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(57) A method may comprises identifying, by a de-
vice, a support vectormachine (SVM) classificationmod-
el for determining whether a manufacturing process has
reached a steady state; receiving, by the device and from
one or more spectrometers, multivariate spectral data
measured during a performance of the manufacturing
process; determining, by the device, based on the multi-

variate spectral data, and using the SVM classification
model, whether the manufacturing process is at the
steady state at a particular time; and providing, by the
device and after determining whether the manufacturing
process is at the steady state at the particular time, an
indication that the manufacturing process has reached
the steady state.
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Description

BACKGROUND

[0001] As part of implementing a manufacturing pro-
cess (e.g., a continuous manufacturing process, a batch
manufacturing process), a process analytical technology
(PAT) systemmaybeutilized to produce real-timeor near
real-time data (e.g., spectral data) that allows for mon-
itoring and control of the manufacturing process. A con-
tinuous manufacturing process allows raw materials to
be input into a system and a finished product (e.g., a
pharmaceutical product) to be discharged from the sys-
tem in a continuous fashion. In other words, in a contin-
uousmanufacturingprocess, individual stepsof theman-
ufacturingprocessare transformed toasingle, integrated
manufacturing process (e.g., rather than a series of dis-
crete steps as with a batch manufacturing process)

SUMMARY

[0002] According to some possible implementations, a
device may include one or more processors to: receive
training spectral data associated with a manufacturing
process that transitions from an unsteady state to a
steady state; generate, based on the training spectral
data, a plurality of iterations of a support vector machine
(SVM) classification model; determine, based on the
plurality of iterations of the SVM classification model, a
plurality of predicted transition times associated with the
manufacturing process, where a predicted transition
time, of the plurality of predicted transition times, may
identify a time, during the manufacturing process, that a
corresponding iteration of the SVM classification model
predicts that themanufacturingprocess transitioned from
the unsteady state to the steady state; and generate,
based on the plurality of predicted transition times, a final
SVM classification model associated with determining
whether the manufacturing process has reached the
steady state.
[0003] The one or more processors may be further to:
receive additional spectral data associatedwith theman-
ufacturing process; and determine, based on the final
SVM classification model and the additional spectral
data, that the manufacturing process has not reached
the steady state.
[0004] The one or more processors may be further to:
receive additional spectral data associatedwith theman-
ufacturing process; and determine, based on the final
SVM classification model and the additional spectral
data, that the manufacturing process has reached the
steady state.
[0005] The one or more processors may be further to:
provide an indication that themanufacturing process has
reached the steady state.
[0006] The one or more processors may be further to:
determine, based on determining that the manufacturing
process has reached the steady state, a quantitative

metric associated with the steady state; and provide
information associated with the quantitative metric.
[0007] The one or more processors, when generating
the plurality of iterations of the SVM classification model,
may be to: create, based on the training spectral data, a
set of unsteady state data and a set of steady state data;
and generate an iteration, of the plurality of iterations of
the SVM classification model, based on the set of un-
steady state data and the set of steady state data.
[0008] The one ormore processors, when determining
the plurality of predicted transition times, may be to:
determine, based on the training spectral data and the
iteration of the SVM classification model, the predicted
transition time, associated with the iteration of the SVM
classification model; the predicted transition time being
one of the plurality of predicted transition times.
[0009] The one or more processors may be further to:
perform a dimension reduction, based on the training
spectral data, before generating the plurality of iterations
of the SVM classification model.
[0010] According to some possible implementations, a
non-transitory computer-readable medium may store
one or more instructions that, when executed by one
or more processors, cause the one or more processors
to: receive training spectral data associated with a first
performance of a manufacturing process that transitions
from an unsteady state to a steady state; iteratively
generate, based on the training spectral data, a SVM
classification model associated with determining
whether another performance of the manufacturing pro-
cess has transitioned from the unsteady state to the
steady state; receive additional spectral data associated
with a second performance of the manufacturing pro-
cess; and determine, based on the SVM classification
model and the additional spectral data, whether the
second performance of the manufacturing process has
transitioned from the unsteady state to the steady state.
[0011] The one ormore instructions that cause the one
or more processors to determine whether the second
performance of the manufacturing process has transi-
tioned from the unsteady state to the steady state, may
cause the one or more processors to: determine that the
second performance of the manufacturing process has
transitioned from the unsteady state to the steady state;
and provide an indication that the second performance of
the manufacturing process has transitioned from the
unsteady state to the steady state.
[0012] Theoneormore instructions,whenexecutedby
theoneormoreprocessors,may further cause theoneor
more processors to: determine, based on determining
that the second performance of the manufacturing pro-
cess has transitioned from the unsteady state to the
steady state, a quantitative metric associated with the
second performance of the manufacturing process; and
provide information associated with the quantitative me-
tric.
[0013] Theoneormore instructions,whenexecutedby
theoneormoreprocessors,may further cause theoneor

