(11) EP 4 516 998 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: **05.03.2025 Bulletin 2025/10**

(21) Application number: 23194745.8

(22) Date of filing: 31.08.2023

(51) International Patent Classification (IPC):

D21H 19/38 (2006.01)
D21H 19/54 (2006.01)
D21H 19/84 (2006.01)
D21H 19/84 (2006.01)
D21H 27/10 (2006.01)

(52) Cooperative Patent Classification (CPC):
 D21H 19/54; D21H 19/38; D21H 19/40;
 D21H 19/82; D21H 19/84; D21H 27/10

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BΑ

Designated Validation States:

KH MA MD TN

(71) Applicant: Billerud Aktiebolag (publ) 169 27 Solna (SE)

(72) Inventors:

- CARLSSON, Gilbert 183 31 Täby (SE)
- LARSSON, Johan A. 805 98 Gävle (SE)
- (74) Representative: Kransell & Wennborg KB
 P.O. Box 27834
 115 93 Stockholm (SE)

(54) STARCH COATED PAPERBOARD

- (57) There is provided a coated paperboard comprising a paperboard substrate and one or more coating layers provided on the printing side of the paperboard wherein:
- the one or more coating layers comprise binders and pigment;
- the binders comprise at least one synthetic binder and at least one starch-based binder; and
- the starch-based binder is present in an amount of 70-95 wt.% based on the total dry amount of binder in the one or more coating layers.

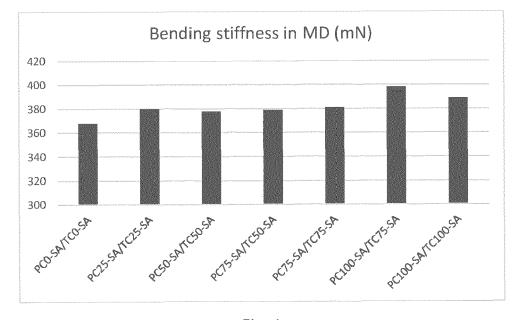


Fig. 1

Description

TECHNICAL FIELD

5 **[0001]** The present disclosure relates to the field of pigment-coated paperboards, more specifically pigment-coated paperboards for use as liquid packaging boards.

BACKGROUND

[0002] Pigment-coated paperboard is commonly provided with at least one coating layer, e.g. a pre-coating and a top coating, in order to induce certain surface properties such as printability. The pigment coatings usually comprise a binder and a pigment.

[0003] The commonly used binders in paper coating compositions are synthetic binder such as styrene and acrylic (co) polymers. While these binders give rise to desirable properties to the coated paperboard, they are often fossil-based and nondegradable.

[0004] Furthermore, in applications such as liquid packaging boards (LPB) there is a desire to have a good printability of the final packaging material. Hence, the surface of the outer layer needs to be suitable for printing.

SUMMARY

20

[0005] There is a general desire to reduce the grammage of paperboard, e.g. LPB, in order to reduce the cost of the product. However, the possibility to do so is often limited by bending stiffness requirements. If the bending stiffness of coated paperboards can be increased by other means, a reduction in grammage is possible. The inventors have realized that the bending stiffness of a paperboard can be significantly increased by coating it with at least one coating layer comprising at least one pigment and a mixture of a starch-based binder and a synthetic binder. In addition to the increase in bending stiffness, the binder mixture also gives rise to a good printing surface and reduces the environmental impact of the coating layer (since starch is a renewable material).

[0006] Accordingly, the present disclosure provides a coated paperboard comprising a paperboard substrate and one or more coating layers (such as at least two layers) provided on the printing side of the paperboard wherein:

30

50

- the one or more coating layers comprise binders and pigment;
- the binders comprise at least one starch-based binder and at least one synthetic binder; and
- the starch-based binder is present in an amount of 70-95 wt.% based on the total amount of binder in the one or more coating layers.

[0007] The weight percentages (wt.%) of the present disclosure refer to dry weight.

[0008] The paperboard according to the present disclosure has an increased bending stiffness as a result of the at least one coating layer comprising the mixture of a starch-based binder and a synthetic binder. The improved bending stiffness enables a reduction in the grammage of the paperboard substrate and hence leads to a cost reduction while maintaining good convertibility. The binder mixture further maintains an adequate printing surface or even improves the printability of the paperboard surface. A further advantage of the present disclosure is that a large part of the binders is bio-based and compostable, hence improving the environmental profile of the coated paperboard.

