TECHNICAL FIELD
[0001] The present invention relates to a vacuum adiabatic body.
BACKGROUND ART
[0002] Adiabatic performance may be improved by forming an adiabatic wall using vacuum.
A device of which at least a portion of an internal space is provided in a vacuum
state to achieve an adiabatic effect may be called a vacuum adiabatic body.
[0003] The applicant has developed a technology to obtain a vacuum adiabatic body that may
be used in various devices and home appliances, and has disclosed a vacuum adiabatic
body and a refrigerator in
Korean Patent Publication No. 1020200001396A. The vacuum adiabatic body of the cited document discloses a structure in which a
heat exchanger is installed inside a vacuum space.
[0004] The cited document proposes a self-configuration and support structure in which the
heat exchanger is placed in the vacuum space. The cited document does not disclose
a specific installation structure of the heat exchanger and its relationship with
other members. For example, it does not disclose the relationship between the heat
exchanger and other members inside the vacuum space, or a method of mounting the heat
exchanger.
DISCLOSURE OF THE INVENTION
TECHNICAL PROBLEM
[0005] The present invention proposes an installation structure of a heat exchanger without
a loss of adiabatic efficiency.
[0006] In addition to the examples proposed above, the present invention proposes specific
solutions to problems and solutions for solving the problems in [Technical Solution]
and [Best Mode].
TECHNICAL SOLUTION
[0007] The vacuum adiabatic body of the present invention may include: a first plate having
a first temperature; a second plate having a second temperature that differs from
the first temperature; and a vacuum space provided between the first and second plates.
The vacuum adiabatic body of the present invention may include a sealing part that
seals the first plate and the second plate to provide the vacuum space. A support
may be provided to maintain the vacuum space.
[0008] Optionally, the support may include a support plate and a bar extending in a thickness
direction of the vacuum space to the support plate. The vacuum space may include at
least two spaces that are bent to each other. The supports inserted into the at least
two spaces may be in contact with each other. The outermost surface of the supports
that are in contact with each other may not have the bar. The outermost part of the
support may be provided with an independent branch of which an end is not supported,
or a connection branch connecting at least two adjacent independent branches. At least
one of the independent branch and the connection branch may not have the bar.
[0009] The independent branches and the connection branches may be mixed with and supported
with respect to each other. At least one of the connection branch and the independent
branch may be equal to at least one of a thickness and width of the support plate.
The independent branch may have a first terminal fixed to the support plate and a
second terminal that is not supported by the support plate. A tolerance of at least
one of the connection branch and the independent branch may be within 0.1 mm. The
support plate may include an inner support plate and an outer support plate. The inner
support plate and the outer support plate may be in contact with each other. The inner
support plate and the outer support plate may have different specifications. A length
of the independent branch of the inner support plate may be a value obtained by subtracting
a thickness of the vacuum space from a length of the independent branch of the outer
support plate. A length of the connection branch of the inner support plate may be
a value obtained by subtracting a thickness of the vacuum space from a length of the
connection branch of the outer support plate. The supports that are in contact with
each other may include a first support and a second support. The first support and
the second support have free ends that move to be in contact with each other.
[0010] Optionally, the vacuum space may include at least two spaces that are bent to each
other, and the at least two supports inserted into the at least two spaces may be
in contact with each other. The contact between the two supports may include at least
one of line contact or point contact. The two supports may freely move relative to
each other except that the first support pushes the second support due to the contact.
The contact part of the two supports may have a smaller tolerance than a non-contact
part. The support plate may include an inner support plate and an outer support plate.
The inner support plate and the outer support plate may be in contact with each other.
The support may include a support plate and a bar extending from the support plate
in the thickness direction of the vacuum space. The outermost portion of the at least
two supports may not have the bar. The outermost portion of the support may be provided
with an independent branch of which an end portion is not supported.
[0011] Optionally, the outermost portion of the at least two supports may be provided with
an independent branch of which an end portion is not supported, or a connection branch
connecting at least two adjacent independent branches. The support may include two
support plates and a support body that maintains a gap between the two support plates.
At least one of the connection branch or the independent branch may not be provided
with the support.
[0012] Optionally, the support may include at least one support plate corresponding to at
least one of the first or second plate. The vacuum space may include at least two
spaces that are bent to each other. At least two of the supports inserted into the
at least two spaces may be fixed to each other. A coupling part may be provided at
an end portion of the support plate. The support plate may include an inner support
plate and an outer support plate corresponding to the first and second plates. A size
of the outermost lattice of the inner support plate may be smaller than a size of
the inner lattice of the inner support plate. At least two of the supports may be
restricted to move in at least one of an X, Y, or Z direction. At least two of the
supports may be restricted to move in at least one of the X, Y, or Z direction. The
support plate may include an inner support plate and an outer support plate corresponding
to the first and second plates. One coupling part may be provided at an end portion
of each of the outer and inner support plates. Two coupling parts may be provided
at a predetermined interval at the end portion of the inner support plate. A gap between
the two coupling parts may correspond to a thickness of the vacuum space part. At
least one of the at least two supports may have an end portion of the support plate
that is not fixed. The outer support plate may be provided with two coupling parts.
At least one of the at least two supports may be provided with one coupling part spaced
a predetermined distance from an end portion of the inner support plate. In at least
one of the at least two supports, an end portion of the inner support plate may be
a predetermined distance shorter than the outer support plate. At least one of the
support and the unit of the support may be provided with at least two having the same
shape.
[0013] Optionally, a gap between the inner support plate and the outer support plate may
have a portion that is narrowed toward an edge. An end portion of the outer support
plate may be provided as a free end with respect to the other intersecting outer support
plate. An end portion of the inner support plate may be provided as a fixed end by
the other intersecting inner support plate. The end portion of the inner support plate
may be provided as a free end with respect to the other intersecting inner support
plate.
[0014] Optionally, at least two supports may be provided, and the at least two supports
may be coupled to each other. At least a portion of the support may be provided by
coupling units having the same shape. The outer support plate may be provided by coupling
the units having the same shape. The inner support plate may use the units having
different shapes. The inner support plate may be used by cutting the units having
the same shape for coupling before the coupling.
[0015] Optionally, at least two supports inserted into the at least two spaces may be restricted
to each other in the three X, Y, and Z direction. The support plate may include an
inner support plate and an outer support plate corresponding to the first and second
plates. An outer support plate of one of the at least two supports and an outer support
plate of the other may be coupled to each other. An inner support plate of one of
the at least two supports and an inner support plate of the other of the at least
two supports may be coupled to each other. At least one of the at least two supports
may be provided with an extension bar connecting an end of the inner support plate
to an end of the outer support plate. At least one of the two supports may be provided
with an extension bar for connecting an end of the inner support plate to the outer
support plate. At least one outer support plate of the at least two supports may be
provided with two extension bars having a predetermined gap at the ends. The gap may
correspond to the thickness of the vacuum space or the length of the bar provided
on the support plate. The two extension bars may be provided at the ends of at least
one inner support plate of the at least two supports. One of the two extension bars
may be provided on a side surface or inner surface of the end. At least one inner
support plate of the at least two supports may not be provided with an outermost lattice.
At least one inner support plate of the at least two supports may be provided with
an outermost lattice. An extension bar may be provided at the end of the support plate,
and a radiation resistance sheet may be included to extend to the extension bar, thereby
reducing radiation heat transfer. The support may include a first support and a second
support of which extension directions intersect each other.
[0016] Optionally, the first support and the second support may be fixed to each other at
a position at which the first and second supports meet each other. A coupling part
provided on a side surface of the first support; and an extension bar provided on
an inner surface of the second support and fitted into the coupling part may be included.
The coupling part and the extension bar may be provided in two pieces, which are spaced
a predetermined interval from each other. The coupling part and the extension bar
may be provided at the ends of the support, respectively.
[0017] Optionally, a first extension bar provided at the end of the first support; and a
coupling part provided at the second support to which the first extension bar is fitted
may be included. The radiation resistance sheet may extend to the first extension
bar. A second extension bar spaced a predetermined interval from the first extension
bar; and a coupling part provided to the second support to which the second extension
bar is fitted may be included. A second extension bar spaced a predetermined interval
from the first extension bar; and a coupling part provided to the first support to
which the second extension bar is fitted may be included.
ADVANTAGEOUS EFFECTS
[0018] According to the present invention, the vacuum adiabatic body having the high adiabatic
efficiency may be proposed.
[0019] According to the present invention, the vacuum adiabatic body may be conveniently
manufactured.
[0020] The effects of the present invention are disclosed in more detail in [Specific details
for carrying out the invention].
BRIEF DESCRIPTION OF THE DRAWINGS
[0021]
Fig. 1 is a perspective view of a refrigerator according to an embodiment.
Fig. 2 is a view schematically illustrating a vacuum adiabatic body used in a main
body and a door of the refrigerator.
Fig. 3 is a view illustrating an example of a support that maintains a vacuum space.
Fig. 4 is a view for explaining an example of the vacuum with respect to a heat transfer
resistor.
Fig. 5 is a graph illustrating results obtained by observing a process of exhausting
the inside of the vacuum adiabatic body with a time and pressure when the support
is used.
Fig. 6 is a graph illustrating results obtained by comparing a vacuum pressure to
gas conductivity.
Fig. 7 is a view for explaining a method for manufacturing a vacuum adiabatic body.
FIG. 8 is a view for explaining an example in which a support and a heat exchanger
are installed.
FIG. 9 is a view of the support according to an embodiment.
FIG. 10 is a view for explaining an example in which the support having a connection
branch is in contact with the support.
FIG. 11 is a view for explaining an example in which the support having an independent
branch is in contact with the support.
FIGS. 12 to 13 are views illustrating an example in which the two supports are fixed
in at least one direction according to an embodiment.
FIG. 14 is a view illustrating an example in which the two supports are fixed in at
least one direction according to another embodiment.
FIG. 15 is a view illustrating an example in which the two supports are fixed in at
least two directions.
FIG. 16 is a view for explaining details of the support of FIG. 12.
FIG. 17 is a view for explaining details of the support of FIG. 14.
FIG. 18 is a view for explaining details of the support of FIG. 15.
FIG. 19 is a view illustrating an example in which the two supports are strongly restricted
according to an embodiment.
FIG. 20 is a view illustrating a coupling process of the support of FIG. 19.
FIG. 21 is a view illustrating an example in which the two supports are strongly restricted
according to an embodiment.
MODE FOR CARRYING OUT THE INVENTION
[0022] Hereinafter, specific embodiments will be described in detail with reference to the
accompanying drawings. The invention may, however, be embodied in many different forms
and should not be construed as being limited to the embodiments set forth herein,
and a person of ordinary skill in the art, who understands the spirit of the present
invention, may readily implement other embodiments included within the scope of the
same concept by adding, changing, deleting, and adding components; rather, it will
be understood that they are also included within the scope of the present invention.