5

10

15

20

25

30

35

40

45

50

55



3

3 EP 4 553 722 A1 4

more processors to: identify a regression model asso-
ciated with the quantitative metric; and where the one or
more instructions, that cause the oneormore processors
to determine the quantitative metric, cause the one or
more processors to: determine the quantitative metric
based on the regression model.
[0014] Theoneormore instructions, that cause theone
or more processors to iteratively generate the SVM clas-
sification model, may cause the one or more processors
to: create, basedon the training spectral data, a first set of
unsteady state data and a first set of steady state data;
generate a first iteration of the SVM classification model
based on the first set of unsteady state data and the first
set of steady state data; create, based on the training
spectral data, a second set of unsteady state data and a
second set of steady state data; and generate a second
iteration of the SVM classification model based on the
second set of unsteady state data and the second set of
steady state data.
[0015] Theoneormore instructions,whenexecutedby
theoneormoreprocessors,may further cause theoneor
more processors to: determine, based on the first itera-
tion of the SVM classification model, a predicted transi-
tion time associated with the first iteration of the SVM
classification model; and where the one or more instruc-
tions that cause the one ormore processors to create the
second set of unsteady state data, cause the one ormore
processors to: create the second set of unsteady state
data based on the predicted transition time associated
with the first iteration of the SVM classification model.
[0016] According to some possible implementations, a
methodmay include: receiving, by a device, first spectral
data associatedwith a first performance of amanufactur-
ing process that transitions from an unsteady state to a
steady state; generating, by the device and based on the
first spectral data, a plurality of iterations of a SVM
classification model; determining, by the device and
based on the plurality of iterations of the SVM classifica-
tion model, a plurality of predicted transition times asso-
ciated with the first performance of the manufacturing
process; generating, by the device and based on the
plurality of predicted transition times, a final SVM classi-
fication model associated with determining whether an-
other performance of the manufacturing process has
reached the steady state; receiving, by the device, sec-
ond spectral data associated with a second performance
of the manufacturing process; and determining, by the
device, whether the second performance of the manu-
facturing process has reached the steady state based on
the final SVM classification model and the second spec-
tral data.
[0017] Determining whether the second performance
of the manufacturing process has reached the steady
state may comprise: determining that the second perfor-
mance of themanufacturing process has not reached the
steady state.
[0018] Determining whether the second performance
of the manufacturing process has reached the steady

state may comprise: determining that the second perfor-
mance of the manufacturing process has reached the
steady state.
[0019] Themethodmay further comprise: providing an
indication that the manufacturing process has reached
the steady state, where providing the indication causes
an action, associated with the manufacturing process, to
be automatically performed.
[0020] Themethodmay further comprise: determining,
based on a regression model associated with the man-
ufacturing process, a quantitative metric associated with
the steady state; and providing information associated
with the quantitative metric.
[0021] Themethodmay further comprise: performinga
dimension reduction, associated with the first spectral
data, before generating the plurality of iterations of the
SVM classification model.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022]