[0009] In one embodiment, the starch-based binder is present in an amount of 72-95 wt.%, such as 80-95 wt.% based on the total amount of binder in the one or more coating layers.

[0010] In one embodiment, the coated paperboard comprises one coating layer comprising the starch-based binder. The one coating layer is present as the only coating layer comprising the starch-based binder on a first side of the paperboard substrate, i.e. the coating layer is provided on a printing side of the paperboard.

[0011] The coat weight of the one coating layer may be 10-23 g/m², such as 10-18 g/m², such as 10-16 g/m². An advantage of the single coating layer is that a reduction in coat weight may be obtained. A reduction in coat weight is desirable as it leads to a cost reduction as well as a reduced environmental impact.

[0012] In another embodiment, the coated paperboard comprises at least two coating layers provided on a printing side of the paperboard comprising the starch-based binder. The at least two coating layers may be at least one pre-coating and at least one top coating.

[0013] In a preferred embodiment, the starch-based binder is present in the pre-coating in an amount of 95-100 wt.% based on the total dry amount of binder and in the pre-coating in an amount of 60-90 wt.%, such as 65-85 wt.%, based on the total dry amount of binder in the top coating. This enables a particularly high increase in bending stiffness.

[0014] The coat weight of the at least one pre-coating may be 4-13 g/m², such as 6-10 g/m², such as 7-9 g/m². Furthermore, the coat weight of the at least one top coating may be 4-15 g/m², such as 5-14 g/m², such as 6-12 g/m². **[0015]** The ratio between pigment and the binders in the one or more coating layers maybe 100:13 to 100:25, such as 100:14 to 100:22, such as 100:15 to 100:22. Such a ratio between pigment and binder may lead to a particularly good coating cohesion enabling a strong coating. The ratios discussed herein are dry weight ratios.

[0016] If the paperboard comprises at least one pre-coating and at least one top coating, the ratio between pigment and the binders in the at least one pre-coating maybe 100:13 to 100:20, such as 100:13 to 100:18. Further, the ratio between pigment and the binders in the top coating may be of 100:14 to 100:25, such as 100:15 to 100:22.

[0017] The synthetic binder may be a styrene-acrylic binder and/or styrene-butadiene binder, preferably the synthetic binder is styrene-acrylic binder.

[0018] The starch-based binder may be provided in the form of starch particles, preferably in the form of a dispersion of starch particles. The starch particles are preferably nanoparticles having particle diameter of less than 1000 nm, such as 50-1000, such as 200-1000 nm.

[0019] The pigment of the one or more coating layers may be clay, calcium carbonate and/or talc. In one embodiment, the one or more coating layers comprise calcium carbonate and clay. In another embodiment, the one or more coating layers comprise calcium carbonate, optionally as the only pigment. The embodiments comprising calcium carbonate and/or clay may give rise to a particularly good surface for printability.

[0020] The paperboard substrate may have a density of 550-900 kg/m3 and/or a grammage of between 100 and 400 g/m², e.g. between 120 and 300 g/m², such as between 125 and 260 g/m².

[0021] In an embodiment, the coated paperboard is a liquid packaging board.

[0022] In a further embodiment, the paperboard substrate of the liquid packaging board comprises at least two, such as at least three layers and each layer comprises hydrophobic size. The hydrophobic size may be alkenyl succinic anhydride (ASA), alkyl ketene dimer (AKD) and/or rosin size. Preferably, each layer comprises at least one of AKD and ASA.

[0023] The hydrophobic size is preferably added as internal sizing.

BRIEF DESCRIPTION OF THE DRAWINGS

[0024]

10

25

30

35

40

45

50

Fig 1 shows the bending stiffness in machine direction of paperboards coated with compositions comprising biolatex and/or SA-latex.

Fig 2 shows the bending stiffness in cross-direction of paperboards coated with compositions comprising biolatex and/or SA-latex.

Fig 3 shows the bending stiffness in machine direction of paperboards coated with compositions comprising biolatex and/or SB-latex.

Fig 4 shows the bending stiffness in cross-direction of paperboards coated with compositions comprising biolatex and/or SB-latex.

Fig 5 shows the visual appearance of paperboards coated with compositions comprising biolatex and/or SB-latex.

Fig 6 shows the STFI mottle at full tone of paperboards coated with compositions comprising biolatex and/or SB-latex.

