
(19) *EP004542952A1*
(11) EP 4 542 952 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
23.04.2025 Bulletin 2025/17

(21) Application number: 24207157.9

(22) Date of filing: 17.10.2024

(51) International Patent Classification (IPC):
H04L 41/0894 (2022.01) H04L 41/0895 (2022.01)
H04L 45/00 (2022.01) H04L 9/40 (2022.01)

(52) Cooperative Patent Classification (CPC):
H04L 41/0894; H04L 41/0895; H04L 45/38;
H04L 63/20

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL
NO PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA
Designated Validation States:
GE KH MA MD TN

(30) Priority: 19.10.2023 US 202318381869

(71) Applicant: VMware LLC
Palo Alto, CA 94304 (US)

(72) Inventors:
• Mathew, Subin Cyriac
Palo Alto, 94304 (US)

• Raman, Chidambareswaran
Palo Alto, 94304 (US)

• Hira, Mukesh
Palo Alto, 94304 (US)

(74) Representative: Dilg, Haeusler, Schindelmann
Patentanwaltsgesellschaft mbH
Leonrodstraße 58
80636 München (DE)

(54) DEFINING POLICIES FOR APPLICATIONS EXECUTING ON BARE METAL SERVERS

(57) Some embodiments provide a novel method for
defining a set of policies for a set of applications execut-
ing on a host computer of a software-defined network
(SDN). The method configures, on a physical network
interface card (PNIC) connected to the host computer, a
network adapter to create a logical port that connects an

interface of the host computer to a virtual distributed
switch (VDS)executingon thePNIC.Themethoddefines
the set of policies based on the logical port for the VDS to
apply to datamessage flows sent from the set of applica-
tions on the host computer to one or more other host
computers of the SDN.

EP
4
54
2
95
2
A
1

Processed by Luminess, 75001 PARIS (FR)



2

1 EP 4 542 952 A1 2

Description

BACKGROUND

[0001] Currently, legacyenterpriseapplicationsarenot
modernized into virtualized workloads, as it is challen-
ging, risky, and cost-prohibitive to do so. However, such
applications that execute on bare metal servers (e.g.,
legacy database applications) are needed in somecases
to communicate with other virtualized workloads in a
datacenter. Because of this, some network administra-
tors use both non-virtualized workloads on bare metal
servers and virtualized workloads (e.g., virtual machines
(VMs)) on host computers in a single network.
[0002] Management servers of such a network are
unable to apply the same policies to both host computers
and baremetal servers. There have been other solutions
to apply policies to baremetal servers, such as deploying
Tier‑0 gateways, deploying bridges, or integrating multi-
ple networking solutions from different vendors. How-
ever, these solutions result in performance bottlenecks
and integration/configuration issues. Hence, methods
and systems are needed for applying networking and
security policies to both bare metal servers and host
computers in a distributed manner.

BRIEF SUMMARY

[0003] Someembodiments provide a novelmethod for
defining a set of policies for a set of applications execut-
ing on a host computer of a software-defined network
(SDN). The method configures, on a physical network
interface card (PNIC) connected to the host computer, a
network adapter to create a logical port that connects an
interface of the host computer to a virtual distributed
switch (VDS)executingon thePNIC.Themethoddefines
the set of policies based on the logical port for the VDS to
apply to datamessage flows sent from the set of applica-
tions on the host computer to one or more other host
computers of the SDN.
[0004] Themethod isperformed insomeembodiments
by a set of one ormoremanagement servers implement-
ing a manager of the SDN. In such embodiments, the
manager connects to the PNIC through a management
interface of the PNIC.
[0005] In some embodiments, the host computer is a
bare metal server that is incapable of applying the set of
policies to the data message flows. In such embodi-
ments, the set of applications is a set of legacy applica-
tions,whicharenon-virtualizedapplications.Assuch, the
manager cannot apply the set of policies directly to the
bare metal server, and has to apply the set of policies on
the PNIC connected to the bare metal server. The set of
policies includes at least one of networking policies and
security policies to apply to the data message flows.
Using these networking and/or security policies, the
PNIC can process flows exchanged between the bare
metal server and one or more other host computers.

[0006] Before defining the set of policies, some embo-
diments receive configuration information regarding the
logical port to use to define the set of policies. In such
embodiments, the manager receives the configuration
information from a set of one or more controllers of the
SDN, which received it from a management agent that
created the logical port (as directed by themanager). The
configuration information in some embodiments speci-
fies a network address (e.g., an Internet Protocol (IP)
address) of the logical port. Any other suitable config-
uration information regarding the logical port can be
included. Using this configuration information, the man-
ager defines the set of policies based on the logical port.
[0007] In some embodiments, the host computer
(which is a bare metal server, in some embodiments)
views the PNIC as a Peripheral Component Interconnect
Express (PCIe) device connected to the host computer.
PCIe is a high-speed expansion bus standard that is
commonly used to connect various hardware compo-
nents to a computer’s motherboard. It can connect var-
ious hardware components to a computer, including gen-
eral processing units (GPUs), NICs, and storage adap-
ters. The bare metal server view the PNIC as a PNIC
itself, which is a PCIe device.
[0008] The logical port in someembodiments connects
to the interface of the host computer through an em-
bedded switch of the PNIC. In such embodiments, the
embedded switch is a hardware switch of the PNIC and
connects to the interface of the host computer through a
virtual function (VF) of a physical function (PF) of the
PNIC. The VF is a virtualized PCIe function exposed as
an interface of the PNIC, and the PF is a physical inter-
faceof thePNIC.ThePFcanexecuteanynumberofVFs.
The logical port connects to the embedded switch
through a representor port of the PNIC.
[0009] The embedded switch is configured in some
embodiments to (1) receive a particular data message
of a particular data message flow from a particular ap-
plication, (2) determine that it does not store a flow record
for the particular data message flow, and (3) provide the
particular data message to the VDS through the logical
port. In such embodiments, the embedded switch stores
flow records for different flows that the embedded switch
can use to process flows. In some embodiments, each
flow record specifies a flow identifier (ID) (e.g., five-tuple
or other unique ID) and a set of one or more actions to
perform on the data messages of the flow. When the
embedded switch determines that it does not store a flow
record for the particular flow from the particular applica-
tion, the embedded switch provides the particular data
message to the VDS for processing.
[0010] The VDS is configured to, based on the set of
policies, perform a set of one or more operations on the
particular data message including a particular operation
to encapsulate the particular data message with an en-
capsulating header specifying one or more virtual tunnel
endpoints (VTEPs). In suchembodiments, theVDS iden-
tifies which policies are applicable to the particular flow

5

10

15

20

25

30

35

40

45

50

55



3

3 EP 4 542 952 A1 4

and applies the applicable policies to the particular data
message.
[0011] The VTEP encapsulation operation is per-
formed in some embodiments to encapsulate the parti-
cular data message with its source VTEP. Conjunctively
or alternatively, the VTEP encapsulation operation is
performed in some embodiments to encapsulate the
particular data message with its destination VTEP. The
encapsulating header is in someembodiments aGeneric
Network Virtualization Encapsulation (Geneve) header.
[0012] In some embodiments, the VDS is further con-
figured to provide the encapsulated particular data mes-
sage to the embedded switch. After processing the data
message, the VDS provides the encapsulated particular
data message back to the embedded switch for forward-
ing. In such embodiments, the embedded switch is
further configured to forward the encapsulated particular
data message to a destination of the particular data
message.
[0013] The set of operations performed by the VDS on
the particular data message in some embodiments in-
cludes one or more middlebox service operations. Ex-
amples of middlebox service operations include firewall
services, load balancing services, network address
translation (NAT) services, intrusion detection system
(IDS) services, and intrusion prevention system (IPS)
services. In such embodiments, the VDS performs one
or more middlebox service operations on the particular
datamessage based on one ormore policies that specify
performing these one or more middlebox service opera-
tions on the particular data message flow.
[0014] In some embodiments, the VDS is further con-
figured to (1) determine a set of actions to perform on the
particular data message flow based on the set of opera-
tions performed on the particular data message, (2)
generate a particular flow record for the particular data
message flow specifying a flow identifier and the set of
actions, and (3) provide the flow record to the embedded
switch. In such embodiments, the VDS creates the parti-
cular flow record to offload the particular flow’s proces-
sing from the VDS to the embedded switch. in some
embodiments, the VDS also stores the flow record in a
local data store.
[0015] The embedded switch in such embodiments is
further configured to use the particular flow record to
perform the set of actions on subsequent datamessages
of the particular data message flow. As such, the em-
bedded switch processes the subsequent data mes-
sages of the particular flow such that the VDS does not
see or process the subsequent data messages of the
particular flow.
[0016] TheprecedingSummary is intended to serveas
a brief introduction to some embodiments of the inven-
tion. It is not meant to be an introduction or overview of all
inventive subject matter disclosed in this document. The
Detailed Description that follows and the Drawings that
are referred to in the Detailed Description will further
describe the embodiments described in the Summary

as well as other embodiments. Accordingly, to under-
stand all the embodiments described by this document, a
full review of the Summary, Detailed Description, the
Drawings and the Claims is needed. Moreover, the
claimed subject matters are not to be limited by the
illustrative details in the Summary, Detailed Description,
and Drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] The novel features of the invention are set forth
in the appended claims. However, for purposes of ex-
planation, several embodiments of the invention are set
forth in the following figures.

