Conjugates can be chemically
linked to the nucleotide or nucleotide analogs. Such conjugates include but are not
limited to lipid moieties such as a cholesterol moiety (
Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989, 86, 6553-6556), cholic acid (
Manoharan et al., Bioorg. Med. Chem. Let., 1994, 4, 1053-1060), a thioether,
e.g., hexyl-S-tritylthiol (
Manoharan et al., Ann. KY. Acad. Sci., 1992, 660, 306-309;
Manoharan et al., Bioorg. Med. Chem. Let., 1993, 3, 2765-2770), a thiocholesterol (
Oberhauser et al., Nucl. Acids Res., 1992, 20, 533-538), an aliphatic chain,
e.g., dodecandiol or undecyl residues (
Saison-Behmoaras et al., EM5OJ, 1991, 10, 1111-1118;
Kabanov et al., FEBS Lett., 1990, 259, 327-330;
Svinarchuk et al., Biochimie, 1993, 75, 49-54), a phospholipid,
e.g., di-hexadecyl-rac-glycerol or triethylammonium l-di-O-hexadecyl-rac-glycero-S-H-phosphonate
(
Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654;
Shea et al., Nucl. Acids Res., 1990, 18, 3777-3783), a polyamine or a polyethylene glycol chain (
Manoharan et al., Nucleosides & Nucleotides, 1995, 14, 969-973), or adamantane acetic acid (
Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654), a palmityl moiety (
Mishra et al., Biochem. Biophys. Acta, 1995, 1264, 229-237), or an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety (
Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277, 923-937). Numerous United States patents teach the preparation of such conjugates and include,
but are not limited to
U.S. Patent Nos. 4,828,979;
4,948,882;
5,218,105;
5,525,465;
5,541,313;
5,545,730;
5,552,538;
5,578,717,
5,580,731;
5,580,731;
5,591,584;
5,109,124;
5,118,802;
5,138,045;
5,414,077;
5,486,603;
5,512,439;
5,578,718;
5,608,046;
4,587,044;
4,605,735;
4,667,025;
4,762,779;
4,789,737;
4,824,941;
4,835,263;
4,876,335;
4,904,582;
4,958,013;
5,082,830;
5,112,963;
5,214,136;
5,082,830;
5,112,963;
5,214,136;
5,245,022;
5,254,469;
5,258,506;
5,262,536;
5,272,250;
5,292,873;
5,317,098;
5,371,241,
5,391,723;
5,416,203,
5,451,463;
5,510,475;
5,512,667;
5,514,785;
5,565,552;
5,567,810;
5,574,142;
5,585,481;
5,587,371;
5,595,726;
5,597,696;
5,599,923;
5,599,928 and
5,688,941.
[0229] In some embodiments, the unnatural nucleic acids further form unnatural base pairs.
Exemplary unnatural nucleotides capable of forming an unnatural DNA or RNA base pair
(UBP) under conditions
in vivo includes, but is not limited to, 5SICS, d5SICS, NAM, dNaM, TPT3TP, dTPT3TP, and combinations
thereof. In some embodiments, unnatural nucleotides include:

[0231] The host cell into which the constructs or vectors disclosed herein are introduced
is cultured or maintained in a suitable medium such that the tRNA, the tRNA synthetase
and the protein of interest are produced. The medium also comprises the unnatural
amino acid(s) such that the protein of interest incorporates the unnatural amino acid(s).
[0232] The orthogonal tRNA synthetase/tRNA pair charges a tRNA with an unnatural amino acid
and incorporates the unnatural amino acid into the polypeptide chain in response to
the codon. Exemplary aaRS-tRNA pairs include, but are not limited to,
Methanococcus jannaschii (
Mj-Tyr) aaRS/tRNA pairs,
E. coli TyrRS (
Ec-Tyr)/
B. stearothermophilus tRNA
CUA pairs,
E.
coli LeuRS (
Ec-Leu)/
B. stearothermophilus tRNA
CUA pairs, and pyrrolysyl-tRNA pairs.
[0233] An IL-15 polypeptide comprising an unnatural amino acid(s) are prepared by introducing
the nucleic acid constructs described herein comprising the tRNA and tRNA synthetase
and comprising a nucleic acid sequence of interest with one or more in-frame orthogonal
(stop) codons into a host cell. The host cell is exposed to a physiological solution
comprising the unnatural amino acid(s), and the host cells are then maintained under
conditions which permit expression of the protein of interest's encoding sequence.
The unnatural amino acid(s) is incorporated into the polypeptide chain in response
to the codon. For example, one or more unnatural amino acids are incorporated into
the IL-15 polypeptide. Alternatively two or more unnatural amino acids may be incorporated
into the IL-15 polypeptide at two or more sites in the protein.
[0234] When multiple unnatural amino acids are to be incorporated into an IL-15 polypeptide,
it will be understood that multiple codons will need to be incorporated into the encoding
nucleic acid sequence at the desired positions such that the tRNA synthetase/tRNA
pairs can direct the incorporation of the unnatural amino acids in response to the
codon(s). At least 1, 2, 3, 4, or more codon encoding nucleic acids maybe incorporated
into the nucleic acid sequence of interest.
[0235] When it is desired to incorporate more than one type of unnatural amino acid into
the protein of interest into a single protein, a second or further orthogonal tRNA-tRNA
synthetase pair may be used to incorporate the second or further unnatural amino acid;
suitably said second or further orthogonal tRNA-tRNA synthetase pair recognizes a
different codon in the nucleic acid encoding the protein of interest so that the two
or more unnatural amino acids can be specifically incorporated into different defined
sites in the protein in a single manufacturing step. In certain embodiments, two or
more orthogonal tRNA-tRNA synthetase pairs may therefore be used.
[0236] Once the IL-15 polypeptide incorporating the unnatural amino acid(s) has been produced
in the host cell it can be extracted therefrom by a variety of techniques known in
the art, including enzymatic, chemical and/or osmotic lysis and physical disruption.
The IL-15 polypeptide can be purified by standard techniques known in the art such
as preparative chromatography, affinity purification or any other suitable technique.
[0237] Suitable host cells may include bacterial cells (e.g., E. coli), but most suitably
host cells are eukaryotic cells, for example insect cells (e.g. Drosophila such as
Drosophila melanogaster), yeast cells, nematodes (e.g. Caenorhabditis elegans), mice
(e.g. Mus musculus), or mammalian cells (such as Chinese hamster ovary cells (CHO)
or COS cells, human 293T cells, HeLa cells, NIH 3T3 cells, and mouse erythroleukemia
(MEL) cells) or human cells or other eukaryotic cells. Other suitable host cells are
known to those skilled in the art. Suitably, the host cell is a mammalian cell - such
as a human cell or an insect cell.
[0238] Other suitable host cells which may be used generally in the embodiments of the invention
are those mentioned in the examples section. Vector DNA can be introduced into host
cells via conventional transformation or transfection techniques. As used herein,
the terms "transformation" and "transfection" are intended to refer to a variety of
well-recognized techniques for introducing a foreign nucleic acid molecule (e.g.,
DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation,
DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods
for transforming or transfecting host cells are well known in the art.
[0239] When creating cell lines, it is generally preferred that stable cell lines are prepared.
For stable transfection of mammalian cells for example, it is known that, depending
upon the expression vector and transfection technique used, only a small fraction
of cells may integrate the foreign DNA into their genome. In order to identify and
select these integrants, a gene that encodes a selectable marker (for example, for
resistance to antibiotics) is generally introduced into the host cells along with
the gene of interest. Preferred selectable markers include those that confer resistance
to drugs, such as G418, hygromycin, or methotrexate. Nucleic acid molecules encoding
a selectable marker can be introduced into a host cell on the same vector or can be
introduced on a separate vector. Cells stably transfected with the introduced nucleic
acid molecule can be identified by drug selection (for example, cells that have incorporated
the selectable marker gene will survive, while the other cells die).
[0240] In one embodiment, the constructs described herein are integrated into the genome
of the host cell. An advantage of stable integration is that the uniformity between
individual cells or clones is achieved. Another advantage is that selection of the
best producers may be carried out. Accordingly, it is desirable to create stable cell
lines. In another embodiment, the constructs described herein are transfected into
a host cell. An advantage of transfecting the constructs into the host cell is that
protein yields may be maximized. In one aspect, there is described a cell comprising
the nucleic acid construct or the vector described herein.
Pharmaceutical Compositions and Formulations
[0241] In some embodiments, the pharmaceutical composition and formulations described herein
are administered to a subject by multiple administration routes, including but not
limited to, parenteral, oral, or transdermal administration routes. In some cases,
parenteral administration comprises intravenous, subcutaneous, intramuscular, intracerebral,
intranasal, intra-arterial, intra-articular, intradermal, intravitreal, intraosseous
infusion, intraperitoneal, or intrathecal administration. In some instances, the pharmaceutical
composition is formulated for local administration. In other instances, the pharmaceutical
composition is formulated for systemic administration.
[0242] In some embodiments, the pharmaceutical formulations include, but are not limited
to, aqueous liquid dispersions, self-emulsifying dispersions, liposomal dispersions,
aerosols, immediate release formulations, controlled release formulations, delayed
release formulations, extended release formulations, pulsatile release formulations,
and mixed immediate and controlled release formulations.
[0243] In some embodiments, the pharmaceutical formulations include a carrier or carrier
materials selected on the basis of compatibility with the composition disclosed herein,
and the release profile properties of the desired dosage form. Exemplary carrier materials
include, e.g., binders, surfactants, solubilizers, stabilizers, lubricants, wetting
agents, diluents, and the like. Pharmaceutically compatible carrier materials include,
but are not limited to, acacia, gelatin, colloidal silicon dioxide, calcium glycerophosphate,
calcium lactate, maltodextrin, glycerine, magnesium silicate, polyvinylpyrrollidone
(PVP), cholesterol, cholesterol esters, sodium caseinate, soy lecithin, taurocholic
acid, phosphotidylcholine, sodium chloride, tricalcium phosphate, dipotassium phosphate,
cellulose and cellulose conjugates, sugars sodium stearoyl lactylate, carrageenan,
monoglyceride, diglyceride, pregelatinized starch, and the like. See, e.g.,
Remington: The Science and Practice of Pharmacy, Nineteenth Ed (Easton, Pa.: Mack
Publishing Company, 1995),
Hoover, John E., Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton,
Pennsylvania 1975,
Liberman, H.A. and Lachman, L., Eds., Pharmaceutical Dosage Forms, Marcel Decker,
New York, N.Y., 1980, and
Pharmaceutical Dosage Forms and Drug Delivery Systems, Seventh Ed. (Lippincott Williams
& Wilkins1999).
