(19)

(11) EP 4 534 715 A1

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication: 09.04.2025 Bulletin 2025/15

(21) Application number: 23816094.9

(22) Date of filing: 31.05.2023

(51) International Patent Classification (IPC):

C22C 38/00 (2006.01) C21D 1/18 (2006.01)

C21D 9/00 (2006.01) C22C 38/60 (2006.01)

C21D 8/02^(2006.01) C21D 9/46^(2006.01)

(52) Cooperative Patent Classification (CPC): C21D 1/18; C21D 9/00; C22C 38/00; C22C 38/60; C21D 8/02; C21D 9/46

(86) International application number: **PCT/JP2023/020238**

(87) International publication number: WO 2023/234337 (07.12.2023 Gazette 2023/49)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA

Designated Validation States:

KH MA MD TN

(30) Priority: 03.06.2022 JP 2022090847

(71) Applicant: NIPPON STEEL CORPORATION Chiyoda-ku
Tokyo 100-8071 (JP)

(72) Inventors:

ASADA Yuma
 Tokyo 100-8071 (JP)

 YABU Shohei Tokyo 100-8071 (JP)

 TODA Yuri Tokyo 100-8071 (JP)

 OGISU Yasuyuki Tokyo 100-8071 (JP)

 SUZUKI Tamaki Tokyo 100-8071 (JP)

(74) Representative: Zimmermann & Partner

Patentanwälte mbB Postfach 330 920 80069 München (DE)

(54) HOT-STAMP FORMED ARTICLE

(57) This hot stamped component has a predetermined chemical composition, in a position at 1/4 of a sheet thickness from a surface, in a texture of prior austenite, a maximum value of pole densities of an

orientation group expressed by Euler angles of Φ = 60° to 90°, ϕ 1 = 60° to 90°, and ϕ 2 = 45° is 3.0 or more, an average value of block sizes of martensite, tempered martensite and bainite is 1.20 μ m or less.

EP 4 534 715 A1

Description

Technical Field of Invention

5 [0001] The present invention relates to a hot stamped component.

[0002] Priority is claimed on Japanese Patent Application No. 2022-090847, filed June 3, 2022, the content of which is incorporated herein by reference.

Background Art

10

20

45

55

[0003] In recent years, there has been a demand for a reduction in a weight of a vehicle body for a vehicle from the perspective of environmental protection and resource saving, and a high-strength steel sheet has been applied to vehicle members. Vehicle members are manufactured by press forming, but not only a forming load is increased but also the formability deteriorates as the strength of a steel sheet is increased. For this reason, the formability of a high-strength steel sheet into a member having a complicated shape becomes an issue.

[0004] In order to solve this issue, the application of a hot stamping technique in which press forming is performed after a steel sheet is heated up to a high temperature of an austenite range where the steel sheet softens is in progress. Hot stamping is attracting attention as a technique that achieves both the formability of a steel sheet into a vehicle member and strength of a vehicle member by performing hardening of the steel sheet in a die at the same time as press working.

[0005] For example, Patent Document 1 discloses a hardenable steel having excellent cold formability that can obtain excellent impact strength and hardness by reheating and quenching the steel.

Prior Art Document

25 Patent Document

[0006] Patent Document 1
Japanese Unexamined Patent Application Publication No. 2020-508393

30 Non-Patent Document

[0007] Non-Patent Document 1 Acta Materialia, 58 (2010), 6393-6403

35 Disclosure of Invention

Problems to be Solved by Invention

[0008] When a hot stamped component with further improved tensile strength is used as a vehicle member, a greater effect of vehicle weight reduction can be achieved. However, since it is a vehicle member, it may be subjected to bending deformation due to a collision or the like, and therefore the hot stamped component needs to have high bendability. However, Patent Document 1 does not consider bendability.

[0009] The present invention has been made in view of the above-mentioned problem, and an object of the present invention is to provide a hot stamped component having high strength and excellent bendability.

Means for Solving the Problem

[0010] The gist of the present invention is as follows.

[1] A hot stamped component according to an aspect of the present invention comprising, as a chemical composition, by mass%:

C: 0.40% to 0.70%;

Si: 0.010% to 3.000%;

Mn: 0.10% or more and less than 0.60%;

P: 0.100% or less;

S: 0.0100% or less;

N: 0.0100% or less;

```
O: 0.0200% or less:
             AI: 0.0010% to 0.5000%;
             Nb: 0.0010% to 0.1000%;
             Ti: 0.010% to 0.100%;
5
             Cr: 0.010% to 1.000%;
             Mo: 0.050% to 1.000%;
             B: 0.0005% to 0.0100%;
             Co: 0% to 3.00%;
             Ni: 0% to 3.00%;
10
             Cu: 0% to 3.00%;
             V: 0% to 3.00%;
             W: 0% to 3.00%;
             Ca: 0% to 0.1000%;
             Mg: 0% to 1.0000%;
15
             REM: 0% to 1.0000%:
             Sb: 0% to 1.000%:
             Sn: 0% to 1.000%;
             Zr: 0% to 1.000%;
             As: 0% to 0.100%; and
20
             a remainder: Fe and impurities,
             in a position at 1/4 of a sheet thickness from a surface,
```

in a texture of prior austenite, a maximum value of pole densities of an orientation group expressed by Euler angles of $\Phi = 60^{\circ}$ to 90° , $\Phi = 60^{\circ}$ to 90° , and $\Phi = 60^{\circ}$ to 90° .

an average value of block sizes of martensite, tempered martensite and bainite is 1.20 µm or less.

25

30

35

40

45

50

[2] The hot stamped component according to [1] may comprise, as the chemical composition, by mass%, one or more selected from the group consisting of:

Co: 0.01% to 3.00%;
Ni: 0.01% to 3.00%;
Cu: 0.01% to 3.00%;
V: 0.01% to 3.00%;
W: 0.01% to 3.00%;
Ca: 0.0001% to 0.1000%;
Mg: 0.0001% to 1.0000%;
REM: 0.0001% to 1.0000%;
Sb: 0.001% to 1.000%;
Sn: 0.001% to 1.000%;
Zr: 0.001% to 1.000%; and

As: 0.001% to 0.100%.

Effects of Invention

[0011] According to the above-described aspects of the present invention, it is possible to provide a hot stamped component having high strength and excellent bendability. Embodiments of Invention

[0012] The present inventors found that by controlling a texture of prior austenite and an average value of block sizes of martensite, tempered martensite and bainite in a position at 1/4 of a sheet thickness from a surface of a hot stamped component, the bendability of the hot stamped component can be improved. In particularly, the present inventors found that the bendability of a hot stamped component can be improved by controlling not a texture of martensite, tempered martensite, bainite, or the like, which are a microstructure of the hot stamped component but a texture of prior austenite before transformation to martensite, bainite, or the like (i.e., state of austenite at a high temperature of Ar3 point or higher) to be within a specific range.

[0013] In addition, the present inventors found that in order to obtain the hot stamped component having the above features, it is particularly effective to strictly control final rolling conditions during hot rolling.

[0014] Hereinafter, the hot stamped component according to the present embodiment will be described in detail. First, the reason the chemical composition of the hot stamped component according to the present embodiment is limited will be described.

[0015] A limited numerical range described using "to" described below includes a lower limit and an upper limit.

Numerical values represented using "less than" or "more than" are not included in a numerical range. All percentages (%) related to the chemical composition mean mass%.

[0016] The hot stamped component according to the present embodiment comprises, as a chemical composition, by mass%, C: 0.40% to 0.70%, Si: 0.010% to 3.000%, Mn: 0.10% or more and less than 0.60%, P: 0.100% or less, S: 0.0100% or less, N: 0.0100% or less, O: 0.0200% or less, Al: 0.0010% to 0.5000%, Nb: 0.0010% to 0.1000%, Ti: 0.010% to 0.050% to 0.050% to 0.0005% to 0.0100%, and a remainder: Fe and impurities. **[0017]** Each element will be described below.

C: 0.40% to 0.70%

10

[0018] C is an element that improves the strength of the hot stamped component. When the C content is less than 0.40%, a desired strength of the hot stamped component cannot be obtained. For this reason, the C content is set to 0.40% or more. The C content is preferably more than 0.40%, 0.42% or more or 0.44% or more.

[0019] On the other hand, when the C content is more than 0.70%, the strength excessively increases and the bendability of the hot stamped component deteriorates. For this reason, the C content is set to 0.70% or less. The C content is preferably 0.65% or less or 0.60% or less.

Si: 0.010% to 3.000%

20 [0020] Si is an element that improves the strength of the hot stamped component by solid-solution strengthening. When the Si content is less than 0.010%, a desired strength of the hot stamped component cannot be obtained. For this reason, the Si content is set to 0.010% or more. The Si content is preferably 0.100% or more, 0.300% or more or 0.500% or more. [0021] On the other hand, when the Si content is more than 3.000%, the amount of ferrite increases and a desired strength of the hot stamped component cannot be obtained. For this reason, the Si content is set to 3.000% or less. The Si content is preferably 2.000% or less, 1.000% or less or 0.800% or less.

Mn: 0.10% or more and less than 0.60%

[0022] Mn is an element that increases hardenability of steel and increases the strength of the hot stamped component.

When the Mn content is less than 0.10%, a desired strength of the hot stamped component cannot be obtained. For this reason, the Mn content is set to 0.10% or more. The Mn content is preferably 0.20% or more or 0.35% or more.

[0023] On the other hand, when the Mn content is 0.60% or more, a desired texture of prior austenite cannot be obtained.

For this reason, the Mn content is set to less than 0.60%. The Mn content is preferably 0.55% or less or 0.50% or less.

³⁵ P: 0.100% or less

[0024] P decreases the strength of the grain boundaries by segregating in the grain boundaries. As a result, P deteriorates the bendability of the hot stamped component. When the P content is more than 0.100%, the bendability of the hot stamped component deteriorates significantly. For this reason, the P content is set to 0.100% or less. The P content is preferably 0.050% or less or 0.010% or less.

[0025] The lower limit of the P content may be 0%. However, when the P content is reduced to less than 0.0001%, the dephosphorization cost increases significantly, which is not preferable economically. For this reason, the P content may be set to 0.0001% or more.

45 S: 0.0100% or less

[0026] S forms inclusions in steel. When the S content is more than 0.0100%, the bendability of the hot stamped component deteriorates significantly. For this reason, the S content is set to 0.0100% or less. The S content is preferably 0.0080% or less, 0.0050% or less or 0.0030% or less.

[0027] The lower limit of the S content may be 0%. However, when the S content is reduced to less than 0.0001%, the desulfurization cost increases significantly, which is not preferable economically. For this reason, the S content may be set to 0.0001% or more.

N: 0.0100% or less

55

[0028] N forms nitrides in steel. When the N content is more than 0.0100%, the bendability of the hot stamped component deteriorates significantly. For this reason, the N content is set to 0.0100% or less. The N content is preferably 0.0080% or less, 0.0060% or less or 0.0040% or less.

[0029] The lower limit of the N content may be 0%. However, when the N content is reduced to less than 0.0001%, the denitrification cost increases significantly, which is not preferable economically. For this reason, the N content may be set to 0.0001% or more.

5 O: 0.0200% or less

[0030] O forms coarse oxides when a large amount of O is comprised in steel. When the O content is more than 0.0200%, the bendability of the hot stamped component deteriorates significantly. For this reason, the O content is set to 0.0200% or less. The O content is preferably 0.0100% or less, 0.0070% or less, 0.0040% or less or 0.0030% or less.

[0031] The O content may be 0%. However, in order to disperse many oxides during deoxidizing of molten steel, the O content may be set to 0.0005% or more.

Al: 0.0010% to 0.5000%

- [0032] Al is an element having an effect of deoxidizing molten steel and achieving soundness of the steel (minimizing the occurrence of defects such as blowholes in steel). When the Al content is less than 0.0010%, deoxidation is not sufficiently performed, and coarse oxides are generated. As a result, the bendability of the hot stamped component deteriorates. For these reasons, the Al content is set to 0.0010% or more. The Al content is preferably 0.0050% or more, 0.0100% or more or 0.0300% or more.
- [0033] On the other hand, when the Al content is more than 0.5000%, coarse oxides are generated in steel. As a result, the bendability of the hot stamped component deteriorates significantly. For this reason, the Al content is set to 0.5000% or less. The Al content is preferably 0.4000% or less, 0.3000% or less, or 0.2000% or less or 0.1000% or less.

Nb: 0.0010% to 0.1000%

25

10

- **[0034]** Nb is an element that forms carbonitrides in steel and improves the strength of the hot stamped component by precipitation strengthening. When the Nb content is less than 0.0010%, a desired strength of the hot stamped component cannot be obtained. For this reason, the Nb content is set to 0.0010% or more. The Nb content is preferably 0.0050% or more, 0.0100% or more or 0.0200% or more.
- ³⁰ **[0035]** On the other hand, when the Nb content is more than 0.1000%, many carbonitrides are generated in steel, and the bendability of the hot stamped component deteriorates. For this reason, the Nb content is set to 0.1000% or less. The Nb content is preferably 0.0800% or less or 0.0600% or less.

Ti: 0.010% to 0.100%

35

- **[0036]** Ti is an element that forms carbonitrides in steel and improves the strength of the hot stamped component by precipitation strengthening. When the Ti content is less than 0.010%, a desired strength of the hot stamped component cannot be obtained. For this reason, the Ti content is set to 0.010% or more. The Ti content is preferably 0.020% or more or 0.025% or more.
- 40 [0037] On the other hand, when the Ti content is more than 0.100%, many carbonitrides are generated in steel, and the bendability of the hot stamped component deteriorates. For this reason, the Ti content is set to 0.100% or less. The Ti content is preferably 0.080% or less, 0.060% or less or 0.050% or less.

