(12)

(11) **EP 4 524 289 A8**

CORRECTED EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(15) Correction information:

Corrected version no 1 (W1 A1) Corrections, see

Bibliography INID code(s) 71

(48) Corrigendum issued on: **30.04.2025 Bulletin 2025/18**

(43) Date of publication: 19.03.2025 Bulletin 2025/12

(21) Application number: 24816691.0

(22) Date of filing: 10.06.2024

(51) International Patent Classification (IPC): C25B 9/00 (2021.01) C25B 1/23 (2021.01) C25B 9/015 (2021.01) C25B 11/032 (2021.01)

H02J 3/38 (2006.01) H02J 15/00 (2006.01)

(52) Cooperative Patent Classification (CPC):
 C25B 1/23; C25B 9/00; C25B 9/015; C25B 11/032;
 C25B 11/052; H02J 3/38; H02J 15/00

(86) International application number: **PCT/JP2024/020974**

(87) International publication number: WO 2024/262359 (26.12.2024 Gazette 2024/52)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BΑ

Designated Validation States:

GE KH MA MD TN

(30) Priority: 23.06.2023 JP 2023103581

(71) Applicants:

 The Doshisha Kyoto 602-8580 (JP)

DAIKIN INDUSTRIES, LTD.
 Osaka-Shi, Osaka 530-0001 (JP)

(72) Inventors:

 GOTO, Takuya Kyoto-shi, Kyoto 602-8580 (JP) ISHIKAWA, Masamichi Kyoto-shi, Kyoto 602-8580 (JP)

 WATANABE, Takashi Kyoto-shi, Kyoto 602-8580 (JP)

 KIKUCHI, Yoshimasa Osaka-shi, Osaka 530-0001 (JP)

FURUSHO, Kazuhiro
 Osaka-shi, Osaka 530-0001 (JP)

 TAKEDA, Nobuaki Osaka-shi, Osaka 530-0001 (JP)

 KISHIKAWA, Yosuke Osaka-shi, Osaka 530-0001 (JP)

YAMAUCHI, Akiyoshi
 Osaka-shi, Osaka 530-0001 (JP)

 ISOGAI, Tomohiro Osaka-shi, Osaka 530-0001 (JP)

(74) Representative: Hoffmann Eitle
Patent- und Rechtsanwälte PartmbB
Arabellastraße 30
81925 München (DE)

(54) ENERGY UTILIZATION SYSTEM, AND METHOD FOR MANUFACTURING CARBON-CONTAINING MATERIAL

(57) Provided are an energy utilization system and a method for producing a carbon-containing material, each capable of giving a carbon-containing material with a reduced carbon dioxide emission through minimizing the discharge of carbon dioxide. An energy utilization system (1) including: a circulation circuit (30) including a temperature adjustment section (36) that adjusts the temperature of a heating medium by using renewable energy or energy obtained from waste heat, wherein the heating medium circulates in the circulation circuit; and an electrolytic reduction apparatus (70) that performs electrolytic reduction of an electrolytic solution in which carbon dioxide is dissolved, wherein the electrolytic re-

duction apparatus (70) performs electrolytic reduction of the electrolytic solution temperature-adjusted through thermal contact with the heating medium, and the electrolytic reduction apparatus (70) includes: an electrolyzer casing (79) that is cylindrical and extends in a first direction; an anode (71) that is provided within the electrolyzer casing (79) and extends in the first direction; a cathode (72) that is cylindrical and positioned within the electrolyzer casing (79) and on the outside of the anode (71) as viewed in the first direction, and extends in the first direction; and an electrolytic solution passage (73) that allows the electrolytic solution to flow in the first direction between the anode (71) and the cathode (72).

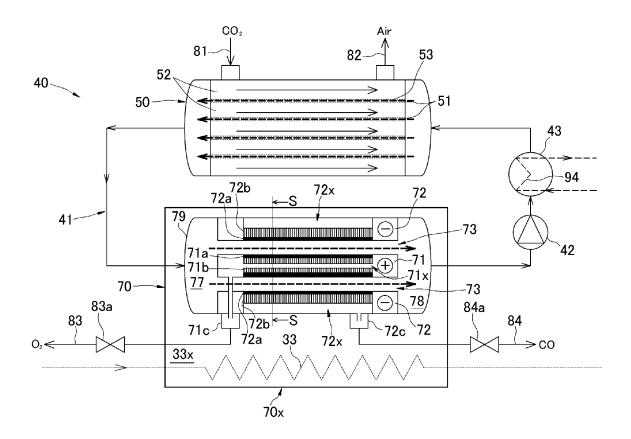


FIG. 2