Figure 1 illustrates an example SDN of some em-
bodiments of the invention.
Figure 2 illustrates the hardware of a smart NIC of
some embodiments that can be configured to per-
form middlebox service offload for a host computer.
Figure 3 illustrates the NIC OS of a smart NIC of
some embodiments.
Figure 4 conceptually illustrates a process of some
embodiments for applying policies for a set of appli-
cations executing on a bare metal server of an SDN.
Figure 5 illustrates an example bare metal server
that connects to a PNIC.
Figures 6A-B illustrate an example UI for a network
administrator to configure a bare metal workload
network adapter.
Figure 7 illustrates an example bare metal server
that exchanges data message flows with a host
computer through a PNIC connected to the bare
metal server.
Figure 8 conceptually illustrates a process of some
embodiments for processing flows at a VDS of a
PNIC.
Figure 9 conceptually illustrates a process of some
embodiments for processing flows at an embedded
switch of a PNIC.
Figures 10A-B illustrate an example bare metal
server executing an application that forwards data
message flows through a connected PNIC to one or
more external destinations.
Figure 11 illustrates two methods that provide
VLAN-overlay communication but cause other is-
sues.
Figure 12 illustrates an electronic systemwithwhich
some embodiments of the invention are implemen-
ted.

DETAILED DESCRIPTION

[0018] In the following detailed description of the in-
vention, numerous details, examples, and embodiments
of the invention are set forth and described. However, it
will be clear and apparent to one skilled in the art that the
invention is not limited to the embodiments set forth and

5

10

15

20

25

30

35

40

45

50

55



4

5 EP 4 542 952 A1 6

that the invention may be practiced without some of the
specific details and examples discussed.
[0019] Someembodiments provide a novelmethod for
defining a set of policies for a set of applications execut-
ing on a host computer of a software-defined network
(SDN). The method configures, on a physical network
interface card (PNIC) connected to the host computer, a
network adapter to create a logical port that connects an
interface of the host computer to a virtual distributed
switch (VDS)executingon thePNIC.Themethoddefines
the set of policies based on the logical port for the VDS to
apply to datamessage flows sent from the set of applica-
tions on the host computer to one or more other host
computers of the SDN.
[0020] Themethod isperformed insomeembodiments
by a set of one ormoremanagement servers implement-
ing a manager of the SDN. In such embodiments, the
manager connects to the PNIC through a management
interface of the PNIC. In some embodiments, the host
computer is a bare metal server that is incapable of
applying the set of policies to the data message flows.
In such embodiments, the set of applications is a set of
legacy applications, which are non-virtualized applica-
tions. As such, the manager cannot apply the set of
policies directly to the baremetal server, and has to apply
the set of policies on the PNIC connected to the bare
metal server.
[0021] The set of policies includes at least one of
networking policies and security policies to apply to the
data message flows. Using these networking and/or
security policies, the PNIC can process flows exchanged
between the bare metal server and one or more other
host computers. In some embodiments, the host com-
puter (which is a bare metal server, in some embodi-
ments) views thePNIC as aPeripheral Component Inter-
connect Express (PCIe) device connected to the host
computer.
[0022] The VDS is configured to, based on the set of
policies, perform a set of one or more operations on the
particular data message including a particular operation
to encapsulate the particular data message with an en-
capsulating header specifying a virtual tunnel endpoint
(VTEP). In such embodiments, the VDS identifies which
policies are applicable to the particular flow and applies
the applicable policies to the particular data message.
[0023] The VTEP encapsulation operation is per-
formed in some embodiments to encapsulate the parti-
cular data message with its source VTEP. Conjunctively
or alternatively, the VTEP encapsulation operation is
performed in some embodiments to encapsulate the
particular data message with its destination VTEP. The
encapsulating header is in someembodiments aGeneric
Network Virtualization Encapsulation (Geneve) header.
[0024] In some embodiments, the VDS is further con-
figured to provide the encapsulated particular data mes-
sage to the embedded switch. After processing the data
message, the VDS provides the encapsulated particular
data message back to the embedded switch for forward-

ing. In such embodiments, the embedded switch is
further configured to forward the encapsulated particular
data message to a destination of the particular data
message.
[0025] The set of operations performed by the VDS on
the particular data message in some embodiments in-
cludes one or more middlebox service operations. Ex-
amples of middlebox service operations include firewall
services, load balancing services, network address
translation (NAT) services, intrusion detection system
(IDS) services, and intrusion prevention system (IPS)
services. In such embodiments, the VDS performs one
or more middlebox service operations on the particular
datamessage based on one ormore policies that specify
performing these one or more middlebox service opera-
tions on the particular data message flow.
[0026] As used in this document, references to L2, L3,
L4, and L7 layers (or Layer 2, Layer 3, Layer 4, and Layer
7) are references respectively to the second data link
layer, the third network layer, the fourth transport layer,
and the seventh application layer of the OSI (Open
System Interconnection) layer model. As used in this
document, a NIC can be referred to as a PNIC, a smart
NIC, or a DPU.
[0027] In someembodiments, thePNIC is a smartNIC.
The smart NIC, in some embodiments, is a configurable
network interface controller that includes a general-pur-
pose central processing unit (CPU) (typically low-power
compared to the processor of the computer for which the
smartNICactsas thenetwork interface) inaddition toone
or more application-specific circuits (e.g., data message
processing circuits).
[0028] Figure 1 illustrates an example SDN 100 that is
managed and controlled by a set of SDN managers and
controllers 105. In some embodiments, the SDN man-
agers and controllers 105 is implemented by a set of
management servers that manages the SDN 100 and a
set of controllers that configures the SDN 100. In such
embodiments, themanagement server receives informa-
tion from a network administrator of the SDN 100 and
directs the controller set to configure the SDN 100 based
on the received information.
[0029] The SDN 100 includes a set of bare metal
servers 110‑114 and a set of host computers 120‑124.
The SDN 100 can include any number of bare metal
servers 110‑114 and any number of host computers
120‑124. Each host computer 120‑124 includes a hyper-
visor 130‑134 that executes a set of one or more ma-
chines 140‑144. The machines 140‑144 can be VMs,
containers, or pods. Because these machines 140‑144
are virtualized machines, the SDN managers and con-
trollers 105 apply networking and security policies to the
hypervisors 130‑134 to apply the policies to data mes-
sage flows associated with the machines 140‑144.
[0030] Each bare metal server 110‑114 executes a set
of one or more applications 150‑154. Any number of
applications 150‑154 can execute on each bare metal
server 110‑1114. In some embodiments, the applications

5

10

15

20

25

30

35

40

45

50

55



5

7 EP 4 542 952 A1 8

150‑154 are referred to as legacy applications, which are
applications that are considered outdated (e.g., because
they are built with architecture and methods that are
considered outdated). In some of these embodiments,
the applications 150‑154 are legacy applications be-
cause they are not virtualized applications. Because
the applications 150‑154 are legacy applications, they
may not be compatible with newer operating systems,
hardware, or functionalities. For example, the SDNman-
agers and controllers 105 cannot directly apply network-
ing and security policies to flows associated with the
applications 150‑154.
[0031] Toapply networking and security policies for the
applications 150‑154, some embodiments connect each
bare metal server 110‑114 to a PNIC 150‑154 and apply
the networking and security policies at the PNICs
150‑154. In such embodiments, the PNICs 150‑154
are smart NICs that can perform networking and security
operations for the computers (i.e., the baremetal servers
110‑114) to which they are connected. In some embodi-
ments, smart NICs are referred to as data processing
units (DPUs). The PNICs 150‑154 are connected to the
bare metal servers 10‑114 as PCIe devices. Further
information regarding smart NICs will be described be-
low.
[0032] By connectingPNICs 150‑154 to the baremetal
servers 110‑114, the SDNmanagers and controllers 105
can provide distributed networking and security policies
to both applications executing on the bare metal servers
110‑114 and machines executing on the host computers
120‑124. Some embodiments provide a common user
interface (UI) for defining and applying such networking
and security policies. This common UI in the discussion
below is referred to as a single pane.
[0033] This UI is provided in some embodiments
through a set of one or more web servers, and input
received through this UI is translated into management
plane commands through the set of web servers or
through a set of one or more application servers that
processes input received through the web server UI.
[0034] These management plane commands are then
converted (e.g., by the managers of the SDN managers
and controllers 105) into control plane configurations by
one or more control plane servers (e.g., the controllers of
the SDN managers and controllers 105) that produce
configuration data for configuring networking and/or se-
curity policies from the input received through the man-
agement plane. By providing a common UI for defining
policies for both non-virtualized applications 150‑155 of
baremetal servers 110‑114 (through thePNICs 150‑154)
and for virtualized machines 140‑144 of host computers
120‑124 (through the hypervisors 130‑134), network ad-
ministrators have a single pane for defining policies with
the SDN managers and controllers 105.
[0035] Figure 2 illustrates the hardware of a smart NIC
200 of some embodiments that can be configured to
performnetworking and service (e.g.,middlebox service)
offload for a host computer (e.g., a baremetal server). As