Figs. 1A‑1C are diagrams of an overview of an ex-
ample implementation described herein;
Fig. 2 is a diagram of an example environment in
which systems and/or methods, described herein,
may be implemented;
Fig. 3 is a diagram of example components of one or
more devices of Fig. 2;
Fig. 4 is a flow chart of an example process for
generating a SVM classification model for detecting
whenamanufacturingprocesshas reachedasteady
state;
Figs. 5A and 5B are example graphical representa-
tions associatedwith determining a transition time of
a manufacturing process based on transition times
predicted by iterations of a SVM classificationmodel
associated with the manufacturing process;
Fig. 6 is a flow chart of an example process for
determining, based on spectral data and using a
SVM classification model, whether a manufacturing
process has reached a steady state;
Figs. 7A and 7B are example graphical representa-
tions illustrating a simplified decision boundary as-
sociated with the SVM classification model; and
Fig. 8 is a graphical representation of example de-
cision values determined based on the decision
boundary of Figs. 7A and 7B.

DETAILED DESCRIPTION

[0023] The following detailed description of example
implementations refers to the accompanying drawings.
The same reference numbers in different drawings may
identify the same or similar elements.
[0024] A manufacturing process (e.g., a continuous
manufacturingprocessorabatchmanufacturingprocess
for manufacturing pharmaceutical products) may involve
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one or more transitions in state, such as a transition from
an unsteady state (e.g., a state at which properties of
materials and/or a compound vary with time) to a steady
state (e.g., a state at which the properties of thematerials
and/or the compound remain substantially constant with
time). For example, a mixing process, included in a
manufacturing process for manufacturing a pharmaceu-
tical product, may involve a transition where spectral
properties of a compound transition from an unsteady
state (e.g., at a start of the mixing process) to a steady
state (e.g., indicating that the mixing process is com-
plete).
[0025] Thus, in order to improve efficiency and/or opti-
mize the manufacturing process, the manufacturing pro-
cess should be monitored in order to determine (e.g., in
real-time or near real-time) when the manufacturing pro-
cess has reached the steady state. A possible technique
for detecting a state of the manufacturing process is a
model that uses a univariate technique that detects the
state of the manufacturing process based on a single
variable associated with the manufacturing process,
such as a total spectral intensity. Another possible tech-
nique for detecting the state of the manufacturing pro-
cess is amodel that uses a principal component analysis
(PCA) technique to identify a set of variables (i.e., princi-
pal components) for detecting the state of the manufac-
turing process, and detecting when the manufacturing
process has reached the steady state based on monitor-
ing the set of variables. However, in some cases, data
measured during the manufacturing process may be
multivariate data (e.g., NIR spectra including data asso-
ciatedwith hundreds of variables). Thus, due to the focus
on relatively few variables according to the univariate
technique or the PCA technique, these techniques may
lead to inaccurate state detections and/or may not be
sufficiently robust in order to ensure accurate state de-
tection.
[0026] Implementations described herein provide a
detection device capable of generating a support vector
machine (SVM) classification model for determining
whether a manufacturing process (e.g., a continuous
manufacturing process, a batch manufacturing process,
and/or the like) has reached a steady state, and deter-
mining, using theSVMclassificationmodel and based on
multivariate spectral data associated with the manufac-
turing process, whether the manufacturing process has
reached the steady state. In some implementations, the
SVM classification model may take into account multiple
variables (e.g., 80 variables, 120 variables, 150 vari-
ables, and/or the like), thereby increasing accuracy an-
d/or robustness of the SVM classification model (e.g., as
compared to the techniques described above).
[0027] Figs. 1A‑1C are diagrams of an overview of an
example implementation 100 described herein. As
shown in Fig. 1A, and by reference number 102, a detec-
tion devicemay receive training spectral data associated
with a manufacturing process. The training spectral data
(sometimes referred to as first spectral data)may include