[0244] In some cases, the pharmaceutical composition is formulated as an immunoliposome,
which comprises a plurality of IL-15 conjugates bound either directly or indirectly
to lipid bilayer of liposomes. Exemplary lipids include, but are not limited to, fatty
acids; phospholipids; sterols such as cholesterols; sphingolipids such as sphingomyelin;
glycosphingolipids such as gangliosides, globosides, and cerebrosides; surfactant
amines such as stearyl, oleyl, and linoleyl amines. In some instances, the lipid comprises
a cationic lipid. In some instances, the lipid comprises a phospholipid. Exemplary
phospholipids include, but are not limited to, phosphatidic acid ("PA"), phosphatidylcholine
("PC"), phosphatidylglycerol ("PG"), phophatidylethanolamine ("PE"), phophatidylinositol
("PI"), and phosphatidylserine ("PS"), sphingomyelin (including brain sphingomyelin),
lecithin, lysolecithin, lysophosphatidylethanolamine, cerebrosides, diarachidoylphosphatidylcholine
("DAPC"), didecanoyl-L-alpha-phosphatidylcholine ("DDPC"), dielaidoylphosphatidylcholine
("DEPC"), dilauroylphosphatidylcholine ("DLPC"), dilinoleoylphosphatidylcholine, dimyristoylphosphatidylcholine
("DMPC"), dioleoylphosphatidylcholine ("DOPC"), dipalmitoylphosphatidylcholine ("DPPC"),
distearoylphosphatidylcholine ("DSPC"), 1-palmitoyl-2-oleoyl-phosphatidylcholine ("POPC"),
diarachidoylphosphatidylglycerol ("DAPG"), didecanoyl-L-alpha-phosphatidylglycerol
("DDPG"), dielaidoylphosphatidylglycerol ("DEPG"), dilauroylphosphatidylglycerol ("DLPG"),
dilinoleoylphosphatidylglycerol, dimyristoylphosphatidylglycerol ("DMPG"), dioleoylphosphatidylglycerol
("DOPG"), dipalmitoylphosphatidylglycerol ("DPPG"), distearoylphosphatidylglycerol
("DSPG"), 1-palmitoyl-2-oleoyl-phosphatidylglycerol ("POPG"), diarachidoylphosphatidylethanolamine
("DAPE"), didecanoyl-L-alpha-phosphatidylethanolamine ("DDPE"), dielaidoylphosphatidylethanolamine
("DEPE"), dilauroylphosphatidylethanolamine ("DLPE"), dilinoleoylphosphatidylethanolamine,
dimyristoylphosphatidylethanolamine ("DMPE"), dioleoylphosphatidylethanolamine ("DOPE"),
dipalmitoylphosphatidylethanolamine ("DPPE"), distearoylphosphatidylethanolamine ("DSPE"),
1-palmitoyl-2-oleoyl-phosphatidylethanolamine ("POPE"), diarachidoylphosphatidylinositol
("DAPI"), didecanoyl-L-alpha-phosphatidylinositol ("DDPI"), dielaidoylphosphatidylinositol
("DEPI"), dilauroylphosphatidylinositol ("DLPI"), dilinoleoylphosphatidylinositol,
dimyristoylphosphatidylinositol ("DMPI"), dioleoylphosphatidylinositol ("DOPI"), dipalmitoylphosphatidylinositol
("DPPI"), distearoylphosphatidylinositol ("DSPI"), 1-palmitoyl-2-oleoyl-phosphatidylinositol
("POPI"), diarachidoylphosphatidylserine ("DAPS"), didecanoyl-L-alpha-phosphatidylserine
("DDPS"), dielaidoylphosphatidylserine ("DEPS"), dilauroylphosphatidylserine ("DLPS"),
dilinoleoylphosphatidylserine, dimyristoylphosphatidylserine ("DMPS"), dioleoylphosphatidylserine
("DOPS"), dipalmitoylphosphatidylserine ("DPPS"), distearoylphosphatidylserine ("DSPS"),
1-palmitoyl-2-oleoyl-phosphatidylserine ("POPS"), diarachidoyl sphingomyelin, didecanoyl
sphingomyelin, dielaidoyl sphingomyelin, dilauroyl sphingomyelin, dilinoleoyl sphingomyelin,
dimyristoyl sphingomyelin, sphingomyelin, dioleoyl sphingomyelin, dipalmitoyl sphingomyelin,
distearoyl sphingomyelin, and 1-palmitoyl-2-oleoyl-sphingomyelin.
[0245] In some embodiments, the pharmaceutical formulations further include pH adjusting
agents or buffering agents which include acids such as acetic, boric, citric, lactic,
phosphoric and hydrochloric acids, bases such as sodium hydroxide, sodium phosphate,
sodium borate, sodium citrate, sodium acetate, sodium lactate and tris-hydroxymethylaminomethane,
and buffers such as citrate/dextrose, sodium bicarbonate and ammonium chloride. Such
acids, bases and buffers are included in an amount required to maintain pH of the
composition in an acceptable range.
[0246] In some instances, the pharmaceutical formulation includes one or more salts in an
amount required to bring osmolality of the composition into an acceptable range. Such
salts include those having sodium, potassium or ammonium cations and chloride, citrate,
ascorbate, borate, phosphate, bicarbonate, sulfate, thiosulfate or bisulfite anions,
suitable salts include sodium chloride, potassium chloride, sodium thiosulfate, sodium
bisulfite and ammonium sulfate.
[0247] In some embodiments, the pharmaceutical formulations include, but are not limited
to, sugars like trehalose, sucrose, mannitol, sorbitol, maltose, glucose, or salts
like potassium phosphate, sodium citrate, ammonium sulfate and/or other agents such
as heparin to increase the solubility and
in vivo stability of polypeptides.
[0248] In some embodiments, the pharmaceutical formulations further include diluent which
are used to stabilize compounds because they can provide a more stable environment.
Salts dissolved in buffered solutions (which also can provide pH control or maintenance)
are utilized as diluents in the art, including, but not limited to a phosphate buffered
saline solution.
[0249] Stabilizers include compounds such as any antioxidation agents, buffers, acids, preservatives
and the like. Exemplary stabilizers include L-arginine hydrochloride, tromethamine,
albumin (human), citric acid, benzyl alcohol, phenol, disodium biphosphate dehydrate,
propylene glycol, metacresol or m-cresol, zinc acetate, polysorbate-20 or Tween
® 20, or trometamol.
[0250] Surfactants include compounds such as sodium lauryl sulfate, sodium docusate, Tween
60 or 80, triacetin, vitamin E TPGS, sorbitan monooleate, polyoxyethylene sorbitan
monooleate, polysorbates, polaxomers, bile salts, glyceryl monostearate, copolymers
of ethylene oxide and propylene oxide, e.g., Pluronic
® (BASF), and the like. Additional surfactants include polyoxyethylene fatty acid glycerides
and vegetable oils,
e.g., polyoxyethylene (60) hydrogenated castor oil, and polyoxyethylene alkylethers and
alkylphenyl ethers,
e.g., octoxynol 10, octoxynol 40. Sometimes, surfactants is included to enhance physical
stability or for other purposes.
Therapeutic Regimens
[0251] In some embodiments, the pharmaceutical compositions described herein are administered
for therapeutic applications. In some embodiments, the pharmaceutical composition
is administered once per day, twice per day, three times per day or more. The pharmaceutical
composition is administered daily, every day, every alternate day, five days a week,
once a week, every other week, two weeks per month, three weeks per month, once a
month, twice a month, three times per month, or more. The pharmaceutical composition
is administered for at least 1 month, 2 months, 3 months, 4 months, 5 months, 6 months,
7 months, 8 months, 9 months, 10 months, 11 months, 12 months, 18 months, 2 years,
3 years, or more.
[0252] In the case wherein the patient's status does improve, upon the doctor's discretion
the administration of the composition is given continuously, alternatively, the dose
of the composition being administered is temporarily reduced or temporarily suspended
for a certain length of time (i.e., a "drug holiday"). In some embodiments, the length
of the drug holiday varies between 2 days and 1 year, including by way of example
only, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 10 days, 12 days, 15 days, 20
days, 28 days, 35 days, 50 days, 70 days, 100 days, 120 days, 150 days, 180 days,
200 days, 250 days, 280 days, 300 days, 320 days, 350 days, or 365 days. The dose
reduction during a drug holiday is from 10%-100%, including, by way of example only,
10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%,
95%, or 100%.
[0253] Once improvement of the patient's conditions has occurred, a maintenance dose is
administered if necessary. Subsequently, the dosage or the frequency of administration,
or both, can be reduced, as a function of the symptoms, to a level at which the improved
disease, disorder or condition is retained.
[0254] In some embodiments, the amount of a given agent that correspond to such an amount
varies depending upon factors such as the particular compound, the severity of the
disease, the identity (e.g., weight) of the subject or host in need of treatment,
but nevertheless is routinely determined in a manner known in the art according to
the particular circumstances surrounding the case, including, e.g., the specific agent
being administered, the route of administration, and the subject or host being treated.
In some embodiments, the desired dose is conveniently presented in a single dose or
as divided doses administered simultaneously (or over a short period of time) or at
appropriate intervals, for example as two, three, four or more sub-doses per day.
[0255] The foregoing ranges are merely suggestive, as the number of variables in regard
to an individual treatment regime is large, and considerable excursions from these
recommended values are not uncommon. Such dosages is altered depending on a number
of variables, not limited to the activity of the compound used, the disease or condition
to be treated, the mode of administration, the requirements of the individual subject,
the severity of the disease or condition being treated, and the judgment of the practitioner.
[0256] In some embodiments, toxicity and therapeutic efficacy of such therapeutic regimens
are determined by standard pharmaceutical procedures in cell cultures or experimental
animals, including, but not limited to, the determination of the LD50 (the dose lethal
to 50% of the population) and the ED50 (the dose therapeutically effective in 50%
of the population). The dose ratio between the toxic and therapeutic effects is the
therapeutic index and it is expressed as the ratio between LD50 and ED50. Compounds
exhibiting high therapeutic indices are preferred. The data obtained from cell culture
assays and animal studies are used in formulating a range of dosage for use in human.