Cr: 0.010% to 1.000%

45

- **[0038]** Cr is an element that increases the strength of the hot stamped component by dissolving in prior austenite grains during heating before hot stamping. When the Cr content is less than 0.010%, a desired strength of the hot stamped component cannot be obtained. For this reason, the Cr content is set to 0.010% or more. The Cr content is preferably 0.100% or more, 0.150% or more or 0.200% or more.
- [0039] On the other hand, when the Cr content is more than 1.000%, a desired texture of prior austenite cannot be obtained. For this reason, the Cr content is set to 1.000% or less. The Cr content is preferably 0.700% or less, 0.500% or less or 0.400% or less.

Mo: 0.050% to 1.000%

55

[0040] Mo is an element that increases the strength of the hot stamped component by dissolving in prior austenite grains during heating before hot stamping. When the Mo content is less than 0.050%, a desired strength of the hot stamped component cannot be obtained. For this reason, the Mo content is set to 0.050% or more. The Mo content is preferably

0.100% or more or 0.150% or more.

[0041] On the other hand, when the Mo content is more than 1.000%, a desired texture of prior austenite cannot be obtained. For this reason, the Mo content is set to 1.000% or less. The Mo content is preferably 0.800% or less, 0.600% or less or 0.400% or less.

B: 0.0005% to 0.0100%

5

10

20

30

40

50

[0042] B is an element that improves the hardenability of steel. When the B content is less than 0.0005%, a desired strength of the hot stamped component cannot be obtained. For this reason, the B content is set to 0.0005% or more. The B content is preferably 0.0020% or more or 0.0030% or more.

[0043] On the other hand, when the B content is more than 0.0100%, coarse intermetallic compounds are formed in the hot stamped component. As a result, the bendability of the hot stamped component deteriorates. For this reason, the B content is set to 0.0100% or less. The B content is preferably 0.0080% or less, 0.0060% or less or 0.0040% or less.

[0044] The hot stamped component may comprise the following elements as optional elements in place of a part of Fe. The content of the following optional elements obtained when the following optional elements are not contained is 0%.

Co: 0.01% to 3.00%

[0045] Co is an element that improves strength of the hot stamped component by solid-solution strengthening. In order to reliably obtain the effect, the Co content is preferably set to 0.01% or more, and more preferably set to 0.05% or more. [0046] On the other hand, since the above effect will be saturated even if a large amount is comprised, the Co content is set to 3.00% or less. If necessary, the Co content may be limited to 2.00% or less, 1.50% or less, 1.00% or less or 0.50% or less.

Ni: 0.01% to 3.00%

[0047] Ni has an effect of increasing strength of the hot stamped component by dissolving in prior austenite grains during heating before hot stamping. In order to reliably obtain the effect, the Ni content is preferably set to 0.01% or more.

[0048] On the other hand, since the above effect will be saturated even if a large amount is comprised, the Ni content is set to 3.00% or less. If necessary, the Ni content may be limited to 2.00% or less, 1.50% or less, 1.00% or less or 0.50% or less.

Cu: 0.01% to 3.00%

[0049] Cu has an effect that increases the strength of the hot stamped component by dissolving in prior austenite grains during heating before hot stamping. In order to reliably obtain the effect, the Cu content is preferably set to 0.01% or more, and more preferably set to 0.05% or more.

[0050] On the other hand, since the above effect will be saturated even if a large amount is comprised, the Cu content is set to 3.00% or less. If necessary, the Cu content may be limited to 2.00% or less, 1.50% or less, 1.00% or less or 0.50% or less.

V: 0.01% to 3.00%

[0051] V has an effect that forms carbonitrides in steel and improves the strength of the hot stamped component by precipitation strengthening. In order to reliably obtain the effect, the V content is preferably set to 0.01% or more, and more preferably set to 0.05% or more.

[0052] On the other hand, when the V content is more than 3.00%, a lot of coarse carbonitrides is generated in steel. As a result, the bendability of the hot stamped component deteriorates. For this reason, the V content is set to 3.00% or less. If necessary, the V content may be limited to 2.00% or less, 1.50% or less, 1.00% or less or 0.50% or less.

W: 0.01% to 3.00%

[0053] Whas an effect of improving the strength of the hot stamped component. In order to reliably obtain the effects, the W content is preferably set to 0.01% or more, and more preferably set to 0.05% or more.

[0054] On the other hand, since the above effect will be saturated even if a large amount is comprised, the W content is set to 3.00% or less. If necessary, the W content may be limited to 2.00% or less, 1.50% or less, 1.00% or less or 0.50% or less.

Ca: 0.0001% to 0.1000%

[0055] Ca is an element that suppresses generation of carbides that become starting points for fracture, and contributes for improvement of the bendability of the hot stamped component. In order to reliably obtain the effect, the Ca content is preferably set to 0.0001% or more, and more preferably set to 0.0010% or more.

[0056] On the other hand, since the above effect will be saturated even if a large amount is comprised, the Ca content is set to 0.1000% or less. If necessary, the Ca content may be limited to 0.0500% or less, 0.0200% or less, 0.0100% or less or 0.0060% or less.

10 Mg: 0.0001% to 1.0000%

[0057] Mg refines the microstructure due to formation of oxides and sulfides in molten steel, suppressing formation of a coarse MnS, and dispersing a lot of fine oxides. As a result, Mg contributes for improvement of the bendability of the hot stamped component. In order to reliably obtain these effects, the Mg content is preferably set to 0.0001% or more, and more preferably set to 0.0010% or more.

[0058] On the other hand, since the above effect will be saturated even if a large amount is comprised, the Mg content is set to 1.0000% or less. If necessary, the Mg content may be limited to 0.0500% or less, 0.0200% or less, 0.0100% or less or 0.0060% or less.

20 REM: 0.0001% to 1.000%

[0059] REM suppresses generation of coarse oxides. As a result, REM contributes for improvement of the bendability of the hot stamped component. In order to reliably obtain the effect, the REM content is preferably set to 0.0001% or more, and more preferably set to 0.0010% or more.

[0060] On the other hand, since the above effect will be saturated even if a large amount is comprised, the REM content is set to 1.0000% or less. If necessary, the REM content may be limited to 0.0500% or less, 0.0200% or less, 0.0100% or less or 0.0060% or less.

[0061] In the present embodiment, REM refers to a total of 17 elements that are composed of Sc, Y and lanthanoid, and the REM content refers to the total content of these elements.

Sb: 0.001% to 1.000%

30

40

45

50

[0062] Sb suppresses generation of coarse oxides. As a result, Sb contributes for improvement of the bendability of the hot stamped component. In order to reliably obtain the effect, the Sb content is preferably set to 0.001% or more.

[0063] On the other hand, since the above effect will be saturated even if a large amount is comprised, the Sb content is set to 1.000% or less. If necessary, the Sb content may be limited to 0.500% or less, 0.200% or less, 0.100% or less or 0.050% or less.

Sn: 0.001% to 1.000%

[0064] Sn suppresses generation of coarse oxides. As a result, Sn contributes for improvement of the bendability of the hot stamped component. In order to reliably obtain the effect, the Sn content is preferably set to 0.001% or more.

[0065] On the other hand, since the above effect will be saturated even if a large amount is comprised, the Sn content is set to 1.000% or less. If necessary, the Sn content may be limited to 0.500% or less, 0.200% or less, 0.100% or less or 0.050% or less.

Zr: 0.001% to 1.000%

[0066] Zr suppresses generation of coarse oxides. As a result, Zr contributes for improvement of the bendability of the hot stamped component. In order to reliably obtain the effect, the Zr content is preferably set to 0.001% or more.

[0067] On the other hand, since the above effect will be saturated even if a large amount is comprised, the Zr content is set to 1.000% or less. If necessary, the Zr content may be limited to 0.500% or less, 0.200% or less, 0.100% or less or 0.050% or less.

⁵⁵ As: 0.001% to 0.100%

[0068] As refines the prior austenite grains by lowering an austenite single-phase transformation temperature. As a result, As contributes for improvement of the bendability of the hot stamped component. In order to reliably obtain the

effect, the As content is preferably set to 0.001% or more.

10

20

50

[0069] On the other hand, since the above effect will be saturated even if a large amount is comprised, the As content is set to 0.100% or less. If necessary, the As content may be limited to 0.500% or less, 0.200% or less, 0.100% or less or 0.050% or less.

[0070] The remainder of the chemical composition of the hot stamped component may be Fe and impurities. Elements which are unavoidably mixed from a steel raw material or scrap and/or during the manufacture of steel and are allowed in a range where the properties of the hot stamped component according to the present embodiment do not deteriorate are exemplary examples of the impurities.

[0071] The above-mentioned chemical composition of the hot stamped component may be measured by an ordinary analysis method. For example, the chemical composition may be measured using inductively coupled plasma-atomic emission spectrometry (ICP-AES). C and S may be measured using a combustion-infrared absorption method, N may be measured using an inert gas fusion-thermal conductivity method, and O may be measured using an inert gas fusion-nondispersive infrared absorption method.

[0072] When a plating layer or a coating film is provided on the surface of the hot stamped component, the chemical composition is analyzed after the plating layer or the coating film is removed by mechanical grinding.

[0073] Next, the microstructure of the hot stamped component according to the present embodiment will be described. [0074] In the hot stamped component according to the present embodiment, in a position at 1/4 of a sheet thickness from a surface, in a texture of prior austenite, a maximum value of pole densities of an orientation group expressed by Euler angles of $\Phi = 60^{\circ}$ to 90° , $\Phi = 60^{\circ}$ to 90° , and $\Phi = 45^{\circ}$ is 3.0 or more, an average value of block sizes of martensite, tempered martensite and bainite is 1.20 μ m or less.

[0075] In the present embodiment, the microstructure is specified in the position at 1/4 of the sheet thickness from the surface of the hot stamped component (in a region from a depth of 1/8 of the sheet thickness from the surface to a depth of 3/8 of the sheet thickness from the surface). The reason therefor is that the microstructure at this position indicates a typical microstructure of the hot stamped component.

[0076] Note that when the hot stamped component has the plating layer or the coating film on the surface thereof, the "surface" refers to the interface of the plating layer or the coating film and the base steel sheet.

[0077] In texture of prior austenite, maximum value of pole densities of orientation group expressed by Euler angles of Φ = 60° to 90°, Φ = 60° to 90°, and Φ = 45°: 3.0 or more

[0078] The present inventors obtained the following findings about a texture of prior austenite.

[0079] By developing the texture of prior austenite, it is possible to alleviate a strain concentration introduced by bending deformation. As a result, an increase of a load in an initial stage of the bending deformation is reduced and the bendability of the hot stamped component can be increased.

[0080] In the texture of prior austenite, when the maximum value of pole densities of the orientation group expressed by Euler angles of Φ = 60° to 90°, ϕ 1 = 60° to 90°, and ϕ 2 = 45° (hereinafter, it may be referred as the pole density in the texture of prior austenite) is less than 3.0, a desired bendability of the hot stamped component cannot be obtained. For this reason, the maximum value of the pole densities of the orientation group in the texture of prior austenite is set to 3.0 or more. It is preferably 5.0 or more.

[0081] The upper limit is not particularly limited, but the maximum value of the pole densities of the orientation group in the texture of prior austenite may be set to 50.0 or less, 20.0 or less, 15.0 or less or 10.0 or less.

[0082] The pole density in the texture of prior austenite is measured by the following method.

[0083] The pole density of the texture of prior austenite is measured using an EBSD analyzer including a thermal field emission type scanning electron microscope and an EBSD detector, and the software "OIM Analysis (registered trademark)" attached to the EBSD analyzer. The pole density of the texture of prior austenite can be obtained by using the orientation data measured by the EBSD (Electron Back Scattering Diffraction) method and an orientation distribution function (ODF) that displays the three-dimensional texture calculated by computing, using spherical harmonics.

[0084] For a sample to be subjected to analysis by the EBSD method, a cross section parallel to a rolling direction and perpendicular to a sheet surface is mechanically polished, and strain is removed by chemical polishing or electrolytic polishing. Using this sample, EBSD measurement is performed at the position at 1/4 of the sheet thickness from the surface (in the region from the depth of 1/8 of the sheet thickness from the surface to the depth of 3/8 of the sheet thickness from the surface), with a measurement range of 150 μ m in length and a region of 50 μ m in the sheet thickness direction and measurement intervals of 0.2 μ m. For the measurement, an EBSD analyzer including a thermal field emission type scanning electron microscope and an EBSD detector may be used, for example, an EBSD analyzer including JSM-7001F manufactured by JEOL Ltd. and DVC5-type detector manufactured by TSL Solutions may be used. In this case, the degree of vacuum in the EBSD analyzer may be set to 9.6 \times 10-5 Pa or less, the acceleration voltage may be set to 15 kV and the irradiation current level may be set to 13.

[0085] The orientation of prior austenite is measured by the following method. The orientation of prior austenite is calculated by the method described in Non-Patent Document 1, and the orientation of the prior austenite in each coordinate of the EBSD-measured region is specified. Next, an orientation map of prior austenite is created using the

"Inverse Pole Figure" function installed in the software "OIM Analysis (registered trademark)" attached to the EBSD analyzer. Based on the orientation map, the maximum value of pole densitis of an orientation group within the ranges of Φ = 60° to 90°, φ 1 = 60° to 90° in section of φ 2 = 45° is calculated. As a result, the maximum value of the pole densitis of the orientation group expressed by Euler angles of Φ = 60° to 90°, φ 1 = 60° to 90°, and φ 2 = 45° is obtained.