DETAILED DESCRIPTION

[0025] The present disclosure relates to a coated paperboard comprising a paperboard substrate and one or more coating layers wherein the binders in the one or more coating layers comprise at least 70 wt.% of a starch-based binder. The coated paperboard according to the present disclosure has a significantly higher bending stiffness compared to paperboards coated with conventional coating layers, e.g. coating layers only comprising styrene-acrylic or styrene-butadiene binder. The increased bending stiffness may allow for a reduction in grammage of the paperboard substrate and hence a cost reduction while maintaining good convertibility and package rigidity.

[0026] The paperboard substrate may comprise at least two layers, such as at least three layers wherein the top layer of the paperboard substrate is provided with the one or more coating layers. The top layer of the paperboard substrate is typically bleached. Each layer of the paperboard substrate may comprise hydrophobic size such as ASA, AKD and/or rosin size.

[0027] The paperboard substrate may comprise other conventional additives such as fillers and colouring agents.

[0028] The one or more coating layers comprise binders and pigment. Furter, the binders comprise at least one starch-based binder and at least one synthetic binder.

[0029] The starch-based binder may be provided in the form of a dispersion of starch particles wherein the starch particles are present as colloids. The dispersion may further comprise dissolved starch polymer. The starch particles are preferably nanoparticles having particle diameter of less than 1000 nm, such as 50-1000, such as 200-1000 nm. The starch particles may further be cross-linked.

[0030] The synthetic binder may be a waterborne colloid dispersion of synthetic polymers such as fossil-based polymers, i.e., a latex. The synthetic polymer may be based on acrylic and/or styrenic monomers. Preferably, the synthetic binders are styrene-acrylic binders and/or styrene-butadiene binders. Using styrene-acrylic binders in the present invention, can give rise to an especially high increase in bending stiffness while using styrene-butadiene may in addition to an increase in bending stiffness also give rise to an improved printing surface.

[0031] The one or more coating layers may comprise 70-95 wt.%, such as 72-95 wt.%, such as 80-95 wt.% starch-based binder based on the total amount of binder in the one or more coating layers. By using at least one coating layer comprising 70-95 wt.% of the starch-based binder, a significant increase in bending stiffness of the coated paperboard is obtained while simultaneously maintaining a good surface for printing. In some cases, an improvement of the printability of the surface is also obtained. A particularly high increase in bending stiffness and/or improvement of the printing surface may be obtained when the amount of starch-based binder is 80-95 wt.% based on the total amount of binder in the one or more coating layers.

[0032] The one or more coating layers may be present in an amount of 10-25 g/m², such as 12-22 g/m², such as 14-20 g/m². It is desirable to keep the coating amount as low as possible to reduce the cost and the environmental impact of the one or more coating layers.

[0033] The ratio between pigment and the binders in the one or more coating layers may be 100:13 to 100:25, such as 100:14 to 100:22, such as 100:15 to 100:22. If the coated paperboard comprises more than one coating layer, such as two coating layers, the combined ratio between pigment and binder for both coating layers may be 100:13 to 100:25. The specific ratio between pigment and binder may lead to a particularly good cohesion of the coating which enables a strong coating. Another effect may be an improved PE adhesion which is advantageous since it prevents delamination during forming of packages from the paperboard.

[0034] According to one embodiment, the coated paperboard comprises one coating layer comprising the starch-based binder. In this embodiment, a first side of the paperboard substrate is coated with said coating and the first side preferable does not comprise any additional coating layer comprising a starch-based binder. The coating layer is provided on a printing side of the paperboard. Coating layers which do not comprise a starch-based binder may be applied on top of the inventive coating layer and/or between the paperboard substrate and the inventive coating layer.

[0035] In case of a single coating layer, the coat weight may be 10-23 g/m², such as 10-18 g/m², such as 10-16 g/m². [0036] An effect of applying a single coating layer on the first side of the paperboard substrate may be that a smaller coating amount is needed. This may result in a reduction of cost as well as environmental impact. Furthermore, applying a single coating layer requires less equipment.

[0037] According to another embodiment, the coated paperboard comprises at least two coating layers comprising a starch-based binder, such as at least one pre-coating and at least one top coating applied to a first side of the paperboard substrate.

[0038] The coated paperboard may further comprise at least one coating layer on a second side of the paperboard substrate. The coating layer on the second side of the paperboard substrate may comprise a starch-based binder.

[0039] The pre-coating may have a coat weight of 4-13 g/m², such as 6-10 g/m², such as 7-9 g/m². The coat weight of the top coating may be 4-15 g/m², such as 5-14 g/m², such as 6-12 g/m².