[0023] The present invention may have many embodiments in which the idea is implemented,
and in each embodiment, any portion may be replaced with a corresponding portion or
a portion having a related action according to another embodiment. The present invention
may be any one of the examples presented below or a combination of two or more examples.
[0024] The present disclosure may be a vacuum adiabatic body including a first plate; a
second plate; and a vacuum space provided between the first and second plates. The
vacuum adiabatic body may include a sealing part for providing the vacuum state space
(vacuum space). The vacuum space may be a space in a vacuum state provided in an internal
space between the first plate and the second plate. The seal may seal the first plate
and the second plate to provide the internal space provided in the vacuum state. The
vacuum adiabatic body may optionally include a side plate connecting the first plate
to the second plate. In the present disclosure, the expression "plate" may mean at
least one of the first and second plates or the side plate. At least a portion of
the first and second plates and the side plate may be integrally provided, or at least
portions may be sealed to each other. Optionally, the vacuum adiabatic body may include
a support that maintains the vacuum space. The vacuum adiabatic body may selectively
include a thermal insulator that reduces an amount of heat transfer between a first
space provided in vicinity of the first plate and a second space provided in vicinity
of the second plate or reduces an amount of heat transfer between the first plate
and the second plate.
[0025] Optionally, the vacuum adiabatic body may include a component coupling portion provided
on at least a portion of the plate. Optionally, the vacuum adiabatic body may include
another adiabatic body. Another adiabatic body may be provided to be connected to
the vacuum adiabatic body. Another adiabatic body may be an adiabatic body having
a degree of vacuum, which is equal to or different from a degree of vacuum of the
vacuum adiabatic body. Another adiabatic body may be an adiabatic body that does not
include a degree of vacuum less than that of the vacuum adiabatic body or a portion
that is in a vacuum state therein. In this case, it may be advantageous to connect
another object to another adiabatic body.
[0026] In the present disclosure, a direction along a wall defining the vacuum space may
include a longitudinal direction of the vacuum space and a height direction of the
vacuum space. The height direction of the vacuum space may be defined as any one direction
among virtual lines connecting the first space to the second space to be described
later while passing through the vacuum space. The longitudinal direction of the vacuum
space may be defined as a direction perpendicular to the set height direction of the
vacuum space.
[0027] In the present disclosure, that an object A is connected to an object B means that
at least a portion of the object A and at least a portion of the object B are directly
connected to each other, or that at least a portion of the object A and at least a
portion of the object B are connected to each other through an intermedium interposed
between the objects A and B. The intermedium may be provided on at least one of the
object A or the object B. The connection may include that the object A is connected
to the intermedium, and the intermedium is connected to the object B.
[0028] A portion of the intermedium may include a portion connected to either one of the
object A and the object B. The other portion of the intermedium may include a portion
connected to the other of the object A and the object B. As a modified example, the
connection of the object A to the object B may include that the object A and the object
B are integrally prepared in a shape connected in the above-described manner. In the
present disclosure, an embodiment of the connection may be support, combine, or a
seal, which will be described later.
[0029] In the present disclosure, that the object A is supported by the object B means that
the object A is restricted in movement by the object B in one or more of the +X, -X,
+Y, -Y, +Z, and - Z axis directions. In the present invention, an embodiment of the
support may be the combine or seal, which will be described later. In the present
invention, that the object A is combined with the object B may define that the object
A is restricted in movement by the object B in one or more of the X, Y, and Z-axis
directions.
[0030] In the present disclosure, an embodiment of the combining may be the sealing to be
described later. In the present disclosure, that the object A is sealed to the object
B may define a state in which movement of a fluid is not allowed at the portion at
which the object A and the object B are connected. In the present disclosure, one
or more objects, i.e., at least a portion of the object A and the object B, may be
defined as including a portion of the object A, the whole of the object A, a portion
of the object B, the whole of the object B, a portion of the object A and a portion
of the object B, a portion of the object A and the whole of the object B, the whole
of the object A and a portion of the object B, and the whole of the object A and the
whole of the object B. In the present disclosure, that the plate A may be a wall defining
the space A may be defined as that at least a portion of the plate A may be a wall
defining at least a portion of the space A.
[0031] That is, at least a portion of the plate A may be a wall forming the space A, or
the plate A may be a wall forming at least a portion of the space A. In the present
disclosure, a central portion of the object may be defined as a central portion among
three divided portions when the object is divided into three sections based on the
longitudinal direction of the object. A periphery of the object may be defined as
a portion disposed at a left or right side of the central portion among the three
divided portions. The periphery of the object may include a surface that is in contact
with the central portion and a surface opposite thereto.
[0032] The opposite side may be defined as a border or edge of the object. Examples of the
object may include a vacuum adiabatic body, a plate, a heat transfer resistor, a support,
a vacuum space, and various components to be introduced in the present disclosure.
In the present disclosure, a degree of heat transfer resistance may indicate a degree
to which an object resists heat transfer and may be defined as a value determined
by a shape including a thickness of the object, a material of the object, and a processing
method of the object. The degree of the heat transfer resistance may be defined as
the sum of a degree of conduction resistance, a degree of radiation resistance, and
a degree of convection resistance.
[0033] The vacuum adiabatic body according to the present disclosure may include a heat
transfer path defined between spaces having different temperatures, or a heat transfer
path defined between plates having different temperatures. For example, the vacuum
adiabatic body according to the present disclosure may include a heat transfer path
through which cold is transferred from a low-temperature plate to a high-temperature
plate. In the present disclosure, when a curved portion includes a first portion extending
in a first direction and a second portion extending in a second direction different
from the first direction, the curved portion may be defined as a portion that connects
the first portion to the second portion (including 90 degrees).
[0034] In the present disclosure, the vacuum adiabatic body may optionally include a component
coupling portion. The component coupling portion may be defined as a portion provided
on the plate to which components are connected to each other. The component connected
to the plate may be defined as a penetration portion disposed to pass through at least
a portion of the plate and a surface component disposed to be connected to a surface
of at least a portion of the plate.
[0035] At least one of the penetration component or the surface component may be connected
to the component coupling portion. The penetration component may be a component that
defines a path through which a fluid (electricity, refrigerant, water, air, etc.)
passes mainly. In the present disclosure, the fluid is defined as any kind of flowing
material. The fluid includes moving solids, liquids, gases, and electricity. For example,
the component may be a component that defines a path through which a refrigerant for
heat exchange passes, such as a suction line heat exchanger (SLHX) or a refrigerant
tube.
[0036] The component may be an electric wire that supplies electricity to an apparatus.
As another example, the component may be a component that defines a path through which
air passes, such as a cold duct, a hot air duct, and an exhaust port. As another example,
the component may be a path through which a fluid such as coolant, hot water, ice,
and defrost water pass. The surface component may include at least one of a peripheral
adiabatic body, a side panel, injected foam, a pre-prepared resin, a hinge, a latch,
a basket, a drawer, a shelf, a light, a sensor, an evaporator, a front decor, a hotline,
a heater, an exterior cover, or another adiabatic body.
[0037] As an example to which the vacuum adiabatic body is applied, the present disclosure
may include an apparatus having the vacuum adiabatic body. Examples of the apparatus
may include an appliance. Examples of the appliance may include home appliances including
a refrigerator, a cooking appliance, a washing machine, a dishwasher, and an air conditioner,
etc. As an example in which the vacuum adiabatic body is applied to the apparatus,
the vacuum adiabatic body may constitute at least a portion of a body and a door of
the apparatus.
[0038] As an example of the door, the vacuum adiabatic body may constitute at least a portion
of a general door and a door-in-door (DID) that is in direct contact with the body.
Here, the door-in-door may mean a small door placed inside the general door. As another
example to which the vacuum adiabatic body is applied, the present disclosure may
include a wall having the vacuum adiabatic body. Examples of the wall may include
a wall of a building, which includes a window.
[0039] Hereinafter, the present disclosure will be described in detail with reference to
the accompanying drawings. Each of the drawings accompanying the embodiment may be
different from, exaggerated, or simply indicated from an actual article, and detailed
components may be indicated with simplified features. The embodiment should not be
interpreted as being limited only to the size, structure, and shape presented in the
drawings. In the embodiments accompanying each of the drawings, unless the descriptions
conflict with each other, some configurations in the drawings of one embodiment may
be applied to some configurations of the drawings in another embodiment, and some
structures in one embodiment may be applied to some structures in another embodiment.
[0040] In the description of the drawings for the embodiment, the same reference numerals
may be assigned to different drawings as reference numerals of specific components
constituting the embodiment. Components having the same reference number may perform
the same function. For example, the first plate constituting the vacuum adiabatic
body has a portion corresponding to the first space throughout all embodiments and
is indicated by reference number 10. The first plate may have the same number for
all embodiments and may have a portion corresponding to the first space, but the shape
of the first plate may be different in each embodiment. Not only the first plate,
but also the side plate, the second plate, and another adiabatic body may be understood
as well.
[0041] Fig. 1 is a perspective view of a refrigerator according to an embodiment, and FIG.
2 is a schematic view illustrating a vacuum adiabatic body used for a body and a door
of the refrigerator. Referring to Fig. 1, the refrigerator 1 includes a main body
2 provided with a cavity 9 capable of storing storage goods and a door 3 provided
to open and close the main body 2.
[0042] The door 3 may be rotatably or slidably disposed to open or close the cavity 9. The
cavity 9 may provide at least one of a refrigerating compartment and a freezing compartment.
[0043] A cold source that supplies cold to the cavity may be provided. For example, the
cold source may be an evaporator 7 that evaporates the refrigerant to take heat. The
evaporator 7 may be connected to a compressor 4 that compresses the refrigerant evaporated
to the cold source. The evaporator 7 may be connected to a condenser 5 that condenses
the compressed refrigerant to the cold source. The evaporator 7 may be connected to
an expander 6 that expands the refrigerant condensed in the cold source.
[0044] A fan corresponding to the evaporator and the condenser may be provided to promote
heat exchange. As another example, the cold source may be a heat absorption surface
of a thermoelectric element. A heat absorption sink may be connected to the heat absorption
surface of the thermoelectric element. A heat sink may be connected to a heat radiation
surface of the thermoelectric element. A fan corresponding to the heat absorption
surface and the heat generation surface may be provided to promote heat exchange.
[0045] Referring to FIG. 2, plates 10, 15, and 20 may be walls defining the vacuum space.
The plates may be walls that partition the vacuum space from an external space of
the vacuum space. An example of the plates is as follows. The present disclosure may
be any one of the following examples or a combination of two or more examples.
[0046] The plate may be provided as one portion or may be provided to include at least two
portions connected to each other.
[0047] As a first example, the plate may include at least two portions connected to each
other in a direction along a wall defining the vacuum space. Any one of the two portions
may include a portion (e.g., a first portion) defining the vacuum space. The first
portion may be a single portion or may include at least two portions that are sealed
to each other. The other one of the two portions may include a portion (e.g., a second
portion) extending from the first portion of the first plate in a direction away from
the vacuum space or extending in an inner direction of the vacuum space.