[0086] Analyses of a texture using the Euler angles $(\phi 1, \Phi, \phi 2)$ are widely performed. For example, the definition of the Euler angles $(\phi 1, \Phi, \phi 2)$ is described in Hiroshi Inoue: "Lecture (Easy Material Analysis Techniques) - Three-dimensional Orientation Analysis of Texture", Light Metals, Vol. 41, No. 6 (1992), 358. By performing analysis using the above-mentioned software, even a person who does not fully understand the definition of the Euler angles $(\phi 1, \Phi, \phi 2)$ can easily calculate the maximum value of the pole densitis of the orientation group within the ranges of $\Phi = 60^\circ$ to 90° , $\phi 1 = 60^\circ$ to 90° in section of $\phi 2 = 45^\circ$.

Average value of block sizes of martensite, tempered martensite and bainite: 1.20 μm or less

10

20

30

45

50

[0087] When the average value of block sizes of martensite, tempered martensite and bainite is more than 1.20 μ m, a desired bendability of the hot stamped component cannot be obtained. For this reason, the average value of block sizes of martensite, tempered martensite and bainite is set to 1.20 μ m or less. It is preferably 1.00 μ m or less, and more preferably 0.90 μ m or less.

[0088] The lower limit is not particularly limited, but it may be set to $0.30~\mu m$ or more, $0.40~\mu m$ or more or $0.50~\mu m$ or more. [0089] The average value of block sizes of martensite, tempered martensite and bainite is measured by the following method.

[0090] A sample is cut out from an arbitrary position away from an end surface of the hot stamped component by a distance of 50 mm or more (a position that possibly avoids an end portion in a case where the sample cannot be collected at this position) so that a sheet thickness cross section parallel to the rolling direction can be observed. The size of the sample depends on a measurement device, but is set to a size that can be observed by at least about 10 mm in the rolling direction.

[0091] After polishing the cross section of the above sample using silicon carbide paper of #600 to #1500, the cross section is mirror-finished using liquid in which diamond powder having a grain size in the range of 1 to 6 μ m is dispersed in a diluted solution of alcohol or the like or pure water. Next, the observation surface is finished by electrolytic polishing. Using this sample, in a position at 1/4 of the sheet thickness from the surface (a region from a depth of 1/8 of the sheet thickness from the surface to a depth of 3/8 of the sheet thickness from the surface), an orientation information is obtained by measurement using an electron backscatter diffraction method with a measurement range of 150 μ m in length and a region of 50 μ m in the sheet thickness direction and measurement intervals of 0.2 μ m. For the measurement, an EBSD analyzer including a thermal field emission type scanning electron microscope and an EBSD detector may be used, for example, an EBSD analyzer including JSM-7001F manufactured by JEOL Ltd. and DVC5-type detector manufactured by TSL Solutions may be used. In this case, the degree of vacuum in the EBSD analyzer may be set to 9.6 \times 10-5 Pa or less, the acceleration voltage may be set to 15 kV and the irradiation current level may be set to 13.

[0092] In the obtained orientation information, using "Phase Map" function installed in the software "OIM Analysis (registered trademark)" attached to the EBSD analyzer, a region where a crystal structure is fcc is extracted. In these regions, using "Grain Average Misorientation" function installed in the software "OIM Analysis (registered trademark)" attached to the EBSD analyzer, under the condition that boundary with a crystal misorientation of 5° or more is regarded as the grain boundary, regions where the grain average misorientation is more than 0.5° are extracted as martensite, tempered martensite and bainite. For the obtained region, under the condition that boundary with a crystal misorientation of 15° or more is regarded as the grain boundary, the average value of block sizes of martensite, tempered martensite and bainite is obtained by obtaining the value calculated by the Number method using the "Grain Size (diameter)" function. [0093] Note that the rolling direction of the hot stamped component is determined by the following method.

[0094] First, a sample is collected so that a sheet thickness cross section of the hot stamped component can be observed. The sheet thickness cross section of the collected sample is finished by mirror polishing, and then observed with an optical microscope. The observation area is width of $500~\mu m$ and full of the sheet thickness, and the areas with low brightness are determined as inclusions. Next, using the sheet thickness cross section initially observed by the above method as a reference, in the range of 0° to 180° with the sheet thickness direction as the axis, the cross-sectional observations of the plane parallel to the plane rotated in 5° increments are performed in the same way as the above method. The average values of the lengths of the long axes of inclusions in each cross section are calculated respectively, and a direction parallel to the long axes of the inclusions in the cross section in which the average value of the length of the long axes of the inclusions is maximum is determined as the rolling direction.

[0095] Note that when the rolling direction of the hot stamped component is known in advance, the rolling direction of the hot stamped component may be determined without using the above-mentioned determination method.

[0096] The microstructure of the hot stamped component is not particularly limited as long as a desired strength and bendability can be obtained. For example, the microstructure may consist of, by area%, a total of 90% or more of martensite, bainite and tempered martensite, and 10% or less of ferrite and residual austenite.

The area ratios of each structure are measured by the following method.

[0097] A sample is cut out from an arbitrary position away from an end surface of the hot stamped component by a distance of 50 mm or more (a position that possibly avoids an end portion in a case where a sample cannot be collected at this position) so that a sheet thickness cross section parallel to the rolling direction can be observed. The size of the sample depends on a measurement device, but is set to a size that can be observed by at least about 10 mm in the rolling direction. [0098] After polishing the cross section of the sample using silicon carbide paper of #600 to #1500, the cross section is mirror-finished using liquid in which diamond powder having a grain size in the range of 1 to 6 μ m is dispersed in a diluted solution of alcohol or the like or pure water. Next, the observation surface is finished by electrolytic polishing. At an arbitrary position on the cross section of the sample in a longitudinal direction, for a region which has a length of 50 μ m and is present in a region from the depth of 1/8 of the sheet thickness from the surface to the depth of 3/8 of the sheet thickness from the surface, an orientation information is obtained by measurement using the electron backscatter diffraction method with measurement intervals of 0.1 μ m. For the measurement, an EBSD analyzer including a thermal field emission type scanning electron microscope and an EBSD detector may be used, for example, an EBSD analyzer including JSM-7001F manufactured by JEOL Ltd. and DVC5-type detector manufactured by TSL Solutions may be used. In this case, a degree of vacuum in the EBSD analyzer may be set to 9.6 \times 10-5 Pa or less, the acceleration voltage may be set to 15 kV and the irradiation current level may be set to 13.

[0099] Using the obtained crystal structure information and the "Phase Map" function installed in the software "OIM Analysis (registered trademark)" attached to the EBSD analyzer, a region where a crystal structure is fcc is determined as residual austenite. The ratio of the residual austenite is calculated, thereby obtaining the area ratio of the residual austenite. Next, in the regions where the crystal structure is bcc is determined as bainite, tempered martensite, martensite and ferrite. For these regions, using the "Grain Average Misorientation" function installed in the software "OIM Analysis (registered trademark)" attached to the EBSD analyzer, under the condition that boundary with a crystal misorientation of 5° or more is regarded as the grain boundary, regions where the grain average misorientation is 0.5° or less are extracted as ferrite. The area ratio of the extracted ferrite is calculated, thereby obtaining the area ratio of ferrite.

[0100] Subsequently, the area ratio of the remaining region (the region where "Grain Average Misorientation" is more than 0.5°) is regarded as the area ratio as martensite, tempered martensite and bainite.

[0101] The hot stamped component may have a plating layer or a coating film on the surface. By having the plating layer or the coating film on the surface, corrosion resistance can be improved after hot stamping. Examples of the plating layer include an aluminum plating layer, aluminum-galvanized layer, aluminum-silicon plating layer, hot-dip galvanized layer, electrogalvanized layer, galvannealed layer, zinc-nickel plating layer, aluminum-magnesium-zinc-based plating layer.

[0102] The sheet thickness of the hot stamped component according to the present embodiment is not particularly limited, but it is preferably set to 0.5 to 3.5 mm from the perspective of reducing the weight of a vehicle body or the like.

[0103] It is not specifically necessary to limit the shape of the hot stamped component. For example, the hot stamped component may have a flat sheet shape, a curved shape, or a three-dimensional shape such as a hat shape.

[0104] The hot stamped component according to the present embodiment preferably have a tensile strength of 2300 MPa or more. The tensile strength is more preferably 2400 MPa or more, and even more preferably 2500 MPa or more. It is not necessary to limit the upper limit of the tensile strength, if necessary, the tensile strength may be set to 3000 MPa or less or 2800 MPa or less.

[0105] The tensile strength is obtained according to the test method described in JIS Z 2241:2011 by producing a No. 5 test piece described in JIS Z 2241:2011 from a flat position of the hot stamped component. A crosshead speed is set to 1 mm/min.

[0106] When the hot stamped component according to the present embodiment has a flat sheet shape (has no curved portion, etc.), a load at a 1/2 stroke of a stroke at the maximum load is preferably 8050 N or more. It is more preferably 8100 N or more, and even more preferably 8150 N or more. However, these standards are based on the case where the sheet thickness of the hot stamped component is 1.6 mm.

[0107] The load at the 1/2 stroke is obtained by performing a bending test under the following conditions based on the VDA standard (VDA238-100: 2017-04) specified by the Verband der Automobilindustrie and obtaining the load at the 1/2 stroke of the stroke at the maximum load.

[0108] When the sheet thickness of the hot stamped component is more than 1.6 mm, the bending test is performed after reducing the sheet thickness to 1.6 mm.

[0109] When the sheet thickness of the hot stamped component is less than 1.6 mm, where t is the sheet thickness of the hot stamped component, the load at the 1/2 stroke of the stroke at the maximum load is preferably $8050 \times t/1.6$ (N) or more.

[0110] Note that the load at the 1/2 stroke of the stroke at the maximum load (however, when the sheet thickness of the hot stamped component is less than 1.6 mm, the value obtained by multiplying the load at the 1/2 stroke by 1.6/t (t is the sheet thickness in mm)) rarely exceeds 8500 N, 8300 N or 8200 N.

[0111]

10

20

Dimensions of test piece: 60 mm (rolling direction) × 30 mm (direction parallel to sheet width direction)

Bending ridge: direction parallel to sheet width direction

Test method: roll support and punch pressing

Roll diameter: ϕ 30 mm

5 Punch shape: tip end R=0.4 mm

Distance between rolls: $2.0 \times$ sheet thickness (mm) + 0.5 mm

Pressing speed: 20 mm/min

Tester: for example, SHIMADZU AUTOGRAPH 20 kN

10 [0112] Next, a steel sheet for hot stamping for obtaining the hot stamped component according to the present embodiment will be described.

[0113] The steel sheet for hot stamping has the above-described chemical composition. The microstructure of the steel sheet for hot stamping is not particularly limited as long as a desired strength and bendability are obtained after hot stamping. For example, the microstructure may consist of, by area%, ferrite: 0% to 90%, bainite and martensite: 0% to 100%, pearlite: 0% to 80%, and residual austenite: 0% to 5%.

[0114] Further, the steel sheet for hot stamping may have a plating layer or a coating film on the surface. By having the plating layer or the coating film on the surface, corrosion resistance can be improved after hot stamping. Examples of the plating layer include an aluminum plating layer, aluminum-galvanized layer, aluminum-silicon plating layer, hot-dip galvanized layer, electrogalvanized layer, galvannealed layer, zinc-nickel plating layer, aluminum-magnesium-zinc-based plating layer.

Manufacturing method of steel sheet for hot stamping

[0115] A manufacturing method to obtain the steel sheet for hot stamping for obtaining the hot stamped component according to the present embodiment will be described. In order to obtain the above-described hot stamped component, it is particularly effective to control the finish rolling conditions during hot rolling in the manufacturing method of the steel sheet for hot stamping.

Finish rolling

20

25

30

50

[0116] In the finish rolling, it is preferable to perform a rolling at one stand before a final stand and a rolling at the final stand with a rolling reduction of 50% or more respectively. By performing the rolling at one stand before the final stand and the rolling at the final stand with the rolling reduction of 50 % or more, it is possible to control prior austenite with a desired texture

[0117] Note that the rolling reduction here can be expressed as $(1-t1/t0)\times100$ (%), where t0 is an inlet sheet thickness and t1 is an outlet sheet thickness of each stand.

[0118] After the completion of the finish rolling (after the rolling of the final stand), it is preferable to start cooling after a lapse of 5.0 seconds or more. By elapsing 5.0 seconds or more before starting cooling, granular austenite grains can be generated. As a result, austenite grains with a flat shape are reduced, and granular austenite grains can be sufficiently secured.

[0119] Note that the cooling here does not include air cooling (cooling at an average cooling rate of slower than 10 $^{\circ}$ C/s), but includes, for example, such as water cooling at an average cooling rate of 10 $^{\circ}$ C/s or faster. The cooling stop temperature is preferably 550 $^{\circ}$ C to 650 $^{\circ}$ C.

[0120] By the cooling after the finish rolling, austenite transforms into ferrite and pearlite. At this time, pearlite transformation progresses from the grain boundaries of the prior austenite grains. Pearlite having a specific texture is generated by transformation from austenite grains having a specific texture.

[0121] In addition, in order to soften the hot-rolled steel sheet, a coil after coiling may be subjected to softening heat treatment. The method of the softening heat treatment is not particularly limited, and an ordinary conditions may be used.

[0122] The total reduction during cold rolling is preferably set to 50 % or less. The total reduction here can be expressed as $(1-t3/t2)\times100$ (%), where t3 is the sheet thickness after the cold rolling and t2 is the sheet thickness before the cold rolling.

Hot stamping

[0123] A hot stamped component according to the present embodiment is obtained by hot stamping the steel sheet for hot stamping manufactured by the above-described method. As the hot stamping conditions, for example, it is preferable to heat the steel sheet for hot stamping to a temperature range of 800°C to 1000°C and hold in this temperature range for 60 to 1200 seconds.