The dosage of such compounds lies preferably within a range of circulating concentrations
that include the ED50 with minimal toxicity. The dosage varies within this range depending
upon the dosage form employed and the route of administration utilized.
Kits/Article of Manufacture
[0257] Disclosed herein, in certain embodiments, are kits and articles of manufacture for
use with one or more methods and compositions described herein. Such kits include
a carrier, package, or container that is compartmentalized to receive one or more
containers such as vials, tubes, and the like, each of the container(s) comprising
one of the separate elements to be used in a method described herein. Suitable containers
include, for example, bottles, vials, syringes, and test tubes. In one embodiment,
the containers are formed from a variety of materials such as glass or plastic.
[0258] The articles of manufacture provided herein contain packaging materials. Examples
of pharmaceutical packaging materials include, but are not limited to, blister packs,
bottles, tubes, bags, containers, bottles, and any packaging material suitable for
a selected formulation and intended mode of administration and treatment.
[0259] For example, the container(s) include one or more of the IL-15 polypeptides or IL-15
conjugates disclosed herein, and optionally one or more pharmaceutical excipients
described herein to facilitate the delivery of IL-15 polypeptides or IL-15 conjugates.
Such kits further optionally include an identifying description or label or instructions
relating to its use in the methods described herein.
[0260] A kit typically includes labels listing contents and/or instructions for use, and
package inserts with instructions for use. A set of instructions will also typically
be included.
[0261] In one embodiment, a label is on or associated with the container. In one embodiment,
a label is on a container when letters, numbers or other characters forming the label
are attached, molded or etched into the container itself, a label is associated with
a container when it is present within a receptacle or carrier that also holds the
container, e.g., as a package insert. In one embodiment, a label is used to indicate
that the contents are to be used for a specific therapeutic application. The label
also indicates directions for use of the contents, such as in the methods described
herein.
[0262] In certain embodiments, the pharmaceutical compositions are presented in a pack or
dispenser device which contains one or more unit dosage forms containing a compound
provided herein. The pack, for example, contains metal or plastic foil, such as a
blister pack. In one embodiment, the pack or dispenser device is accompanied by instructions
for administration. In one embodiment, the pack or dispenser is also accompanied with
a notice associated with the container in form prescribed by a governmental agency
regulating the manufacture, use, or sale of pharmaceuticals, which notice is reflective
of approval by the agency of the form of the drug for human or veterinary administration.
Such notice, for example, is the labeling approved by the U.S. Food and Drug Administration
for drugs, or the approved product insert. In one embodiment, compositions containing
a compound provided herein formulated in a compatible pharmaceutical carrier are also
prepared, placed in an appropriate container, and labeled for treatment of an indicated
condition.
Certain Terminology
[0263] Unless defined otherwise, all technical and scientific terms used herein have the
same meaning as is commonly understood by one of skill in the art to which the claimed
subject matter belongs. It is to be understood that the detailed description are exemplary
and explanatory only and are not restrictive of any subject matter claimed. In this
application, the use of the singular includes the plural unless specifically stated
otherwise. It must be noted that, as used in the specification, the singular forms
"a," "an" and "the" include plural referents unless the context clearly dictates otherwise.
In this application, the use of "or" means "and/or" unless stated otherwise. Furthermore,
use of the term "including" as well as other forms, such as "include", "includes,"
and "included," is not limiting.
[0264] Although various features of the invention may be described in the context of a single
embodiment, the features may also be provided separately or in any suitable combination.
Conversely, although the invention may be described herein in the context of separate
embodiments for clarity, the invention may also be implemented in a single embodiment.
[0265] Reference in the specification to "some embodiments", "an embodiment", "one embodiment"
or "other embodiments" means that a particular feature, structure, or characteristic
described in connection with the embodiments is included in at least some embodiments,
but not necessarily all embodiments, of the inventions.
[0266] As used herein, ranges and amounts can be expressed as "about" a particular value
or range. About also includes the exact amount. Hence "about 5 µL" means "about 5
µL" and also "5 µL." Generally, the term "about" includes an amount that would be
expected to be within experimental error.
[0267] The section headings used herein are for organizational purposes only and are not
to be construed as limiting the subject matter described.
[0268] As used herein, the terms "individual(s)", "subject(s)" and "patient(s)" mean any
mammal. In some embodiments, the mammal is a human. In some embodiments, the mammal
is a non-human. None of the terms require or are limited to situations characterized
by the supervision (e.g. constant or intermittent) of a health care worker (e.g. a
doctor, a registered nurse, a nurse practitioner, a physician's assistant, an orderly
or a hospice worker).
[0269] As used herein, the terms "significant" and "significantly" in reference to receptor
binding means a change sufficient to impact binding of the IL-15 polypeptide to a
target receptor. In some instances, the term refers to a change of at least 10%, 20%,
30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or more. In some instances, the term means
a change of at least 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold,
10-fold, 50-fold, 100-fold, 500-fold, 1000-fold, or more.
[0270] In some instances, the term "significantly" in reference to activation of one or
more cell populations via a cytokine signaling complex means a change sufficient to
activate the cell population. In some cases, the change to activate the cell population
is measured as a receptor signaling potency. In such cases, an EC50 value may be provided.
In other cases, an ED50 value may be provided. In additional cases, a concentration
or dosage of the cytokine may be provided.
[0271] As used herein, the term "potency" refers to the amount of a cytokine (e.g., IL-15
polypeptide) required to produce a target effect. In some instances, the term "potency"
refers to the amount of cytokine (e.g., IL-15 polypeptide) required to activate a
target cytokine receptor (e.g., IL-15 receptor). In other instances, the term "potency"
refers to the amount of cytokine (e.g., IL-15 polypeptide) required to activate a
target cell population. In some cases, potency is measured as ED50 (Effective Dose
50), or the dose required to produce 50% of a maximal effect. In other cases, potency
is measured as EC50 (Effective Concentration 50), or the dose required to produce
the target effect in 50% of the population.
[0272] As used herein, the term "tumor infiltrating immune cell(s)" refers to immune cells
that have infiltrated into a region comprising tumor cells (e.g., in a tumor microenvironment).
In some instances, the tumor infiltrating immune cells are associated with tumor cell
destruction, a decrease in tumor cell proliferation, a reduction in tumor burden,
or combinations thereof. In some instances, the tumor infiltrating immune cells comprise
tumor infiltration lymphocytes (TILs). In some instances, the tumor infiltrating immune
cells comprise T cells, B cells, natural killer cells, macrophages, neutrophils, dendritic
cells, mast cells, eosinophils or basophils. In some instances, the tumor infiltrating
immune cells comprise CD4+ or CD8+ T cells.
EXAMPLES
[0273] These examples are provided for illustrative purposes only and not to limit the scope
of the claims provided herein.
EXAMPLE 1.
Expression of Modified IL-15 Polypeptides
[0274] The modified IL-16 polypeptide was grown at 37°C, 250 rpm, and 5 hours induction.
The media component was as illustrated in Table 2.
Table 2.
Name |
Composition |
Growth Media |
2xYT |
30.8 mM Potassium phosphate dibasic |
For 1 L: 2x 2xYT pellets, Potassium phosphate monobasic, Potassium phosphate dibasic |
19.2 mM Potassium phosphate monobasic |
100 ug/ml Ampicillin |
5 ug/ml Chloramphenicol |
Autoclave on liquid cycle to sterilize |
50 ug/ml Zeocin |
37.5 uM dTPT3TP |
150 uM dNAMTP |
[0275] When expression culture reaches OD
600 0.85-0.9, the culture was pre-loaded with NaMTP (at a final concentration of 250
uM), TPT3TP (at a final concentration of 25 uM), and Azido-lysine (at a final concentration
of 15 mM). About 15-20 minutes after pre-loading with ribonucleotides and amino acid,
IPTG was add and the protein was expressed for about 5 hours.
Inclusion Body
[0276] Upon cell pellet collection, the pellets were further processed for inclusion bodies.
In brief, a 1L cell pellet was resuspended in 10 ml lysis buffer (20 mM Tris-HCl,
pH 8.0; 150 mM NaCl; 1 mM DTT; and Protease inhibitor (1 pellet/50 ml)). After resuspension,
the volume of 1 L pellet was increased to 45 ml with lysis buffer and run through
the microfluidizer for 2x. The sample was then transferred to a 50 ml centrifuge tube
and centrifuge at 16k rpm for 20 minutes at 4°C. Next, the pellet was resuspended
pellet in 5 ml lysis buffer and the total volume was increased to 30 ml with lysis
buffer. About 10% Triton X-100 was added to a final concentration of 0.5 %. Then the
solution was centrifuged at 16k rpm for 20 minutes at 4°C, and the pellet was then
collected and washed 3x with 30 ml lysis buffer. A 5 ml syringe with needles was used
to fully resuspend with each wash. After a final spin, discard supernatant and the
pellet was snap freeze to store at -80°C.
Solubilization and Refolding
[0277] About 5 ml solubilization buffer was added to the inclusion body pellet. After resuspension,
the volume was increased to 30 ml in solubilization buffer. Next, the sample was incubated
at 4°C for 30-60 minutes. Then, the sample was transferred to 2 x 50 ml centrifuge
tube (15 ml/tube) and 15 ml dilution buffer was added to each tube. The sample was
then dialyzed subsequently in buffer A1 overnight at 4°C, followed by A2 dialysis
buffer, A3 dialysis buffer, A4 dialysis buffer, and A5 dialysis buffer. After dialysis,
the sample was centrifuged at 4000 rpm for 30 minutes at 4°C and concentrated to about
5 ml.
Table 3 illustrates the solubilization buffers.