[0048] As a second example, the plate may include at least two layers connected to each
other in a thickness direction of the plate. Any one of the two layers may include
a layer (e.g., the first portion) defining the vacuum space. The other one of the
two layers may include a portion (e.g., the second portion) provided in an external
space (e.g., a first space and a second space) of the vacuum space.
[0049] In this case, the second portion may be defined as an outer cover of the plate. The
other one of the two layers may include a portion (e.g., the second portion) provided
in the vacuum space. In this case, the second portion may be defined as an inner cover
of the plate.
[0050] The plate may include a first plate 10 and a second plate 20. One surface of the
first plate (the inner surface of the first plate) provides a wall defining the vacuum
space, and the other surface (the outer surface of the first plate) of the first plate
A wall defining the first space may be provided. The first space may be a space provided
in the vicinity of the first plate, a space defined by the apparatus, or an internal
space of the apparatus. In this case, the first plate may be referred to as an inner
case. When the first plate and the additional member define the internal space, the
first plate and the additional member may be referred to as an inner case.
[0051] The inner case may include two or more layers. In this case, one of the plurality
of layers may be referred to as an inner panel. One surface of the second plate (the
inner surface of the second plate) provides a wall defining the vacuum space, and
the other surface (the outer surface of the first plate) of the second plate A wall
defining the second space may be provided. The second space may be a space provided
in vicinity of the second plate, another space defined by the apparatus, or an external
space of the apparatus. In this case, the second plate may be referred to as an outer
case. When the second plate and the additional member define the external space, the
second plate and the additional member may be referred to as an outer case. The outer
case may include two or more layers. In this case, one of the plurality of layers
may be referred to as an outer panel.
[0052] The second space may be a space having a temperature higher than that of the first
space or a space having a temperature lower than that of the first space. Optionally,
the plate may include a side plate 15. In FIG. 2, the side plate may also perform
a function of a conductive resistance sheet 60 to be described later, according to
the disposition of the side plate. The side plate may include a portion extending
in a height direction of a space defined between the first plate and the second plate.
[0053] The side plate may include a portion extending in a height direction of the vacuum
space.
[0054] One surface of the side plate may provide a wall defining the vacuum space, and the
other surface of the side plate may provide a wall defining an external space of the
vacuum space. The external space of the vacuum space may be at least one of the first
space or the second space or a space in which another adiabatic body to be described
later is disposed. The side plate may be integrally provided by extending at least
one of the first plate or the second plate or a separate component connected to at
least one of the first plate or the second plate.
[0055] The plate may optionally include a curved portion. In the present disclosure, the
plate including a curved portion may be referred to as a bent plate. The curved portion
may include at least one of the first plate, the second plate, the side plate, between
the first plate and the second plate, between the first plate and the side plate,
or between the second plate and the side plate. The plate may include at least one
of a first curved portion or a second curved portion, an example of which is as follows.
[0056] First, the side plate may include the first curved portion. A portion of the first
curved portion may include a portion connected to the first plate. Another portion
of the first curved portion may include a portion connected to the second curved portion.
In this case, a curvature radius of each of the first curved portion and the second
curved portion may be large. The other portion of the first curved portion may be
connected to an additional straight portion or an additional curved portion, which
are provided between the first curved portion and the second curved portion. In this
case, a curvature radius of each of the first curved portion and the second curved
portion may be small.
[0057] Second, the side plate may include the second curved portion. A portion of the second
curved portion may include a portion connected to the second plate. The other portion
of the second curved portion may include a portion connected to the first curved portion.
In this case, a curvature radius of each of the first curved portion and the second
curved portion may be large. The other portion of the second curved portion may be
connected to an additional straight portion or an additional curved portion, which
are provided between the first curved portion and the second curved portion. In this
case, a curvature radius of each of the first curved portion and the second curved
portion may be small. Here, the straight portion may be defined as a portion having
a curvature radius greater than that of the curved portion. The straight portion may
be understood as a portion having a perfect plane or a curvature radius greater than
that of the curved portion. Third, the first plate may include the first curved portion.
A portion of the first curved portion may include a portion connected to the side
plate. A portion connected to the side plate may be provided at a position that is
away from the second plate at a portion at which the first plate extends in the longitudinal
direction of the vacuum space.
[0058] Fourth, the second plate may include the second curved portion. A portion of the
second curved portion may include a portion connected to the side plate. A portion
connected to the side plate may be provided at a position that is away from the first
plate at a portion at which the second plate extends in the longitudinal direction
of the vacuum space. The present disclosure may include a combination of any one of
the first and second examples described above and any one of the third and fourth
examples described above.
[0059] In the present disclosure, the vacuum space 50 may be defined as a third space. The
vacuum space may be a space in which a vacuum pressure is maintained. In the present
disclosure, the expression that a vacuum degree of A is higher than that of B means
that a vacuum pressure of A is lower than that of B.
[0060] In the present disclosure, the seal 61 may be a portion provided between the first
plate and the second plate. Examples of sealing are as follows. The present disclosure
may be any one of the following examples or a combination of two or more examples.
The sealing may include fusion welding for coupling the plurality of objects by melting
at least a portion of the plurality of objects. For example, the first plate and the
second plate may be welded by laser welding in a state in which a melting bond such
as a filler metal is not interposed therebetween, a portion of the first and second
plates and a portion of the component coupling portion may be welded by highfrequency
brazing or the like, or a plurality of objects may be welded by a melting bond that
generates heat. The sealing may include pressure welding for coupling the plurality
of objects by a mechanical pressure applied to at least a portion of the plurality
of objects.
[0061] For example, as a component connected to the component coupling portion, an object
made of a material having a degree of deformation resistance less than that of the
plate may be pressure-welded by a method such as pinch-off.
[0062] A machine room 8 may be optionally provided outside the vacuum adiabatic body. The
machine room may be defined as a space in which components connected to the cold source
are accommodated. Optionally, the vacuum adiabatic body may include a port 40. The
port may be provided at any one side of the vacuum adiabatic body to discharge air
of the vacuum space 50.
[0063] Optionally, the vacuum adiabatic body may include a conduit 64 passing through the
vacuum space 50 to install components connected to the first space and the second
space.
[0064] Fig. 3 is a view illustrating an example of a support that maintains the vacuum space.
An example of the support is as follows. The present disclosure may be any one of
the following examples or a combination of two or more examples.
[0065] The supports 30, 31, 33, and 35 may be provided to support at least a portion of
the plate and a heat transfer resistor to be described later, thereby reducing deformation
of at least some of the vacuum space 50, the plate, and the heat transfer resistor
to be described later due to external force.
[0066] The external force may include at least one of a vacuum pressure or external force
excluding the vacuum pressure. When the deformation occurs in a direction in which
a height of the vacuum space is lower, the support may reduce an increase in at least
one of radiant heat conduction, gas heat conduction, surface heat conduction, or support
heat conduction, which will be described later.
[0067] The support may be an object provided to maintain a gap between the first plate and
the second plate or an object provided to support the heat transfer resistor. The
support may have a degree of deformation resistance greater than that of the plate
or be provided to a portion having weak degree of deformation resistance among portions
constituting the vacuum adiabatic body, the apparatus having the vacuum adiabatic
body, and the wall having the vacuum adiabatic body.
[0068] According to an embodiment, a degree of deformation resistance represents a degree
to which an object resists deformation due to external force applied to the object
and is a value determined by a shape including a thickness of the object, a material
of the object, a processing method of the object, and the like. Examples of the portions
having the weak degree of deformation resistance include the vicinity of the curved
portion defined by the plate, at least a portion of the curved portion, the vicinity
of an opening defined in the body of the apparatus, which is provided by the plate,
or at least a portion of the opening.
[0069] The support may be disposed to surround at least a portion of the curved portion
or the opening or may be provided to correspond to the shape of the curved portion
or the opening. However, it is not excluded that the support is provided in other
portions. The opening may be understood as a portion of the apparatus including the
body and the door capable of opening or closing the opening defined in the body.
[0070] An example in which the support is provided to support the plate is as follows. First,
at least a portion of the support may be provided in a space defined inside the plate.
The plate may include a portion including a plurality of layers, and the support may
be provided between the plurality of layers. Optionally, the support may be provided
to be connected to at least a portion of the plurality of layers or be provided to
support at least a portion of the plurality of layers. Second, at least a portion
of the support may be provided to be connected to a surface defined on the outside
of the plate. The support may be provided in the vacuum space or an external space
of the vacuum space. For example, the plate may include a plurality of layers, and
the support may be provided as any one of the plurality of layers. Optionally, the
support may be provided to support the other one of the plurality of layers. For example,
the plate may include a plurality of portions extending in the longitudinal direction,
and the support may be provided as any one of the plurality of portions.
[0071] Optionally, the support may be provided to support the other one of the plurality
of parts. As further another example, the support may be provided in the vacuum space
or the external space of the vacuum space as a separate component, which is distinguished
from the plate. Optionally, the support may be provided to support at least a portion
of a surface defined on the outside of the plate. Optionally, the support may be provided
to support one surface of the first plate and one surface of the second plate.
[0072] One surface of the first plate and one surface of the second plate may be provided
to face each other.
[0073] Third, the support may be provided to be integrated with the plate. An example in
which the support is provided to support the heat transfer resistor may be understood
instead of the example in which the support is provided to support the plate. A duplicated
description will be omitted.
[0074] An example of the support in which heat transfer through the support is designed
to be reduced is as follows. First, at least a portion of the components disposed
in the vicinity of the support may be provided so as not to be in contact with the
support or provided in an empty space provided by the support. Examples of the components
include a tube or component connected to the heat transfer resistor to be described
later, an exhaust port, a getter port, a tube or component passing through the vacuum
space, or a tube or component of which at least a portion is disposed in the vacuum
space.
[0075] Exampled of the tube may include the exhaust port, a getter port. Examples of the
empty space may include an empty space provided in the support, an empty space provided
between the plurality of supports, and an empty space provided between the support
and a separate component that is distinguished from the support.
[0076] Optionally, at least a portion of the component may be disposed in a through-hole
defined in the support, be disposed between the plurality of bars, be disposed between
the plurality of connection plates, or be disposed between the plurality of support
plates. Optionally, at least a portion of the component may be disposed in a spaced
space between the plurality bars, be disposed in a spaced space between the plurality
of connection plates, or be disposed in a spaced space between the plurality of support
plates. Second, the adiabatic body may be provided on at least a portion of the support
or in the vicinity of at least a portion of the support.
[0077] The adiabatic body may be provided to be in contact with the support or provided
so as not to be in contact with the support. The adiabatic body may be provided at
a portion in which the support and the plate are in contact with each other. The adiabatic
body may be provided on at least a portion of one surface and the other surface of
the support or be provided to cover at least a portion of one surface and the other
surface of the support. The adiabatic body may be provided on at least a portion of
a periphery of one surface and a periphery of the other surface of the support or
be provided to cover at least a portion of a periphery of one surface and a periphery
of the other surface of the support.