[0124] By heating during hot stamping, a reverse transformation from pearlite to austenite is caused. Because pearlite has a specific texture, the texture of the austenite generated by the reverse transformation develops. By cooling after hot stamping, a transformation from austenite to martensite is caused. When the final structure becomes martensite, the texture of austenite is preserved. Therefore, the texture of the prior austenite remains developed in the structure after hot stamping.

[0125] When the heating temperature is lower than 800°C or the holding time is shorter than 60 seconds, austenitization becomes insufficient, and the bendability may deteriorate or a desired strength may not be obtained in the hot stamped component. On the other hand, when the heating temperature is higher than 1000°C or the holding time is longer than 1200 seconds, the grains of prior austenite grow excessively, and the bendability may deteriorate or a desired strength may not be obtained in the hot stamped component.

[0126] A heating atmosphere is, for example, such as the atmosphere, a gas combustion atmosphere with a controlled ratio of air and fuel, or a nitrogen atmosphere, and the dew point of these gases may be controlled.

[0127] After holding in the temperature range, hot stamping is performed. After hot stamping, cooling may be performed to a temperature range of 250°C or lower at an average cooling rate of 20°C/s or faster.

[0128] Examples of heating methods before hot stamping include heating using an electric furnace and a gas furnace, a flame heating, an electrical heating, a highfrequency heating, and an induction heating.

[0129] By the above methods, the hot stamped component according to the present embodiment is obtained. A tempering treatment at 130°C to 600°C may be performed after hot stamping for softening, or a baking hardening treatment after painting may be performed. In addition, a portion of the hot stamped component may be tempered by laser irradiation or the like to provide a partially softened region.

Examples

5

10

20

30

50

[0130] Next, examples of the present invention will be described. Conditions in the examples are one example of conditions employed to confirm the feasibility and effects of the present invention, but the present invention is not limited to these examples. The present invention may employ various conditions to achieve the object of the present invention without departing from the scope of the present invention.

[0131] Slabs manufactured by casting molten steel having a chemical composition shown in Tables 1A to 1F were held in a temperature range of 1200°C or higher for 20 minutes or longer, and then subjected to hot rolling, coiling, and cold rolling. The final rolling was performed under conditions shown in Tables 2A to 2E.

[0132] Note that after the completion of the finish rolling, the average cooling rate of cooling after a lapse of 5.0 seconds or more was 10 °C/s or faster, and the cooling stop temperature was 550°C to 650°C. In addition, the total reduction of cold rolling was 50% or less.

[0133] The obtained steel sheets for hot stamping were subjected to hot stamping under the conditions shown in Tables 2A to 2E, and then cooled to the temperature range of 250°C or lower at an average cooling rate of 20°C/s or faster. As a result, the hot-stamping formed bodies shown in Tables 3A to 3G were obtained.

[0134] However, for some examples, as described in the tables, plating or heating treatment for softening were performed.

[0135] The underlines in the tables indicate that it is outside the scope of the present invention, falls outside the preferable manufacturing conditions, or the characteristic value is not preferable.

[0136] The microstructure of the hot stamped component according to the present invention consisted of, by area%, a total of 90% or more of martensite, bainite and tempered martensite, and 10% or less of ferrite and residual austenite. In addition, the sheet thickness of the hot stamped component according to the present invention was 0.5 to 3.5 mm.

[0137] Measurements of the microstructure of the hot stamped component and the measurement of the mechanical properties of the hot stamped component were performed by the above-described methods.

[0138] The bending test according to the VDA standard (VDA238-100: 2017-04) is widely performed on components for vehicle, but the bending test targets only flat sheet. Therefore, this VDA standard cannot evaluate the bendability of the hot stamped component with shapes other than flat sheet shape. On the other hand, when the hot stamped component has a bent portion, the bend portion is affected by such as the curvature of the bent portion. For this reason, the inventors considered that it is appropriate to evaluate the bendability according to this VDA standard using a hot stamped component with a flat sheet shape as a test material. Therefore, the bending test was performed on a hot stamped component with a flat sheet shape obtained by hot stamping without bending (using a die that can obtain a hot stamped component without a bent portion). In addition, since the rolling direction of the hot stamped component was known in advance, the rolling direction of the hot stamped component was determined without determining of the rolling direction by evaluation using the above-mentioned determination method. For the bending test machine, a SHIMADZU AUTOGRAPH 20kN was used.

[0139] When the tensile strength TS was 2300 MPa or more, it was determined as having high strength and acceptable, and when the tensile strength TS was less than 2300 MPa, it was determined as not having high strength and unacceptable.

[0140] When the load at the 1/2 stroke of the stroke at the maximum load was 8050 N or more, it was determined as having excellent bendability and acceptable. On the other hand, when the load at the 1/2 stroke of the stroke at the maximum load was less than 8050 N, it was determined as not having excellent bendability and unacceptable. However, in a case where the sheet thickness of the hot stamped component was less than 1.6 mm, where t was the sheet thickness of the hot stamped component, when the load at the 1/2 stroke of the stroke at the maximum load was $8050 \times t/1.6$ (N) or more, it was determined as having excellent bendability and acceptable. On the other hand, when the load at the 1/2 stroke of the stroke at the maximum load was less than $8050 \times t/1.6$ (N), it was determined as not having excellent bendability and unacceptable. Note that in a case where the sheet thickness of the hot stamped component was less than 1.6 mm, the value obtained by multiplying the load at the 1/2 stroke by 1.6/t (t is the sheet thickness in mm) was mentioned in the "Load at 1/2 stroke" in Tables 3 A to 3G.

Steel of present invention present invention Steel of present invention Somparative steel Somparative steel Comparative steel Comparative steel Somparative steel Somparative steel present Notes 5 ₹ o Steel Steel 10 Others 0.0018 0.0028 0.0016 0.0026 0.0026 0.0025 0.0019 0.0025 0.0032 0.0033 0.0023 0.0022 0.0024 0.0032 0.0034 0.0029 0.0022 0.0034 0.0027 15 0.0021 Ш 0.200 0.210 0.240 0.170 0.180 0.180 0.180 0.210 0.140 0.210 0.130 0.150 0.190 0.160 0.230 0.200 0.190 0.230 0.190 0.180 0.220 0.230 0.180 0.180 0.150 $\frac{9}{2}$ 20 0.410 0.350 0.140 0.430 0.190 0.430 0.230 0.170 0.320 0.230 0.110 0.170 0.160 0.380 0.200 0.310 0.230 0.300 0.320 0.220 0.350 0.340 0.240 0.380 0.330 ပ် impurities 0.025 0.036 0.025 0.033 0.039 0.034 0.039 0.019 0.035 0.038 0.033 0.048 0.020 0.047 0.043 0.030 0.022 0.020 0.030 0.040 0.047 0.031 0.037 0.037 0.027 25 i= and remainder being Fe 0.0410 0.0410 0.0310 0.0210 0.0270 0.0200 0.0220 0.0280 0.0360 0.0230 0.0330 0.0330 0.0360 0.0150 0.0290 0.0380 0.0190 0.0340 0.0180 0.0360 0.0150 0.0390 0.0360 0.0210 0.0260 원 Table 1A 30 0.0490 0.0450 0.0610 0.0470 0.0410 0.0500 0.0500 0.0460 0.0590 0.0420 0.0440 0.0400 0.0560 0.0580 0.0610 0.0450 0.0450 0.0440 0.0570 0.0390 0.0490 0.0520 0.0520 0.0550 0.0550 ₹ Chemical composition (mass%) 0.0010 0.0016 0.0015 0.0014 0.0010 0.0015 0.0012 0.0012 0.0033 0.0016 0.0025 0.0033 0.0019 0.0012 0.0017 0.0017 0.0029 0.0025 0.0025 0.0030 0.0020 0.0023 0.0024 0.0033 0.0027 35 0 0.0018 0.0038 0.0017 0.0046 0.0040 0.0028 0.0046 0.0042 0.0021 0.0023 0.0046 0.0021 0.0016 0.0024 0.0022 0.0022 0.0040 0.0033 0.0029 0.0029 0.0037 0.0037 z 40 0.0015 0.0013 0.0018 0.0018 0.0018 0.0012 0.0009 0.0013 0.0005 0.0006 0.0020 0.0020 0.0004 0.0004 0.0017 0.0013 0.0018 0.0008 0.0020 0.0015 0.0020 0.0007 0.0020 0.0007 0.0021 ഗ 45 0.008 0.009 0.009 0.005 0.009 900.0 0.009 0.008 0.005 0.006 0.004 900.0 0.005 0.004 0.005 0.011 0.004 0.006 0.004 0.007 0.007 0.004 0.007 0.011 0.007 ℩ 0.46 0.45 0.35 0.35 0.16 0.39 0.55 0.35 0.30 0.49 0.57 0.56 0.29 0.57 0.24 0.47 0.39 0.32 0.49 0.36 0.33 0.05 0.24 0.84 0.57 듬 50 0.270 0.070 0.630 0.510 0.480 0.440 0.380 0.500 0.020 0.140 0.260 0.440 0.870 909 2.700 3.200 0.250 0.660 0.480 0.450 0.220 .550 0.330 0.580 0.008 \overline{S} 0.45 0.46 0.45 0.45 0.38 0.43 0.55 99.0 0.72 0.46 0.46 0.44 0.44 0.46 0.45 0.45 0.44 0.44 0.45 0.47 0.47 0.47 0.47 O 55 16 25 g 9 7 7 5 4 5 8 9 20 23 24 6 17 7 22 α က 2 9 / ω 4

5		sotoly	6000	Steel of present invention
			Others	
15			В	0.0032
20			Мо	0.230
		urities	ъ	0.340
25		and imp	ı	0.029
30	continued)	r being Fe	qN	0.0011 0.0400 0.0290 0.029 0.340 0.230 0.0032
	(cor	remainde	ΙΥ	0.0400
35		on (mass%) remainder being Fe and impurities	0	0.0011
40		composition	Z	2800.0
		Chemical compositi	S	26 0.47 0.570 0.29 0.012 0.0013 0.0037
45)	d	0.012
50			Mn	0.29
			Si	0.570
55			၁	0.47
		Steel	Š.	26

[0141] The underline indicates that it is outside the scope of the present invention.

Steel of present invention present invention Steel of present invention invention Comparative steel Somparative steel Somparative steel Somparative steel Comparative present i Notes 5 Steel of οĘ Steel 10 Others 0.0023 0.0023 0.0026 0.0025 0.0022 0.0022 0.0030 0.0030 0.0028 0.0029 0.0032 0.0030 0.0033 0.0034 0.0017 0.0034 0.0028 0.0022 0.0031 0.0017 0.0027 0.0034 15 Ш 0.170 0.220 0.230 0.240 0.140 0.130 0.190 0.140 0.200 0.230 0.220 0.180 0.190 0.240 0.120 0.200 0.220 0.230 0.160 0.220 0.150 0.150 0.130 0.200 0.160 $\frac{9}{2}$ 20 0.410 0.110 0.140 0.150 0.330 0.110 0.190 0.260 0.140 0.430 0.140 0.180 0.410 0.200 0.250 0.270 0.260 0.290 0.130 0.260 0.280 0.280 0.190 0.250 ပ် impurities 0.035 0.035 0.035 0.043 0.046 0.028 0.025 0.035 0.026 0.029 0.048 0.028 0.022 0.025 0.026 0.032 0.038 0.037 0.020 0.047 0.037 0.041 0.041 0.021 0.037 25 i= and remainder being Fe 0.0210 0.0310 0.0130 0.0140 0.0230 0.0200 0.0170 0.0150 0.0200 0.0340 0.0240 0.0230 0.0280 0.0240 0.0200 0.0160 0.0190 0.0360 0.0280 0.0150 0.0130 0.0290 0.0240 0.0220 0.0340 원 Table 1B 30 0.0610 0.0510 0.0570 0.0006 0.0019 0.0390 0.0470 0.0430 0.0490 0.0580 0.0550 0.0420 0.0530 0.0490 0.0490 0.0460 0.0400 0.0440 0.0410 0.0590 0.0052 0.0590 0.0530 0.0580 ₹ Chemical composition (mass%) 0.0016 0.0014 0.0013 0.0013 0.0019 0.0016 0.0176 0.0240 0.0009 0.0010 0.0019 0.0058 0.0017 0.0026 0.0023 0.0022 0.0017 0.0038 0.0084 0.0024 0.0020 0.0022 0.0031 0.0011 0.0011 35 0 0.0012 0.0016 0.0019 0.0019 0.0043 0.0040 0.0038 0.0026 0.0020 0.0023 0.0028 0.0022 0.0065 0.0026 0.0030 0.0024 0.0039 0.0041 0.0042 0.0047 0.0089 0.0041 0.0034 0.0121 z 40 0.0012 0.0019 0.0012 0.0075 0.0003 0.0012 0.0012 0.0015 0.0013 0.0012 0.0011 0.0009 0.0008 0.0028 0.0043 0.0092 0.0134 0.0020 0.0004 0.0011 0.0021 0.0011 0.0021 0.001 0.001 ഗ 45 0.012 0.010 0.010 0.008 0.009 0.012 0.010 0.008 0.005 900.0 0.006 0.009 900.0 0.010 900.0 0.008 900.0 0.025 0.046 0.083 0.120 0.011 0.004 0.008 0.011 ℩ 0.55 0.39 0.38 0.49 0.53 0.25 0.55 0.28 0.28 0.49 0.26 0.47 55 0.49 0.37 0.24 35 39 55 55 48 25 0.57 53 57 듬 ò o. o. o. o. o. o. o. 50 0.210 0.410 0.310 0.240 0.470 0.210 0.580 0.250 0.400 0.640 0.350 0.280 0.590 0.530 0.480 0.530 0.280 0.420 0.290 .560 0.270 0.590 .520 0.660 \overline{S} o. o. 0.45 0.46 0.46 0.46 0.45 0.44 0.45 0.44 0.44 0.46 0.44 0.47 0.46 0.44 0.46 0.45 0.44 0.46 0.47 0.47 0.47 0.47 0.44 0.47 O 55 g 28 29 30 32 33 34 35 36 37 38 39 40 42 43 4 45 46 48 49 50 27 31 4 47 5

5		SOLON	20100	Steel of present invention
			Others	
15			В	0.0018
20			Мо	0.150
		urities	Cr	0.290
25		and imp	Ц	0.040
30	continued)	ion (mass%) remainder being Fe and impurities	qN	0.0026 0.0130 0.0270 0.040 0.290 0.150 0.0018
	(cor	remainde	IV	0.0130
35		n (mass%)	0	0.0026
40		composition	z	0.0026
		Chemical composit	S	52 0.44 0.420 0.26 0.009 0.0015 0.0026
45)	Ь	0.009
50			Mn	0.26
			Si	0.420
55			၁	0.44
		Steel	Š.	52

[0142] The underline indicates that it is outside the scope of the present invention.