[0040] Application of the one or more coating layers may occur by e.g. curtain coating, blade coating and/or using a size press.

[0041] In the embodiment wherein the coated paperboard comprises at least one pre-coating and at least one top coating, the ratio between pigment and the binders in the at least one pre-coating maybe 100:13 to 100:20, such as 100:13 to 100:18. Likewise, the ratio between pigment and the binders in the top coating may be 100:14 to 100:22, such as 100:15 to 100:20.

[0042] The paperboard substrate may have a density of 550-900 kg/m³ and/or a grammage of between 100 and 400 g/m², e.g. between 120 and 300 g/m², such as between 125 and 260 g/m².

[0043] In an embodiment, the coated paperboard is a liquid packaging board.

EXAMPLES

10

30

45

55

[0044] A pilot study was performed using pre-coatings and top coatings comprising different amounts of starch-based binder wherein the amount ranged from 0 wt.% to 100 wt.%.

[0045] The paperboard substrate was a three-ply paperboard. All plies comprised hydrophobic size (AKD + rosin size).

[0046] The starch-based binder, herein denoted "biolatex", was a dispersion of cross-linked nano-sized starch particles, EcoSphere 2330, obtained from EcoSynthetix. Styrene-acrylic and styrene-butadiene lattices were used as the synthetic binders.

[0047] All the tested samples comprised a pre-coating and a top coating.

[0048] The pre-coating was applied in an amount of 8.5 g/m² for pre-coatings PC0-SA - PC100-SA and in an amount of 8 g/m² for pre-coatings PC0-SB - PC100-SB.

[0049] The top coatings were applied in an amount of 11.5 g/m² for top coatings TC0-SA - TC100-SA and in an amount of 7 g/m² for top coatings TC0-SB - TC100-SB.

Table 1. The pre-coatings with biolatex and styrene-acrylic binder (SA-latex). "Biolatex (%)" means the amount of biolatex based on the total dry amount of binder in the coating layer. The viscosity of the pre-coatings was around 1000 cP and the dry content of the pre-coatings was 60-65 wt.%.

Pre-coating	PC0-SA	PC25-SA	PC50-SA	PC75-SA	PC100-SA
Biolatex (%)	0	25	50	75	100
CaCO ₃ * (parts)	80	80	80	80	80
Clay** (parts)	20	20	20	20	20
SA-latex (parts)	14	10.5	7	3.5	-
Biolatex (parts)	-	3.5	7	10.5	14
RM***	0.45	0.35	0.25	0.25	0.35

^{*}The CaCO₃ used is Hydrocarb 60 from Omya.

Table 2. The pre-coatings with biolatex and styrene-butadiene binder (SB latex). "Biolatex (%)" means the amount of biolatex based on the total dry amount of binder in the coating layer. The viscosity (measured using Brookfield, spindle 4 at 100 rpm) of the pre-coatings was around 1000 cP and the dry content of the pre-coatings was 60-65 wt.%.

Pre-coating	PC0-SB	PC25-SB	PC50-SB	PC0-SB*	PC75-SB	PC100-SB
Biolatex (%)	0	25	50	0	75	100
CaCO ₃ ** (parts)	70	70	70	70	70	70
Clay (parts)	30***	30***	30***	30****	30****	30****
SB-latex (parts)	14	10.5	7	14	3.5	-
Biolatex (parts)	-	3.5	7	-	10.5	14
RM (parts)	0.79	0.56	0.42	0.75	0.26	0.60

^{*}This is the reference for PC75-SB and PC100-SB.

Table 3. Top coatings with biolatex and styrene-acrylic binder (SA-latex). "Biolatex (%)" means the amount of biolatex based on the total dry amount of binder in the coating layer. The viscosity of the top coatings was around 1000 cP and the dry content of the top coatings was 59-63 wt.%.

Top coating	TC0-SA	TC25-SA	TC50-SA	TC75-SA	TC100-SA
Biolatex (%)	0	25	50	75	100
CaCO ₃ -1* (parts)	40	40	40	40	40
CaCO ₃ -2** (parts)	40	40	40	40	40
Clay*** (parts)	20	20	20	20	20

25

20

15

35

30

40

45

50

^{**} The clay used is Capim BK-1.

^{***}Rheology modifier.

^{**} The CaCO₃ used is Hydrocarb 60 from Omya.

^{***}The clay used is Kaolux HS.

^{****}The clay used is Capim BK-1.