[0078] The support may include a plurality of bars. The adiabatic body may be disposed on
an area from a point at which any one of the plurality of bars is disposed to a midpoint
between the one bar and the surrounding bars. Third, when cold is transferred through
the support, a heat source may be disposed at a position at which the heat adiabatic
body described in the second example is disposed. When a temperature of the first
space is lower than a temperature of the second space, the heat source may be disposed
on the second plate or in the vicinity of the second plate. When heat is transmitted
through the support, a cold source may be disposed at a position at which the heat
adiabatic body described in the second example is disposed.
[0079] When a temperature of the first space is higher than a temperature of the second
space, the cold source may be disposed on the second plate or in the vicinity of the
second plate. As fourth example, the support may include a portion having heat transfer
resistance higher than a metal or a portion having heat transfer resistance higher
than the plate. The support may include a portion having heat transfer resistance
less than that of another adiabatic body.
[0080] The support may include at least one of a non-metal material, PPS, and glass fiber
(GF), low outgassing PC, PPS, or LCP. This is done for a reason in which high compressive
strength, low outgassing, and a water absorption rate, low thermal conductivity, high
compressive strength at a high temperature, and excellent workability are being capable
of obtained.
[0081] Examples of the support may be the bars 30 and 31, the connection plate 35, the support
plate 35, a porous material 33, and a filler 33. In this embodiment, the support may
include any one of the above examples, or an example in which at least two examples
are combined.
[0082] As first example, the support may include bars 30 and 31. The bar may include a portion
extending in a direction in which the first plate and the second plate are connected
to each other to support a gap between the first plate and the second plate. The bar
may include a portion extending in a height direction of the vacuum space and a portion
extending in a direction that is substantially perpendicular to the direction in which
the plate extends. The bar may be provided to support only one of the first plate
and the second plate or may be provided both the first plate and the second plate.
[0083] For example, one surface of the bar may be provided to support a portion of the plate.
the other surface of the bar may be provided so as not to be in contact with the other
portion of the plate. As another example, one surface of the bar may be provided to
support at least a portion of the plate. the other surface of the bar may be provided
to support the other portion of the plate.
[0084] The support may include a bar having an empty space therein or a plurality of bars,
and an empty space are provided between the plurality of bars. In addition, the support
may include a bar, and the bar may be disposed to provide an empty space between the
bar and a separate component that is distinguished from the bar.
[0085] The support may selectively include a connection plate 35 including a portion connected
to the bar or a portion connecting the plurality of bars to each other. The connection
plate may include a portion extending in the longitudinal direction of the vacuum
space or a portion extending in the direction in which the plate extends. An XZ-plane
cross-sectional area of the connection plate may be greater than an XZ-plane cross-sectional
area of the bar. The connection plate may be provided on at least one of one surface
and the other surface of the bar or may be provided between one surface and the other
surface of the bar.
[0086] At least one of one surface and the other surface of the bar may be a surface on
which the bar supports the plate. The shape of the connection plate is not limited.
The support may include a connection plate having an empty space therein or a plurality
of connection plates. An empty space may be provided between the plurality of connection
plates. In addition, the support may include a connection plate.
[0087] The connection plate may be disposed to provide an empty space between the connection
plate and a separate component that is distinguished from the connection plate. As
a second example, the support may include a support plate 35. The support plate may
include a portion extending in the longitudinal direction of the vacuum space or a
portion extending in the direction in which the plate extends. The support plate may
be provided to support only one of the first plate and second plate.
[0088] The support plate may be provided to support both the first plate and the second
plate. For example, one surface of the support plate may be provided to support a
portion of the plate, and the other surface of the support plate may be provided so
as not to be in contact with the other portion of the plate. As another example, one
surface of the support plate may be provided to support at least a portion of the
plate, and the other surface of the support plate may be provided to support the other
portion of the plate. A cross-sectional shape of the support plate is not limited.
[0089] The support may include a support plate having an empty space therein or a plurality
of support plates, and an empty space are provided between the plurality of support
plates. In addition, the support may include a support plate, and the support plate
may be disposed to provide an empty space between the support plate and a separate
component that is distinguished from the support plate.
[0090] As a third example, the support may include a porous material 33 or a filler 33.
The inside of the vacuum space may be supported by the porous material or the filler.
The inside of the vacuum space may be completely filled by the porous material or
the filler. The support may include a plurality of porous materials or a plurality
of fillers. The plurality of porous materials or the plurality of fillers may be disposed
to be in contact with each other.
[0091] When an empty space is provided inside the porous material, provided between the
plurality of porous materials, or provided between the porous material and a separate
component that is distinguished from the porous material, the porous material may
be understood as including any one of the aforementioned bar, connection plate, and
support plate.
[0092] When an empty space is provided inside the filler, provided between the plurality
of fillers, or provided between the filler and a separate component that is distinguished
from the filler, the filler may be understood as including any one of the aforementioned
bar, connection plate, and support plate. The support according to the present disclosure
may include any one of the above examples or an example in which two or more examples
are combined.
[0093] Referring to Fig. 3a, as an embodiment, the support may include a bar 31 and a connection
plate and support plate 35. The connection plate and the supporting plate may be designed
separately. Referring to Fig. 3b, as an embodiment, the support may include a bar
31, a connection plate and support plate 35, and a porous material 33 filled in the
vacuum space. The porous material 33 may have emissivity greater than that of stainless
steel, which is a material of the plate, but since the vacuum space is filled, resistance
efficiency of radiant heat transfer is high.
[0094] The porous material may also function as a heat transfer resistor to be described
later. More preferably, the porous material may perform a function of a radiation
resistance sheet to be described later. Referring to Fig. 3c, as an embodiment, the
support may include a porous material 33 or a filler 33. The porous material 33 and
the filler may be provided in a compressed state to maintain a gap between the vacuum
space.
[0095] The film 34 may be provided in a state in which a hole is punched as, for example,
a PE material. The porous material 33 or the filler may perform both a function of
the heat transfer resistor and a function of the support, which will be described
later. More preferably, the porous material may perform both a function of the radiation
resistance sheet and a function of the support to be described later.
[0096] Fig. 4 is a view for explaining an example of the vacuum adiabatic body based on
heat transfer resistors 32, 33, 60, and 63 (e.g., thermal insulator and a heat transfer
resistance body). The vacuum adiabatic body according to the present disclosure may
optionally include a heat transfer resistor. An example of the heat transfer resistor
is as follows. The present disclosure may be any one of the following examples or
a combination of two or more examples.
[0097] The heat transfer resistors 32, 33, 60, and 63 may be objects that reduce an amount
of heat transfer between the first space and the second space or objects that reduce
an amount of heat transfer between the first plate and the second plate. The heat
transfer resistor may be disposed on a heat transfer path defined between the first
space and the second space. The heat transfer resistor may be disposed on a heat transfer
path formed between the first plate and the second plate. The heat transfer resistor
may include a portion extending in a direction along a wall defining the vacuum space.
[0098] The heat transfer resistor may include a portion extending in a direction in which
the plate extends. Optionally, the heat transfer resistor may include a portion extending
from the plate in a direction away from the vacuum space. The heat transfer resistor
may be provided on at least a portion of the periphery of the first plate or the periphery
of the second plate.
[0099] The heat transfer resistor may be provided on at least a portion of an edge of the
first plate or an edge of the second plate. The heat transfer resistor may be provided
at a portion, in which the through-hole is defined. The heat transfer resistor may
be provided as a tube connected to the through-hole. A separate tube or a separate
component that is distinguished from the tube may be disposed inside the tube.
[0100] Exampled of the aforementioned tube may include the exhaust port, a getter port The
heat transfer resistor may include a portion having heat transfer resistance greater
than that of the plate. In this case, adiabatic performance of the vacuum adiabatic
body may be further improved. A shield 62 may be provided on the outside of the heat
transfer resistor to be insulated. The inside of the heat transfer resistor may be
insulated by the vacuum space. The shield may be provided as a porous material or
a filler that is in contact with the inside of the heat transfer resistor.
[0101] The shield may be an adiabatic structure that is exemplified by a separate gasket
placed outside the inside of the heat transfer resistor. The heat transfer resistor
may be a wall defining the third space.
[0102] An example in which the heat transfer resistor is connected to the plate may be understood
as replacing the support with the heat transfer resistor in an example in which the
support is provided to support the plate. A duplicate description will be omitted.
The example in which the heat transfer resistor is connected to the support may be
understood as replacing the plate with the support in the example in which the heat
transfer resistor is connected to the plate. A duplicate description will be omitted.
The example of reducing heat transfer via the heat transfer body may be applied as
a substitute the example of reducing the heat transfer via the support, and thus,
the same explanation will be omitted.
[0103] In the present disclosure, the heat transfer resistor may be one of a radiation resistance
sheet 32, a porous material 33, a filler 33, and a conductive resistance sheet. In
the present disclosure, the heat transfer resistor may include a combination of at
least two of the radiation resistance sheet 32, the porous material 33, the filler
33, and the conductive resistance sheet. As a first example, the heat transfer resistor
may include a radiation resistance sheet 32.
[0104] The radiation resistance sheet may include a portion having heat transfer resistance
greater than that of the plate, and the heat transfer resistance may be a degree of
resistance to heat transfer by radiation. The support may perform a function of the
radiation resistance sheet together. A conductive resistance sheet to be described
later may perform the function of the radiation resistance sheet together. As a second
example, the heat transfer resistor may include conduction resistance sheets 60 and
63.
[0105] The conductive resistance sheet may include a portion having heat transfer resistance
greater than that of the plate, and the heat transfer resistance may be a degree of
resistance to heat transfer by conduction. For example, the conductive resistance
sheet may have a thickness less than that of at least a portion of the plate. As another
example, the conductive resistance sheet may include one end and the other end, and
a length of the conductive resistance sheet may be longer than a straight distance
connecting one end of the conductive resistance sheet to the other end of the conductive
resistance sheet.
[0106] As another example, the conductive resistance sheet may include a material having
resistance to heat transfer greater than that of the plate by conduction. As another
example, the heat transfer resistor may include a portion having a curvature radius
less than that of the plate.
[0107] Referring to Fig. 4a, for example, a conductive resistance sheet may be provided
on a side plate connecting the first plate to the second plate. Referring to Fig.
4b, for example, a conductive resistance sheet 60 may be provided on at least a portion
of the first plate and the second plate. A connection frame 70 may be further provided
outside the conductive resistance sheet. The connection frame may be a portion from
which the first plate or the second plate extends or a portion from which the side
plate extends.
[0108] Optionally, the connection frame 70 may include a portion at which a component for
sealing the door and the body and a component disposed outside the vacuum space such
as the exhaust port and the getter port, which are required for the exhaust process,
are connected to each other.
[0109] Referring to Fig. 4c, for example, a conductive resistance sheet may be provided
on a side plate connecting the first plate to the second plate. The conductive resistance
sheet may be installed in a through-hole passing through the vacuum space. The conduit
64 may be provided separately outside the conductive resistance sheet. The conductive
resistance sheet may be provided in a pleated shape. Through this, the heat transfer
path may be lengthened, and deformation due to a pressure difference may be prevented.