Steel of present invention present invention Steel of present invention Somparative steel Comparative steel Comparative steel Somparative steel Notes present 5 ₹ o Steel Steel 10 Others 0.0018 0.0018 0.0026 0.0023 0.0030 0.0026 0.0019 0.0019 0.0023 0.0032 0.0026 0.0029 0.0029 0.0023 0.0023 0.0026 0.0022 0.0033 0.0020 0.0024 0.0031 0.0021 0.0034 15 0.0017 В 0.170 0.220 0.230 0.210 0.170 0.170 0.240 0.140 0.170 0.140 0.240 0.120 0.120 0.150 0.170 0.150 0.200 0.190 0.220 0.240 0.120 0.190 0.120 0.150 0.180 $\frac{9}{2}$ 20 0.120 0.380 0.110 0.240 0.110 0.230 0.370 0.170 0.160 0.430 0.190 0.200 0.190 0.160 0.170 0.350 0.220 0.140 0.420 0.280 0.290 0.180 0.260 0.360 0.260 ပ် impurities 0.019 0.048 0.075 0.029 0.020 0.038 0.025 0.039 0.013 0.038 0.062 0.020 0.041 0.042 0.034 0.034 0.044 0.029 0.007 0.022 0.047 0.087 0.041 0.021 0.031 25 i= and remainder being Fe 0.0410 0.0012 0.0076 0.0380 0.0310 0.0400 0.0150 0.0008 0.0039 0.0120 0.0340 0.0160 0.0260 0.0130 0.0320 0.0400 0.0180 0.0560 0.0880 0.1330 0.0220 0.0140 0.0280 0.0210 0.0270 원 30 0.0510 0.0610 0.0530 0.0540 0.0500 0.0390 0.1800 0.2500 0.3200 0.4800 0.6200 0.0520 0.0500 0.0600 0.0490 0.0450 0.0420 0.0510 0.0570 0.0440 0.0590 0.0500 0.0820 0.0580 0.0390 ₹ Chemical composition (mass%) 0.0013 0.0019 0.0016 0.0015 0.0028 0.0013 0.0025 0.0015 0.0018 0.0032 0.0009 0.0029 0.0017 0.0023 0.0033 0.0028 0.0009 0.0014 0.0030 0.0009 0.0030 0.0029 0.0011 0.0031 0.0021 35 0 0.0035 0.0023 0.0018 0.0015 0.0039 0.0024 0.0022 0.0023 0.0032 0.0038 0.0025 0.0042 0.0032 0.0016 0.0040 0.0040 0.0042 0.0036 0.0016 0.0041 0.0028 0.0016 0.0042 0.0027 z 40 0.0018 0.0014 0.0019 0.0012 9000.0 0.0003 0.0014 0.0018 0.0008 0.0014 0.0005 0.0020 0.0003 0.0009 0.0003 0.0020 0.0013 0.0002 0.0021 0.0020 0.0007 0.0004 0.0011 0.0021 ഗ 45 0.010 0.009 0.012 0.009 0.005 0.005 0.012 0.010 0.009 0.010 900.0 0.009 0.012 0.005 0.012 0.007 0.010 0.011 0.007 0.011 0.007 0.007 0.011 0.004 0.007 ℩ 0.38 0.35 0.55 0.35 0.42 0.33 0.28 0.32 0.30 0.53 0.55 0.31 0.33 0.44 0.49 0.27 0.44 0.44 0.55 0.32 0.27 0.34 28 0.27 53 듬 o. 50 0.470 0.570 0.300 0.220 0.330 0.540 0.590 0.330 .570 0.670 0.600 0.5500.5600.620 0.400 0.620 0.470 0.620 0.560 0.440 .500 0.320 0.560 \overline{S} o. 0.45 0.45 0.45 0.46 0.45 0.45 0.45 0.47 0.45 0.46 0.45 0.46 0.44 0.46 0.45 0.45 0.45 0.46 0.46 0.44 0.45 0.47 0.47 0.47 O 55 g 55 56 58 59 9 63 64 65 99 68 69 2 7 72 73 7 75 9/ 53 54 62 77 57 6 67

5		0 to	Notes	Comparative steel	Comparative steel
			Others		
15			В	0.0018	0.0018
20			Ti Cr Mo	0.230	0.150
		urities	Cr	0.230	0.007
25		and imp		0.121	0.040
30	(continued)	r being Fe	qN	0.0230	0.0320
	(cor	remainde	ΙΑ	0.0410	0.0520
35		ר (mass%)	0	0.0020 0.0410 0.0230 0.121 0.230 0.230 0.0018	0.0027 0.0520 0.0320 0.040 0.007 0.150 0.0018
40		Chemical composition (mass%) remainder being Fe and impurities	Z	0.0038	
		Shemical c	S	78 0.46 0.310 0.39 0.008 0.0012 0.0036	79 0.45 0.290 0.52 0.007 0.0019 0.0033
45			Ь	0.008	0.007
50			Si Mn	0.39	0.52
			Si	0.310	0.290
55			၁	0.46	0.45
		Steel	8	78	6/

[0143] The underline indicates that it is outside the scope of the present invention.

Steel of present invention Steel of present invention Steel of present invention of present invention Steel of present invention present invention Steel of present invention Somparative steel Comparative steel Comparative steel Somparative steel present i Notes 5 ₹ o Steel Steel Steel 10 Others 0.0019 0.0032 0.0025 0.0033 0.0028 0.0018 0.0018 0.0018 0.0029 0.0012 0.0055 0.0072 0.0086 0.0017 0.0023 0.0022 0.0024 0.0024 0.0004 0.0027 0.0007 15 0.0021 0.001 Ш 0.070 0.110 0.170 0.190 0.210 0.210 0.170 0.240 0.170 0.140 0.220 0.210 0.230 0.180 0.160 0.180 0.190 0.330 0.560 0.780 0.930 1.230 0.230 0.180 0.020 $\frac{9}{2}$ 20 0.410 0.018 0.110 0.280 0.350 0.480 0.140 0.190 0.410 0.310 0.320 0.330 0.220 0.390 0.110 0.170 0.130 0.290 0.380 0.120 0.650 0.880 1.220 0.230 0.260 ပ် impurities 0.019 0.019 0.033 0.039 0.035 0.048 0.043 0.030 0.046 0.028 0.029 0.033 0.032 0.032 0.032 0.034 0.020 0.037 0.031 0.047 0.034 0.042 0.022 0.027 0.021 25 i= and remainder being Fe 0.0210 0.0210 0.0310 0.0310 0.0370 0.0170 0.0170 0.0360 0.0320 0.0240 0.0270 0.0400 0.0130 0.0300 0.0260 0.0140 0.0190 0.0200 0.0160 0.0350 0.0250 0.0300 0.0190 0.0260 0.0130 원 30 0.0610 0.0460 0.0430 0.0410 0.0450 0.0600 0.0480 0.0530 0.0520 0.0460 0.0580 0.0420 0.0470 0.0610 0.0500 0.0430 0.0540 0.0540 0.0510 0.0460 0.0430 0.0550 0.0460 0.0550 0.061 ₹ Chemical composition (mass%) 0.0013 0.0015 0.0016 0.0016 0.0018 0.0015 0.0012 0.0023 0.0029 0.0016 0.0024 0.0026 0.0026 0.0016 0.0012 0.0012 0.0014 0.0022 0.0020 0.0026 0.0032 0.0033 0.0021 0.0031 0.0021 35 0 0.0019 0.0028 0.0019 0.0031 0.0036 0.0025 0.0046 0.0036 0.0035 0.0045 0.0033 0.0040 0.0024 0.0020 0.0024 0.0017 0.0021 0.0044 0.0029 0.0041 0.0037 0.0027 0.0027 0.0024 z 40 0.0019 0.0010 0.0005 9000.0 0.0013 0.0003 0.0019 0.0011 0.0008 0.0005 0.0009 0.0009 0.0005 0.0008 0.0014 0.0002 0.0005 0.0003 0.0017 0.0004 0.0006 0.0007 0.0021 0.0021 0.001 ഗ 45 0.008 0.005 0.010 0.005 0.005 0.010 0.010 0.009 900.0 0.008 0.012 0.008 900.0 0.009 0.012 0.007 0.007 0.011 0.008 0.005 0.007 0.004 0.007 0.011 0.007 ℩ 0.29 0.33 0.40 0.42 0.46 0.33 0.33 0.43 0.25 0.32 0.41 0.50 0.49 0.24 0.39 0.38 0.34 0.37 35 50 53 0.27 52 57 5 듬 o. o. o. Ö 50 0.410 0.610 0.580 0.220 0.620 0.250 0.450 0.280 0.330 0.530 0.600 0.630 0.560 0.480 0.250 0.420 0.300 0.250 0.3500.670 0.550.580 0.460 \overline{S} 0.45 0.45 0.46 0.45 0.45 0.44 0.44 0.44 0.46 0.44 0.46 0.46 0.44 0.44 0.46 0.44 0.46 0.46 0.44 0.44 0.45 0.44 0.44 0.46 46 O 55 103 104 100 102 10 g 83 84 85 86 88 89 90 93 95 96 98 66 8 82 87 9 92 8 97 8

5		SCHOOL	SOLO	Comparative steel
			Others	
15			В	0.0115
20			Mo	0.210
		urities	Cr	0.180
25		and imp	Ш	0.026
30	continued)	r being Fe	qN	0.0250
	(cor	remainde	Al	0.0033 0.0530 0.0250 0.026 0.180 0.210 0.0115
35		ition (mass%) remainder being Fe and impurities	0	0.0033
40		composition	Z	0.0031
		Chemical composit	S	105 0.46 0.230 0.37 0.005 0.0015 0.003
45)	Ь	0.005
50			Mn	0.37
			Si	0.230
55			O	0.46
		Steel	Š.	105

[0144] The underline indicates that it is outside the scope of the present invention.

5			
10			
15			
20			
25			
30			
35			
40			
45			
50			
55			

5		o do	1000	Steel of present invention																							
15			Others	Co=0.06	Co=1.30	Co=2.50	€0:0=IN	Ni=1.10	Ni=2.60	Cn=0.07	Cu=1.20	Cu=2.70	V=0.06	06 [∙] 0=Λ	V=2.20	60 [.] 0=M	W=1.50	W=2.60	Ca=0.0016	Ca=0.0120	Ca=0.0860	Mg=0.0018	Mg=0.2100	Mg=0.9200	REM=0.0016	REM=0.1300	REM=0.6700
			В	0.0024	0.0016	0.0021	0.0029	0.0032	0.0020	0.0034	0.0019	0.0017	0.0017	0.0019	0.0031	0.0025	0.0033	0.0029	0.0032	0.0017	0.0020	0.0034	0.0034	0.0026	0.0023	0.0022	0.0019
20		s	Мо	0.210	0.200	0.130	0.150	0.120	0.120	0.140	0.190	0.230	0.190	0.160	0.150	0.130	0.210	0.150	0.220	0.160	0.170	0.150	0.230	0.240	0.150	0.120	0.220
25		Fe and impurities	Cr	0.210	0.190	0.280	068.0	0.260	0.380	0.220	0.370	0.290	0.390	0.120	0.420	0.140	0.410	0.320	0.120	0.160	0.400	0.340	0.430	0.190	068.0	0.110	0.330
			ij	0.047	0.024	0.032	0.033	0.032	0.036	0.031	0.031	0.038	0.028	0.033	0.029	0.021	0.019	0.020	0.034	0.023	0.029	0.037	0.025	0.041	0.033	0.034	0.024
30	[Table 1E]	ıder beinç	Nb	0.0410	0.0240	0.0330	0.0260	0.0270	0.0370	0.0250	0.0160	0.0290	0.0270	0.0150	0.0230	0.0400	0.0140	0.0310	0.0230	0.0350	0.0210	0.0400	0.0230	0.0260	0.0180	0.0300	0.0160
		Chemical composition (mass%) remainder being	A	0.0520	0.0420	0.0410	0.0530	0.0520	0.0390	0.0470	0.0400	0.0390	0.0570	0.0580	0.0610	0.0460	0.0500	0.0570	0.0410	0.0410	0.0460	0.0410	0.0520	0.0390	0.0590	0.0500	0.0440
35		tion (mass	0	0.0011	0.0030	0.0009	0.0029	0.0015	0.0010	0.0012	0.0017	0.0032	0.0015	0.0014	0.0030	0.0029	0.0010	0.0030	0.0026	0.0014	0.0032	0.0025	0.0021	0.0017	0.0016	0.0022	0.0033
40		l composi	Z	0.0024	0.0032	0.0020	0.0040	0.0025	0.0021	0.0022	0.0046	0.0020	0.0037	0.0031	0.0028	0.0030	0.0035	0.0024	0.0028	0.0026	0.0036	0.0027	0.0023	0.0027	0.0017	0.0038	0.0027
45		Chemica	S	0.0003	0.0021	0.0004	0.0005	0.0019	0.0018	0.0008	0.0018	0.0002	0.0006	0.0006	0.0021	0.0003	0.0010	0.0010	0.0019	0.0013	0.0002	0.0018	0.0018	0.0005	0.0021	0.0004	0.0013
45			Ь	0.007	900.0	0.012	900.0	600.0	0.011	0.007	600.0	0.005	0.004	0.012	0.007	900.0	0.005	0.011	0.012	0.007	0.012	0.007	0.008	0.006	0.012	0.011	0.012
50			Mn	0:30	0.42	0.40	0.33	0.44	0.48	0.52	0.57	0.43	0.56	0.26	0.39	0.28	0.44	0.38	0.45	0.47	0.32	0.41	0.53	0.39	0.37	0.36	0.51
			Si	0.530	0.270	0.390	099'0	0.390	0.220	0.330	0.440	099'0	0.260	0.230	0.610	0.220	0.620	0.620	0.620	0.250	0.620	0.470	0.640	0.640	099'0	0.370	0.650
55			ပ	0.45	0.47	0.47	0.45	0.47	0.46	0.47	0.46	0.46	0.46	0.44	0.44	0.46	0.45	0.47	0.44	0.46	0.44	0.45	0.46	0.45	0.46	0.44	0.45
		Steel	No.	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129