(continued)

Top coating	TC0-SA	TC25-SA	TC50-SA	TC75-SA	TC100-SA
SA-latex (parts)	17	12.75	8.5	4.25	-
Biolatex (parts)	-	4.25	8.5	12.75	17
RM (parts)	0.4	0.3	0.2	0.15	0.25

^{*}The CaCO₃-1 is Hydrocarb 90 from Omya.

Table. 4 Top coatings with biolatex and styrene-butadiene binder (SB-latex). "Biolatex (%)" means the amount of biolatex based on the total dry amount of binder in the coating layer. The viscosity of the top coatings was around 1000 cP and the dry content of the top coatings was 60-62 wt.%.

Top coating	TC0-SB	TC25-SB	TC50-SB	TC0-SB*	TC75-SB	TC100-SB
Biolatex (%)	0	25	50	0	75	100
CaCO ₃ ** (parts)	85	85	85	85	85	85
Clay*** (parts)	15	15	15	15	15	15
SB-latex (parts)	18	13.5	9	18	4.5	-
Biolatex (parts)	-	4.5	9	-	13.5	18.0
RM (parts)	1	0.32	0.28	0.8	0.40	0.50

^{*} This is the reference for TC75-SB and TC100-SB.

[0050] Different pre-coatings and top coatings were evaluated together. A sample denoted as PC50-SB/TC75-SB has a pre-coating with 50 wt.% starch-based binder and a top coating with 75 wt.% starch-based binder. All tested pre-coatings and top coatings exhibited good runnability on the pilot coater. The reference paperboards were coated with coating compositions comprising 100 wt. % synthetic binder (SA or SB-latex) and were denoted PC0-SA/TC0-SA and PC0-SB/TC0-SB.

[0051] The samples comprising 100 wt.% biolatex (PC100-SA/TC100-SA and PC100-SB/TC100-SB) are discussed under the respective binder mixtures even if they do not comprise a binder mixture. This is because the compositions (ratios and pigment types) vary slightly between the compositions comprising SA-latex compared to those comprising SB-latex.

[0052] The bending stiffness was measured in machine direction (MD) and cross-direction (CD) according to ISO 2493. [0053] All the samples coated with coating layers comprising biolatex exhibited an increase in bending stiffness in both MD and CD compared to the references (comprising only SA- or SB-latex as the binder).

[0054] The paperboard samples coated with coating compositions comprising a mixture of biolatex and SA-latex exhibited a maximum increase in bending stiffness of 8.2 % (PC100-SA/TC75-SA) and a minimum of 2.7 % (PC25-SA/TC25-SA) in MD, see Fig. 1. In CD, the maximum increase was 14.5 % (PC100-SA/TC75-SA) and the minimum was 3.9 % (PC50-SA/TC50-SA), see Fig. 2. Hence, the maximum increase in bending stiffness, in both MD and CD, was reached when the total amount of biolatex in the two coating layers was 85.6 wt.% (PC100-SA/TC75-SA).

[0055] The samples coated with coating compositions comprising a mixture of biolatex and SB-latex exhibited an increase in bending stiffness of $9.0\,\%$ for PC75-SB/TC75-SB and $8.1\,\%$ for PC100-SB/TC75-SB in MD, see Fig. 3. In CD, an increase of $7.9\,\%$ was obtained for PC75-SB/TC75-SB and an increase of $7.3\,\%$ was obtained for PC100-SB/TC75-SB, see Fig. 4.

[0056] The printability of the coated paperboards was evaluated by optical appearance and STFI mottle. The optical appearance was evaluated according to the following: a panel of trained judges determine the, in a series comparable, print result of a 50 % printed surface in cyan. 2.0 is the max (best) result and 0.0 is the worst result in this particular series. The method only compares individual appearance in a particular set of samples. STFI mottle was measured according to Research Institutes of Sweden (RISE) standard using Mottling Expert program version 1.37.

[0057] All the tested samples coated with coating compositions comprising a mixture of biolatex and SB-latex exhibited an improved optical appearance, see Fig. 5. The samples comprising 75 wt.% (PC75-SB/TC75-SB) and 88.3 wt.%

20

5

10

15

25

30

^{**}The CaCO₃-2 is Covercarb 75 from Omya.

^{***} The clay is Capim BK1.

^{**}The CaCO₃ was Hydrocarb 90 from Omya.

^{***}The clay was Kaofine 90.