A separate shielding member for insulating the conductive resistance sheet 63 may
also be provided. The conductive resistance sheet may include a portion having a degree
of deformation resistance less than that of at least one of the plate, the radiation
resistance sheet, or the support. The radiation resistance sheet may include a portion
having a degree of deformation resistance less than that of at least one of the plate
or the support. The plate may include a portion having a degree of deformation resistance
less than that of the support. The conductive resistance sheet may include a portion
having conductive heat transfer resistance greater than that of at least one of the
plate, the radiation resistance sheet, or the support. The radiation resistance sheet
may include a portion having radiation heat transfer resistance greater than that
of at least one of the plate, the conductive resistance sheet, or the support. The
support may include a portion having heat transfer resistance greater than that of
the plate.
[0110] For example, at least one of the plate, the conductive resistance sheet, or the connection
frame may include stainless steel material, the radiation resistance sheet may include
aluminum, and the support may include a resin material.
[0111] Fig. 5 is a graph for observing a process of exhausting the inside of the vacuum
adiabatic body with a time and pressure when the support is used. An example of a
vacuum adiabatic body vacuum exhaust process vacuum is as follows. The present disclosure
may be any one of the following examples or a combination of two or more examples.
[0112] While the exhaust process is being performed, an outgassing process, which is a process
in which a gas of the vacuum space is discharged, or a potential gas remaining in
the components of the vacuum adiabatic body is discharged, may be performed. As an
example of the outgassing process, the exhaust process may include at least one of
heating or drying the vacuum adiabatic body, providing a vacuum pressure to the vacuum
adiabatic body, or providing a getter to the vacuum adiabatic body. In this case,
it is possible to promote the vaporization and exhaust of the potential gas remaining
in the component provided in the vacuum space. The exhaust process may include a process
of cooling the vacuum adiabatic body. The cooling process may be performed after the
process of heating or drying the vacuum adiabatic body is performed. The process of
heating or drying the vacuum adiabatic body process of providing the vacuum pressure
to the vacuum adiabatic body may be performed together.
[0113] The process of heating or drying the vacuum adiabatic body and the process of providing
the getter to the vacuum adiabatic body may be performed together. After the process
of heating or drying the vacuum adiabatic body is performed, the process of cooling
the vacuum adiabatic body may be performed.
[0114] The process of providing the vacuum pressure to the vacuum adiabatic body and the
process of providing the getter to the vacuum adiabatic body may be performed so as
not to overlap each other.
[0115] For example, after the process of providing the vacuum pressure to the vacuum adiabatic
body is performed, the process of providing the getter to the vacuum adiabatic body
may be performed. When the vacuum pressure is provided to the vacuum adiabatic body,
a pressure of the vacuum space may drop to a certain level and then no longer drop.
Here, after stopping the process of providing the vacuum pressure to the vacuum adiabatic
body, the getter may be input. As an example of stopping the process of providing
the vacuum pressure to the vacuum adiabatic body, an operation of a vacuum pump connected
to the vacuum space may be stopped. When inputting the getter, the process of heating
or drying the vacuum adiabatic body may be performed together. Through this, the outgassing
may be promoted. As another example, after the process of providing the getter to
the vacuum adiabatic body is performed, the process of providing the vacuum pressure
to the vacuum adiabatic body may be performed.
[0116] The time during which the vacuum adiabatic body vacuum exhaust process is performed
may be referred to as a vacuum exhaust time. The vacuum exhaust time includes at least
one of a time Δ1 during which the process of heating or drying the vacuum adiabatic
body is performed, a time Δt2 during which the process of maintaining the getter in
the vacuum adiabatic body is performed, of a time Δt3 during which the process of
cooling the vacuum adiabatic body is performed. Examples of times Δt1, Δt2, and Δt3
are as follows. The present disclosure may be any one of the following examples or
a combination of two or more examples. In the vacuum adiabatic body vacuum exhaust
process, the time Δt1 may be a time t1a or more and a time t1b or less. As a first
example, the time t1a may be greater than or equal to about 0.2 hr and less than or
equal to about 0.5 hr. The time t1b may be greater than or equal to about 1 hr and
less than or equal to about 24.0 hr.
[0117] The time Δt1 may be about 0.3 hr or more and about 12.0 hr or less. The time Δt1
may be about 0.4 hr or more and about 8.0 hr or less. The time Δt1 may be about 0.5
hr or more and about 4.0 hr or less. In this case, even if the Δt1 is kept as short
as possible, the sufficient outgassing may be applied to the vacuum adiabatic body.
For example, this case may include a case in which a component of the vacuum adiabatic
body, which is exposed to the vacuum space, among the components of the vacuum adiabatic
body, has an outgassing rate (%) less than that of any one of the component of the
vacuum adiabatic body, which is exposed to the external space of the vacuum space.
Specifically, the component exposed to the vacuum space may include a portion having
a outgassing rate less than that of a thermoplastic polymer.
[0118] More specifically, the support or the radiation resistance sheet may be disposed
in the vacuum space, and the outgassing rate of the support may be less than that
of the thermoplastic plastic. As another example, this case may include a case in
which a component of the vacuum adiabatic body, which is exposed to the vacuum space,
among the components of the vacuum adiabatic body, has a max operating temperature
(°C) greater than that of any one of the component of the vacuum adiabatic body, which
is exposed to the external space of the vacuum space.
[0119] In this case, the vacuum adiabatic body may be heated to a higher temperature to
increase in outgassing rate. For example, the component exposed to the vacuum space
may include a portion having an operating temperature greater than that of the thermoplastic
polymer. As a more specific example, the support or the radiation resistance sheet
may be disposed in the vacuum space, and a use temperature of the support may be higher
than that of the thermoplastic plastic.
[0120] As another example, among the components of the vacuum adiabatic body, the component
exposed to the vacuum space may contain more metallic portion than a non-metallic
portion. That is, a mass of the metallic portion may be greater than a mass of the
non-metallic portion, a volume of the metallic portion may be greater than a volume
of the non-metallic portion, or an area of the metallic portion exposed to the vacuum
space may be greater than an area exposed to the non-metallic portion of the vacuum
space. When the components exposed to the vacuum space are provided in plurality,
the sum of the volume of the metal material included in the first component and the
volume of the metal material included in the second component may be greater than
that of the volume of the non-metal material included in the first component and the
volume of the non-metal material included in the second component. When the components
exposed to the vacuum space are provided in plurality, the sum of the mass of the
metal material included in the first component and the mass of the metal material
included in the second component may be greater than that of the mass of the non-metal
material included in the first component and the mass of the non-metal material included
in the second component. When the components exposed to the vacuum space are provided
in plurality, the sum of the area of the metal material, which is exposed to the vacuum
space and included in the first component, and an area of the metal material, which
is exposed to the vacuum space and included in the second component, may be greater
than that of the area of the non-metal material, which is exposed to the vacuum space
and included in the first component, and an area of the non-metal material, which
is exposed to the vacuum space and included in the second component.
[0121] As a second example, the time t1a may be greater than or equal to about 0.5 hr and
less than or equal to about 1 hr. The time t1b may be greater than or equal to about
24.0 hr and less than or equal to about 65 hr. The time Δt1 may be about 1.0 hr or
more and about 48.0 hr or less. The time Δt1 may be about 2 hr or more and about 24.0
hr or less. The time Δt1 may be about 3 hr or more and about 12.0 hr or less.
[0122] In this case, it may be the vacuum adiabatic body that needs to maintain the Δt1
as long as possible. In this case, a case opposite to the examples described in the
first example or a case in which the component exposed to the vacuum space is made
of a thermoplastic material may be an example. A duplicated description will be omitted.
In the vacuum adiabatic body vacuum exhaust process, the time Δt1 may be a time t1a
or more and a time t1b or less. The time t2a may be greater than or equal to about
0.1 hr and less than or equal to about 0.3 hr. The time t2b may be greater than or
equal to about 1 hr and less than or equal to about 5.0 hr.
[0123] The time Δt2 may be about 0.2 hr or more and about 3.0 hr or less. The time Δt2 may
be about 0.3 hr or more and about 2.0 hr or less. The time Δt2 may be about 0.5 hr
or more and about 1.5 hr or less. In this case, even if the time Δt2 is kept as short
as possible, the sufficient outgassing through the getter may be applied to the vacuum
adiabatic body.
[0124] In the vacuum adiabatic body vacuum exhaust process, the time Δt3 may be a time t3a
or more and a time t3b or less.
[0125] The time t3a may be greater than or equal to about 0.2 hr and less than or equal
to about 0.8 hr. The time t3b may be greater than or equal to about 1 hr and less
than or equal to about 65.0 hr. The time Δt3 may be about 0.2 hr or more and about
48.0 hr or less. The time Δt3 may be about 0.3 hr or more and about 24.0 hr or less.
The time Δt3 may be about 0.4 hr or more and about 12.0 hr or less. The time Δt3 may
be about 0.5 hr or more and about 5.0 hr or less. After the heating or drying process
is performed during the exhaust process, the cooling process may be performed.
[0126] For example, when the heating and/or drying process is performed for a long time,
the time Δt3 may be long. The vacuum adiabatic body according to the present disclosure
may be manufactured so that the time Δt1 is greater than the time Δt2, the time Δt1
is less than or equal to the time Δt3, or the time Δt3 is greater than the time Δt2.
[0127] The following relational expression is satisfied: Δt2<Δt1≤Δt3. The vacuum adiabatic
body according to an embodiment may be manufactured so that the relational expression:
Δt1+Δt2+Δt3 may be greater than or equal to about 0.3 hr and less than or equal to
about 70 hr, be greater than or equal to about 1 hr and less than or equal to about
65 hr, or be greater than or equal to about 2 hr and less than or equal to about 24
hr. The relational expression: Δt1+Δt2+Δt3 may be manufactured to be greater than
or equal to about 3 hr and less than or equal to about 6 hr.
[0128] An example of the vacuum pressure condition during the exhaust process is as follows.
The present disclosure may be any one of the following examples or a combination of
two or more examples. A minimum value of the vacuum pressure in the vacuum space during
the exhaust process may be greater than about 1.8E-6 Torr. The minimum value of the
vacuum pressure may be greater than about 1.8E-6 Torr and less than or equal to about
1.0E-4 Torr, be greater than about 0.5E-6 Torr and less than or equal to about 1.0E-4
Torr, or be greater than about 0.5E-6 Torr and less than or equal to about 0.5E-5
Torr. The minimum value of the vacuum pressure may be greater than about 0.5E-6 Torr
and less than about 1.0E-5 Torr.
[0129] As such, the limitation in which the minimum value of the vacuum pressure provided
during the exhaust process is because, even if the pressure is reduced through the
vacuum pump during the exhaust process, the decrease in vacuum pressure is slowed
below a certain level.