spectral data, associated with the manufacturing pro-
cess, based on which iterations of a support vector
machine (SVM) classification model, associated with
detecting whether the manufacturing process has
reached a steady state, may be generated. For example,
the training spectral datamay include spectra (e.g.,multi-
variate time series data, such as NIR spectra) measured
by a spectrometer during a performance of the manu-
facturingprocess.Theperformanceof themanufacturing
process during which the training spectral data is gath-
ered may be referred to as a first performance of the
manufacturing process.
[0028] As shown, the training spectral data may in-
clude spectral data measured at a start time of the
manufacturing process (time t0), spectral datameasured
at a time at which the manufacturing process is known to
be in an unsteady state (time tus0), spectral data mea-
sured at a time at which the manufacturing process is
known to be in a steady state (time tss0), spectral data
measured at an end time of the manufacturing process
(time te), and spectral data measured between time t0
and time te for which the state of the manufacturing
process is unknown.
[0029] As shown by reference numbers 104 through
116, the detection device may generate iterations of the
SVM classification model based on the training spectral
data.Forexample,asshownby referencenumber104, in
order to generate an initial iteration (iteration 0) of the
SVM classification model, the detection device may cre-
ate, based on the training spectral data, an initial set of
unsteady state data (e.g., including spectral data mea-
sured from time t0 to time tus0) and an initial set of steady
state data (e.g., including spectral data measured from
time tss0 to time te).
[0030] As shown by reference number 106, the detec-
tion device may generate, based on the initial set of
unsteady state data and the initial set of steady state
data, the initial iteration of the SVM classification model.
As shown, based on providing the training spectral data
as input to the initial iteration of the SVM classification
model, the detection device may determine an initial
predicted transition time (ttrans0) associated with the in-
itial iteration of the SVM classification model (e.g., a time
that the initial iteration of the SVM classification model
predicts thatmanufacturingprocess transitioned fromthe
unsteady state to the steady state).
[0031] As shown by reference number 108, in order to
generate a first iteration (iteration 1) of the SVM classi-
fication model, the detection device may create, based
on the training spectral data, a first set of unsteady state
data (e.g., including spectral data measured from time t0
to time ttrans0) and a first set of steady state data (e.g.,
including spectral data measured from time tss0-dt*1 to
time te). Notably, the first set of unsteady state data
includes spectral data measured until the transition time
predicted by the initial iteration of the SVM classification
model, while the first set of steady state data includes
spectral data included in the initial set of steady state
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data, as well as spectral data measured one time step
before time tss0.
[0032] As shown by reference number 110, the detec-
tion device may generate, based on the first set of un-
steady state data and the first set of steady state data, the
first iteration of the SVM classification model. As shown,
based on providing the training spectral data as input to
the first iteration of the SVM classification model, the
detection device may determine a first predicted transi-
tion time (ttrans1) associated with the first iteration of the
SVM classification model (e.g., a time that the first itera-
tion of the SVM classification model predicted that man-
ufacturing process transitioned from the unsteady state
to the steady state).
[0033] In some implementations, the detection device
may generate n (n >1) iterations of theSVMclassification
model and determine predicted transition times in this
manner until an earliest time, associated with the set of
steady state data used to generate the nth iteration of the
SVM classification model, is a threshold amount of time
(e.g., one time step) away from the time at which the
manufacturing process is known to be in the unsteady
state (e.g., until the set of steady state includes spectral
data measured from tss0-dt*n = tus0+dt to time te).
[0034] For example, as shown in Fig. 1A by reference
number 112, in order to generate an nth iteration (iteration
n) of the SVM classification model, the detection device
may create, basedon the training spectral data, annth set
of unsteady state data (e.g., including spectral data
measured from time t0 to time ttrans(n‑1)) and an nth set
of steady state data (e.g., including spectral data mea-
sured from time tss0-dt*n = tus0+dt to time te). Notably, the
nth set of unsteady state data includes spectral data
measured until time the transition time predicted by the
(n‑1)th (i.e., previous) iteration of the SVM classification
model, while the nth set of steady state data includes
spectral data included in the (n‑1)th set of steady state
data, as well as spectral data measured one time step
before time tss0-dt*(n‑1).
[0035] As shown by reference number 114, the detec-
tion device may generate, based on the nth set of un-
steady state data and the nth set of steady state data, the
nth iteration of the SVM classification model. As shown,
based on providing the training spectral data as input to
the nth iteration of the SVM classification model, the
detection device may determine an nth predicted transi-
tion time (ttrans(n)) associated with the nth iteration of the
SVMclassificationmodel (e.g., a time that thenth iteration
of the SVM classification model predicted that the man-
ufacturing process transitioned from the unsteady state
to the steady state).
[0036] As shown by reference number 116, the detec-
tion device may determine, based on the n transition
times predicted by the n iterations of the SVM classifica-
tion model, a dominant (e.g., most predicted) transition
time associated with the manufacturing process. As
shown by reference number 118, the detection device
may generate a final SVM classification model based on