Name |
Composition |
Solubilization Buffer |
6 M Guanidine-HCL |
|
20 mM Tris-HCl, pH 8.0 |
|
1 mM DTT |
|
20 mM Imidazole |
Dilution Buffer |
3 M Guanidine-HCL |
|
20 mM Tris-HCl, pH 8.0 |
|
1 mM DTT |
|
20 mM Imidazole |
A1 Dialysis Buffer |
2 M Guanidine-HCl |
|
20 mM Tris-HCl, pH 8.5 |
|
150 mM NaCl |
|
1 mM GSH (reduced glutathione) |
|
0.1 mM GSSG (oxidized glutathione) |
|
0.4 M L-Arginine |
A2 Dialysis Buffer |
0.75 M Guanidine-HCl |
|
20 mM Tris-HCl, pH 8.5 |
|
150 mM NaCl |
|
1 mM GSH (reduced glutathione) |
|
0.1 mM GSSG (oxidized glutathione) |
|
0.4 M L-Arginine |
A3 Dialysis Buffer |
20 mM Tris-HCl, pH 8.5 |
|
150 mM NaCl |
|
1 mM GSH (reduced glutathione) |
|
0.1 mM GSSG (oxidized glutathione) |
|
0.1 M L-Arginine |
A4 Dialysis Buffer |
20 mM Tris-HCl, pH 8.5 |
|
150 mM NaCl |
A5 Dialysis Buffer |
20 mM Tris-HCl, pH 7.5 |
|
12.5 mM NaCl |
Purification
[0278] The sample was purified first on a GE HiLoad 16/600 Superdex 200 pg gel filtration
column with 1x PBS elution buffer, followed by a GE HiTrapQ anion exchange column
to remove free PEG, and then a reverse phase chromatography with a gradient elution
of 30%-70% elution buffer in 20 column volumes.
[0279] Table 4 illustrates the buffers used for the anion exchange chromatography. Table
5 illustrates the buffers used for the reverse phase chromatography.
Table 4
Name |
Composition |
Running buffer |
20 mM Tris-HCl, pH 7.5 |
Elution buffer |
20 mM Tris-HCl, pH 7.5 |
|
500 mM NaCl |
Table 5
Name |
Composition |
Running buffer |
4.5% Acetonitrile |
|
0.043% TFA |
Elution buffer |
90% Acetonitrile |
|
0.028% TFA |
[0280] Fig. 4 shows an exemplary run of anion exchange chromatography.
[0281] Fig. 5 shows an exemplary run of reverse phase chromatography.
EXAMPLE 2
Cell-based screening for identification of pegylated IL-15 compounds with either native
or no IL-15Rα engagement
[0282] Structural data of the IL-15/ heterotrimeric receptor signaling complex (PDB: 4GS7)
were used to guide design of nAA-pegylation sites to either retain native interaction
with the heterotrimeric receptor or specifically abrogate the interaction of IL-15
and IL-15 receptor α subunit (IL-15Rα). Exemplary IL-15 conjugates were subjected
to functional analysis: S18, A23, T24, L25, Y26, E46, V49, L52, E53, N77, S83, E89,
E90. The IL-15 conjugates were expressed as inclusion bodies in
E. coli, purified and re-folded using standard procedures before site-specifically pegylating
the IL-15 product using DBCO-mediated copper-free click chemistry to attach stable,
covalent mPEG moieties to the AzK. The IL-15 conjugates were screened for functional
activity using a colorimetric CTLL2 proliferation assay. CTLL2 is a subclone of mouse
T cells that expresses all three IL-15 receptor subunits and requires IL-2/IL-15 for
growth. Preliminary experiments were performed to determine the optimal cell density,
range of IL-15 standard or IL-15 conjugates for an adequate dose-response curve as
well as the incubation time. An in-house recombinant human IL-15 (rHuIL-15) was compared
to a commercial IL-15 standard (R&D, catalog # 247-IL). Under the defined conditions,
the EC50 for the commercial IL-15 standard was about 10.7 pM and 9.7 pM for the in-house
rHuIL-15.
[0283] Table 6 shows the EC50 data for 30 kDa linear PEGylated IL-15 conjugates designed
to retain native interaction with the heterotrimeric IL-15 receptor. Number of values
included in the average are indicated between brackets. The results show that the
bioconjugation to a 30 kDa PEG does not interfere with potency at the trimeric receptor
with less than 5-fold reduced EC50 compare to natural IL-15.
Table 6
Site |
Average EC50 (pg/mL) |
Average EC50 (pM) |
EC50 ratio IL-15 PEG30/rHuIL-15 |
R&D IL-15 |
136.80±36.84 (6) |
10.7 |
|
rHuIL-15 |
124.62±73.75 (6) |
9.7 |
|
S18 PEG30 |
414.10 (2) |
32.1 |
3.3 |
S83 PEG30 |
199.80 (2) |
15.5 |
1.6 |
N77 PEG30 |
236.05 (2) |
18.3 |
1.9 |
[0284] Table 7 shows the EC50 data for 30 kDa linear and 40 kDa branched PEGylated IL-15
conjugates designed to specifically abrogate the interaction of IL-15 and IL-15 receptor
α subunit (IL-15Rα). Number of values included in the average is indicated between
brackets. The results show that the bioconjugation to a 30 kDa PEG reduced potency
at the trimeric receptor compare to natural IL-15. Bioconjugation of a linear PEG
30 kDa or a branched 40 kDa PEG to V49 moderately reduces the potency to the trimeric
receptor compared to rHuIL-15 (-6-8 fold, 814.4 pg/mL to 1,029 pg/mL vs 124.62 pg/mL,
respectively). In addition, the potency of L25 PEG39 was more strongly reduced relative
to rHuIL-15 (-54-fold, 6,827 pg/mL vs 124.62 pg/mL, respectively).
Table 7
Site |
Average EC50 (pg/mL) |
Average EC50 (pM) |
EC50 ratio IL-15 PEG/rHuIL-15 |
R&D IL-15 |
136.80±36.84 (6) |
10.7 |
|
rHuIL-15 |
124.62±73.75 (6) |
9.7 |
1 |
L25 PEG30 |
6,827 (2) |
529.0 |
54 |
V49 PEG30 |
814.45 (2) |
63.1 |
6 |
V49 PEG(40b) |
1,019 |
79.0 |
8 |
E46 PEG30 |
65,893 |
5,106 |
526 |
E53 PEG30 |
22,766 |
1,764 |
182 |
[0285] Fig. 6 illustrates the EC50 values for exemplary IL-15 conjugates with native potency
in the CTLL2 proliferation assay. Results are plotted as percentage of response.
[0286] Fig. 7 illustrates the EC50 values for exemplary IL-15 conjugates. As shown here,
site-specific pegylation contributes to in vitro pharmacology. Results are plotted
as percentage of response.
[0287] Fig. 8 illustrates the EC50 values for exemplary IL-15 conjugated to different PEG
sizes. Results are plotted as percentage of response.
EXAMPLE 3
Biochemical interactions of PEGylated IL-15 with human IL-15 receptor subunits
[0288] The kinetics of PEGylated IL-15 compound interactions with human IL-15 receptor subunits
were measured using Surface Plasmon Resonance (SPR) at Biofizik (San Diego, CA). For
these studies, human IgG1 Fc-fused IL-15 Rα (Sino Biological #18366-H02H, R&D # 7194-IR)
and IL-2 Pβ (Sino Biological # 10696-H02H) extracellular domains were captured on
the surface of a Biacore Protein A-coated CM3 or CM4 sensor chip. Protein A was coupled
by amine coupling at a density of approximately 1500 RU on a CM3 chip at 25 °C. Approximately
400 RU of IL15Rα-Fc fusion was captured on using a 4 min contact time followed by
a 20 minutes wait time prior to the analyte injection. Regeneration of the surface
between injections was carried achieved using a 100 mM phosphoric acid. Fresh receptor
was captured each cycle following regeneration. These surfaces were probed in triplicates
at 25 °C. In a typical experiment 10 doses of analyte with a highest concentration
of 500 nM were injected. In some cases, a high concentration range was needed and
in others the higher doses were omitted from the analysis.
[0289] Due to the weaker binding of the compounds to the IL2Rβ, regeneration was not necessary
and orthogonal binding studies were conducted without the regeneration step. Approximately
600-700 RU of IL2Rβ Fc fusion was captured on using a 1-2 min contact time of a 1/100
dilution of stock in running buffer. For test compounds 10 doses of analyte with a
highest concentration of 1000 nM were injected. Raw data was analyzed using the Scrubber2
program using a double referencing procedure where compound signal is corrected to
a blank surface and a buffer injection over the protein surface. See Tables 8-10.
Table 8. Kinetic parameters for rHuIL-15 and IL-15 pegylated compounds IL-15Rα subunit
surfaces.
Compound |
kon(M-1s-1) |
koff(s-1) |
KD (nM) |
rHuIL-15 |
2.409E+05 |
5.105E-04 |
0.2117 |
2.450E+06 |
4.763E-04 |
0.1943 |
1.988E+06 |
4.184E-04 |
0.2103 |
IL15 N77PEG30 |
2.249E+05 |
4.146E-04 |
1.845 |
2.404E+05 |
3.613E-04 |
1.502 |
2.206E+05 |
2.926E-04 |
1.328 |
IL15 S83PEG30 |
3.669E+05 |
2.137E-04 |
0.5833 |
3.543E+05 |
2.560E-04 |
0.7227 |
3.215E+05 |
1.905E-04 |
0.5909 |
Table 9. Kinetic parameters for rHuIL-15 and IL-15 pegylated compounds with reduced
binding to IL-15Rα subunit surfaces.
Compound |
kon(M-1s-1) |
koff(s-1) |
KD (nM) |
rHuIL-15 |
2.409E+05 |
5.105E-04 |
0.2117 |
2.450E+06 |
4.763E-04 |
0.1943 |
1.988E+06 |
4.184E-04 |
0.2103 |
IL15 L25PEG30 |
5.07E+03 |
1.19E-03 |
233.6 |
3990 |
1.04E-03 |
260.9 |
4930 |
1.22E-03 |
248.1 |
IL15 E46PEG30 |
3.83E+03 |
4.01E-04 |
104.6 |
2805 |
3.01E-04 |
107.3 |
3.17 |
3.25E-04 |
102.4 |
IL15 V49PEG30 |
1.73E+05 |
5.30E-04 |
3.066 |
1.54E+05 |
5.76E-04 |
3.75 |
1.50E+05 |
4.22E-04 |
2.823 |
IL15 V49PEG40b |
1.51E+05 |
6.11E-04 |
4.059 |
1.26E+05 |
5.70E-04 |
4.522 |
1.32E+05 |
4.60E-04 |
3.483 |
IL15 E53PEG30 |
8.76E+04 |
0.01484 |
169.4 |
8.39E+04 |
0.01614 |
192.4 |
1.42E+05 |
0.02439 |
171 |
Table 10. Kinetic parameters for rHuIL-15 and IL-15 pegylated compounds with IL-2Rβ
subunit surfaces.