[0130] As an embodiment, after the exhaust process is performed, the vacuum pressure of
the vacuum space may be maintained at a pressure greater than or equal to about 1.0E-5
Torr and less than or equal to about 5.0E-1 Torr. The maintained vacuum pressure may
be greater than or equal to about 1.0E-5 Torr and less than or equal to about 1.0E-1
Torr, be greater than or equal to about 1.0E-5 Torr and less than or equal to about
1.0E-2 Torr, be greater than or equal to about 1.0E-4 Torr and less than or equal
to about 1.0E-2 Torr, or be greater than or equal to about 1.0E-5 Torr and less than
or equal to about 1.0E-3 Torr. As a result of predicting the change in vacuum pressure
with an accelerated experiment of two example products, one product may be provided
so that the vacuum pressure is maintained below about 1.0E-04Torr even after about
16.3 years, and the other product may be provided so that the vacuum pressure is maintained
below about 1.0E-04Torr even after about 17.8 years.
[0131] As described above, the vacuum pressure of the vacuum adiabatic body may be used
industrially only when it is maintained below a predetermined level even if there
is a change over time.
[0132] Fig. 5a is a graph of an elapsing time and pressure in the exhaust process according
to an example, and Fig. 5b is a view explaining results of a vacuum maintenance test
in the acceleration experiment of the vacuum adiabatic body of the refrigerator having
an internal volume of about 128 liters.
[0133] Referring to Fig. 5b, it is seen that the vacuum pressure gradually increases according
to the aging. For example, it is confirmed that the vacuum pressure is about 6.7E-04
Torr after about 4.7 years, about 1.7E-03 Torr after about 10 years, and about 1.0E-02
Torr after about 59 years. According to these experimental results, it is confirmed
that the vacuum adiabatic body according to the embodiment is sufficiently industrially
applicable.
[0134] Fig. 6 is a graph illustrating results obtained by comparing the vacuum pressure
with gas conductivity. Referring to Fig. 6, gas conductivity with respect to the vacuum
pressure depending on a size of the gap in the vacuum space 50 was represented as
a graph of effective heat transfer coefficient (eK). The effective heat transfer coefficient
(eK) was measured when the gap in the vacuum space 50 has three values of about 3
mm, about 4.5 mm, and about 9 mm. The gap in the vacuum space 50 is defined as follows.
When the radiation resistance sheet 32 exists inside surface vacuum space 50, the
gap is a distance between the radiation resistance sheet 32 and the plate adjacent
thereto. When the radiation resistance sheet 32 does not exist inside surface vacuum
space 50, the gap is a distance between the first and second plates. It was seen that,
since the size of the gap is small at a point corresponding to a typical effective
heat transfer coefficient of about 0.0196 W/mK, which is provided to an adiabatic
material formed by foaming polyurethane, the vacuum pressure is about 5.0E-1 Torr
even when the size of the gap is about 3 mm.
[0135] Meanwhile, it was seen that the point at which reduction in adiabatic effect caused
by the gas conduction heat is saturated even though the vacuum pressure decreases
is a point at which the vacuum pressure is approximately 4.5E-3 Torr. The vacuum pressure
of about 4.5E-3 Torr may be defined as the point at which the reduction in adiabatic
effect caused by the gas conduction heat is saturated.
[0136] Also, when the effective heat transfer coefficient is about 0.01 W/mK, the vacuum
pressure is about 1.2E-2 Torr. An example of a range of the vacuum pressure in the
vacuum space according to the gap is presented. The support may include at least one
of a bar, a connection plate, or a support plate. In this case, when the gap of the
vacuum space is greater than or equal to about 3 mm, the vacuum pressure may be greater
than or equal to A and less than about 5E-1 Torr, or be greater than about 2.65E-1
Torr and less than about 5E-1 Torr. As another example, the support may include at
least one of a bar, a connection plate, or a support plate. In this case, when the
gap of the vacuum space is greater than or equal to about 4.5 mm, the vacuum pressure
may be greater than or equal to A and less than about 3E-1 Torr, or be greater than
about 1.2E-2 Torr and less than about 5E-1 Torr.
[0137] As another example, the support may include at least one of a bar, a connection plate,
or a support plate, and when the gap of the vacuum space is greater than or equal
to about 9 mm, the vacuum pressure may be greater than or equal to A and less than
about 1.0X10^-1 Torr or be greater than about 4.5E-3 Torr and less than about 5E-1
Torr.
[0138] Here, the A may be greater than or equal to about 1.0X10^-6 Torr and less than or
equal to about 1.0E-5 Torr. The A may be greater than or equal to about 1.0X10^-5
Torr and less than or equal to about 1.0E-4 Torr. When the support includes a porous
material or a filler, the vacuum pressure may be greater than or equal to about 4.7E-2
Torr and less than or equal to about 5E-1 Torr. In this case, it is understood that
the size of the gap ranges from several micrometers to several hundreds of micrometers.
When the support and the porous material are provided together in the vacuum space,
a vacuum pressure may be created and used, which is middle between the vacuum pressure
when only the support is used and the vacuum pressure when only the porous material
is used.
[0139] Fig. 7 is a view for explaining a process of manufacturing the vacuum adiabatic body.
[0140] Optionally, the vacuum adiabatic body may be manufactured by a vacuum adiabatic body
component preparation process in which the first plate and the second plate are prepared
in advance. Optionally, the vacuum adiabatic body may be manufactured by a vacuum
adiabatic body component assembly process in which the first plate and the second
plate are assembled. Optionally, the vacuum adiabatic body may be manufactured by
a vacuum adiabatic body vacuum exhaust process in which a gas in the space defined
between the first plate and the second plate is discharged. Optionally, after the
vacuum adiabatic body component preparation process is performed, the vacuum adiabatic
body component assembly process or the vacuum adiabatic body exhaust process may be
performed.
[0141] Optionally, after the vacuum adiabatic body component assembly process is performed,
the vacuum adiabatic body vacuum exhaust process may be performed. Optionally, the
vacuum adiabatic body may be manufactured by the vacuum adiabatic body component sealing
process (S3) in which the space between the first plate and the second plate is sealed.
The vacuum adiabatic body component sealing process may be performed before the vacuum
adiabatic body vacuum exhaust process (S4). The vacuum adiabatic body may be manufactured
as an object with a specific purpose by an apparatus assembly process (S5) in which
the vacuum adiabatic body is combined with the components constituting the apparatus.
The apparatus assembly process may be performed after the vacuum adiabatic body vacuum
exhaust process.
[0142] Here, the components constituting the apparatus means components constituting the
apparatus together with the vacuum adiabatic body.
[0143] The vacuum adiabatic body component preparation process (S1) is a process in which
components constituting the vacuum adiabatic body are prepared or manufactured. Examples
of the components constituting the vacuum adiabatic body may include various components
such as a plate, a support, a heat transfer resistor, and a tube. The vacuum adiabatic
body component assembly process (S2) is a process in which the prepared components
are assembled. The vacuum adiabatic body component assembly process may include a
process of disposing at least a portion of the support and the heat transfer resistor
on at least a portion of the plate.
[0144] For example, the vacuum adiabatic body component assembly process may include a process
of disposing at least a portion of the support and the heat transfer resistor between
the first plate and the second plate. Optionally, the vacuum adiabatic body component
assembly process may include a process of disposing a penetration component on at
least a portion of the plate. For example, the vacuum adiabatic body component assembly
process may include a process of disposing the penetration component or a surface
component between the first and second plates. After the penetration component may
be disposed between the first plate and the second plate, the penetration component
may be connected or sealed to the penetration component coupling portion.
[0145] An example of a vacuum adiabatic body vacuum exhaust process vacuum is as follows.
The present disclosure may be any one of the, examples or a combination of two or
more examples. The vacuum adiabatic body vacuum exhaust process may include at least
one of a process of inputting the vacuum adiabatic body into an exhaust passage, a
getter activation process, a process of checking vacuum leakage and a process of closing
the exhaust port. The process of forming the coupling part may be performed in at
least one of the vacuum adiabatic body component preparation process, the vacuum adiabatic
body component assembly process, or the apparatus assembly process. Before the vacuum
adiabatic body exhaust process is performed, a process of washing the components constituting
the vacuum adiabatic body may be performed. Optionally, the washing process may include
a process of applying ultrasonic waves to the components constituting the vacuum adiabatic
body or a process of providing ethanol or a material containing ethanol to surfaces
of the components constituting the vacuum adiabatic body. The ultrasonic wave may
have an intensity between about 10 kHz and about 50 kHz. A content of ethanol in the
material may be about 50% or more. For example, the content of ethanol in the material
may range of about 50% to about 90%. As another example, the content of ethanol in
the material may range of about 60% to about 80%.
[0146] As another example, the content of ethanol in the material may be range of about
65% to about 75%. Optionally, after the washing process is performed, a process of
drying the components constituting the vacuum adiabatic body may be performed. Optionally,
after the washing process is performed, a process of heating the components constituting
the vacuum adiabatic body may be performed.
[0147] A heat exchanger may be installed in a vacuum adiabatic body. The following may be
optional. The heat exchanger may connect a first space to a second space. The heat
exchanger may exchange heat between a refrigerant discharged from an evaporator and
a refrigerant suctioned into the evaporator. At least a portion of the heat exchanger
may be placed in a third space.
[0148] Matters and descriptions disclosed in any drawing of this document may provide different
embodiments. Contents disclosed in any drawing of this document may be applied to
the contents of other drawings.
[0149] FIG. 8 is a view illustrating an example in which a support and a heat exchanger
are installed.
[0150] The following may be optional. Referring to FIG. 8, the heat exchanger 57 may be
installed on a rear surface of the vacuum adiabatic body. A first end portion of a
refrigerant tube constituting the heat exchanger may be withdrawn to a machine room
8. The machine room may be placed in a second space. A second end portion of the refrigerant
tube constituting the heat exchanger may be led out to a low-temperature space. The
low-temperature space may be placed in the first space. The heat exchanger may be
provided to a predetermined length to enable sufficient heat exchange. The heat exchanger
may have a bent part. The heat exchanger may have a straight part extending in a straight
line. At least two straight parts may be provided. The bent part may be provided between
the straight parts. At least one bent part may be bent in an extension direction of
the third space. At least one bent part may be bent in a thickness direction of the
third space.
[0151] The following may be optional. A support 30 placed on a rear surface of the vacuum
adiabatic body may be provided as a single structure of one body. The single structure
may be provided as a structure in which at least two individual units are connected
to each other. The units 301 may be respectively coupled vertically. The units 301
may be coupled so that the upper and lower units are alternately disposed. Thus, the
single structure may be provided. There may be a left-right gap in a left and right
direction of each of the units. The bent part may not be placed in the left-right
gap of each unit. Thus, the positioning of the bent part may be convenient. Thus,
the heat exchanger may be stably supported. When there are two bent parts, the two
bent parts may be placed on the same unit. The heat exchanger may pass through at
least two or more units.
[0152] The following may be optional. The support may be provided as a lattice structure.