shown, the smart NIC 200 includes its own general-
purposeCPU205, a set of application-specific integrated
circuit (ASICs) 210, a memory 215, and a configurable
PCIe interface 220. The ASICs 210, in some embodi-
ments, include at least one Input/Output (I/O) ASIC that
handles the processing of data messages forwarded to
and from the host computer, and are at least partly
controlled by theCPU 205. In some embodiments, either
in addition to or as an alternative to the ASICs, the smart
NIC 200 includes a set of configurable field-programma-
ble gate arrays (FPGAs). Conjunctively or alternatively,
the smart NIC 200 includes other accelerators (e.g.,
cryptographic accelerators) and regular expression en-
gines.
[0036] The configurable PCIe interface 220 enables
connection of the smart NIC 200 to the other physical
components of a computer system (e.g., the bare metal
CPU, memory, etc.) via the PCIe bus of the computer
system. Via this configurable PCIe interface 220, the
smart NIC 200 of some embodiments presents itself to
the computer system as amultitude of devices, including
a data message processing NIC, a hard disk (using non-
volatilememory express (NVMe) over PCIe), a set of VFs
and PFs, or other types of devices. The CPU 205 exe-
cutes a NIC operating system (OS) in some embodi-
ments that controls the ASICs 210 and can perform other
operations as well. In some embodiments, a network
forwarding and middlebox service offload ASIC 210 per-
forms the operations to offloadmiddlebox services, such
as firewall services, from a host computer.
[0037] Figure 3 illustrates an exampleNICOS300of a
smart NIC305of someembodiments. TheNICOS300 is
executed, in someembodiments, by theCPUof thesmart
NIC (e.g., CPU 205 of Figure 2). This NIC OS 300
includes a PCIe driver 310, a virtual switch 320, and
other functions 315.
[0038] The PCIe driver 310 exposesmultiple PFs 325,
each of which capable of instantiating multiple VFs 330.
These different VFs 325 enable the smart NIC 305 to
present as multiple different types of devices to the
computer system to which it attaches via its PCIe bus.
For instance, the smart NIC can present itself as a net-
work adapter (for processing datamessages to and from
the computer system) as well as an NVMe disk in some
embodiments.
[0039] The NIC OS 300 of some embodiments is cap-
able of executing a virtualization program (similar to a
hypervisor) that enables sharing resources (e.g., mem-
ory, CPU resources) of the smart NIC among multiple
machines (e.g., VMs) if those VMs execute on the com-
puter. The virtualization program in some embodiments
provides compute virtualization services and/or network
virtualization services similar to amanaged hypervisor in
some embodiments. These network virtualization ser-
vices, in some embodiments, include segregating data
messages into different private (e.g., overlay) networks
that are defined over the physical network (shared be-
tween the private networks), forwarding the data mes-

5

10

15

20

25

30

35

40

45

50

55



6

9 EP 4 542 952 A1 10

sages for these private networks (e.g., performing
switching and/or routing operations), and/or performing
middlebox services for the private networks.
[0040] To implement these network virtualization ser-
vices, the NIC OS 300 of some embodiments executes
the virtual switch 320. The virtual switch 320 enables the
smart NIC 305 to perform software-defined networking
and provide the I/O ASIC 335 of the smart NIC 305with a
set of flow entries (e.g., the cache entries described
herein) so that the I/O ASIC 335 can perform flow pro-
cessing offload (FPO) for the computer system in some
embodiments. The I/OASIC 335, in some embodiments,
receives data messages from the network and transmits
data messages to the network via one or more physical
network ports 340.
[0041] The other functions 315 executed by the NIC
operating system 300 of some embodiments can include
various other operations, including operations not di-
rectly related to data message processing (e.g., opera-
tions for amachine-learning system). In addition, theNIC
operating system 300 (either the virtual switch 320 or
other functions 315 of the operating system) in some
embodiments performs various cache entry validation
and invalidation operations and maintain a rule update
table used to perform the cache entry validation.
[0042] As noted, the smart NIC of some embodiments
processes data messages using cache entries (e.g.,
cache entries installed by a software forwarding element
(SFE) executing ona computer for which the smartNIC is
the interface) such that at least a subset of the data
messages received at the smart NIC can be processed
without a need to provide the data messages to the SFE.
Data message processing by the smart NIC ASIC tends
to be faster than processing by the SFE, even before
accounting for the savings realized by avoiding the need
to pass the data messages to and from the computer
(e.g., via the PCIe interface).
[0043] Figure 4 conceptually illustrates a process 400
of some embodiments for applying policies for a set of
applications executing on a host computer of an SDN.
The process 400 is performed by a set of management
servers implementing a manager for the SDN. The host
computer is a bare metal server executing the set of
applications, and the bare metal server is incapable of
applying the policies to data message flows itself. In
some embodiments, each application is a legacy appli-
cation (i.e., each application is not a virtualized applica-
tion). The bare metal server is connected to a NIC, and
the bare metal server in some embodiments views the
NIC as a PCIe device, as the NIC is a PCIe device itself.
[0044] The process 400 begins by configuring (at 405)
a network adapter on the NIC to create a logical port to
connect an interface of the bare metal server to a VDS of
the NIC. The manager in some embodiments directs
(e.g., through a management interface on the NIC) a
management agent executing on the NIC to configure
the network adapter on the NIC. This network adapter
allows for the logical port to be created on the NIC, which

connects the bare metal server’s interface to the VDS.
The network adapter and logical port are in some embo-
diments installed and configured on the NIC’s ARM
cores.
[0045] SDNsoftware is in someembodiments installed
on top of the NIC’s OS. Once this software is installed,
then the logical port can be created (e.g., using a man-
agement plane workflow, which will be described in rela-
tion toFigure6) to plumb trafficbetween thePFandVFof
the NIC to the VDS on the NIC.
[0046] In someembodiments, the logical port connects
to thebaremetal server’s interface throughanembedded
switch of the NIC. The embedded switch is a hardware
switch within the NIC. In such embodiments, the em-
bedded switch connects to the logical port through a
representor port. The embedded switch connects to
the bare metal server’s interface through a virtual func-
tion (VF) of a physical function (PF) of the NIC. In such
embodiments, the PF is a physical interface of the NIC
that includes a set of one or more VFs. Each VF in such
embodiments is a virtualized PCIe function exposed as
an interface of the NIC.
[0047] Next, the process 400 collects (at 410) config-
uration information regarding the logical port. The man-
ager in some embodiments receives, from a set of con-
trollers of the SDN, configuration information regarding
the logical port. In such embodiments, the management
agent on the NIC, after creating the logical port, provides
this information to the set of controllers which provides it
to the manager. The configuration information regarding
the logical port can include a network address of the port.
In someembodiments, the configuration information also
includes PF and VF MAC addresses, and the logical
switch and/or segment to which the logical port is being
connected. In such embodiments, themanager has a set
of policies for each logical switch and segment, which is
sent down via the controller when a port connect is
received.
[0048] At 415, the process 400 uses the configuration
information for the logical port to define a set of policies
based on the logical port. As the manager views the
logical port as any other virtual port, themanager defines
policies to be applied on the logical port. In such embodi-
ments, the manager defined the set of policies for the
logical port for the management agent on the NIC to
translate them into policies defined with respect to a
physical port of the VDS that maps to the logical port.
The set of policies can include networking policies and/or
security policies.
[0049] Lastly, the process 400 configures (at 420) the
set of policies on the VDS for the VDS to apply to flows
sent from applications on the bare metal servers to other
host computers in the SDN. After defining the set of
policies, the manager in some embodiments directs
the management agent on the NIC to configure the set
of policies on theVDS.As such, theVDSwill apply the set
of policies to flows sent to and from the set of applications
on the bare metal server. The flows can be exchanged

5

10

15

20

25

30

35

40

45

50

55



7

11 EP 4 542 952 A1 12

with applications on other bare metal servers and/or
machines (e.g., VMs, containers, pods) executing on
host computers. After configuring the set of policies in
the VDS, the process 400 ends.
[0050] Figure 5 illustrates an example bare metal ser-
ver 500 that connects to a PNIC 505. The PNIC 505 is in
some embodiments a smart NIC. The bare metal server
500 executes a set of one or more applications 510 that
sends and receives data message flows with a physical
network 512. The baremetal server 500 can execute any
number of applications 510, and each application can
send and receive any number of flows with the physical
network 512.
[0051] In this example, the bare metal server 500 in-
cludesan interface515 to connect theapplications510 to
thePNIC505 (e.g., via aPCIe fabric (not shown) (suchas
a motherboard-level interconnect that connects the phy-
sical processor of the bare metal server 500 to the
physical interfaces of the PNIC 505)). In such embodi-
ments, each application 510 connects to the same inter-
face 515 to connect to the sameVF520of aPF525of the
PNIC 505.
[0052] In other embodiments, the bare metal server
500 includes a different interface for each application
510. In such embodiments, each bare metal interface
is bound to a different VF of the PNIC 505.
[0053] The VF 520, in some embodiments, is a virtua-
lized PCIe function exposed as an interface of the PNIC
505. The VF 520 is associated with a PF 525, which is a
physical interface of the PNIC that is recognized as a
unique PCIe resource. The VF 520 is illustrated using
dashed lines to indicate that it is a software component of
the PNIC 505, and the PF 525 is illustrated using a solid
line to indicate that it is a physical component of the PNIC
505. In this case, thePNIC505 has onePF525, but other
embodiments the PNIC 505 has more than one PF. The
PF 525 is virtualized to provide at least the VF 520. In
some embodiments, multiple VFs are provided so as to
provide different applications 510 with different virtual
interfaces of the PNIC 505 to which they connect. In
some embodiments, VF drivers (not shown) execute in
each of the applications 510 to manage their respective
connections to the VFs 520.
[0054] Alternatively or conjunctively, the applications
510 connect to thePNIC 505 using a software switch (not
shown) of the bare metal server 500, which uses one or
more interfaces (e.g., PF 525) exposed by the PNIC 505
as the uplink. In such embodiments, the PNIC 505 does
not expose any VFs 520.
[0055] The VFs 520 connect to an embedded switch
530 of the PNIC 505. The embedded switch 530 is a
hardware component of the PNIC 505 (as denoted by a
solid line) that is configured to send and receive flows
from the applications 510 and the physical network 512.
[0056] The embedded switch connects, through a first
representor port 542of thePNIC505, to a logical port 550
of the PNIC 505. This logical port 550 allows for the bare
metal server 500 to connect to the VDS 555 of the PNIC