Compound |
kon(M-1s-1) |
koff(s-1) |
KD (nM) |
rHuIL-15 |
4.161E+05 |
3.095E-02 |
74.4 |
4.223E+05 |
3.251E-02 |
77 |
3.632E+05 |
2.863E-02 |
78.8 |
IL15 N77PEG30 |
1.101E+05 |
2.220E-02 |
201.6 |
1.158E+05 |
2.361E-02 |
204 |
1.099E+05 |
2.309E-02 |
210.2 |
IL15 S83PEG30 |
1.214E+05 |
2.517E-02 |
207 |
1.153E+05 |
2.458E-02 |
213 |
1.386E+05 |
2.962E-02 |
213.8 |
IL15 V49PEG30 |
1.061E+05 |
3.212E-02 |
302.7 |
9.810E+04 |
3.045E-02 |
310.5 |
9.700E+04 |
2.710E-02 |
279.5 |
IL15 V49PEG40b |
1.187E+05 |
3.091E-02 |
260.5 |
1.071E+05 |
2.690E-02 |
251.2 |
1.061E+05 |
2.552E-02 |
240.5 |
IL15 E53PEG30 |
5.770E+05 |
3.350E-02 |
58 |
6.010E+05 |
3.525E-02 |
58.6 |
6.300E+05 |
3.348E-02 |
53.1 |
IL 15 E46PEG30 |
2.01E+04 |
1.650E-02 |
823 |
IL 15 L25PEG30 |
2.06E+04 |
4.460E-02 |
2,160 |
[0290] On sensor surfaces containing immobilized IL-15Rα, native IL-15 (rHuIL-15 and commercial
IL-15 from R&D) showed rapid association and very slow dissociation kinetics, demonstrating
very high-affinity binding (Fig. 9A). IL-15 pegylated variants designed to extend
half-life without blocking interaction with IL-15 receptors show similar binding kinetics
to native IL-15. The modest difference in K
D (~10- and ~3-fold decreased K
D for IL-15 N77PEG30 and IL-15 S83PEG30, respectively) observed between compounds for
the subunit is due to the decreased on-rate of IL-15 conjugated compounds relative
to rHuIL-15, expected from the lower diffusion coefficient of the pegylated compound
and nonspecific shielding effects of the large PEG moiety on distant binding surfaces
(Fig. 9B). In contrast, IL-15 E46PEG30 interacts with IL-15 Rα with slow association
and slow dissociation while IL-15 E53PEG30 shows fast association and fast dissociation
(Fig. 9C) due to the specific localization of the PEG moiety on the IL-15Rα binding
surface.
[0291] Surfaces containing immobilized IL-2 Rβ showed comparable association and dissociation
responses with both native IL-15 and compounds designed for half-life extension with
native receptor engagement. Compounds in which the PEG moiety is localized to the
IL-15Rα binding surface show different binding kinetics to the IL-2Rβ surfaces. While
IL-15 E46PEG30 and IL-15 L25PEG show ~10- and ~30-fold reduced binding to these surface,
IL-15 E53PEG30 retains "native" binding to IL-2Rβ. These results suggest that the
specific localization of the PEG moiety can confer different modalities for IL-15
interaction with its receptor.
[0292] Fig. 9A-Fig. 9C show response units (RU, Y-axis) versus time (s, X-axis) for rHuIL-15,
an IL-15 conjugated compounds binding to IL-15Rα. Binding kinetics analysis confirms
site-specific pegylation modulates the interaction with IL-15Rα.
[0293] Fig. 10 shows response units (RU, Y-axis) versus time (s, X-axis) for rHuIL-15, an
IL-15 N77PEG30 binding to IL-15Rα and IL-2Rβ. Binding kinetics analysis confirms site-specific
pegylation at position N77 retains native interaction with IL-15Rα and IL-2Rβ.
[0294] Fig. 11 shows response units (RU, Y-axis) versus time (s, X-axis) for rHuIL-15, an
IL-15 E53PEG30 binding to IL-15Rα and IL-2Rβ. Binding kinetics analysis confirms site-specific
pegylation at position E53 reduces binding to IL-15Rα while retaining native interaction
with IL-2Rβ.
EXAMPLE 4
Ex-vivo immune response profiling of IL-15 PEG conjugates in primary human leukocyte reduction
system (LRS)-derived PBMC samples
[0295] To determine how the differential receptor specificity of IL-15 PEG conjugates effects
activation of primary immune cell subpopulations, concentration-response profiling
of lymphocyte activation in human LRS-derived peripheral blood mononuclear cell (PBMC)
samples were performed using multi-color flow cytometry. These studies were performed
at PrimityBio LLC (Fremont, CA). Fresh LRS-derived samples were treated with either
rHuIL-15 or different IL-15 pegylated compounds in 5-fold dilution series starting
with a top concentration of 30 µg/mL. Treated cell populations were incubated at 37°C
for 45 minutes before addition of BD Lyse/Fix Buffer and staining with the fluorescent
antibody panel shown in Table 11. Multi-color flow cytometry was used to detect and
quantify pSTAT5 activation in different Tcell and NK cell subsets. Flow cytometry
data were analyzed for activation of different T and NK cell subsets in concentration-response
mode, reading pSTAT5 accumulation after treatment with rHuIL-15 or IL-15 pegylated
compounds.
Table 11. Staining panel for flow cytometry study of LRS-derived PBMC samples
Panels |
Human |
Pan-T |
CD3 |
CD4 |
CD4 |
CD8 |
CD8 |
NK marker |
CD7 |
Treg |
FoxP3 |
Treg |
CD25 (or CD127) |
CD45RA |
CD45RA |
C62L |
C62L |
CD14/CD 19 |
CD14/CD 19 |
Phospho |
STATS (pY694) |
[0296] In NK and effector T cell (CD3+ CD8+) populations, IL-15 N77PEG30 and IL-15 S83PEG30
retained potency relative to rHuIL-15, with EC
50 values for pSTAT5 production within 2-fold of the native cytokine. In contrast, the
EC
50 values for pSTAT5 induction for IL-15 L25PEG30 in CD8+ T and NK cell populations
was reduced by ~14 and ~18-fold, respectively, compared to rHuIL-15. The substantial
increase in EC
50 for IL-15 L25PEG30 indicates that pegylation of IL-15 at this position reduces agonism
of IL-15 receptors. The EC
50 values for pSTAT5 induction for IL-15 E53PEG30 in CD8+ T and NK cell populations
was reduced by only ~2-foldcompared to rHuIL-15. Considering this compound shows fast
association and fast dissociation binding kinetics to IL-15Rα.
Table 12 shows the dose response for STATS signaling (EC
50) in human LRS samples treated with rHuIL-15 or IL-15 conjugates.
Compounds |
CD8+ T cells EC50 (ng/ml) |
NK cells EC50 (ng/ml) |
CD4+ T cells EC50 (ng/ml) |
Treg EC50 (ng/ml) |
rHuIL-15 |
63.6 |
88.3 |
73.7 |
34.7 |
IL-15 S83PEG30 |
59.4 |
137.8 |
83.3 |
19.2 |
IL-15 N77PEG30 |
74.0 |
156.2 |
95.6 |
18.2 |
IL-15 V49PEG30 |
100.9 |
180.2 |
135.1 |
32.6 |
IL-15 V49PEG40b |
205.8 |
261.8 |
264.0 |
57.4 |
IL-15 E53PEG30 |
117.3 |
82.4 |
186.8 |
37.1 |
IL-15 L25PEG30 |
896.1 |
1,654 |
1,232.1 |
267.3 |
[0297] Fig. 12A-Fig. 12D illustrate STATS phosphorylation on NK and CD8+ T cells upon stimulation
with exemplary IL-15 PEG conjugates.
EXAMPLE 5
In vivo Pharmacology Study of Exemplary IL-15 Conjugates
PK Studies in Naïve (E3826-U1821) C57BL/6 mice
[0298] Mice were dosed with either rHuIL-15 and IL-15 conjugates S83-PEG 30kDa, V49-PEG
30kDa, L25-PEG 30kDa or N77-PEG 30kDa at 0.3 mg/Kg. Blood was drawn at the following
time points: 0.25, 0.5, 2, 8, 24, 48, 72, 96,120, 144 and 192 hours.
Table 13 shows the experimental setup. Each mouse received a single IV dose of either
vehicle, rHuIL-15, or one of the three IL-15 conjugates.
Group |
Treatment |
Dose (mg/Kg) |
1 |
Vehicle |
0 |
2 |
rHuIL-15 |
0.3 |
3 |
L25 PEG30 |
0.3 |
4 |
N77 PEG30 |
0.3 |
5 |
V49 PEG30 |
0.3 |
6 |
S83 PEG30 |
0.3 |
[0299] Concentrations of rHuIL-15, IL-15 pegylated compounds and the internal standard in
samples derived from plasma were determined using an ELISA assay. PK data analysis
was performed at NW Solutions (Seattle, WA). The PK data were imported into Phoenix
WinNonlin v6.4 (CertaralPharsight, Princeton, NJ) for analysis. The group mean plasma
concentration versus time data were analyzed with a 3-compartmental method using an
IV bolus administration model.
Table 14 shows the extended half-life of the IL-15 conjugates in mice relative to
rHuIL-15.
Dose (mg/kg) |
Parameter |
Units |
Group 2 |
Group 3 |
Group 4 |
Group 5 |
Group 6 |
rHuIL-15 |
L25PEG |
N77PEG |
V49PEG |
S83PEG |
Estimate |
0.3 |
alpha t1/2 |
hr |
0.305 |
2.89 |
0.0349 |
0.242 |
0.381 |
|
beta t1/2 |
hr |
1.08 |
15.8 |
13.1 |
7.77 |
11.4 |
|
gamma t1/2 |
hr |
32.1 |
167 |
58.4 |
19.8 |
71.6 |
|
MRT |
hr |
3.81 |
21.2 |
20.5 |
20.6 |
18.7 |
|
CL1 |
mL/hr/kg |
1590 |
6.16 |
5.17 |
4.69 |
9.13 |
|
CL2 |
mL/hr/kg |
333 |
5.68 |
56.4 |
52.4 |
65.4 |
|
CL3 |
mL/hr/kg |
108 |
0.0317 |
0.157 |
1.03 |
0.213 |
|
V1 |
mL/kg |
978 |
82.3 |
3.20 |
32.8 |
79.0 |
|
V2 |
mL/kg |
397 |
40.7 |
89.8 |
44.9 |
70.1 |
|
V3 |
mL/kg |
4680 |
7.59 |
12.8 |
19.1 |
21.4 |
|
VSS |
mL/kg |
6050 |
131 |
106 |
96.8 |
170 |
|
Cmax |
ng/mL |
307 |
3650 |
93700 |
9140 |
3800 |
|
AUC |
hr*ng/mL |
189 |
48700 |
58100 |
64000 |
32900 |
[0300] Fig. 13 shows plasma concentration profiles of rHuIL-15, IL-15 S83PEG30, IL-15 V49PEG30,
IL-15 N77PEG30 and IL-15 L25 PEG30 at 0.3 mg/kg.