The heat exchanger may pass between the lattices. The heat exchanger may move while
being placed on the single structure. The heat exchanger may be placed on the plate
while being placed on the single structure. The support may be made of PPS. The support
may be made of PPS containing glass fiber.
[0153] FIG. 9 is a view of the support according to an embodiment. FIG. 9A illustrates a
support having an edge that is a connection branch. FIG. 9B illustrates a support
having an edge that is an independent branch. Descriptions will be made with reference
to FIG. 9.
[0154] The vacuum adiabatic body may be provided with at least two spaces. The at least
two spaces may be bent. Like the vacuum adiabatic body, the vacuum space part may
also be provided as at least two spaces. The at least two spaces may be connected
to each other. Extension directions of at least two spaces may intersect each other.
For example, the extension directions may intersect each other at 90 degrees. The
support may be placed inside each space of the vacuum adiabatic body. The support
may be provided corresponding to each space of the vacuum adiabatic body. The supports
may be inserted into each of the at least two spaces. At least two supports may be
provided. The at least two supports may be in contact with each other. The at least
two supports may be in contact with each other at a point at which the two adjacent
spaces of the vacuum adiabatic body intersect each other.
[0155] The following contents may be optional. The support may have a support plate 35 having
a lattice. The support may have a bar 31 extending from an intersection point of the
lattice. The support plate may be provided in a square shape. An edge of the support
plate may have an independent branch 352 extending outside the support plate. The
independent branch may have a first terminal fixed to the support plate. The independent
branch may have a second terminal that is not fixed to the support plate. The second
stage may not be in contact with the support plate. Here, the support plate may mean
a support plate to which the first stage is fixed. The second stage may be connected
to the other adjacent independent branch. Two adjacent independent branches may be
connected to each other. The second terminal of the first independent branch and the
second terminal of the second independent branch may be connected to each other. The
second terminal of the first independent branch and the second terminal of the second
independent branch may be connected by a connection branch 351. The independent branch
may disappear due to the connection branch. The connection branch may provide the
outermost portion of the support. The connection branch may provide a portion of the
support plate. At least some of the connection branches may be connected to each other.
[0156] FIG. 10 is a view for explaining an example in which the support having a connection
branch is in contact with the support. FIG. 10(a) is an inner perspective view. FIG.
10(b) is an outer perspective view. Descriptions will be made with reference to FIG.
10.
[0157] The first support 30a and the second support 30b may be in contact with each other
at a corner of the vacuum adiabatic body. The following contents may be optional.
A first connection branch 351a may be provided on the first support. A second connection
branch 351b may be provided on the second support. An inner surface of the first connection
branch 351a may be in contact with a side surface of the second connection branch
351b. Conversely, it may also be vice versa. The first and second connection branches
that are in contact with each other may not be provided with bars. Movement of the
second connection branch 351b in an extension direction of the vacuum space may be
supported by the first connection branch 351a. The connection branches may be in line
contact with each other. The first connection branch 351a may be supported by a second
plate. The support between the connection branches may also be the same for inner
support plates. The support between the connection branches may be established in
one direction. The support between the connection branches may be established with
respect to force that causes the connection branches to approach each other in at
least one of a vertical direction or a left and right direction, based on the drawings.
For other forces, the connection branch may be a free end. The connection branch may
have the same thickness as the support plate. Thus, processing and handling of the
unit and support may be convenient. The connection branch may have the same width
as the support plate. Thus, processing and handling of the unit and support may be
convenient. A tolerance of the thickness of the connection branch may be less than
0.1 mm. The tolerance may be smaller than a tolerance of the support plate. Thus,
reliability of the contact between the first and second connection branches may be
obtained. A length 11 of an inner connection branch may be set to a value obtained
by subtracting a length in a thickness direction of the vacuum space from a length
l2 of an outer connection branch. Accordingly, specifications of the first and second
supports 30a and 30b may be different from each other. Accordingly, a size of the
unit constituting the first and second supports 30a and 30b may be different from
each other. At least one of the first or second side support may be provided by coupling
the units 33a and 33b to each other. At least one of the first or second side support
may be provided by coupling an opposing structure. At least one of the first or second
side support may be coupled to each other so that the first support 31 and the second
support 36 are coupled to each other. The description of the outer support plate may
be applied to the description of the inner support plate. Descriptions for one support
may be applied to other supports.
[0158] FIG. 11 illustrates an example in which supports having independent branches are
in line contact with each other. FIG. 11(a) is an inner perspective view. FIG. 11(b)
is a view illustrating an example in which a radiation resistance sheet is removed.
Descriptions will be made with reference to FIG. 11.
[0159] The first support 30a and the second support 30b may be in contact with each other
at a corner of the vacuum adiabatic body. The following contents may be optional.
A first independent branch 352a may be provided on the first support. A second independent
branch 352b may be provided on the second support. An inner surface of the first independent
branch 352a may be in contact with a side surface of the second independent branch
352b. The independent branches may be in point contact with each other. Conversely,
it may also be vice versa. The first and second independent branches that are in contact
with each other may not be provided with bars. Movement of the first independent branch
351a in the extension direction of the vacuum space may be supported by the second
independent branch 351b. The second independent branch 351b may be supported by the
second plate. The support between the independent branches may also be the same for
the inner support plates. The support between the independent branches may be established
in one direction. The support between the independent branches may be established
with respect to force that causes the independent branches to approach each other
in at least one of the vertical direction or the left and right direction, based on
the drawings. The independent branch may be a free end with respect to other force.
The independent branch may have the same thickness as the support plate. Thus, processing
and handling of the unit and support may be convenient. The independent branch may
have the same width as the support plate. Thus, processing and handling of the unit
and support may be convenient. A tolerance of the thickness of the independent branch
may be less than 0.1 mm. The tolerance may be smaller than a tolerance of the support
plate. Thus, reliability of the contact between the first and second independent branches
may be obtained. A length l1 of an inner independent branch may be set to a value
obtained by subtracting a length in a thickness direction of the vacuum space from
a length l2 of an outer independent branch. Accordingly, specifications of the first
and second supports 30a and 30b may be different from each other. Accordingly, a size
of the unit constituting the first and second supports 30a and 30b may be different
from each other. At least one of the first or second side support may be provided
by coupling the units 33a and 33b to each other. At least one of the first or second
side support may be provided by coupling an opposing structure. At least one of the
first or second side support may be coupled to each other so that the first support
31 and the second support 36 are coupled to each other. The description of the outer
support plate may be applied to the description of the inner support plate. Descriptions
for one support may be applied to other supports.
[0160] Another embodiment will be described. The following contents may be applied optionally.
It is possible to have independent branches of one support and connection branches
of another support are supported with respect to each other.
[0161] In the foregoing embodiment, the two supports are in contact with each other. In
the foregoing embodiment, the two supports are not substantially restricted with respect
to each other. Hereinafter, an embodiment in which the two supports are restricted
is described.
[0162] FIGS. 12 to 13 are views illustrating an example in which the two supports are fixed
in at least one direction according to an embodiment. FIG. 12 is a perspective view
of a support assembly. FIG. 13(a) is a plan view of FIG. 12. FIG. 13(c) is a view
illustrating a modified example of FIG. 13(a). FIG. 13(c) is a view illustrating a
modified example of FIG. 13(a). This will be described with reference to FIGS. 12
to 13.
[0163] The two supports 30a and 30b may be restricted to each other in at least one direction.
The following may be applied optionally. The two supports may move freely in a direction
that passes through the ground. The two supports may move freely in the left and right
direction relative to the ground. The two supports may be restricted to move vertically
relative to the ground. The two supports may be restricted along at least one of the
three XYZ axes. The two supports may be fixed along at least one of the three XYZ
axes.
[0164] The following may be applied optionally. The support may include at least one of
an outer support plate 35a or an inner support plate 35b. A coupling part may be provided
at an end portion of the support plate. The coupling part may be provided with at
least one of the inner and outer support plates 35a of the first and second supports.
The coupling parts 358a, 358b, 359a, and 359b may be provided at at least a pair of
facing positions in the inner and outer support plates 35a of the first and second
supports. The coupling part may be provided in various examples such as a groove,
a protrusion, an unevenness, and a key. As an example, the coupling part may be provided
as a groove. An end portion of the opposing support plate may be inserted into the
groove. At least one of the outer support plate or the inner support plate may not
have the first and second supports coupled to each other. A different support structure
may be applied to the non-coupled support plate.
[0165] The following may be applied optionally. The end portions of the first and second
supports may act as fixed ends for fixing the opposing supports. A length 11 of the
outermost lattice of the inner support plate may be shorter than a length l2 of the
inner lattice of the inner support plate. The first and second supports may be fixed
to the outer support plates. The first and second supports may be fixed to the inner
support plates.
[0166] At least one of the first and second supports or the units of the first and second
supports may be provided in at least two identical shapes. In other words, a plurality
of supports and units having the same type may be used. At least two supports may
be provided. It is desirable to provide the supports in the same shape, and thus,
inventory costs may be reduced. The following may be applied optionally. A length
11 of the outermost lattice of the inner support plate may be set to a value obtained
by subtracting a length in the thickness direction of the vacuum space from the outermost
length l3 of the outer support plate.
[0167] FIG. 14 is a view illustrating an example in which the two supports are fixed in
at least one direction according to another embodiment. FIG. 14(a) is a perspective
view of a second support. FIG. 14(b) is a plan view of FIG. 14. Descriptions will
be made with reference to FIG. 14.
[0168] The two supports 30a and 30b may be restricted to each other in at least one direction.
The following may be applied optionally. The two supports may move freely in a direction
that passes through the ground. The two supports may move freely vertically relative
to the ground. The two supports may be restricted to move in the left and right direction
relative to the ground. The two supports may be restricted along at least one of the
three XYZ axes. The two supports may be fixed along at least one of the three XYZ
axes.
[0169] The following may be applied optionally. The support may include at least one of
an outer support plate 35a or an inner support plate 35b. A coupling part may be provided
at an end portion of the support plate. The coupling part may be provided in two pieces
spaced apart from each other on the inner support plate 35b of the first and second
supports. An interval between the two coupling parts may be equal to that between
the outer and inner support plates. In the coupling part 358a, 358b, 359a, and 359b,
the coupling parts of the inner support plate 35b of one of the first and second supports
30a and the end portions of the outer and inner support plates 35a35b of the other
support 30b may be coupled to each other. At least one of the first and second supports
and the units of the first and second supports may be provided in the same shape.
A portion of the supports may have a free end that is not supported. In the drawings,
a portion of the end of the outer support plate of the first support may be provided
as a free end. A portion of the end of the outer support plate of the first support
may be provided as a fixed end.
[0170] FIG. 15 is a view illustrating an example in which the two supports are fixed in
at least two directions. FIG. 15(a) is a perspective view of a second support. FIG.
14(b) is a plan view of FIG. 14. Descriptions will be made with reference to FIG.
14.