Steel of present invention invention Steel of present invention invention Steel of present Steel of present Notes 5 10 Cu=1.20, Mg=0.2200 Mg=0.1900 W=1.40, Mg=0.2100 Ni=1.10, Mg=0.1800 20 Cu=1.40 W=1.60Cu=1.20 Ni=1.20, W=1.40 Cu=1.10, W=1.30 Co=1.40, Ni=1 As=0.042 Sn=0.003 As=0.003 As=0.093 Sb=0.006 Sb=0.140 Sb=0.850 Sn=0.120 Sn=0.790 Zr=0.005 Zr=0.090 Zr=0.720 Co=1.40, .30, Ni=1.30, 15 .50, Co=1. 0.0018 0.0032 0.0018 0.0019 0.0025 0.0018 0.0020 0.0034 0.0033 0.0033 0.0017 0.0025 0.0020 0.0022 0.0033 0.0017 0.0030 0.0034 0.0027 0.0026 0.0020 0.0031 Ω 20 0.120 0.170 0.190 0.190 0.170 0.230 0.140 0.240 0.240 0.150 0.180 0.170 0.200 0.200 0.150 0.220 0.180 0.160 0.140 0.160 0.150 0.220 impurities $\frac{9}{8}$ 0.210 0.170 0.340 0.310 0.120 0.140 0.340 0.410 0.410 0.200 0.260 0.290 0.260 25 0.160 0.140 0.190 0.200 0.160 0.350 0.200 0.230 0.180 and ပ် remainder being Fe 0.036 0.035 0.045 0.048 0.046 0.042 0.036 0.020 0.040 0.022 0.028 0.036 0.033 0.034 0.044 0.034 0.041 0.042 0.037 0.027 0.031 0.022 į= Table 1 30 0.0210 0.0210 0.0270 0.0220 0.0150 0.0280 0.0400 0.0140 0.0370 0.0370 0.0200 0.0400 0.0160 0.0250 0.0250 0.0320 0.0210 0.0400 0.0340 0.0400 0.0220 0.0170 g 0.0580 0.0440 0.0400 0.0540 0.05500.0500 0.0400 0.0480 0.0520 0.0520 0.0550 0.0410 0.0580 0.0390 0.0580 0.0420 0.0470 0.0590 0.0610 0.0450 0.0540 0.0580 Chemical composition (mass%) ₹ 35 0.0019 0.0010 0.0013 0.0015 0.0017 0.0013 0.0015 0.0025 0.0012 0.0033 0.0033 0.0011 0.0017 0.0022 0.0024 0.0017 0.0016 0.0030 0.0027 0.0033 0.0026 0.0027 0 0.0026 0.0038 0.0028 0.0015 0.0025 0.0016 40 0.0029 0.0026 0.0030 0.0040 0.0020 0.0033 0.0046 0.0025 0.0023 0.0028 0.0040 0.0025 0.0037 0.0036 0.0037 0.0031 z 0.0016 0.0006 0.0013 0.0010 0.0019 0.0004 0.0012 0.0010 0.0013 0.0019 0.0004 0.0017 0.0009 0.0021 0.0014 0.0020 0.0003 0.0010 0.0004 0.0007 0.0013 0.0017 S 45 0.005 0.010 0.005 0.005 0.009 0.005 0.005 900.0 0.009 0.008 0.012 900.0 0.008 0.005 0.007 0.007 0.010 0.010 0.010 0.011 0.007 0.007 ℩ 0.33 0.50 0.32 0.26 0.39 0.53 0.50 0.43 0.42 0.34 0.48 0.31 0.56 0.54 0.38 0.39 0.47 0.47 0.31 0.27 0.27 ₹ 50 0.510 0.210 0.660 0.670 0.410 0.360 0.260 0.270 0.490 0.540 0.300 0.280 0.260 0.620 0.630 0.220 0.5500.580 0.420 0.430 0.550 S 0.45 0.45 0.46 0.46 0.46 0.45 0.45 0.46 0.46 0.44 0.45 0.45 0.44 0.44 0.47 0.46 0.45 0.44 0.47 0.44 0.47 0.44 C 55 135 136 138 139 140 145 149 130 132 33 34 142 143 44 146 148 150 ģ 131 137 41 147 151

[Table 2A]

50		Final ro	olling	Cooling	Hot stan	nping	
Manufacturing No. Steel No.		Rolling reduction at one stand before final stand %	Rolling reduction at final stand %	Time until starting cooling s	Heating temperature °C	Holding time s	Notes
1	1	54	51	6.9	920	478	Comparative example
2	2	53	51	6.4	882	481	Present invention example
3	3	51	51	6.6	919	495	Present invention example
4	4	53	55	6.2	892	465	Present invention example
5	5	55	56	6.3	881	466	Present invention example
6	6	52	54	5.2	914	495	Present invention example
7	7	53	51	6.3	906	479	Comparative example
8	8	50	54	7.1	911	481	Comparative example
9	9	54	55	5.9	885	477	Present invention example
10	10	50	52	5.4	882	481	Present invention example
11	11	53	52	5.7	896	478	Present invention example
12	12	52	55	7.4	894	478	Present invention example
13	13	53	53	5.3	892	495	Present invention example
14	14	54	56	5.9	904	465	Present invention example
15	15	52	-55	6.5	896	478	Present invention example
16	16	54	54	7.2	916	477	Present invention example
17	17	52	50	5.4	905	492	Comparative example
18	18	52	51	6.7	903	489	Comparative example
19	19	54	52	6.7	912	493	Present invention example
20	20	55	50	7.4	882	474	Present invention example
21	21	51	51	6.6	896	474	Present invention example
22	22	50	56	6.5	882	480	Present invention example
23	23	52	51	7.0	889	485	Present invention example
24	24	51	53	5.0	911	487	Comparative example
25	25	51	54	6.3	894	479	Present invention example
26	26	54	.50	6.6	915	472	Present invention example
27	27	55	50	6.0	898	479	Present invention example
28	28	50	53	6.2	881	473	Present invention example
29	29	53	55	7.4	899	470	Present invention example
30	30	51	52	5.4	885	468	Comparative example
31	31	50	55	6.8	918	484	Present invention example
32	32	52	-55	6.5	897	475	Present invention example
33	33	52	50	6.0	894	473	Present invention example
34	34	52	56	5.1	903	491	Present invention example
35	35	53	50	5.6	918	465	Present invention example
36	36	55	52	5.6	888	482	Comparative example
37	37	54	50	6.7	909	466	Present invention example

37 37 54 50 6.7 909 466 Present invention example The underline indicates that the manufacturing condition is not preferable.

[Table 2B]

oo D		Final ro	lling	Cooling	Hot stan	nping	
Manufacturing No.	Steel No.	Rolling reduction at one stand before final stand %	Rolling reduction at final stand %	Time until starting cooling s	Heating temperature °C	Holding time s	Notes
38	38	55	52	6.6	904	472	Present invention exam
39	39	54	51	7.1	916	477	Present invention exam
40	40	52	52	7.3	918	486	Present invention exam
41	41	51	54	6.8	887	471	Present invention exam
42	<u>42</u>	51	50	7.2	906	484	Comparative exampl
43	43	54	52	5.3	893	476	Present invention exam
44	44	51	55	5.7	903	491	Present invention exam
45	45	51	52	5.6	914	489	Present invention exam
46	46	52	53	6.5	900	469	Present invention exam
47	47	53	52	6.0	917	470	Present invention exam
48	<u>48</u>	55	50	6.6	906	482	Comparative exampl
49	49	52	52	5.3	919	490	Comparative exampl
50	50	55	56	6.9	887	495	Present invention exam
51	51	52	54	7.1	897	467	Present invention exam
52	52	54	53	6.1	882	471	Present invention exam
53	53	55	54	6.2	910	467	Present invention exam
54	54	53	50	6.8	900	488	Present invention exam
55	55	55	51	6.2	881	468	Present invention exam
56	56	53	51	7.2	902	495	Present invention exam
57	57	52	54	5.7	911	483	Present invention exam
58	58	52	55	6.4	918	494	Present invention exam
59	<u>59</u>	50	52	5.7	882	473	Comparative exampl
60	<u>60</u>	52	52	5.1	882	482	Comparative exampl
61	61	53	55	5.3	900	491	Present invention exam
62	62	53	52	5.1	908	478	Present invention exam
63	63	53	53	6.2	895	492	Present invention exam
64	64	53	50	6.1	912	480	Present invention exam
65	65	54	54	5.2	912	479	Present invention exam
66	66	52	51	5.4	891	484	Present invention exam
67	67	51	56	5.5	909	478	Present invention exam
68	68	52	52	7.3	909	484	Present invention exam
69	<u>69</u>	55	52	6.6	889	483	Comparative exampl
70	<u>70</u>	50	56	5.3	897	493	Comparative exampl
71	71	55	52	5.9	897	477	Present invention exam
72	72	50	55	5.3	910	478	Present invention exam
73	73	51	54	6.8	891	493	Present invention exam
74	74	53	54	6.4	898	485	Present invention exam
75	75	52	50	5.9	915	485	Present invention exam

[Table 2C]

50		Final ro	lling	Cooling	Hot stan	nping	
Manufacturing No.	Steel No.	Rolling reduction at one stand before final stand %	reduction at	Time until starting cooling s	Heating temperature °C	Holding time s	Notes
76	76	54	52	7.4	897	493	Present invention example
77	77	51	50	5.5	905	465	Present invention example
78	<u>78</u>	53	56	6.3	886	494	Comparative example
79	<u>79</u>	55	50	6.2	881	482	Comparative example
80	80	54	55	6.4	894	491	Present invention example
81	81	50	52	5.8	894	488	Present invention example
82	82	55	54	5.1	897	467	Present invention example
83	83	52	53	6.4	903	483	Present invention example
84	84	54	50	7.0	911	483	Present invention example
85	85	54	55	7.4	907	487	Present invention example
86	86	55	51	5.2	888	476	Present invention example
87	87	54	54	6.4	898	488	Comparative example
88	88	54	50	5.8	910	478	Comparative example
89	89	50	50	7.0	884	478	Present invention example
90	90	54	53	6.7	902	474	Present invention example
91	91	55	52	5.0	900	476	Present invention example
92	92	54	51	5.2	907	495	Present invention example
93	93	53	54	6.0	881	480	Present invention example
94	94	55	50	6.6	901	471	Present invention example
95	95	54	55	5,1	911	478	Present invention example
96	96	52	52	5.0	905	494	Comparative example
97	<u>97</u>	54	52	7.0	894	484	Comparative example
98	98	54	52	5.5	905	495	Present invention example
99	99	51	56	5.6	917	487	Present invention example
100	100	55	55	5.9	914	485	Present invention example
101	101	52	50	5.0	899	470	Present invention example
102	102	51	51	6.8	915	483	Present invention example
103	103	55	56	7.1	887	477	Present invention example
104	104	50	51	5,3	919	466	Present invention example
105	105	54	50	5.0	882	466	Comparative example
106	106	52	53	5.5	905	484	Present invention example
107	107	51	50	6.2	902	477	Present invention example
108	108	50	54	5.2	894	472	Present invention example
109	109	53	51	7.2	916	482	Present invention example
110	110	53	50	7.1	915	492	Present invention example
111	111	51	52	6.1	903	479	Present invention example
TTT	4.4.4	2.1	- 44	U.I.	202	T.J. 2	i resem myemion exampi

The underline indicates that the manufacturing condition is not preferable.