505. In some embodiments, a set of managers 560
managing the bare metal server 500 (and along with
other baremetal servers and/or host computers, in some
embodiments) directs a management agent 570 of the
PNIC 505 to create the logical port 550. In such embodi-
ments, the managers 560 connect to a port 575 of the
PNIC 505, which connects to a virtual switch 580 of the
PNIC 505. The virtual switch 580 connects to a manage-
ment interface585of thePNIC505which connects to the
management agent 570.
[0057] When directed to by the managers 560, the
management agent 570 configures a network adapter
(not shown) on the PNIC 505 to create the logical port
550. The network adapter is referred to as bmknic in
some embodiments, which is similar to a VMkernel net-
work adapter called vmknic.
[0058] The management agent 570 in some embodi-
ments performs a port attach operation, which creates
the logical port 550. Then, the management agent 570
makes a connect system call, where a PF representor
port within the VDS 555 will be created. After this, the
logical port 550 appears as a traditional virtual port to the
managers 560 and the controllers 565 of the bare metal
server 500.
[0059] After this, the port connection of the logical port
550 is reported to thecontrollers 565,whichpushesdown
the port properties like any other logical port. Then, the
managers 560 can apply any networking and/or security
policies on the logical port 550. More specifically, the
managers 560 can define policies for the logical port 550,
which the management agent 570 will translate into
policies defined with respect to the physical port of the
VDS 555 that maps to the logical port 550. As such, the
policies can beapplied in thedata planeby thePNIC505.
[0060] In embodiments where the bare metal server
500 includes multiple interfaces to connect to the PNIC
505, the managers 560 direct the management agent
570 to create multiple logical ports on the PNIC 505. In
such embodiments, the managers 560 will direct the
creation of as many logical ports as there are interfaces
of the bare metal server 500 (i.e., there will be a one-to-
one relationship between bare metal server interfaces
and logical ports created on the PNIC 505).
[0061] In some embodiments, the embedded switch
530 is configured for allowing processing of the flows at
the PNIC 505. In such embodiments, the embedded
switch 530, upon receiving a data message of a flow,
performs a lookup operation to determine whether it
stores a flow record needed for processing the data
message. In some embodiments, a single flow record
is created for both directions of a flow (i.e., a first direction
from an application 510 to an external component and a
second direction from the external component to the
application 510). In other embodiments, different flow
records are created for different directions of a flow
(i.e., two flow records are created for each flow). For
example, different flow records are created for a single
flow in some embodiments because the application 510

5

10

15

20

25

30

35

40

45

50

55



8

13 EP 4 542 952 A1 14

is allowed to send data messages to the external com-
ponent, but the external component is blocked from
sending data messages to the VM 510.
[0062] If the embedded switch 530 determines that it
does have an associated flow record, the embedded
switch 530 processes the data message and forwards
it to its destination (if the data message is allowed). If the
destination is one of the applications 510, the embedded
switch 530 forwards the processed data message to the
VF 520 to forward to the destination application. If the
destination is external to the bare metal server (e.g., it is
an external server, a VM executing on a different host
computer, etc.), it forwards the processed data message
to a physical port 535 of the PNIC 505 to forward to the
physical network 512 to reach its destination. The phy-
sical network port 535 provides the physical communica-
tion to the physical network 512 for the bare metal server
500. In someembodiments, thePNIC505 includesmulti-
ple physical network ports to connect to the physical
network 512.
[0063] If the embedded switch 530 determines that it
does not have an associated flow record for a received
datamessage, it provides thedatamessage to the logical
port 550 through a first representer port 542 of the PNIC
505. In some embodiments, the logical port 550 is cre-
ated to connect the baremetal server 500 to theVDS555
of thePNIC 505. TheVDS555 is in someembodiments a
software switch of thePNIC 505, as denoted by a dashed
line.
[0064] Upon receiving a data message from the em-
bedded switch 530, the VDS 555 performs a lookup
operation (similarly to the embedded hardware switch
530) in the data store 557 to determine whether it has
alreadycreatedaflow record for thedatamessage’sflow.
If the VDS 555 determines that it does store a flow record
for the received data message’s flow in the data store
557, it processes the datamessage using the flow record
and forwards the processed data message to the em-
bedded switch 530 through a second representor port
544 of the PNIC 505 (if the data message is allowed).
Then, the embedded hardware switch 530 forwards the
processed data message to its destination.
[0065] If the VDS 555 determines that it has not yet
created a flow record for the received data message’s
flow (e.g., if the datamessage is the first datamessage of
the flow), the VDS 555 processes the data message
according to a set of policies (e.g., networking and/or
security policies). Toprocess the datamessageusing the
set of policies, the VDS 555 in some embodiments com-
pares the datamessage against the policies tomatch the
data message to one or more policies. In such embodi-
ments, the VDS 555 uses match criteria of the data
message (e.g., the five-tuple of the datamessage and/or
other contextual attributes of the datamessage) tomatch
the datamessage to policies that should be applied to the
data message. After identifying one or more policies that
should be applied to the data message, the VDS 555
performs one or more operations to apply the policies.

[0066] In some embodiments, the VDS 555 performs
one or more middlebox service operations on the data
message. Examples of middlebox services include as a
firewall service, NATservice, IDS service, or IPS service.
Any suitablemiddlebox service that can be performed on
a data message can be performed by the VDS 555.
[0067] The components 520‑557 and 570‑585 of the
PNIC 705 in some embodiments run on top of a hypervi-
sor (e.g., ESXio offered by VMware, Inc.) of the PNIC
705. The PNIC 505 in some embodiments also executes
a virtual distributed router (VDR) (not shown) to perform
routing for data messages. In such embodiments, the
VDR executes along with the VDS to process the data
messages.
[0068] After processing the data message, the VDS
555createsa flow record for the datamessage’s flowand
stores it in the data store 557. In some embodiments, the
flow record identifies the flow (e.g., using a flow identifier
(ID) or using the flow’s five-tuple) and summarizes the
actions to perform on the datamessages of the flow. The
actions to perform on the flow can include one of allowing
the flow, dropping the flow, or blocking the flow (i.e., a
firewall action). In someembodiments, the actionsalso to
perform on the flow include at least one middlebox ser-
viceother thanafirewall service (e.g., IDS, IPS,NAT, load
balancing,DPI, etc.). The flow record allows theVDS555
toprocess subsequent datamessagesof the flowwithout
having to refer to the set of policies. This also allows the
VDS 555 to offload processing of the flow to the em-
bedded switch 530 by providing the flow record to the
embedded switch 530. In some of these embodiments,
the VDS 555 keeps track of which flows it has offloaded
(e.g., using a table in the data store 557 or another data
store (not shown) of the PNIC 505).
[0069] In some embodiments, the network administra-
tor of theSDN thatwishes toapplypolicies toabaremetal
server (i.e., to aPNICconnected to thebaremetal server)
selects items in a user interface (UI) to configure a net-
workadapter inorder toapply thosepolicies.Figures6A-
B illustrate an example UI 600 that is seen by a network
administrator to configure a network adapter on a NIC
connected to a bare metal server.
[0070] Figure 6A illustrates the UI 600 when the net-
work administrator is selecting to configure the bare
metal workload network adapter. The UI 600 specifies,
at 610, the network for which the network adapter will be
configured. The UI 600 also specifies, at 620, various
different settings for the network administrator to config-
ure for the network. The settings 620 includes selecting a
connection type, selecting a target device, port proper-
ties, IPv4 (Internet Protocol version 4) setting, and ready
to complete. In this example, the network administrator is
configuring the setting to select a connection type.
[0071] At 630, the UI 600 displays that the network
administrator is selecting a connection type. In this ex-
ample, thenetworkadministrator canselect between four
different connection types 632‑638. The network admin-
istrator can select a VMKernel network adapter 632,