[0171] The two supports 30a and 30b may be restricted to each other in at least two directions.
The following may be applied optionally. The two supports may move freely in a direction
that passes through the ground. The two supports may be restricted to move vertically
relative to the ground. The two supports may be restricted to move in the left and
right direction relative to the ground. The two supports may be restricted along at
least two directions in the three XYZ axes. The two supports may be fixed along at
least two directions in the XYZ three axes.
[0172] The following may be applied optionally. The support may include at least one of
an outer support plate 35a or an inner support plate 35b. A coupling part may be provided
at an end portion of the support plate. The coupling parts 359a and 359c and 359b
and 358b may be provided in two pieces spaced apart from each other on the outer support
plate 35a of the first and second supports. An interval between the two coupling parts
may be equal to that between the outer and inner support plates. The coupling part
358a may be provided in one on the inner support plate 35b of the first and second
supports. Here, the coupling part 358a may not be provided on the first support. Here,
the coupling part 358a may be cut in the first support. For example, the support plate
may be cut at the coupling part 358a of the inner support plate of the second support
30b, and the coupling part 358a of the inner support plate of the first support 30a
may not be cut. The cut end portion of the first support may be inserted into the
coupling part 358a. The end portions of the outer and inner support plates 35a35b
of the other support 30a may be coupled to the two coupling parts of the outer support
plates of one of the first and second supports 30b.
[0173] The following contents may be applied optionally. At least one of the first and second
supports or the units of the first and second supports may be provided in the same
shape before the coupling. Any one of the first and second supports and the units
of the first and second supports may be cut before the coupling. At least one of the
first and second supports or the units of the first and second supports may be provided
in different shapes before the coupling. That is, two types of units may be used.
The outer support plate may be provided in the same shape before or after the coupling.
[0174] FIG. 16 is a view for explaining details of the support of FIG. 12. This will be
described with reference to FIGS. 12, 13, and 16.
[0175] The following contents may be applied optionally. A length of the outermost lattice
of the outer support plate is greater than a length of the outermost lattice of the
inner support plate. The length of the outermost lattice of the outer support plate
may be smaller than the length of the outermost lattice of the inner support plate
and the thickness of the vacuum space. The length of the outermost lattice of the
inner support plate may be greater than the thickness of the vacuum space. The length
of the outermost lattice of the inner support plate may be smaller than an interval
between adjacent pairs of bars 31. A length B by which the outermost lattice of the
outer support plate in the first support 30a extends from the outermost lattice of
the outer support plate is the same as a length A by which the outermost lattice of
the outer support plate in the second support extends from the outermost lattice of
the outer support plate. Therefore, the support and the unit of the support may be
shared.
[0176] FIG. 17 is a view for explaining details of the support of FIG. 14. Descriptions
will be made with reference to FIG. 17. The following contents may be applied optionally.
The two spaced coupling parts on the inner support plate 35b of the first and second
supports may be the same as the interval between the outer and inner support plates.
The distance A between the end portions of the inner and outer support plates of the
first support 30a may be shorter than the distance B between the end portions of the
inner and outer support plates of the second support 30b. This is because the end
portions of the inner and outer support plates of the second support 30b are guided
by the coupling part. This is because the end portions of the inner and outer support
plates of the first support 30a are not guided. It may be desirable for the connection
of the inner support plate to be fixed. If adding an attachment for fixing on the
inside, an accommodation space will be reduced.
[0177] FIG. 18 is a view for explaining details of the support of FIG. 15. Descriptions
will be made with reference to FIG. 18. The following contents may be applied optionally.
The two spaced coupling parts on the outer support plate 35b of the first and second
supports may be the same as the interval between the outer and inner support plates.
The distance A between the end portions of the inner and outer support plates of the
first support 30a may be the same as the distance B between the end portions of the
inner and outer support plates of the second support 30b. The intervals A and B may
be maintained more accurately than in the case of FIG. 16. This is because the end
portions of the inner and outer support plates in the first and second supports do
not move in the direction of contraction of a vacuum pressure due to the coupling
part. However, even in the case of FIG. 16, the interval may be maintained.
[0178] Another embodiment will be proposed. Only one of the outer and inner support plates
may be coupled to each other by the coupling part. Another is that the first and second
supports are provided as one unit. The configuration of the embodiment may be applied
to at least one corner of the vacuum adiabatic body. At least one corner of the vacuum
adiabatic body may be coupled in a different manner.
[0179] In the embodiment, two supports are in contact with each other. In the embodiment,
the two supports may be restricted to each other. The foregoing embodiment may allow
the two supports to move freely relative to each other in at least one direction along
the XYZ axes. In the following implementation, the two supports may be more strongly
restricted to each other.
[0180] FIG. 19 is a view illustrating an example in which the two supports are strongly
restricted according to an embodiment. FIG. 19(a) is a perspective view of two supports.
FIG. 19(b) is a front view illustrating the corner. FIG. 20 is a view illustrating
a coupling process of the support of FIG. 19. FIG. 20(a) is a view of the second support.
FIG. 20(b) is a view of the first support. FIG. 20(c) illustrates coupling of the
first support and the second support. This will be described with reference to FIGS.
19 and 20.
[0181] The two supports 30a and 30b may be restricted in three directions. The following
may be applied optionally. The two supports may be restricted from moving in the direction
that passes through the ground. The two supports may be restricted to move vertically
relative to the ground. The two supports may be restricted to move in the left and
right direction relative to the ground. The two supports may be fixed along the XYZ
three axes.
[0182] The following may be applied optionally. A first extension bar 356a may be provided
at an end of the first support 30a. A second extension bar 356b may be provided at
an end of the second support 30b. A third extension bar 356c may be provided at a
position spaced inward from the second extension bar 356b. An interval between the
second and third extension bars 356b356c may correspond to the thickness of the vacuum
space or the length of the bar 31. The extension bar may be provided to be integrated
with at least one of the inner support plate or the outer support plate. The extension
bar may be provided together with the bar 31. A sixth coupling part 357a may be provided
on a side surface of the end of the first support or the second support. The sixth
coupling part 357a may be provided on the outer support plate 35a. At least one end
of the first support and the second support may be provided with seventh or eighth
coupling parts 357b and 357c on the inner surface. At least one of the seventh or
eighth coupling parts may be provided on the inner support plate 35b. The inner support
plates of the first and second supports may not be coupled to each other. The inner
support plates of the first and second supports may be fixed to the outer support
plates by the extension bars.
[0183] The following may be applied optionally. The second extension bar 356b may be coupled
to the sixth coupling part 357a. The second extension bar and the sixth coupling part
may provide the coupling between the first and second supports. The second extension
bar and the sixth coupling part may fix the first and second supports to each other.
The first extension bar 356a may be coupled to the seventh coupling part 357b. The
third extension bar 356c may be coupled to the eighth coupling part 357c. The coupling
of the first extension bar and the seventh coupling part, and the coupling of the
third extension bar and the eighth coupling part may ensure that the interval between
the ends of each support is well maintained. The extension bar and the coupling part
may be coupled to each other in various manners, such as loose coupling, coupling,
press-fitting, fixed coupling, screw coupling, and bonding.
[0184] According to an embodiment, the supports disposed in each space with different extension
directions in the vacuum space may be strongly integrated. It is expected that the
strength of the vacuum adiabatic body will increase.
[0185] FIG. 21 is a view illustrating an example in which the two supports are strongly
restricted according to an embodiment. FIG. 21(a) is a view of a symmetric alignment.
FIG. 21(b) is a front view. Descriptions will be made with reference to FIG. 21.
[0186] The two supports 30a and 30b may be restricted in three directions. The following
may be applied optionally. The two supports may be fixed along the XYZ three axes.
If the coupling part is the loose coupling, relative movement in a negative direction
may be permitted.
[0187] The following may be applied optionally. A first extension bar 356a may be provided
at an end of the first support 30a. A second extension bar 356b may be provided at
an end of the second support 30b. A third extension bar 356c may be provided at a
position spaced inward from the second extension bar 356b. An interval between the
second and third extension bars 356b356c may correspond to the thickness of the vacuum
space or the length of the bar 31. The extension bar may be provided to be integrated
with at least one of the inner support plate or the outer support plate. The extension
bar may be provided together with the bar 31. A sixth coupling part 357a may be provided
on a side surface of the end of the first support or the second support. The sixth
coupling part 357a may be provided on the outer support plate 35a. A seventh coupling
part 357b may be provided on the inner surface of at least one end of the first support
and the second support. A ninth coupling part 357d may be provided on the side surface
of at least one end of the first support and the second support. At least one of the
seventh or ninth coupling parts may be provided on the inner support plate 35b. The
seventh or ninth coupling parts 357b and 357d may be provided together with the first
support. The seventh or ninth coupling parts 357b and 357d may be provided on the
same support plate with different surfaces and inner surfaces. The inner support plates
of the first and second supports may be coupled to each other by the third extension
bar 356c and the ninth coupling part 357d.
[0188] The following may be applied optionally. The second extension bar 356b may be coupled
to the sixth coupling part 357a. The third extension bar 356c may be coupled to the
ninth coupling part 357d. The coupling between the second extension bar and the sixth
coupling part, and the coupling between the third extension bar 356c and the ninth
coupling part 357d may provide the coupling between the first and second supports.
The coupling between the second extension bar and the sixth coupling part, and the
coupling between the third extension bar 356c and the ninth coupling part 357d may
fix the first and second supports to each other. The first extension bar 356a may
be coupled to the seventh coupling part 357b. The coupling of the first extension
bar and the seventh coupling part, and the coupling of the third extension bar 356c
and the ninth coupling part 357d may ensure that the interval between the ends of
each support is well maintained. The extension bar and the coupling part may be coupled
to each other in various manners, such as loose coupling, coupling, press-fitting,
fixed coupling, screw coupling, and bonding. The outermost lattice of the inner support
plate of the second support 30b may not be provided. The outermost lattice of the
inner support plate of the second support 30b may be provided. In this case, the outermost
lattice of the inner support plate of the second support 30b may be provided in a
form connected to the third extension bar. In this case, the outermost lattice of
the inner support plate of the second support 30b may be provided in a form connected
to the third extension bar. Even if not connected, there is an advantage of improving
strength because the moment of inertia increases. The outermost lattices of the inner
support plates of the first and second supports 30b may be different from each other.
[0189] The following may be applied optionally. The extension bar may support the end of
the support. The radiation resistance sheet 32 may extend up to the extension bar.
The radiation heat shield effect by the radiation resistance sheet may increase. The
contact between the radiation resistance sheet and the plate may be blocked by the
extension bar. At least one of the pair of mutually supported supports may have the
radiation resistance sheet extending to the extension bar.
[0190] According to an embodiment, the supports placed in each space with different extension
directions in the vacuum space may be strongly integrated on both the outside and
inside. It is expected that the strength of the vacuum adiabatic body will increase.
INDUSTRIAL APPLICABILITY
[0191] According to the present invention, the vacuum adiabatic body may be conveniently
manufactured.