(PC100-SB/TC75-SB) of biolatex based on the total dry amount of binder in both coating layers exhibited significantly better optical appearance. The sample comprising 100 wt.% biolatex (PC100-SB/TC100-SB) showed a slight improvement of optical appearance compared to the reference comprising 100 wt.% SB-latex (PC0-SB/TC0-SB) but the increase was significantly lower than for PC75-SB/TC75-SB and PC100-SB/TC75-SB.

[0058] The tested samples coated with coating compositions comprising a mixture of biolatex and SB-latex exhibited a reduced STFI mottle at full tone, see Fig. 6. The sample comprising 88.3 wt. % biolatex (PC100-SB/TC75-SB) showed the largest reduction of STFI mottle while the sample comprising 100 wt.% biolatex (PC100-SB/TC100-SB) showed the highest STFI mottle.

[0059] The results show that by coating a paperboard with coating layers in which the binders comprise at least 70 wt.% biolatex and a SA-latex, a significant increase in bending stiffness is obtained. Especially high bending stiffness was obtained when the coating layers comprised 85.6 wt.% biolatex.

[0060] The results further show that by coating a paperboard with coating layers in which the binders comprise at least 70 wt.% biolatex and a SB-latex, a significant increase in bending stiffness is obtained while improving the printing surface (improved optical appearance and reduced STFI mottle and surface roughness). An especially good printing surface was obtained when the coating structure comprised 88.3 wt.% biolatex.

Claims

25

30

- 20 1. A coated paperboard comprising a paperboard substrate and one or more coating layers provided on a printing side of the paperboard, wherein:
 - the one or more coating layers comprise binders and pigment;
 - the binders comprise at least one synthetic binder and at least one starch-based binder; and
 - the starch-based binder is present in an amount of 70-95 wt.% based on the total dry amount of binder in the one or more coating layers.
 - 2. The coated paperboard according to claim 1 wherein the starch-based binder is present in an amount of 72-95 wt.%, such as 80-95 wt. % based on the total dry amount of binder in the one or more coating layers.
 - 3. The coated paperboard according to any one of claims 1 and 2, wherein the one or more coating layers is one coating layer.
- 4. The coated paperboard according to claim 3 wherein the coat weight of the coating layer is $10-23 \text{ g/m}^2$, such as $10-18 \text{ g/m}^2$, such as $10-16 \text{ g/m}^2$.
 - **5.** The coated paperboard according to any one of claims 1 and 2, wherein the one or more coating layers comprise at least two coating layers, such as at least one pre-coating and at least one top coating.
- **6.** The coated paperboard according to claim 5 wherein the coat weight of the at least one pre-coating is 4-13 g/m², such as 6-10 g/m², such as 7-9 g/m².
 - 7. The coated paperboard according any one of claims 5 and 6 wherein the coat weight of the at least one top coating is $4-15 \text{ g/m}^2$, such as $6-12 \text{ g/m}^2$.
 - **8.** The paperboard according to any one of preceding claims wherein the dry weight ratio between pigment and the binders in the one or more coating layers is 100:10 to 100:25 such as 100:13 to 100:22, such as 100:14 to 100:22.
- 9. The coated paperboard according to any one of claims 5-7 wherein the at least one pre-coating comprises pigment and the binders in a dry weight ratio of 100:13 to 100:20, such as 100:13 to 100:18.
 - **10.** The coated paperboard according to any one of claims 5-7 and 9 wherein the at least one top coating comprises pigment and the binders in a dry weight ratio of 100:14 to 100:22, such as 100:15 to 100:20.
- 11. The coated paperboard according to any one of claims 5-7 and 9-10, wherein the starch-based binder is present in the pre-coating in an amount of 95-100 wt.% based on the total dry amount of binder and in the pre-coating in an amount of 60-90 wt.%, such as 65-85 wt.%, based on the total dry amount of binder in the top coating.

	EP 4 516 998 A1
12.	The coated paperboard according to any one of the preceding claims wherein the starch-based binder is provided in the form of starch particles.
13.	The coated paperboard according to any one of the preceding claims wherein the synthetic binder is styrene-acrylic binder and/or styrene-butadiene binder.
14.	The coated paperboard according to any one of the preceding claims wherein the paperboard substrate has a grammage of 100-400 g/m 2 , such as 120-300 g/m 2 , such as 125 and 260 g/m 2 according to ISO 536:2019.
15.	The coated paperboard of any one of the preceding claims, which is a liquid packaging board (LPB).