[Table 2D]

50		Final rol	lling	Cooling	Hot stan	nping	
Manufacturing No.	ਰ	Rolling reduction at one stand before final stand %	reduction at	Time until starting cooling s	Heating temperature °C	Holding time s	Notes
112	112	50	55	6.9	880	489	Present invention example
113	113	53:	56	5.3	886	472	Present invention example
	114	52	55	5.9	915	492	Present invention example
	115	52	56	6.6	899	466	Present invention example
116	116	54	55	7.4	898	495	Present invention example
117	117	55	51	7.3	904	466	Present invention example
118	118	55	52	5.3	884	484	Present invention example
119	119	51	50	7.0	918	493	Present invention example
120	120	53	50	6.6	903	492	Present invention example
121	121	53	52	5.1	887	488	Present invention example
122	122	53	52	7.2	881	470	Present invention example
123	123	52	53	5.0	882	494	Present invention example
124	124	53	55	5.8	886	478	Present invention example
125	125	50	55	6.2	914	488	Present invention example
126	126	53	51	7.0	896	473	Present invention example
127	127	54	53	6.9	892	477	Present invention example
128	128	50	50	6.2	880	481	Present invention example
129	129	50	54	6.0	900	480	Present invention example
130	130	51	52	6.4	898	481	Present invention example
131	131	55	53	7.2	901	465	Present invention example
132	132	53	50	7.3	903	491	Present invention example
133	133	51	55	6.2	910	494	Present invention example
134	134	53	52	6.8	889	472	Present invention example
135	135	53	53	7.0	900	472	Present invention example
136	136	54	51	7.3	900	480	Present invention example
137	137	55	55	6.2	920	485	Present invention example
138	138	50	54	5.4	918	480	Present invention example
139	139	55	56	6.5	890	494	Present invention example
140	140	52	56	5.3	907	476	Present invention example
141	141	54	52	7.2	915	494	Present invention example
142	142	55	56	5.5	887	489	Present invention example
143		55	52	6.3	885	465	Present invention example
	144	53	52	6.3	882	488	Present invention example
4.17	145	53	53	5.5	916	470	Present invention example
146	146	54	55	5.8	885	486	Present invention example
147	147	55	50	6.5	918	480	Present invention example
	148	55	50	6.1	910	485	Present invention example
	149	54	52	5.2	904	486	Present invention example
	150	53	50	5.4	895	482	Present invention example

[Table 2E]

		Final ro	lling	Cooling	Hot stan	nping	
Manufacturing No.	G	Rolling reduction at one stand before final stand %	Rolling reduction at final stand %	Time until starting cooling s	Heating temperature °C	Holding time s	Notes
151	151	52	52	7.0	889	482	Present invention example
152	11	<u>20</u>	10	6.4	880	494	Comparative example
153	11	20	<u>20</u>	7.4	920	481	Comparative example
154	14	<u>30</u>	<u>30</u>	5.2	910	465	Comparative example
155	22	<u>40</u>	<u>30</u>	6.1	881	466	Comparative example
156	14	<u>30</u>	40	6.3	899	478	Comparative example
157	20	<u>40</u>	40	5.1	919	470	Comparative example
158	20	20	50	5.8	890	477	Comparative example
159	14	50	<u>20</u>	5.8	909	471	Comparative example
160	12	55	50	0.4	913	478	Comparative example
161	22	52	54	2.2	919	475	Comparative example
162	14	51	51	4.1	904	485	Comparative example
163	21	54	54	6.1	895	470	Present invention example
164	12	51	56	6.7	911	471	Present invention example
165	13	51	54	5.5	892	487	Present invention example
166	11	50	53	5.3	886	466	Present invention example
167	22	50	56	7.0	909	475	Present invention example
168	21	55	53	5.1	903	468	Present invention example
169	11	55	50	7.1	897	470	Present invention example
170	14	51	52	5.5	881	489	Present invention example
171	22	52	54	6.3	745	478	Comparative example
172	22	50	52	6.3	843	490	Present invention example
173	14	53	54	5.2	895	482	Present invention example
174	20	53	52	5.6	952	483	Present invention example
175	22	53	53	5.0	1023	489	Comparative example
176	14	51	51	6.0	890	<u>38</u>	Comparative example
177	22	51	51	7.0	899	62	Present invention example
178	14	51	51	6.7	885	481	Present invention example
179	14	51	52	6.7	908	955	Present invention example
180	13	52	53	5.2	891	1258	Comparative example
181	11	53	50	6.6	907	466	Present invention example
182	12	50	52	6.8	881	476	Present invention example
183	21	54	53	6.5	880	478	Present invention example
184	14	51	56	7.4	895	486	Present invention example
185	12	50	53	6.4	883	489	Present invention example
186	20	54	52	5.2	911	482	Present invention example
187	13	50	50	6.2	883	492	Present invention example
188	13	53	50	5.3	899	488	Present invention example

The underline indicates that the manufacturing condition is not preferable.

Table 3A]

	9 D					Hot stamped con	ponent			
	Manufacturing No.	Steel No.	Plating	Tempering	Partially softened region	Maximum value of pole densitis of texture of prior austerite	Average value of block sizes µm	Tensile strength MPa	Load at 1/2 stroke N	Notes
5	1	1				6.6	0.69	2083	8149	Comparative example
	2	2				4.4	0.81	2306	8131	Present invention example
	3	3	-			9.0	0.74	2445	8090	Present invention example
	4	4				4.7	0.70	2521	8073	Present invention example
	-5	5				4.0	0.76	2762	8129	Present invention example
	6	6				4.4	0.68	2855	8151	Present invention example
	7	7				9.0	0.74	2937	7826	Comparative example
10	8	8				8.8	0.70	2214	8146	Comparative example
10	9	9				8.6	0.80	2325	8127	Present invention example
	10	10				4.0	0.85	2436	8152	Present invention example
	11	11				9.7	0.75	2463	8120	Present invention example
	12	12				5.6	0.85	2387	8137	Present invention example
	13	13				10.1	0.77	2361	8153	Present invention example
	14	14				3,4	0.71	2385	8089	Present invention example
	15	15				4.9	0.84	2468	8091	Present invention example
15	16	16				8.3	0.70	2317	8119	Present invention example
	<u>17</u>	<u>17</u>				9.8	0.78	<u>2216</u>	8076	Comparative example
	<u>18</u>	<u>18</u>				6.0	0.82	<u>2187</u>	8072	Comparative example
	19	19		2		3.9	0.74	2341	8128	Present invention example
	20	20				4.4	0.81	2460	8148	Present invention example
	21	21				9.4	0.79	2418	8080	Present invention example
	22	22				8.2	0.78	2372	8081	Present invention example
20	23	23				4.6	0.73	2520	8093	Present invention example
20	<u>24</u>	<u>24</u>				<u>2.1</u>	0.85	2377	<u>8004</u>	Comparative example
	25	25				4.0	0.79	2400	8093	Present invention example
	26	26				9.6	0.85	2392	8148	Present invention example
	27	27				9,3	0.72	2451	8093	Present invention example

The underline indicates that it is outside the scope of the present invention, or the characteristic value is not preferable.

25

[Table 3B]

T a	Manufacturing No.	Steel No.							
30 Sams			Steel No.	Plating Tempering	Partially softened region	Maximum value of pole densities of texture of prior austenite	Average value of block sizes µm	Tensile strength MPa	Load at 1/2 stroke N
	28	28			7.4	0.81	2469	8130	Present invention example
[7]	29	29			4.6	0.71	2478	8053	Present invention example
	<u>30</u>	30			2.7	0.69	2420	7832	Comparative example
	31	31			4.1	0.85	2496	8141	Present invention example
, 🗆	32	32			9.8	0.73	2367	8102	Present invention example
' 🗀	33	33			7,1	0.84	2493	8139	Present invention example
	34	34		Section 1	10.3	0.79	2527	8077	Present invention example
7	35	35			6.1	0.75	2377	8067	Present invention example
	36	36			2.8	0.83	2416	7838	Comparative example
	37	37			6.7	0.81	2385	8099	Present invention example
1.0	38	38			6.9	0.70	2374	8116	Present invention example
	39	39			3,5	0.83	2384	8134	Present invention example
1 7	40	40			3.8	0.72	2353	8150	Present invention example
15	41	41			4.2	0.68	2525	8077	Present invention example
	42	<u>42</u>			1.7	0.72	2418	7972	Comparative example
7	43	43			5.2	0.73	2549	8125	Present invention example
	44	44			9.0	0.69	2500	8076	Present invention example
	45	45			9.1	0.73	2546	8146	Present invention example
	46	46			9.2	0.82	2389	8096	Present invention example
	47	47			4.1	0.72	2460	8056	Present invention example
	<u>48</u>	<u>48</u>			2.2	0.77	2369	7885	Comparative example
	<u>49</u>	49			2.4	0.85	2526	<u>7913</u>	Comparative example
	50	50			6.9	0.79	2430	8065	Present invention example
	51	51			8.8	0.84	2547	8125	Present invention example
	52	52			8.0	0.79	2379	8096	Present invention example
	53	53			9.1	0.78	2394	8143	Present invention example
	54	54			9.7	0.69	2476	8075	Present invention example

54 54 9.7 0.69 2476 8075
The underline indicates that it is outside the scope of the present invention, or the characteristic value is not preferable.

[Table 3C]

55

	gu									
	Manufacturing No.	Steel No.	Plating Te	empering	Partially softened region	Maximum value of pole densities of texture of prior austerite	Average value of block sizes um	Tensile strength MPa	Load at 1/2 stroke N	Notes
5	55	55				6.0	0.77	2473	8134	Present invention example
	56	56				6.1	0.81	2417	8086	Present invention example
	57	57				6.8	0.76	2437	8144	Present invention example
	58	58				6.8	0.85	2447	8058	Present invention example
	<u>59</u>	<u>59</u>				2.6	0.76	2547	<u>7838</u>	Comparative example
	<u>60</u>	<u>60</u>				8.0	0.68	2175	8124	Comparative example
	61	61				9.2	0.72	2311	8085	Present invention example
10	62	62				9.8	0.79	2363	8128	Present invention example
10	63	63				5.5	0.79	2355	8103	Present invention example
	64	64				6.2	0.68	2375	8081	Present invention example
	65	65				4.7	0.80	2484	8120	Present invention example
	66	66				5.8	0.81	2352	8148	Present invention example
	67	67				6.1	0.75	2454	8091	Present invention example
	68	68				3.9	0.83	2547	8066	Present invention example
	<u>69</u>	<u>69</u>				1.9	0.76	2375	<u>7962</u>	Comparative example
15	<u>70</u>	<u>70</u>				3.7	0.77	2226	8120	Comparative example
	71	71				7.4	0.79	2374	8117	Present invention example
	72	72				4.1	0.83	2534	8097	Present invention example
	73	73				3.5	0.68	2366	8092	Present invention example
	74	74				7.3	0.76	2440	8121	Present invention example
	7.5	75				6.0	0.74	2355	8089	Present invention example
	76	76				6.6	0.72	2533	8146	Present invention example
20	77	77				7.2	0.75	2486	8070	Present invention example
	<u>78</u>	<u>78</u>				<u>2.3</u>	0.71	2465	<u>7953</u>	Comparative example
	<u>79</u>	<u>79</u>				8.3	0.80	<u>2298</u>	8149	Comparative example
	80	80				7.9	0.78	2336	8130	Present invention example
	81	81	A 41		1-4	7.0	0.82	2375	8129	Present invention example

The underline indicates that it is outside the scope of the present invention, or the characteristic value is not preferable.

25

[Table 3D]

8		1	· · · · · · · · · · · · · · · · · · ·					
O Manufacturing No	No. Steel No.	Plating Tempering	Partially softened region	Maximum value of pole densities of texture of prior austenite	Average value of block sizes µm	Tensile strength MPa	Load at 1/2 stroke N	Notes
82	82			5.9	0.80	2388	8095	Present invention example
83	83			8.0	0.73	2481	8126	Present invention example
84	84			4.5	0.81	2509	8077	Present invention example
85	85			10.3	0.77	2444	8116	Present invention example
86	86			3.8	0.73	2441	8128	Present invention example
<u>87</u>	87			2.6	0.80	2457	7963	Comparative example
88	88			6.4	0.79	2244	8117	Comparative example
89	89			6.7	0.81	2328	8119	Present invention example
90	90			3,5	0.81	2451	8154	Present invention example
91	91			8.4	0.82	2390	8104	Present invention example
92	92			3.5	0.77	2442	8117	Present invention example
93	93		v	4.0	0.84	2489	8112	Present invention example
94	94			7.1	0.80	2414	8136	Present invention example
95	95			4.2	0.82	2426	8091	Present invention example
96	96			2.2	0.68	2403	7889	Comparative example
97	97			3.9	0.81	2209	8108	Comparative example
98	98			3.3	0.71	2348	8089	Present invention example
99	99			7.8	0.80	2528	8148	Present invention example
100	100			3.7	0.71	2542	8102	Present invention example
101	101			7.0	0.80	2400	8143	Present invention example
102	102			6.9	0.77	2438	8120	Present invention example
103	103			6.7	0.78	2394	8114	Present invention example
104	104			5.5	0.80	2414	8055	Present invention example
105	105			2.1	0.77	2426	<u>7859</u>	Comparative example
106	106			10.3	0.82	2451	8074	Present invention example
107	107		*	7.4	0.78	2479	8138	Present invention example
108	108			7.8	0.85	2470	8106	Present invention example

The underline indicates that it is outside the scope of the present invention, or the characteristic value is not preferable.