5

10

15

20

25

30

35

40

45

50

55



9

15 EP 4 542 952 A1 16

which handles traffic for various services, such as ma-
chinemigration, host management, network file systems
(NFS), Fibre Channel over Ethernet (FcoE), virtual sto-
rage area network (vSAN), and other protocols (e.g.,
Transmission Control Protocol (TCP), such as iSCSI).
[0072] The network administrator can select a VM port
group for a standard switch 634, which handles the VM
traffic on a standard switch.
[0073] Thenetwork administrator can select a physical
network adapter 636, which handles network traffic to
other hosts in the network.
[0074] Lastly, in this example, the network administra-
tor can select a bare metal workload network adapter
638, which handles networking and security for bare
metal workloads. In this document, workloads refer to
machines, which may be virtualized machines (e.g., ma-
chines, such as VMs, containers, or pods executing on
host computers) or non-virtualized machines (e.g., ma-
chines or applications executing on bare metal servers).
Any suitable technology may be used to provide a work-
load.
[0075] In this figure, the network administrator has
selected the bare metal workload network adapter 638,
whichcanbeseenby thefilled in selectable item640.The
network administrator can then select a "cancel" select-
able item650 to cancel their configuration of the network,
a "back" selectable item 652 to go back to a previous UI,
or a "next" selectable item 654 to go to the next UI.
[0076] Figure 6B illustrates the UI 600 after the net-
work administrator has selected the baremetal workload
network adapter 638 and selected the "next" selectable
item 654. In this figure, a popup window 660 is shown in
theUI 600 for thenetwork administrator to attach thebare
metal workload network adapter to a network segment.
The window 660 displays a title 662 to select a network,
and a filter 664 to filter through a list of network segments
displayed in the 660.
[0077] In this example, the window 660 displays a
distributed port group (DportGroup) 670, a first logical
segment 672 (LS1), and a second logical segment 674
(LS2). The network administrator has selected the first
logical segment 672, as denoted by a bolded line.
[0078] The window 660 also displays a "cancel" se-
lectable item 680 for the network administrator to cancel
applying the baremetal workload network adapter, and a
"ok" selectable item 682 for the network administrator to
finalize the configuration of the selected baremetal work-
load network adapter on the selected network segment
(i.e., LS 1 672).
[0079] Figure 7 illustrates an example bare metal ser-
ver 700 that connects to a PNIC 705. The PNIC 705 is in
some embodiments a smart NIC. The bare metal server
700 executes a set of one or more applications 710 that
sends and receives data message flows with a host
computer 770. The bare metal server 700 can execute
any number of applications 710, and each application
can send and receive any number of flows with the host
computer 770. The baremetal server 700 also includes a

management interface 714, which connects the bare
metal server 700 to a management network 716 to allow
for management access to the bare metal server 700. In
some embodiments, the components of the host com-
puter 770 run on top of a hypervisor (e.g., ESX offered by
VMware, Inc.) of the host computer 770, and the compo-
nents of the PNIC 705 run on top of a hypervisor (e.g.,
ESXio offered by VMware, Inc.) of the PNIC 705.
[0080] In this example, the bare metal server 700 in-
cludes a set of one or more interfaces 712 to connect the
applications 710 to the PNIC 705. In some of these
embodiments, each application 710 connects to a differ-
ent interface 712 to connect to a different VF 720 of a PF
725 of the PNIC 705. In some embodiments, VF drivers
(not shown) execute in each of the applications 710 to
manage their respective connections to the VFs 720.
[0081] Alternatively or conjunctively, the applications
710 connect to thePNIC 705 using a software switch (not
shown) of the bare metal server 700, which uses one or
more interfaces (e.g., PF 725) exposed by the PNIC 705
as the uplink. In such embodiments, the PNIC 705 does
not expose any VFs 720.
[0082] The VFs 720 connect to an embedded switch
730 of the PNIC 705. The embedded switch 730 is a
hardware component of the PNIC 705 (as denoted by a
solid line) that is configured to send and receive flows
from the applications 710 and the host computer 770.
[0083] The embedded switch 730 connects, through a
set of one ormore representor ports 742 of thePNIC705,
to a set of one or more logical ports 750 of the PNIC 705.
This logical port set 750 allows for the bare metal server
700 to connect to the VDS 755 of the PNIC 705. The
logical port set 750 is created by a management agent
790 of the PNIC 705 as directed to by themanagers/con-
trollers 760 that configure and manage the bare metal
server 700 and the host computer 770. For example,
through a port 792, a virtual switch 794, and a manage-
ment interface 796, the managers and controllers 760
direct the management agent 790 to create the logical
port set 750 and to configure networking and/or security
policies on the logical port 750 (which will be applied by
the VDS 755). The management agent 790 creates as
many logical ports 750 as there are NIC interfaces 712 of
the bare metal server 700.
[0084] The host computer 770 executes a set of one or
more VMs 772. The host computer 770 also includes a
first port 774 for connecting the host computer 770 to the
PNIC 705, and a second port 780 for connecting the host
computer 770 to the managers and controllers 760. The
first port 774 connects to a VDS776 of the host computer
770, which exchanges flows for the VMs 772. In some
embodiments, the VDS 776 also performs one or more
services (e.g., networking services, security services,
middlebox services) on flows it exchanges for the VMs
772. TheVDS776 is part of the hypervisor (not shown) of
the host computer 770.
[0085] Thesecondport 780connects to a virtual switch
782 of the host computer 770, which connects to a

5

10

15

20

25

30

35

40

45

50

55



10

17 EP 4 542 952 A1 18

management interface 784 and a management agent
786. This port 780 allows for the managers and control-
lers 760 to direct the management agent 786 to apply
policies to the VDS 776 to perform on flows associated
with the VMs 772.
[0086] Because the managers and controllers 760
have created the logical port set 750 on the PNIC 705,
the managers and controllers 760 can apply distributed
networking and/or security policies to both the baremetal
server 700 and the host computer 770. In some embodi-
ments, a common UI is provided (e.g., through one or
more web servers) to act as a single pane for the network
administrator of the bare metal server 700 and host
computer 770 in order for the network administrator to
define and apply such policies.
[0087] Through the UI, the network administrator of
some embodiments defines policies using one or more
management plane requests, and the managers and
controllers 760 convert the management plane requests
into control plane configurations. Then, the managers
and controllers 760 can produce configuration data for
configuring the policies for the bare metal server 700
(through the PNIC 705) and for the host computer 770
(through the VDS 776, which executes as part of the
hypervisor (not shown) of the host computer 770).
[0088] As the embedded switch 730 receives flows
from the applications 710 destined for one or more of
the VMs 772 of the host computer 770, the embedded
switch 730 performs lookup operations to determine
whether it has flow records to process the flows. If it
does, the embedded switch 730 processes the flows.
In processing the flows, the embedded switch 730 en-
capsulates the flows with an encapsulating header (e.g.,
a Geneve header) that specifies a source virtual tunnel
endpoint (VTEP) and a destination VTEP. The source
VTEP is associatedwith the port 735, and the destination
VTEP isassociatedwith theport 774.After encapsulating
the flows with the source and destination VTEPs, the
embedded switch 730 provides the encapsulated flows
through the port 735 to reach the host computer 770. The
port 735 of the PNIC 705 and the port 744 of the host
computer 770 are connected by a link through a network
(not shown) through which the encapsulate flows are
sent.
[0089] The encapsulated flows are sent through a port
774 of the host computer 770 to reach a VDS 776 of the
host computer 770. After receiving the encapsulated
flows, the VDS 776 examines the encapsulating header
to determine the sourceVTEP.Using this information, the
VDS 776 can send responsive flows back to the same
VTEP. In someembodiments, theVDS776alsoperforms
oneormoreoperations (middlebox services) on the flows
before providing them to the VMs 772.
[0090] When the VDS 776 receives flows to forward to
thebaremetal server 700, theVDS776encapsulates the
flows with encapsulating headers specifying the source
VTEP (associated with port 774) and the destination
VTEP (associated with port 735), and provides the flows

through theport 775of thehost computer770 to reach the
port 735 of the PNIC 705 (e.g., through a network). The
embedded switch 730 receives the encapsulated flows
through the port 735, removes the encapsulating header,
and provides the flows to the applications 710 of the bare
metal server 700 through the interface(s) 712.
[0091] As discussed previously, a VDS of a PNIC in
some embodiments performs flow processing for flows
exchanged between a bare metal server connected to
the PNIC and other bare metal servers and/or host com-
puters.Figure 8 conceptually illustrates a process 800 of
some embodiments for processing flows at a VDS of a
PNIC. In some embodiments, the VDS that performs the
process 800 connects to a bare metal server through a
logical port created on the PNIC.
[0092] In some embodiments, the process 800 is per-
formed for a particular data message flow that is sent by
an application executing on the bare metal server to be
forwarded to a destination external to the bare metal
server, such as an external server or a machine (e.g.,
VM, container, pod) executing on a host computer. In
other embodiments, it is sent by an external source to be
forwarded to the application executing on the bare metal
server.
[0093] The process 800 begins by receiving (at 805) a
data message of the particular data message flow. In
someembodiments, theVDS receives thedatamessage
from an embedded hardware switch of the PNIC, which
received it from theapplication throughaVFof aPFof the
PNIC. The received data message is in some embodi-
ments a first data message of the flow, such that the
embeddedhardware does not havea flow record needed
for processing the datamessage. In other embodiments,
the data message is not a first data message of the flow,
but the embedded hardware switch was unable to pro-
cess the data message. For example, the VDS in some
embodiments does not provide a flow record for a flow to
the embedded hardware switch for it to process the flow.
Thismay be due to the embedded hardware switch being
unable to perform one or more of the operations needed
toprocess the flow (suchasTCPsynchronize (SYN)data
messages and Application Layer Gateway (ALG) data
messages).
[0094] After receiving the data message, the process
800 determines (at 810) whether a flow record is stored
for the data message’s flow. In some embodiments, the
VDS creates and stores in a local data store a flow record
for each flow it processes. A flow record in some embodi-
ments specifies a flow ID (e.g., five-tuple, virtual local
area network (VLAN) ID, virtual network identifier (VNI),
globally unique identifier (GUID), universally unique
identifier (UUID), etc.) identifying the flow and a set of
one or more actions to perform on the data messages of
the flow. In such embodiments, the VDS extracts the flow
ID from the received data message and compares it to
each flow record it stores.
[0095] If the process 800 determines that a flow record
is stored for the received datamessage, the process 800