[0301] As expected, pegylated compounds exhibit a superior PK profile relative to rHuIL-15
as summarized on Table 14. The MRT (mean residence time) represents the average time
a test article molecule stays in the body and takes into account the entire PK profile.
Pegylated compounds show a ~5-fold increase in MRT compared to rHuIL-15. IL-15 S18PEG30
demonstrated ~15-fold extended beta t1/2 (15.8 h vs. 1.08 h) and about 59-fold reduced
CL
2 (5.68 vs 333 mL/h/Kg) compared to the rHuIL-15. The distribution volume for pegylated
compounds was reduced relative to rHuIL_15 suggesting that pegylated compounds are
mostly distributed within systemic circulation.
EXAMPLE 6
Pharmacodynamic observations in Peripheral Blood Compartment
PD Studies in Naïve (E3826-U1821) C57BL/6 mice
[0302] Mice were dosed with either rHuIL-15, IL-15 conjugate S18-PEG 30kDa, IL-15 conjugate
V49-PEG 30kDa or IL-15 conjugate S83-PEG 30kDa at 0.1, 0.3 or 1 mg/Kg (Table 10).
Blood was drawn at the following time points: 0.25, 0.5, 2, 8, 24, 48, 72, 96, 120,
144 and 192 hours. An additional 0.13 time point was included for rHuIL-15 given the
known short half-life. PD readouts included intracellular pSTAT5 monitoring, and phenotyping
of CD8+ T cells for all time points.
Table 15 shows the experimental setup. Each mouse received a single IV dose of either
vehicle, rHuIL-15, or one of the three IL-15 conjugates.
Group |
Treatment |
Dose (mg/Kg) |
1 |
Vehicle |
0 |
2 |
rHuIL-15 |
0.3 |
3 |
S18PEG30 |
0.1 |
4 |
S18PEG30 |
0.3 |
5 |
V49 PEG30 |
0.1 |
6 |
V49 PEG30 |
0.3 |
7 |
L25 PEG30 |
0.3 |
8 |
L25 PEG30 |
1.0 |
[0303] STATS phosphorylation and induction of cell proliferation (the early molecular marker
Ki-67 and cell counts) was used as pharmacodynamic readouts to assess the pharmacological
profile of IL-15 S18PEG30, IL-15 V49PEG30 and IL-15 L25 PEG30. While lower or similar
elevation of pSTAT5 was observed in mice dosed with pegylated compounds, STATS phosphorylation
translated into a higher proliferation and sustained (days 1 to 7 post-dose) of NK
cells and CD8+ effector and memory T cells but not Treg cells. (Figures 14-17).
[0304] Fig. 14A-Fig. 14D show % pSTAT5 in different peripheral blood cell populations.
[0305] Fig. 15A-Fig. 15D show increased expression of the early proliferation molecular
marker Ki67 in CD8+ T, CD8+ Tmem and NK cells but not Treg cells in animals dosed
with pegylated compounds.
[0306] Fig. 16A-Fig. 16C show robust peripheral CD8+ T, CD8+ Tmem and NK cells but not Treg
cells in animals dosed with pegylated compounds.
[0307] Fig. 17A-Fig. 17B show increased Ki67 expression in CD8+ T and NK cells with increased
dose of IL-15 L25PEG30 compound in mice.
[0308] While preferred embodiments of the present disclosure have been shown and described
herein, it will be obvious to those skilled in the art that such embodiments are provided
by way of example only. Numerous variations, changes, and substitutions will now occur
to those skilled in the art without departing from the disclosure. It should be understood
that various alternatives to the embodiments of the disclosure described herein may
be employed in practicing the disclosure. It is intended that the following claims
define the scope of the disclosure and that methods and structures within the scope
of these claims and their equivalents be covered thereby.
Preferred Embodiments
[0309]
- 1. An isolated and modified interleukin 15 (IL-15) polypeptide comprising at least
one unnatural amino acid at a position on the polypeptide that reduces binding between
the modified IL-15 polypeptide and interleukin 15 receptor α (IL-15Rα) but retains
significant binding with interleukin 15 receptor βγ (IL-15Rβγ) signaling complex to
form an IL-15/IL-15Rβγ complex, wherein the reduced binding to IL-15Rα is compared
to binding between a wild-type IL-15 polypeptide and IL-15Rα.
- 2. An isolated and modified interleukin 15 (IL-15) polypeptide comprising at least
one unnatural amino acid at a position on the polypeptide that enhances half-life,
wherein the enhanced half-life is compared to a half-life of a wild-type IL-15 protein.
- 3. An isolated and modified interleukin 15 (IL-15) polypeptide comprising at least
one unnatural amino acid at a position on the polypeptide that reduces binding between
the modified IL-15 polypeptide and interleukin 15 receptor α (IL-15Rα) but retains
significant signaling potency with interleukin 15 receptor βγ (IL-15Rβγ) signaling
complex, wherein the reduced binding to IL-15Rα is compared to binding between a wild-type
IL-15 polypeptide and IL-15Rα.
- 4. The isolated and modified IL-15 polypeptide of item 3, wherein the signaling potency
is compared to a signaling potency between a wild-type IL-15 polypeptide and IL-15Rβγ.
- 5. The isolated and modified IL-15 polypeptide of item 4, wherein a difference in
receptor signaling potency between the modified IL-15/IL-15Rβγ complex and the wild-type
IL-15/IL-15Rβγ complex is less than 1000-fold, less than 500-fold, less than 200-fold,
less than 100-fold, less than 50-fold, less than 10-fold, less than 5-fold, less than
4-fold, less than 3-fold, less than 2-fold, or less than 1-fold.
- 6. The isolated and modified IL-15 polypeptide of item 4, wherein a difference in
receptor signaling potency between the modified IL-15/IL-15Rβγ complex and the wild-type
IL-15/IL-15Rβγ complex is greater than 10-fold, greater than 20-fold, greater than
30-fold, greater than 40-fold, greater than 50-fold, greater than 100-fold, greater
than 200-fold, greater than 300-fold, greater than 400-fold, or greater than 500-fold.
- 7. The isolated and modified IL-15 polypeptide of any one of the items 1-3, wherein
the residue position of the at least one unnatural amino acid is selected from N1,
W2, V3, N4, 16, S7, D8, K10, K11, E13, D14, L15, Q17, S18, M19, H20, I21, D22, A23,
T24, L25, Y26, E28, S29, D30, V31, H32, P33, S34, C35, K36, V37, T38, K41, L44, E46,
Q48, V49, S51, L52, E53, S54, G55, D56, A57, S58, H60, D61, T62, V63, E64, N65, 167,
168, L69, N71, N72, S73, L74, S75, S76, N77, G78, N79, V80, T81, E82, S83, G84, C85,
K86, E87, C88, E89, E90, L91, E92, E93, K94, N95, 196, K97, E98, L100, Q101, S102,
V104, H105, Q108, M109, F110, I111, N112, T113, and S114, wherein the residue positions
correspond to the positions as set forth in SEQ ID NO: 1.
- 8. The isolated and modified IL-15 polypeptide of item 1 or 3, the residue position
of the at least one unnatural amino acid is selected from
D22, A23, T24, L25, Y26, L44, E46, Q48, V49, E53, E89, E90, and E93, wherein the residue
positions correspond to the positions as set forth in SEQ ID NO: 1;
Y26, E46, V49, E53, and L25, wherein the residue positions correspond to the positions
as set forth in SEQ ID NO: 1;
A23, T24, E89, and E93, wherein the residue positions correspond to the positions
as set forth in SEQ ID NO: 1;
D22, L44, Q48, and E90, wherein the residue positions correspond to the positions
as set forth in SEQ ID NO: 1;
L25, E53, N77, and S83, wherein the residue positions correspond to the positions
as set forth in SEQ ID NO: 1; or
L25 and E53, wherein the residue positions correspond to the positions as set forth
in SEQ ID NO: 1.
- 9. The isolated and modified IL-15 polypeptide of item 2, wherein the residue position
of the at least one unnatural amino acid is selected from:
E13, D14, L15, Q17, S18, M19, H20, I21, S34, C35, K36, V37, T38, K41, L44, S51, L52,
S54, G55, D56, A57, S58, H60, V63, 167, N71, S73, L74, S75, S76, N77, G78, N79, V80,
T81, E82, S83, G84, C85, K86, E87, C88, L91, E92, K94, N95, 196, K97, E98, L100, Q101,
and F110, wherein the residue positions correspond to the positions as set forth in
SEQ ID NO: 1;
D14, Q17, S18, K41, S51, L52, G55, D56, A57, S58, S75, S76, N77, N79, V80, T81, S83,
G84, E92, K94, N95, K97, and E98, wherein the residue positions correspond to the
positions as set forth in SEQ ID NO: 1;
E13, L15, M19, H20, K36, V37, T38, S54, H60, 167, N71, G78, K86, E87, and Q101, wherein
the residue positions correspond to the positions as set forth in SEQ ID NO: 1; or
I21, S34, C35, L44, V63, S73, L74, E82, C85, C88, L91, I96, L100, and F110, wherein
the residue positions correspond to the positions as set forth in SEQ ID NO: 1.
- 10. The isolated and modified IL-15 polypeptide of any one of the items 1-3, wherein
the at least one unnatural amino acid:
- is a lysine analogue;
- comprises an aromatic side chain;
- comprises an azido group;
- comprises an alkyne group; or
- comprises an aldehyde or ketone group.
- 11. The isolated and modified IL-15 polypeptide of any one of the items 1-3, wherein
the at least one unnatural amino acid does not comprise an aromatic side chain.