15			
20			
25			
30			
35			
40			
45			
50			
55			

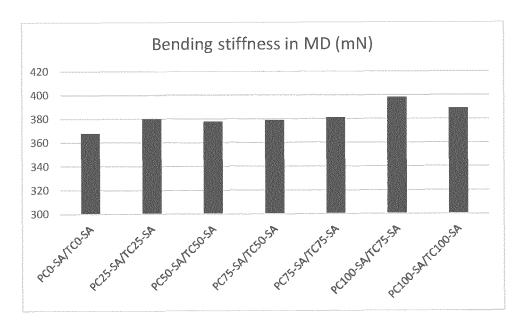


Fig. 1

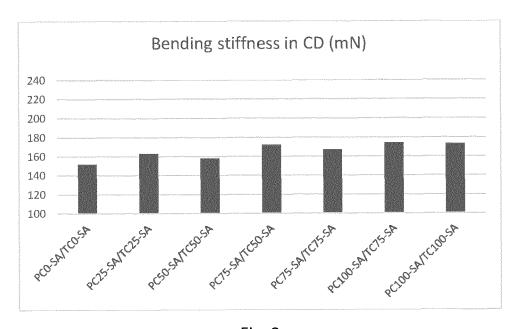


Fig. 2

Fig. 3

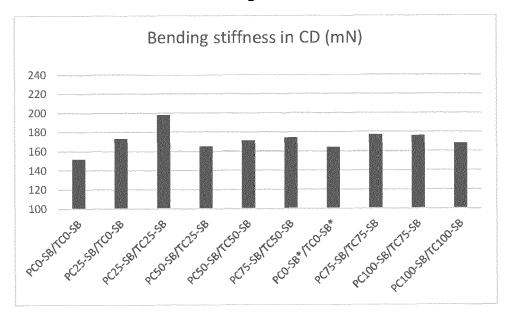


Fig. 4

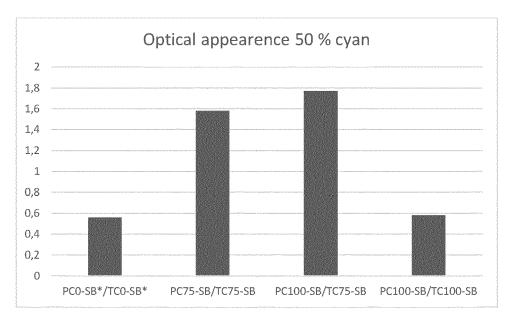


Fig. 5

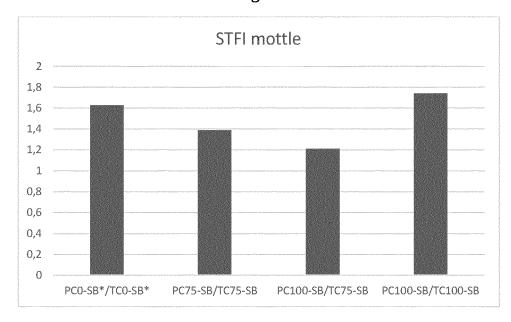


Fig. 6

DOCUMENTS CONSIDERED TO BE RELEVANT

Citation of document with indication, where appropriate,

EP 4 187 014 A1 (BILLERUD AB PUBL [SE])

WO 2014/003556 A1 (COOPERATIE AVEBE U A

of relevant passages

* paragraph [0069]; claims 1-38 *

31 May 2023 (2023-05-31)

Category

х

EUROPEAN SEARCH REPORT

Application Number

EP 23 19 4745

CLASSIFICATION OF THE APPLICATION (IPC)

INV.

D21H19/38

D21H19/40 D21H19/54

D21H19/82

Relevant

to claim

1-15

1-15

10	
15	
20	
25	
30	
35	
40	
45	

Place of search
Munich
CATEGORY OF CITE
X : particularly relevant if tak Y : particularly relevant if co document of the same ca