5

10

15

20

25

30

35

40

45

50

55



11

19 EP 4 542 952 A1 20

processes (at 815) the data message according to the
flow record. In some embodiments, the flow record spe-
cifiesa set of oneormoreactions to performon theflow to
process it. Examples of actions can include actions re-
lated to performing a middlebox service (e.g., firewall,
load balancing, NAT, IDS, IPS, etc.) and encapsulating
the data message with an encapsulating header (e.g., a
Geneve header) specifying one or more VTEPs. After
processing the data message according to the flow re-
cord, the process 800 proceeds to step 835 which will be
described below.
[0096] If the process 800 determines that a flow record
is not stored for the received data message, the process
800 identifies (at 820) a set of policies applicable to the
flow. The VDS in some embodiments uses the flow ID
and/or other contextual attributes related to the data
message and/or the flow as match criteria to match the
data message to a set of policies that is to be performed
on the flow. The set of policies is identified from several
policies the VDS stores for processing all flows asso-
ciated with the bare metal server. The set of policies can
include networking and/or security policies.
[0097] Then, the process 800 processes (at 825) the
data message according to the identified set of policies.
Because no flow record is stored for the data message’s
flow, the VDS uses the set of policies it identified to
process the data message.
[0098] After processing thedatamessageaccording to
the set of policies, the process 800 creates (at 830) and
storesaflowrecord for theflow.After theVDSdetermines
which actions are to be performed on the flow (based on
how the VDS processed the data message according to
the set of policies), the VDS creates a flow record for the
flow that specifies theflow’s IDand theactionoractions to
perform on the flow. In some of these embodiments, the
VDS continues to process these flows without offloading
the processing of the flows to an embedded hardware
switch of the PNIC.
[0099] In some embodiments, the VDS creates a sin-
gle flow record for both directions of a flow. In other
embodiments, the VDS creates different flow records
for different directions of a flow (i.e., two flow records
are created for each direction of a bidirectional flow).
[0100] In some embodiments, in addition to creating
and storing the flow record, the VDS also provides the
flow record to the embedded switch of the PNIC. In doing
so, the VDS offloads the processing of this particular flow
from itself to the embedded switch, as the embedded
switch can use the flow record to process subsequent
data messages of the flow.
[0101] In embodiments where the VDS creates two
flow records for a single connection (i.e., a flow record
for each direction of the connection), the VDS provides
both flow records to the embedded switch. In other em-
bodiments, theVDSprovides only oneof the flow records
to the VDS, meaning that the processing of one direction
of the flow will be offloaded, but not the other. The VDS
does this in some embodiments to continue processing

one direction of the flow.
[0102] At 835, the process 800provides the processed
data message to the embedded switch of the PNIC. The
VDS provides the processed data message through a
representor port to the embedded switch for the em-
bedded switch to forward the data message to its desti-
nation. After providing the processed data message to
the embedded switch, the process 800 ends.
[0103] Figure 9 conceptually illustrates a process 900
of some embodiments for processing flows at an em-
bedded switch of a PNIC. In some embodiments, the
embedded switch that performs the process 900 con-
nects to a bare metal server through a VF of a PF of the
PNIC and an interface of the bare metal server.
[0104] In some embodiments, the process 900 is per-
formed for a particular data message flow that is sent by
an application executing on the bare metal server to be
forwarded to a destination external to the bare metal
server, such as an external server or a machine (e.g.,
VM, container, pod) executing on a host computer. In
other embodiments, it is sent by an external source to be
forwarded to the application executing on the bare metal
server.
[0105] The process 900 begins by receiving (at 905) a
datamessageof a particular flow. In someembodiments,
the embedded switch receives the data message from
the application executing on the bare metal server to
forward it to an external destination (e.g., another appli-
cationexecutingonanother baremetal server, amachine
executing onahost computer, an external server, etc.). In
such embodiments, the embedded switch receives the
data message from the application through a VF on the
PNIC. In other embodiments, the embedded switch re-
ceives the data message from an external source to be
forwarded to the application on the bare metal server. In
such embodiments, the embedded switch receives the
data message through a physical network port of the
PNIC.
[0106] Next, the process 900determines (at 910) it has
a flow record stored for the flow. The embedded switch in
some embodiments determines this by performing a
lookup operation to find a flow record associated with
the flow. The embedded switch in some embodiments
receives flow records from the VDS of the PNIC so the
VDS can offload processing of one or more flows from
itself to the embedded switch. In such embodiments, the
embedded switch stores the flow records in a local data
store to process flows. A flow record in some embodi-
ments specifies a flow ID (e.g., five-tuple, VLAN ID, VNI,
GUID, UUID, etc.) identifying the flow and a set of one or
moreactions toperformon thedatamessagesof theflow.
In such embodiments, the embedded switch extracts the
flow ID from the received data message and compares it
to each flow record it stores in order to find a matching
flow record.
[0107] If the process 900 determines that a flow record
is stored for the flow, the process 900 processes (at 915)
the data message according to the associated flow re-

5

10

15

20

25

30

35

40

45

50

55



12

21 EP 4 542 952 A1 22

cord. In some embodiments, the embedded switch per-
formson thedatamessage theactionor actionsspecified
in the flow record to process it. For instance, the flow
record in some embodiments specifies that the flow is to
be allowed (based on a firewall rule that is to be applied to
this flow), so the embedded switch allows the flow. Con-
junctively or alternatively, the flow record specifies one or
more VTEPs that are to be specified in an encapsulating
header of the flow. In such embodiments, the embedded
switch inserts in an encapsulating header of the data
message one or more VTEPs (e.g., a source VTEP
and/or a destination VTEP). After processing the data
message according to the flow record, the process 900
proceeds to step 930, which will be described below.
[0108] If the process 900 determines that the there is
no flow record stored for the flow, the process 900 pro-
vides (at 920) the data message to the VDS of the PNIC
for processing. Because the embedded switch does not
havea flow record for the datamessage’s flow, it doesnot
knowwhichactionor actions need tobeperformedon the
data message in order to process it. As such, the em-
bedded switch provides the data message to the PNIC’s
VDS so it can be processed.
[0109] The embedded switch provides the data mes-
sage to the VDS through a representor port and a logical
port of the PNIC. The logical port was created on the
PNIC to connect the bare metal server to the VDS. The
logical port maps to a physical port of the VDS.
[0110] After providing the data message to the VDS,
the process 900 receives (at 925) the processed data
message from the VDS. In some embodiments, the VDS
processes thedatamessageandprovides theprocessed
data message to the embedded switch through a repre-
senter port of the PNIC. This representor port may be the
same representor port that the embedded switch used to
provide the data message to the VDS, or may be a
different representor port of the PNIC.
[0111] At 930, the process 900 forwards the processed
data message to its destination (e.g., a machine execut-
ing on a host computer, another application executing on
another bare metal server, an external destination, etc.).
The embedded switch in some embodiments forwards
the processed datamessage through a physical network
port of the PNIC to reach its destination. After forwarding
the processed data message, the process 900 ends.
[0112] Figures10A-B illustrateanexamplebaremetal
server 1000 executing an application 1005 that forwards
data message flows through a connected PNIC 1010 to
one or more external destinations. The external destina-
tions can include another application executing on an-
other bare metal server, a machine (e.g., VM, container,
pod) executing on a host computer, or any other suitable
destination for a flow sent from a bare metal server
application. The bare metal server 1000 can execute
any number of applications, including the application
1005, that can send data message flows through the
PNIC to external destinations.
[0113] The bare metal server 1000 also includes an