- 12. The isolated and modified IL-15 polypeptide of any one of the items 1-3, wherein
the at least one unnatural amino acid comprises N6-azidoethoxy-L-lysine (AzK), N6-propargylethoxy-L-lysine
(PraK), BCN-L-lysine, norbornene lysine, TCO-lysine, methyltetrazine lysine, allyloxycarbonyllysine,
2-amino-8-oxononanoic acid, 2-amino-8-oxooctanoic acid, p-acetyl-L-phenylalanine,
p-azidomethyl-L-phenylalanine (pAMF), p-iodo-L-phenylalanine, m-acetylphenylalanine,
2-amino-8-oxononanoic acid, p-propargyloxyphenylalanine, p-propargyl-phenylalanine,
3-methyl-phenylalanine, L-Dopa, fluorinated phenylalanine, isopropyl-L-phenylalanine,
p-azido-L-phenylalanine, p-acyl-L-phenylalanine, p-benzoyl-L-phenylalanine, p-bromophenylalanine,
p-amino-L- phenylalanine, isopropyl-L-phenylalanine, O-allyltyrosine, O-methyl-L-tyrosine,
O-4-allyl-L-tyrosine, 4-propyl-L-tyrosine, phosphonotyrosine, tri-O-acetyl-GlcNAcp-serine,
L-phosphoserine, phosphonoserine, L-3-(2-naphthyl)alanine, 2-amino-3-((2-((3-(benzyloxy)-3-oxopropyl)amino)ethyl)selanyl)propanoic
acid, 2-amino-3-(phenylselanyl)propanoic, or selenocysteine.
- 13. The isolated and modified IL-15 polypeptide of any one of the items 1-3, wherein
the at least one unnatural amino acid is incorporated into the modified IL-15 polypeptide
by an orthogonal tRNA synthetase/tRNA pair.
- 14. The isolated and modified IL-15 polypeptide of item 13, wherein the orthogonal
tRNA of the orthogonal synthetase/tRNA pair comprises at least one unnatural nucleobase.
- 15. The isolated and modified IL-15 polypeptide of item 13, wherein orthogonal tRNA
of the orthogonal synthetase/tRNA pair comprise an unnatural base pair.
- 16. The isolated and modified IL-15 polypeptide of any one of the items 1-3, wherein
the modified IL-15 polypeptide is covalently attached to a conjugating moiety through
the at least one unnatural amino acid.
- 17. The isolated and modified IL-15 polypeptide of item 16, wherein the conjugating
moiety comprises a water-soluble polymer, a lipid, a protein, or a peptide.
- 18. The isolated and modified IL-15 polypeptide of item 17, wherein the water-soluble
polymer comprises polyethylene glycol (PEG), polypropylene glycol) (PPG), copolymers
of ethylene glycol and propylene glycol, poly(oxyethylated polyol), poly(olefinic
alcohol), poly(vinylpyrrolidone), poly(hydroxyalkylmethacrylamide), poly(hydroxyalkylmethacrylate),
poly(saccharides), poly(α-hydroxy acid), poly(vinyl alcohol), polyphosphazene, polyoxazolines
(POZ), poly(N-acryloylmorpholine), or a combination thereof.
- 19. The isolated and modified IL-15 polypeptide of item 17, wherein the water-soluble
polymer comprises a PEG molecule.
- 20. The isolated and modified IL-15 polypeptide of item 19, wherein the PEG molecule
is a linear PEG.
- 21. The isolated and modified IL-15 polypeptide of item 19, wherein the PEG molecule
is a branched PEG.
- 22. The isolated and modified IL-15 polypeptide of item 17, wherein the water-soluble
polymer comprises a polysaccharide.
- 23. The isolated and modified IL-15 polypeptide of item 22, wherein the polysaccharide
comprises dextran, polysialic acid (PSA), hyaluronic acid (HA), amylose, heparin,
heparan sulfate (HS), dextrin, or hydroxyethyl-starch (HES).
- 24. The isolated and modified IL-15 polypeptide of item 17, wherein the lipid comprises
a fatty acid.
- 25. The isolated and modified IL-15 polypeptide of item 24, wherein the fatty acid
comprises from about 6 to about 26 carbon atoms, from about 6 to about 24 carbon atoms,
from about 6 to about 22 carbon atoms, from about 6 to about 20 carbon atoms, from
about 6 to about 18 carbon atoms, from about 20 to about 26 carbon atoms, from about
12 to about 26 carbon atoms, from about 12 to about 24 carbon atoms, from about 12
to about 22 carbon atoms, from about 12 to about 20 carbon atoms, or from about 12
to about 18 carbon atoms.
- 26. The isolated and modified IL-15 polypeptide of item 24, wherein the fatty acid
is a saturated fatty acid.
- 27. The isolated and modified IL-15 polypeptide of item 17, wherein the protein comprises
an albumin, a transferrin, or a transthyretin.
- 28. The isolated and modified IL-15 polypeptide of item 16, wherein the conjugating
moiety comprises a TLR agonist.
- 29. The isolated and modified IL-15 polypeptide of item 17, wherein the protein comprises
an antibody or its binding fragments thereof.
- 30. The isolated and modified IL-15 polypeptide of item 29, wherein the antibody or
its binding fragments thereof comprises an Fc portion of an antibody.
- 31. The isolated and modified IL-15 polypeptide of item 17, wherein the peptide comprises
a XTEN peptide, a glycine-rich homoamino acid polymer (HAP), a PAS polypeptide, an
elastin-like polypeptide (ELP), a CTP peptide, or a gelatin-like protein (GLK) polymer.
- 32. The isolated and modified IL-15 polypeptide of item 16, wherein the conjugating
moiety is indirectly bound to the at least one unnatural amino acid of the modified
IL-15 through a linker.
- 33. The isolated and modified IL-15 polypeptide of item 32, wherein the linker comprises
a homobifunctional linker, a heterobifunctional linker, a zero-length linker, a cleavable
or a non-cleavable dipeptide linker, a maleimide group, a spacer, or a combination
thereof.
- 34. The isolated and modified IL-15 polypeptide of any one of the items 1-3, wherein
the modified IL-15 polypeptide further comprises a modification at residue position
N71, N72, or N77, wherein the residue positions correspond to the positions as set
forth in SEQ ID NO: 1.
- 35. The isolated and modified IL-15 polypeptide of item 34, wherein the modification
improves a CMC condition and/or potency.
- 36. The isolated and modified IL-15 polypeptide of item 1 or 3, wherein the modified
IL-15 polypeptide further comprises a modification at residue E13, D14, L15, Q17,
S18, M19, H20, I21, S34, C35, K36, V37, T38, K41, L44, S51, L52, S54, G55, D56, A57,
S58, H60, V63, 167, N71, S73, L74, S75, S76, N77, G78, N79, V80, T81, E82, S83, G84,
C85, K86, E87, C88, L91, E92, K94, N95, 196, K97, E98, L100, Q101, or F110, wherein
the modification is to improve half-life extension.
- 37. The isolated and modified IL-15 polypeptide of item 2, wherein the modified IL-15
polypeptide further comprises a modification at:
residue D22, A23, T24, L25, Y26, L44, E46, Q48, V49, E53, E89, E90, or E93, wherein
the modification impairs interaction with IL-15Rα;
residue N1, N4, S7, D8, K11, D61, T62, E64, N65, 168, L69, or N72, wherein the modification
impairs interaction with IL-15Rβ;
residue V3, 16, K10, E28, S29, D30, V31, H32, P33, S102, V104, H105, Q108, M109, I111,
N112, T113, or S114, wherein the modification impairs interaction with IL-15Rγ; or
a combination thereof.
- 38. The isolated and modified IL-15 polypeptide of item 36 or 37, wherein the modification
is to a natural amino acid or to an unnatural amino acid.
- 39. The isolated and modified IL-15 polypeptide of any one of the items 1-3, wherein
the decrease in binding affinity is about 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%,
99%, or 100% decrease in binding affinity to IL-15Rα relative to a wild-type IL-15
polypeptide.
- 40. The isolated and modified IL-15 polypeptide of any one of the items 1-3, wherein
the decrease in binding affinity is about 3-fold, 4-fold, 5-fold, 6-fold, 7-fold,
8-fold, 9-fold, 10-fold, or more to IL-15Rα relative to a wild-type IL-15 polypeptide.
- 41. The isolated and modified IL-15 polypeptide of any one of the items 1-3, wherein
the modified IL-15 polypeptide is:
a functionally active fragment of a full-length IL-15 polypeptide;
a recombinant IL-15 polypeptide; or
a recombinant human IL-15 polypeptide.
- 42. The isolated and modified IL-15 polypeptide of any one of the items 1-3, wherein
the modified IL-15 polypeptide comprises an N-terminal deletion, a C-terminal deletion,
or a combination thereof.
- 43. The isolated and modified IL-15 polypeptide of any one of the items 1-3, wherein
the N-terminal deletion comprises a deletion of the first 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 20, 25, or 30 residues from the N-terminus, wherein the
residue positions are in reference to the positions in SEQ ID NO: 1.
- 44. The isolated and modified IL-15 polypeptide of any one of the items 1-3, wherein
the C-terminal deletion comprises a deletion of the last 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 20, or more residues from the C-terminus, wherein the residue
positions are in reference to the positions in SEQ ID NO: 1.
- 45. The isolated and modified IL-15 polypeptide of any one of the items 1-3, wherein
the modified IL-15 polypeptide with the decrease in binding affinity to IL-15Rα is
capable of expanding CD8+ effector naive and memory cell, Natural Killer (NK) cell,
Natural killer T (NKT) cell populations, or a combination thereof.
- 46. The isolated and modified IL-15 polypeptide of item 16, wherein the conjugating
moiety or the unnatural amino acid impairs or blocks the binding of IL-15 with IL-15Rα.
- 47. The isolated and modified IL-15 polypeptide of item 16, wherein the conjugating
moiety or the unnatural amino acid extends half-life but does not impairs or blocks
binding of IL-15 with IL-15 receptors.
- 48. The isolated and modified IL-15 polypeptide of item 16, wherein the conjugating
moiety or the unnatural amino acid increases binding of IL-15 to IL-15Rβ and/or IL-15Rγ.