[Table 3E]

55

	gu									
	Manufacturing No.	Steel No.	Plating	Tempering	Partially softened region	Maximum value of pole densities of texture of prior austerite	Average value of block sizes µm	Tensile strength MPa	Load at 1/2 stroke N	Notes
5	109	109				8.3	0.70	2492	8115	Present invention example
	110	110				6.8	0.72	2424	8140	Present invention example
	111	111				8.2	0.69	2354	8078	Present invention example
	112	112				6.9	0.78	2530	8074	Present invention example
	113	113				8.1	0.78	2400	8152	Present invention example
	114	114				10.2	0.83	2419	8131	Present invention example
	115	115				3.3	0,80	2529	8093	Present invention example
10	116	116			8	7.8	0.77	2414	8103	Present invention example
10	117	117				9.2	0.72	2484	8121	Present invention example
	118	118				9.3	0.82	2541	8084	Present invention example
	119	119				6.7	0.84	2390	8090	Present invention example
	120	120				7.7	0.69	2415	8138	Present invention example
	121	121				3.2	0.70	2502	8154	Present invention example
	122	122				10.1	0.69	2512	8147	Present invention example
	123	123				6.7	0.73	2465	8112	Present invention example
15	124	124				7.7	0.71	2362	8112	Present invention example
	125	125				9.2	0.72	2434	8126	Present invention example
	126	126				6.5	0.83	2524	8119	Present invention example
	127	127				7.5	0.68	2508	8136	Present invention example
	128	128				5.8	0.81	2409	8137	Present invention example
	129	129				5.3	0.79	2478	8093	Present invention example
	130	130				3.4	0.80	2464	8128	Present invention example
20	131	131				9.7	0.75	2383	8118	Present invention example
20	132	132				9.5	0.85	2545	8117	Present invention example
	133	133				5.5	0.83	2464	8081	Present invention example
	134	134			7	3.4	0.77	2396	8107	Present invention example
	135	135				3.6	0.85	2429	8141	Present invention example

25 [Table 3F]

	Manufacturing No.									
30		Steel No.	Plating	Tempering	Partially softened region	Maximum value of pole densities of texture of prior austerite	Average value of block sizes µm	Tensile strength MPa	Load at 1/2 stroke N	Notes
	136	136				8.1	0.80	2458	8081	Present invention example
	137	137				10.3	0.78	2460	8146	Present invention example
	138	138				7.8	0.79	2527	8126	Present invention example
	139	139				7.6	0.73	2494	8134	Present invention example
	140	140				8.7	0.85	2501	8074	Present invention example
35	141	141				4.6	0.77	2531	8092	Present invention example
	142	142				7.7	0.73	2372	8106	Present invention example
	143	143				4.4	0.83	2396	8078	Present invention example
	144	144				9.1	0.85	2464	8128	Present invention example
	145	145				9.9	0.68	2510	8122	Present invention example
	146	146				9.4	0.79	2376	8073	Present invention example
	147	147				3.7	0.68	2527	8107	Present invention example
	148	148				6.5	0.85	2457	8111	Present invention example
40	149	149				4.3	0.79	2396	8137	Present invention example
	150	150				9.2	0.79	2398	8132	Present invention example
	151	151				9.9	0.73	2509	8134	Present invention example
	<u>152</u>	11				<u>1.9</u>	0.75	2425	<u>7964</u>	Comparative example
	153	11				1.8	0.72	2549	<u>7965</u>	Comparative example
	<u>154</u>	14				2.2	0.79	2441	7982	Comparative example
	<u>155</u>	22				<u>2.4</u>	0.84	2502	8002	Comparative example
45	<u>156</u>	14				<u>2.7</u>	0.80	2491	<u>8011</u>	Comparative example
	<u>157</u>	20				2.8	0.72	2466	<u>8039</u>	Comparative example
	<u>158</u>	20				<u>2.2</u>	0.84	2424	<u>7995</u>	Comparative example
	<u>159</u>	14				<u>2.5</u>	0.81	2501	<u>8011</u>	Comparative example
	160	12				<u>2:3</u>	0.78	2372	<u>7896</u>	Comparative example
	<u>161</u>	22				<u>2.1</u>	0.71	2359	<u>7923</u>	Comparative example
	<u>162</u>	14				<u>2.4</u>	0.71	2451	<u>7984</u>	Comparative example

The underline indicates that it is outside the scope of the present invention, or the characteristic value is not preferable.

[Table 3G]

55

	60			Hot	stamped compo	onent				
5	Manufacturing No.	Steel No.	Plating	Tempering	Partially softened region	Maximum value of pole densities of texture of prior austenite	Average value of block sizes µm	Tensile strength MPa	Load at 1/2 stroke N	Notes
5	163	21	aluminum plating		:	9.4	0.78	2547	8104	Present invention example
	164	12	aluminum-galvanized			9.5	0.73	2512	8117	Present invention example
	165	13	aluminum-silicon plating			5.1	0.71	2540	8132	Present invention example
	166	11	hot-dip galvanized			6.1	0.74	2399	8116	Present invention example
	167	22	electrogalvanized			6.7	0.73	2487	8147	Present invention example
	168	21	galvannealed			6.6	0.80	2490	8098	Present invention example
10	169	11	zinc-nickel plating			7.5	0.75	2387	8073	Present invention example
70	170	14	aluminum- magnesium-zinc- based plating		:	5.8	0.72	2540	8090	Present invention example
	<u>171</u>	22				<u>2.5</u>	0.91	<u>2265</u>	7898	Comparative example
	172	22				7.9	0.88	2334	8056	Present invention example
	173	14				9.2	0.78	2418	8075	Present invention example
	174	20				8.3	0.93	2386	8062	Present invention example
15	<u>175</u>	22				<u>1.9</u>	<u>1.31</u>	<u>2156</u>	<u>7762</u>	Comparative example
15	<u>176</u>	14				<u>2.4</u>	0.87	<u>2259</u>	<u>7930</u>	Comparative example
	177	22				8.2	0.75	2346	8067	Present invention example
	178	14				9.6	0.79	2481	8111	Present invention example
	179	14				7.6	0.85	2335	8056	Present invention example
	180	13				<u>2.2</u>	1.27	2203	<u>7991</u>	Comparative example
	181	11		Tempering temperature 153°C		8.9	0.76	2456	8097	Present invention example
	182	12		Tempering temperature 172°C		9.3	0.84	2363	8140	Present invention example
20	183	21		Tempering temperature 205°C		9.5	0.71	2531	8104	Present invention example
	184	14		Tempering temperature 339°C		6.5	0.79	2434	8092	Present invention example
	185	12		Tempering temperature 432°C		7.2	0.73	2354	8121	Present invention example
	186	20		Tempering temperature 515°C		10.2	0.71	2369	8151	Present invention example
	187	13		Tempering temperature 588°C		5.8	0.81	2459	8137	Present invention example
	188	13			Partially softened treatment	4.1	0.78	2448	8126	Present invention example
25	The ur	derlin	e indicates that it is out	side the scope of the present inve	ention, or the cha	aracteristic value is	not preferable.			·

The underline indicates that it is outside the scope of the present invention, or the characteristic value is not preferable.

[0145] From Tables 3A to 3G, it can be seen that the hot-stamping formed bodies according to the present invention examples had high strength and excellent bendability.

[0146] On the other hand, it can be seen that in the hot-stamping formed bodies according to comparative examples, one or more of the properties deteriorated.

Industrial Applicability

[0147] According to the above-described aspects of the present invention, it is possible to provide a hot stamped component having high strength and excellent bendability.

Claims

30

35

45

50

55

1. A hot stamped component comprising, as a chemical composition, by mass%: 40

C: 0.40% to 0.70%;

Si: 0.010% to 3.000%;

Mn: 0.10% or more and less than 0.60%;

P: 0.100% or less;

S: 0.0100% or less;

N: 0.0100% or less;

O: 0.0200% or less;

Al: 0.0010% to 0.5000%;

Nb: 0.0010% to 0.1000%;

Ti: 0.010% to 0.100%;

Cr: 0.010% to 1.000%;

Mo: 0.050% to 1.000%;

B: 0.0005% to 0.0100%;

Co: 0% to 3.00%;

Ni: 0% to 3.00%;

Cu: 0% to 3.00%;

V: 0% to 3.00%;

5		W: 0% to 3.00%; Ca: 0% to 0.1000%; Mg: 0% to 1.0000%; Mg: 0% to 1.0000%; REM: 0% to 1.0000%; Sb: 0% to 1.0000%; Sh: 0% to 1.000%; Sn: 0% to 1.000%; Zr: 0% to 1.000%; As: 0% to 0.1000%; As: 0% to 0.1000%; and a remainder: Fe and impurities, in a position at 1/4 of a sheet thickness from a surface, in a texture of prior austenite, a maximum value of pole densities of an orientation group expressed by Euler angles of $\Phi = 60^{\circ}$ to 90° , $\Phi = 60^{\circ}$ to
15	2.	The hot stamped component according to claim 1 comprising, as the chemical composition, by mass%, one or more selected from the group consisting of:
20		Co: 0.01% to 3.00%; Ni: 0.01% to 3.00%; Cu: 0.01% to 3.00%; V: 0.01% to 3.00%; W: 0.01% to 3.00%;
25		Ca: 0.0001% to 0.1000%; Mg: 0.0001% to 1.0000%; REM: 0.0001% to 1.0000%; Sb: 0.001% to 1.000%; Sn: 0.001% to 1.000%; Zr: 0.001% to 1.000%; and
30		As: 0.001% to 0.100%.
35		
40		
45		
50		

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2023/020238

				PCT/JP	2023/020238						
5	A. CLA	SSIFICATION OF SUBJECT MATTER									
	C21D	38/00(2006.01)i; C21D 1/18(2006.01)i; C21D 9/00(2 9/46(2006.01)n C22C38/00 301Z; C22C38/60; C21D1/18 C; C21D9/0	, , ,	,	. , , ,						
10	According to International Patent Classification (IPC) or to both national classification and IPC										
10	B. FIEL	DS SEARCHED									
		ocumentation searched (classification system followed 38/00-38/60; C21D1/18; C21D9/00; C21D8/02; C21D	•	bols)							
15	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched										
	Published examined utility model applications of Japan 1922-1996 Published unexamined utility model applications of Japan 1971-2023 Registered utility model specifications of Japan 1996-2023 Published registered utility model applications of Japan 1994-2023										
20	Electronic da	ata base consulted during the international search (nam	e of data base and, when	here practicable, sear	ch terms used)						
20											
	C. DOCUMENTS CONSIDERED TO BE RELEVANT										
	Category*	Citation of document, with indication, where a	appropriate, of the rele	evant passages	Relevant to claim No.						
25	Α	(0-03)	1-2								
	A	WO 2021/230149 A1 (NIPPON STEEL CORP) 18 claims, paragraphs [0074]-[0077], [0095]	November 2021 (202)	ovember 2021 (2021-11-18) 1-2							
30	A	WO 2021/230150 A1 (NIPPON STEEL CORP) 18 claims, paragraphs [0075]-[0078], [0096]	November 2021 (202)	nber 2021 (2021-11-18) 1-2							
	A	WO 2019/003539 A1 (JFE STEEL CORPORATION claims, paragraph [0011], tables 2-1 to 3-3	N) 03 January 2019 (2	:019-01-03)	1-2						
	P, A	WO 2022/239731 A1 (NIPPON STEEL CORP) 17 I claims, paragraphs [0073]-[0077], [0084]-[0085]									
35											
40	Further of	documents are listed in the continuation of Box C.	See patent fami	ly annex.							
	"A" document to be of p	rategories of cited documents: at defining the general state of the art which is not considered particular relevance pplication or patent but published on or after the international	date and not in co principle or theo: "X" document of par	onflict with the applicati ry underlying the inven- rticular relevance; the	national filing date or priority ion but cited to understand the tion claimed invention cannot be d to involve an inventive step						
45	"L" document cited to special re	It which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other eason (as specified) It referring to an oral disclosure, use, exhibition or other	when the docume "Y" document of particle considered to it combined with o	ent is taken alone rticular relevance; the nvolve an inventive sone or more other such of	claimed invention cannot be step when the document is documents, such combination						
	"P" documen	at published prior to the international filing date but later than ity date claimed	being obvious to a person skilled in the art "&" document member of the same patent family								
50	Date of the ac	tual completion of the international search	Date of mailing of th	e international search	h report						
50		10 August 2023		22 August 202	3						
		iling address of the ISA/JP	Authorized officer								
55		tent Office (ISA/JP) umigaseki, Chiyoda-ku, Tokyo 100-8915									
55	• •		Telephone No								

Form PCT/ISA/210 (second sheet) (January 2015)

Telephone No.

INTERNATIONAL SEARCH REPORT International application No. Information on patent family members PCT/JP2023/020238 Publication date Patent document Publication date Patent family member(s) (day/month/year) cited in search report (day/month/year) wo 2019/186930 **A**1 03 October 2019 3778951 A1 claims, paragraphs [0012]-[0019], tables 2-1 to 3-3 US 2021/0010118 **A**1 CN 111655885 wo 2021/230149 **A**1 18 November 2021 4151757 A1 claims, paragraphs [0090]-[0093], [0114] US 2023/0091784 A1 CN 115151669 4151758 **A**1 EP WO 2021/230150 A118 November 2021 claims, paragraphs [0089]-[0092], [0114] US 2023/0081832 **A**1 115135790 CN WO 2019/003539 **A**1 03 January 2019 3647448 **A**1 claims, paragraph [0011], tables 2-1 to 3-3 2020/0353527 US A1CN 110809631 17 November 2022 (Family: none) WO 2022/239731 A1

Form PCT/ISA/210 (patent family annex) (January 2015)

5

10

15

20

25

30

35

40

45

50

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• JP 2022090847 A **[0002]**

JP 2020508393 A [0006]

Non-patent literature cited in the description

• Acta Materialia, 2010, vol. 58, 6393-6403 [0007]

 HIROSHI INOUE. Lecture (Easy Material Analysis Techniques) - Three-dimensional Orientation Analysis of Texture. Light Metals, 1992, vol. 41 (6), 358 [0086]