1
(P04C01)
3 03 82
150,
FORM
FPO

50

X	[NL]) 3 January 2014 (* claims 1-23; example	2014-01-03)	1-15	D21H19/82 D21H19/84 D21H27/10
x	US 2017/328005 A1 (PAR AL) 16 November 2017 (* claims 1-21; tables	2017-11-16)	1-15	
x	EP 3 825 368 A1 (COOEP AVEBE U A [NL]) 26 May * claims 1-17; example	2021 (2021-05-26)	1-15	
x	EP 3 178 648 A1 (CARGI: 14 June 2017 (2017-06- * paragraphs [0033], *	14)	1-15	
x	 EP 1 176 255 A1 (DOW C	 HEMICAL CO [IIS])	1-15	TECHNICAL FIELDS SEARCHED (IPC)
	30 January 2002 (2002- * claims 1-17; tables	01-30)		D21H
x	US 2010/159263 A1 (AHL AL) 24 June 2010 (2010 * paragraph [0046]; cl	-06-24)	1-15	
A	US 2014/004340 A1 (SAA. [FI] ET AL) 2 January * * the whole document *		1-15	
	The present search report has been	drawn up for all claims		
	Place of search	Date of completion of the search		Examiner
	Munich	19 January 2024		clsson, Lennart
X : par Y : par doc A : tecl O : nor	CATEGORY OF CITED DOCUMENTS ticularly relevant if taken alone ticularly relevant if combined with another ument of the same category nnological background n-written disclosure rmediate document	T: theory or principl E: earlier patent do after the filing da D: document cited i L: document cited f &: member of the s document	cument, but publi te n the application or other reasons	shed on, or

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 23 19 4745

5 This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

19-01-2024

10	Patent document cited in search report		Publication date		Patent family member(s)		Publication date
	EP 4187014	A1	31-05-2023	EP	4187014	A1	31-05-2023
				WO	2023094476	A1	01-06-2023
15	WO 2014003556	A1	03-01-2014	BR	112014032793	A2	27-06-2017
				CN	104411885	A	11-03-2015
				EA	201492164	A1	30-06-2015
				EP	2867409	A1	06-05-2015
				US	2015197891	A1	16-07-2015
20				WO	2014003556	A1	03-01-2014
	US 2017328005	A1	16-11-2017	US	2017328005	A1	16-11-2017
				US	2018202106	A1	19-07-2018
				US	2019161914	A1	30-05-2019
5				US	2020109517	A1	09-04-2020
	EP 3825368	A1	26-05-2021	CA	3158296	A1	27-05-2021
				EP	3825368	A1	26-05-2021
				WO	2021101382	A1	27-05-2021
0	EP 3178648	A1	14-06-2017	BR	112018011438	A2	27-11-2018
				CA	3007622	A1	15-06-2017
				EP	3178648	A1	14-06-2017
				EP	3386745	A1	17-10-2018
				ES	2890880	т3	24-01-2022
-				PL	3386745	т3	20-12-2021
5				US	2018362792	A1	20-12-2018
				WO	2017100316	A1	15-06-2017
	EP 1176255	A1	30-01-2002	AT	E455902	 Т1	 15-02-2010
				AU	8632301	A	05-02-2002
)				CA	2419949	A1	31-01-2002
				CA	2704379	A1	31-01-2002
				EP	1176255	A1	30-01-2002
				EP	1303670	A1	23-04-2003
				EP	2251484	A1	17-11-2010
5				ES	2339921	т3	27-05-2010
,				US	2004014844	A1	22-01-2004
				US	2005061203	A1	24-03-2005
				WO	0208517	A1	31-01-2002
	US 2010159263	A1	2 4 -06-2010	CA	2670397	A1	18-06-2010
0				CN	102257218	A	23-11-2011
				CN	105839456	A	10-08-2016
				EP	2370631	A1	05-10-2011
0459				EP	3296459	A1	21-03-2018
5 FORM P0459				ES	2655302	т3	19-02-2018
5							

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

page 1 of 2

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 23 19 4745

5 This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

19-01-2024

10	Patent document cited in search report	Publication date		Patent family member(s)		Publication date
			FI	20086213	A	19-06-2010
			JP	5677976		25-02-2015
			JР	2012512969		07-06-2012
5			KR	20110101140	A	15-09-2011
			$_{ t PL}$	2370631	т3	30-05-2018
			PT	2370631	T	16-01-2018
			RU	2011129596	A	27-01-2013
			US	2010159263	A1	24-06-2010
20			WO	2010070205	A1	24-06-2010
			ZA	201103276	В	25-07-2012
	US 2014004340 A	1 02-01-2014	AU	2013283132	A1	20-11-2014
			CA	2871710		03-01-2014
0.5			CN	104540994	A	22-04-2015
25			EP	2867410		06-05-2015
			FI	126571	В	28-02-2017
			RU	2014143119	A	20-08-2016
			US	2014004340	A1	02-01-2014
			WO	2014001628	A1	03-01-2014
35						
10						
5						
0						
55 FORM P0459						

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

page 2 of 2