- 49. The isolated and modified IL-15 polypeptide of any one of the items 1-3, wherein
the enhanced half-life of the IL-15 is at least 90 minutes, 2 hours, 3 hours, 4 hours,
5 hours, 6 hours, 7 hours, 8 hours, 9 hours, 10 hours, 11 hours, 12 hours, 18 hours,
24 hours, 36 hours, 48 hours, 3 days, 4 days, 5 days, 6 days, 7 days, or longer than
the plasma half-life of the wild-type IL-15.
- 50. The isolated and modified IL-15 polypeptide of any one of the items 1-3, wherein
the enhanced half-life of the IL-15 is about 90 minutes, 2 hours, 3 hours, 4 hours,
5 hours, 6 hours, 7 hours, 8 hours, 9 hours, 10 hours, 11 hours, 12 hours, 18 hours,
24 hours, 36 hours, 48 hours, 3 days, 4 days, 5 days, 6 days, or 7 days.
- 51. The isolated and modified IL-15 polypeptide of any one of the items 1-3, wherein
activation of CD8+ effector naive and memory cell, Natural Killer (NK) cell, or Natural
killer T (NKT) cell population via the IL-15Rβγ complex by the modified IL-15 polypeptide
retains significant potency of activation of said cell population relative to a wild-type
IL-15 polypeptide.
- 52. The isolated and modified IL-15 polypeptide of item 51, wherein the receptor signaling
potency of the modified IL-15 polypeptide to the IL-15Rβγ complex is higher than a
receptor signaling potency of the wild-type IL-15 polypeptide to the IL-15Rβγ complex.
- 53. The isolated and modified IL-15 polypeptide of item 51, wherein the receptor signaling
potency of the modified IL-15 polypeptide the IL-15Rβγ complex is lower than a receptor
signaling potency of the wild-type IL-15 polypeptide to the IL-15Rβγ complex.
- 54. An isolated and modified interleukin 15 (IL-15) polypeptide comprising at least
one unnatural amino acid, wherein the at least one unnatural amino acid is at a residue
position that selectively decreases the binding affinity of the modified IL-15 polypeptide
with interleukin 2/interleukin 15 receptor β (IL-2/IL-15Rβ), interleukin 15 receptor
γ (IL-15Rγ), or a combination thereof, but does not affect the interaction with the
interleukin 15 receptor α (IL-15R α).
- 55. The isolated and modified IL-15 polypeptide of item 54, wherein the modified IL-15
polypeptide has a decreased binding affinity to IL-15Rβ.
- 56. The isolated and modified IL-15 polypeptide of item 55, wherein the residue position
of the at least one unnatural amino acid is selected from N1, N4, S7, D8, K11, D61,
T62, E64, N65, 168, L69, and N72, wherein the residue positions correspond to the
positions as set forth in SEQ ID NO: 1.
- 57. The isolated and modified IL-15 polypeptide of item 55, wherein the residue position
of the at least one unnatural amino acid is selected from:
N4, S7, K11, and D61;
D8, E64, N65, 168, and N72; or
N1, T62, and L69.
- 58. The isolated and modified IL-15 polypeptide of item 54, wherein the modified IL-15
polypeptide has a decreased binding affinity to IL-15Rγ.
- 59. The isolated and modified IL-15 polypeptide of item 58, wherein the residue position
of the at least one unnatural amino acid is selected from V3, 16, K10, E28, S29, D30,
V31, H32, P33, S102, V104, H105, Q108, M109, I111, N112, T113, and S114, wherein the
residue positions correspond to the positions as set forth in SEQ ID NO: 1.
- 60. The isolated and modified IL-15 polypeptide of item 58, wherein the residue position
of the at least one unnatural amino acid is selected from:
V3, K10, S29, D30, H32, H105, Q108, M109, I111, N112, T113, and S114;
E28, P33, S102, and V104; or
I6 and V31.
- 61. The isolated and modified IL-15 polypeptide of any one of the items 54-60, wherein
the modified IL-15 polypeptide further comprises a modification to improve half-life
extension.
- 62. The isolated and modified IL-15 polypeptide of item 61, wherein the modification
is at residue position E13, D14, L15, Q17, S18, M19, H20, 121, S34, C35, K36, V37,
T38, K41, L44, S51, L52, S54, G55, D56, A57, S58, H60, V63, 167, N71, S73, L74, S75,
S76, N77, G78, N79, V80, T81, E82, S83, G84, C85, K86, E87, C88, L91, E92, K94, N95,
196, K97, E98, L100, Q101, or F110, wherein the residue positions correspond to the
positions as set forth in SEQ ID NO: 1.
- 63. The isolated and modified IL-15 polypeptide of any one of the items 54-62, wherein
the modified IL-15 polypeptide further comprises a modification at residue position
N71, N72, or N77, wherein the residue positions correspond to the positions as set
forth in SEQ ID NO: 1.
- 64. The isolated and modified IL-15 polypeptide of any one of the items 61-63, wherein
the modification is to an unnatural amino acid.
- 65. The isolated and modified IL-15 polypeptide of any one of the items 61-63, wherein
the modification is to a natural amino acid.
- 66. The isolated and modified IL-15 polypeptide of item 63, wherein the modification
improves a CMC condition and/or potency.
- 67. An interleukin 15 (IL-15) conjugate comprising:
an isolated and purified IL-15 polypeptide; and
a conjugating moiety that binds to the isolated and purified IL-15 polypeptide at
an amino acid position selected from N4, E46, D61, E64, N65, I68 and L69, wherein
the numbering of the amino acid residues corresponds to SEQ ID NO: 1.
- 68. The IL-15 conjugate of item 67, wherein the amino acid residue is mutated to cysteine
or lysine.
- 69. The IL-15 conjugate of item 67, wherein the amino acid residue selected from N4,
E46, N65, and L69 is further mutated to an unnatural amino acid.
- 70. A pharmaceutical composition comprising:
a modified IL-15 polypeptide as in any of items 1-66 or an IL-15 conjugate as in any
of items 67-69; and
a pharmaceutically acceptable excipient.
- 71. The pharmaceutical composition of item 70, wherein the pharmaceutical composition
is formulated for parenteral administration.
- 72. A method of treating a proliferative disease or condition in a subject in need
thereof, comprising administering to the subject a therapeutically effective amount
of a modified IL-15 polypeptide as in any of items 1-66 or an IL-15 conjugate as in
any of items 67-69.
- 73. The method of item 72, wherein the proliferative disease or condition is a cancer.
- 74. The method of item 73, wherein the cancer is a solid tumor cancer.
- 75. The method of item 74, wherein the solid tumor cancer is bladder cancer, bone
cancer, brain cancer, breast cancer, colorectal cancer, esophageal cancer, eye cancer,
head and neck cancer, kidney cancer, lung cancer, melanoma, ovarian cancer, pancreatic
cancer, or prostate cancer.
- 76. The method of item 73, wherein the cancer is a hematologic malignancy.
- 77. The method of item 76, wherein the hematologic malignancy is chronic lymphocytic
leukemia (CLL), small lymphocytic lymphoma (SLL), follicular lymphoma (FL), diffuse
large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), Waldenstrom's macroglobulinemia,
multiple myeloma, extranodal marginal zone B cell lymphoma, nodal marginal zone B
cell lymphoma, Burkitt's lymphoma, non-Burkitt high grade B cell lymphoma, primary
mediastinal B-cell lymphoma (PMBL), immunoblastic large cell lymphoma, precursor B-lymphoblastic
lymphoma, B cell prolymphocytic leukemia, lymphoplasmacytic lymphoma, splenic marginal
zone lymphoma, plasma cell myeloma, plasmacytoma, mediastinal (thymic) large B cell
lymphoma, intravascular large B cell lymphoma, primary effusion lymphoma, or lymphomatoid
granulomatosis.
- 78. The method of any one of the items 72-77, further comprising administering an
additional therapeutic agent.
- 79. The method of item 78, wherein the modified IL-15 polypeptide or the IL-15 conjugate
and the additional therapeutic agent are administered simultaneously.
- 80. The method of item 78, wherein the modified IL-15 polypeptide or the IL-15 conjugate
and the additional therapeutic agent are administered sequentially.
- 81. The method of item 80, wherein the modified IL-15 polypeptide or the IL-15 conjugate
is administered prior to the additional therapeutic agent.
- 82. The method of item 80, wherein the modified IL-15 polypeptide or the IL-15 conjugate
is administered after the administration of the additional therapeutic agent.
- 83. The method as in any of items 72-82, wherein the subject is a human.
- 84. A method of expanding effector T (Teff) cell, memory T (Tmem) cell, and Natural
Killer (NK) cell populations, comprising:
- a) contacting a cell with a modified IL-15 polypeptide as in any of items 1-66 or
an IL-15 conjugate of items 67-69; and
- b) interacting the IL-15 with IL-15Rβ and IL-15Rγ subunits to form an IL-15/IL-15Rβγ
complex;
wherein the IL-15 conjugate has a decreased affinity to IL-15Rα subunit, and wherein
the IL-15/IL-15Rβγ complex stimulates the expansion of Teff, Tmem, and NK cells.
- 85. The method of item 84, wherein the cell is a eukaryotic cell.
- 86. The method as in any of items 84-85, wherein the cell is a mammalian cell.
- 87. The method as in any of items 84-86, wherein the cell is a human cell.
- 88. The method as in any of items 84-87, wherein the IL-15 conjugate comprises an
isolated and purified IL-15 polypeptide and a conjugating moiety that binds to the
isolated and purified IL-15 polypeptide at an amino acid residue selected from N4,
E46, N65, and L69, wherein the numbering of the amino acid residues corresponds to
SEQ ID NO: 1.
- 89. The method as in any of items 84-88, wherein the decreased affinity is about 10%,
20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 99% decrease in binding affinity to
IL-15Rα relative to a wild-type IL-15 polypeptide.
- 90. The method as in any of items 84-88, wherein the decreased affinity to IL-15Rα
is about 1-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold,
or more relative to a wild-type IL-15 polypeptide.
- 91. The method as in any of items 84-90, wherein the conjugating moiety impairs or
blocks the binding of IL-15 with IL-15Rα.
- 92. A kit comprising a modified IL-15 polypeptide as in any of items 1-66, an IL-15
conjugate as in any of items 67-69, or a pharmaceutical composition as in any one
of items 70-71.
- 93. A kit comprising a polynucleic acid molecule encoding a modified IL-15 polypeptide
as in any of items 1-66.