interface 1007 to connect the application 1005 to the
PNIC1010. In someembodiments, the baremetal server
1000 includes only one interface to connect to the PNIC
1010. In other embodiments, the bare metal server 1000
includes a set of interfaces (e.g., one interface per ap-
plication executing on the bare metal server 1000) to
connect to the PNIC 1010.
[0114] The bare metal server’s interface 1007 con-
nects to a VF 1020 of a PF 1025 of the PNIC 1010.
Through the interface 1007 and the VF 1020, the appli-
cation 1005 sends flows to the embedded switch 1030 of
thePNIC1010.Theembeddedswitch1030 isassociated
with a data store 1035 that stores flow records for the
embedded switch 1030 to use to process flows. The
embedded switch 1030 also connects to a port 1040.
[0115] The embedded switch 1030 connects to a logi-
cal port 1050 (e.g., through a representor port) of the
PNIC 1010, which connects to a VDS 1060 of the PNIC
1010. The logical port 1050 is created on the PNIC 1010
to provide connection between the bare metal server
1000 and the VDS 1060. The VDS 1060 executes on
the PNIC 1010 to perform flow processing for the bare
metal server 1000. The VDS 1060 is associated with its
own data store 1065 to store policies it receives (e.g.,
from a manager) to apply to flows and to store flow
records it creates for flows. In this example, the VDS
1060 is associated with one data store 1065 to store
policies and flow records. In other embodiments, the
VDS 1060 has separate data stores to store the policies
and flow records. The embedded switch 1030, em-
bedded switch data store 1035, port 1040, logical port
1050, VDS 1060, and VDS data store 1065 in some
embodiments run on top of a hypervisor (e.g., ESXio
offered by VMware, Inc.) of the PNIC 1010.
[0116] Figure 10A illustrates the application sending a
data message 1070 through the interface 1007 to the VF
1020. The embedded switch 1030 receives the data
message 1070 from the VF 1020. After receiving the
data message 1070, the embedded switch 1030 per-
forms a lookup operation in its data store 1035 to deter-
mine whether it stores a flow record matching the data
message 1070. The embedded switch 1030 performs
this lookup operation using a flow ID (e.g., five-tuple,
UUID, VLAN ID, VNI, etc.) specified in the data message
1070. In this example, the lookupoperation isunsuccess-
ful, meaning that the embedded switch data store 1035
does not have a flow record matching the data message
1070.
[0117] After determining that it does not store a flow
record for the data message 1070, the embedded switch
1030 provides the data message 1070 to the logical port
1050, which is then received at the VDS 1060. Then, the
VDS 1060 performs its own lookup operation in its data
store 1065 todeterminewhether it storesa flow record for
the data message’s flow. If the lookup operation is suc-
cessful, the VDS 1060 retrieves the flow record from the
data store 1065 and processes the data message 1070
according to the flow record.

5

10

15

20

25

30

35

40

45

50

55



13

23 EP 4 542 952 A1 24

[0118] If the lookup operation is unsuccessful, theVDS
1060 performs another lookup operation in the data store
1065 to identify a set of policies that are applicable to the
data message 1070. This lookup operation may be per-
formed by matching match criteria (e.g., the flow ID) to
different policies. After identifying the set of policies that
are to be applied to the data message, the VDS 1060
processes the data message 1070 using the identified
set of policies.
[0119] In thisexample, in processing thedatamessage
1070, the VDS 1060 encapsulates the data message
1070 with an encapsulating header that specifies one
or more VTEPs (e.g., source VTEP and/or destination
VTEP). Then, the VDS 1060 provides the encapsulated
data message 1074 to the embedded switch 1030 (e.g.,
through a representor port). Upon receiving the encap-
sulated data message 1074, the embedded switch 1030
forwards it through the port 1040 to its destination.
[0120] In some embodiments, after processing the
datamessage 1070, the VDS 1060 creates a flow record
for its flow, stores the flow record in the data store 1065,
and provides the flow record to the embedded switch
1030. Upon receiving the flow record, the embedded
switch 1030 stores it in its data store 1035 so it can
process subsequent data messages of the flow without
the VDS 1060 seeing any of these subsequent data
messages.
[0121] Figure 10B illustrates the application sending a
data message 1080 through the interface 1007 to the VF
1020. The embedded switch 1030 receives the data
message 1080 from the VF 1020. After receiving the
data message 1080, the embedded switch 1030 per-
forms a lookup operation in its data store 1035 to deter-
mine whether it stores a flow record matching the data
message 1080. The embedded switch 1030 performs
this lookup operation using a flow ID (e.g., five-tuple,
UUID, VLAN ID, VNI, etc.) specified in the data message
1080. In this example, the lookupoperation is successful,
meaning that the embedded switch data store 1035 does
have a flow record matching the data message 1080.
Because of this, the embedded switch 1030 can process
the datamessage 1080 and theVDS1060 does not have
to receive or process it at all.
[0122] In this example, in processing the data mes-
sage 1080, the embedded switch 1030 encapsulates the
data message 1080 with an encapsulating header that
specifies one or more VTEPs (e.g., source VTEP and/or
destination VTEP). Then, the embedded switch 1030
forwards the encapsulated data message 1084 through
the port 1040 to its destination.
[0123] By connecting PNICs to baremetal servers and
using network adapters to create logical ports on the
PNICs, a manager of an SDN including the bare metal
servers can apply networking and/or security policies to
both the bare metal servers and other host computers
executing virtualized machines. Since the bare metal
servers execute legacy applications (i.e., non-virtualized
applications), the manager cannot directly apply the po-

licies on the bare metal servers. There have been other
attempts to solve this issue, however the other attempts
bring up other issues.
[0124] Figure 11 illustrates two methods to provide
VLAN-overlay communication. In this figure, a machine
1110 of an overlay backed SDN domain 1100 is to com-
municate with a host computer 1120 and a database
server 1130 in a VLAN backed physical infrastructure.
The machine’s IP address is 172.16.10.11, the host
computer’s IP address is 10.113.12.5, and the database
server’s IP address is 172.16.10.10.
[0125] To connect to the host computer 1120, some
embodiments deploy a T0 (Tier‑0) gateway 1125 (with IP
address 172.16.1/24) for routing flows between the ma-
chine 1110and thehost computer 1120. To connect to the
database server 1130, some embodiments deploy a
VLAN-overlay bridge 1135 so that security policies
(e.g., firewall policies) can be applied to traffic between
the machine 1110 and the database server 1130. How-
ever, both the T0 gateway 1130 and the bridge 1135 can
lead to a performance bottleneck.
[0126] Conjunctively or alternatively, some embodi-
ments get bare metal workloads (e.g., bare metal appli-
cations) toworkwith virtualized infrastructure by integrat-
ing multiple SDN solutions from different vendors. How-
ever, this suffers complexity in providing uniform policies
across an entire set of bare metal servers and host
computers. It also leads to integration challenges as it
has to deal with different configurations on multiple or-
chestrators (e.g., network controllers).
[0127] Connecting NICs to bare metal servers and
applying networking and/or security policies on the NICs
allows for amanager of anSDN to facilitate thesepolicies
for both bare metal servers and for virtualized workloads
(e.g., VMs) of host computers in a distributed manner.
This avoids performance issues (e.g., bottlenecks) and
integration/configuration issues.
[0128] Many of the above-described features and ap-
plications are implemented as software processes that
are specified as a set of instructions recorded on a
computer readable storage medium (also referred to
as computer readablemedium).When these instructions
are executed byoneormore processing unit(s) (e.g., one
or more processors, cores of processors, or other pro-
cessing units), they cause the processing unit(s) to per-
form the actions indicated in the instructions. Examples
of computer readable media include, but are not limited
to, CD-ROMs, flash drives, RAM chips, hard drives,
EPROMs, etc. The computer readable media does not
include carrier waves and electronic signals passing
wirelessly or over wired connections.
[0129] In this specification, the term "software" is
meant to include firmware residing in read-only memory
or applications stored in magnetic storage, which can be
read into memory for processing by a processor. Also, in
some embodiments, multiple software inventions can be
implemented as sub-parts of a larger program while
remaining distinct software inventions. In some embodi-

5

10

15

20

25

30

35

40

45

50

55



14

25 EP 4 542 952 A1 26

ments, multiple software inventions can also be imple-
mented as separate programs. Finally, any combination
of separate programs that together implement a software
invention described here is within the scope of the inven-
tion. In some embodiments, the software programs,
when installed to operate on one or more electronic
systems, defineoneormore specificmachine implemen-
tations that execute and perform the operations of the
software programs.
[0130] Figure 12 conceptually illustrates a computer
system 1200 with which some embodiments of the in-
vention are implemented. The computer system 1200
can be used to implement any of the above-described
computers and servers. As such, it can be used to exe-
cute any of the above described processes. This com-
puter system includes various types of non-transitory
machine readable media and interfaces for various other
types of machine readable media. Computer system
1200 includes a bus 1205, processing unit(s) 1210, a
system memory 1225, a read-only memory 1230, a per-
manent storage device 1235, input devices 1240, and
output devices 1245.
[0131] Thebus1205collectively representsall system,
peripheral, and chipset buses that communicatively con-
nect the numerous internal devices of the computer
system 1200. For instance, the bus 1205 communica-
tively connects the processing unit(s) 1210with the read-
only memory 1230, the system memory 1225, and the
permanent storage device 1235.
[0132] From these various memory units, the proces-
singunit(s) 1210 retrieve instructions toexecute anddata
to process in order to execute the processes of the
invention. The processing unit(s) may be a single pro-
cessor or a multi-core processor in different embodi-
ments. The read-only-memory (ROM) 1230 stores static
data and instructions that are needed by the processing
unit(s) 1210 and other modules of the computer system.
The permanent storage device 1235, on the other hand,
is a read-and-write memory device. This device is a non-
volatile memory unit that stores instructions and data
even when the computer system 1200 is off. Some
embodimentsof the inventionuseamass-storagedevice
(such as amagnetic or optical disk and its corresponding
disk drive) as the permanent storage device 1235.
[0133] Other embodiments use a removable storage
device (such as a flash drive, etc.) as the permanent
storage device. Like the permanent storage device 1235,
the system memory 1225 is a read-and-write memory
device. However, unlike storage device 1235, the system
memory is a volatile read-and-write memory, such a
random access memory. The system memory stores
some of the instructions and data that the processor
needs at runtime. In some embodiments, the invention’s
processes are stored in the system memory 1225, the
permanent storage device 1235, and/or the read-only
memory 1230. From these various memory units, the
processing unit(s) 1210 retrieve instructions to execute
and data to process in order to execute the processes of

some embodiments.
[0134] The bus 1205 also connects to the input and
output devices 1240 and 1245. The input devices enable
the user to communicate information and select com-
mands to the computer system. The input devices 1240
include alphanumeric keyboards and pointing devices
(also called "cursor control devices"). The output devices
1245 display images generated by the computer system.
The output devices include printers and display devices,
suchas cathode ray tubes (CRT)or liquid crystal displays
(LCD). Some embodiments include devices such as a
touchscreen that function as both input and output de-
vices.
[0135] Finally, as shown in Figure 12, bus 1205 also
couples computer system 1200 to a network 1265
through a network adapter (not shown). In this manner,
the computer can be a part of a network of computers
(such as a local area network ("LAN"), a wide area net-
work ("WAN"), or an Intranet, or a network of networks,
such as the Internet. Any or all components of computer
system 1200 may be used in conjunction with the inven-
tion.
[0136] Some embodiments include electronic compo-
nents, such as microprocessors, storage and memory
that store computer program instructions in a machine-
readable or computer-readable medium (alternatively
referred to as computer-readable storage media, ma-
chine-readable media, or machine-readable storage
media). Some examples of such computer-readable
media include RAM, ROM, read-only compact discs
(CD-ROM), recordable compact discs (CD-R), rewritable
compact discs (CD-RW), read-only digital versatile discs
(e.g., DVD-ROM, dual-layer DVD-ROM), a variety of
recordable/rewritable DVDs (e.g., DVD-RAM, DVD-
RW, DVD+RW, etc.), flash memory (e.g., SD cards,
mini-SD cards, micro-SD cards, etc.), magnetic and/or
solid state hard drives, read-only and recordable Blu-
Ray® discs, ultra-density optical discs, and any other
optical or magnetic media. The computer-readablemed-
ia may store a computer program that is executable by at
least one processing unit and includes sets of instruc-
tions for performing various operations. Examples of
computer programs or computer code include machine
code, such as is produced by a compiler, and files in-
cluding higher-level code that are executed by a compu-
ter, an electronic component, or a microprocessor using
an interpreter.
[0137] While the above discussion primarily refers to
microprocessor or multi-core processors that execute
software, some embodiments are performed by one or
more integrated circuits, such as application specific
integrated circuits (ASICs) or field programmable gate
arrays (FPGAs). In some embodiments, such integrated
circuits execute instructions that are stored on the circuit
itself.
[0138] As used in this specification, the terms "com-
puter", "server", "processor", and "memory" all refer to
electronic or other technological devices. These terms

5

10

15

20

25

30

35

40

45

50

55



15

27 EP 4 542 952 A1 28

exclude people or groups of people. For the purposes of
the specification, the terms display or displaying means
displaying on an electronic device. As used in this spe-
cification, the terms "computer readable medium," "com-
puter readable media," and "machine readable medium"
are entirely restricted to tangible, physical objects that
store information in a form that is readable by a computer.
These terms exclude any wireless signals, wired down-
load signals, and any other ephemeral or transitory sig-
nals.
[0139] While the invention has been described with
reference to numerous specific details, one of ordinary
skill in the art will recognize that the invention can be
embodied in other specific forms without departing from
the spirit of the invention. Thus, one of ordinary skill in the
art would understand that the invention is not to be limited
by the foregoing illustrative details, but rather is to be
defined by the appended claims.

Claims

1. A method for defining a set of policies for a set of
applications executing on a host computer of a soft-
ware-defined network (SDN), the method compris-
ing:

configuring, onaphysical network interfacecard
(PNIC) connected to the host computer, a net-
work adapter to create a logical port that con-
nects an interface of the host computer to a
virtual distributed switch (VDS) executing on
the PNIC; and
defining the set of policies based on the logical
port for the VDS to apply to data message flows
sent from the set of applications on the host
computer to one or more other host computers
of the SDN.

2. The method of claim 1, wherein
the host computer is a bare metal server that is
incapable of applying the set of policies to the data
message flows.

3. The method of claim 1 or 2, wherein
the set of policies comprises at least one of network-
ing policies and security policies to apply to the data
message flows.

4. The method of any one of the claims 1 to 3 further
comprising, before defining the set of policies,
receiving configuration information regarding the
logical port to use to define the set of policies;

wherein in particular
the configuration information regarding the logi-
cal port is received from a set of one or more
controllers of the SDN and specifies a network

address of the logical port.

5. The method of any one of the claims 1 to 4, wherein
the host computer views the PNIC as a Peripheral
Component Interconnect Express (PCIe) device
connected to the host computer.

6. The method of any one of the claims 1 to 5, wherein
the logical port connects to the interface of the host
computer through an embedded switch of the PNIC.

7. The method of claim 6, wherein

the embedded switch connects to the interface
of the host computer through a virtual function
(VF) of a physical function (PF) of the PNIC;
wherein in particular
the VF is a virtualized peripheral component
interconnect express (PCIe) function exposed
as an interface of the PNIC, and the PF is a
physical interface of the PNIC.

8. The method of claim 7, wherein
the logical port connects to the embedded switch
through a representor port of the PNIC.

9. The method of any one of the claims 6 to 8, wherein
the embedded switch is a hardware switch.

10. The method of any one of the claims 6 to 9, wherein
the embedded hardware switch is configured to:

receive a particular datamessage of a particular
datamessage flow from a particular application;
determine that it does not store a flow record for
the particular data message flow; and
provide the particular data message to the VDS
through the logical port.

11. The method of claim 10, wherein
theVDS is configured to, basedon the set of policies,
perform a set of one or more operations on the
particular datamessage includingaparticular opera-
tion to encapsulate the particular data message with
an encapsulating header specifying at least one of a
source virtual tunnel endpoint (VTEP) and a destina-
tion VTEP.

12. The method of claim 11, wherein the method com-
prises at least one of the following features:

(A) the encapsulating header is a Generic Net-
work Virtualization Encapsulation (Geneve)
header;
(B) the VDS is further configured to provide the
encapsulated particular data message to the
embedded switch, and the embedded switch
is further configured to forward the encapsu-

5

10

15

20

25

30

35

40

45

50

55



16

29 EP 4 542 952 A1 30

lated particular datamessage to a destination of
the particular data message;
and
(C) the set of operations further comprises one
or more middlebox service operations;

wherein in particular
the one or more middlebox service opera-
tions comprise one or more of firewall ser-
vices, load balancing services, network ad-
dress translation services, intrusion detec-
tion services, and intrusion prevention ser-
vices.

13. The method of claim 11 or 12, wherein:

the VDS is further configured to:

determine a set of actions to perform on the
particular data message flow based on the
set of operations performed on the particu-
lar data message;
generate a particular flow record for the
particular data message flow specifying a
flow identifier and the set of actions; and
provide the flow record to the embedded
switch, and

theembeddedswitch is further configured touse
the particular flow record to perform the set of
actions on subsequent data messages of the
particular data message flow.

14. Themethod of any one of the claims 1 to 13, wherein
the configuring and defining is performed by a set of
one or more management servers of the SDN con-
necting to thePNIC throughamanagement interface
of the PNIC.

15. Anon-transitorymachine readablemediumstoring a
program for executionbyat least oneprocessingunit
for defining a set of policies for a set of applications
executing on a host computer of a software-defined
network (SDN), the program comprising sets of in-
structions for controlling and/or carrying out a meth-
od as set forth in any one of the preceding claims.

5

10

15

20

25

30

35

40

45

50

55



17

EP 4 542 952 A1



18

EP 4 542 952 A1



19

EP 4 542 952 A1



20

EP 4 542 952 A1



21

EP 4 542 952 A1



22

EP 4 542 952 A1



23

EP 4 542 952 A1



24

EP 4 542 952 A1



25

EP 4 542 952 A1



26

EP 4 542 952 A1



27

EP 4 542 952 A1



28

EP 4 542 952 A1



29

EP 4 542 952 A1



30

EP 4 542 952 A1



31

EP 4 542 952 A1

5

10

15

20

25

30

35

40

45

50

55



32

EP 4 542 952 A1

5

10

15

20

25

30

35

40

45

50

55



33

EP 4 542 952 A1

5

10

15

20

25

30

35

40

45

50

55


	bibliography
	abstract
	description
	claims
	drawings
	search report