the transition time associated with the manufacturing
process. For example, the detection device may create
a final set of unsteady state data including spectral data
measured before the determined dominant transition
time, and a final set of steady state data including training
spectral data measured at or after the determined domi-
nant transition time. As shown, the detection device may
generate the final SVM classificationmodel based on the
final set of unsteady state data and the final set of steady
state data, accordingly.
[0037] As shown in Fig. 1B, and by reference number
120, the detection devicemay (at a later time) identify the
SVM classificationmodel (e.g., based on storing the final
SVM classification model generated as described) for
use in detecting whether a performance of the manufac-
turing process has reached the steady state. For exam-
ple, the detection devicemay identify the SVMclassifica-
tion model based on receiving an indication that the
manufacturing process is being started or has been
started.
[0038] As shown by reference number 122, the detec-
tion device may receive, during the second performance
of the manufacturing process, spectral data associated
with the manufacturing process (sometimes referred to
as second spectral data or additional spectral data). For
example, as shown, a spectrometer may measure the
spectral data at a given time (e.g., time tA) during the
performance of the manufacturing process, and may
provide the spectral data to the detection device. The
performance of the manufacturing process during which
the spectral data is gathered for input to the SVM classi-
fication model may be referred to as a second perfor-
mance of the manufacturing process.
[0039] As further shown, the detection device may
determine, based on the spectral data and the SVM
classificationmodel, whether themanufacturing process
is at the steady state at time tA. For example, as shownby
reference number 124, the detection devicemay provide
the spectral data, measured at time tA, as input to the
SVM classification model. As shown by reference num-
ber 126, the detection device may determine, based on
an output of the SVM classification model, that the man-
ufacturing process is not at the steady state at time tA. In
some implementations, the detection device may deter-
mine whether themanufacturing process is at the steady
state based on a decision boundary associated with the
SVM classification model, as described below.
[0040] As shown in Fig. 1C, and by reference number
128, the detection device may receive, at a later time
during performance of the manufacturing process (time
tB), spectral data associated with the manufacturing pro-
cess. For example, as shown, a spectrometer may mea-
sure the spectral data at time tB, and may provide the
spectral data to the detection device.
[0041] As further shown, the detection device may
determine, based on the spectral data and the SVM
classificationmodel, whether themanufacturing process
is at the steady state at time tB. For example, as shownby
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reference number 130, the detection devicemay provide
the spectral data, measured at time tB, as input to the
SVM classification model. As shown by reference num-
ber 132, the detection device may determine, based on
an output of the SVM classification model, that the man-
ufacturing process is at the steady state at time tB.
[0042] As shown by reference number 134, in some
implementations, the detection device may (optionally)
determineaquantitativemetric, associatedwith the stea-
dy state, based on determining that the manufacturing
process has reached the steady state. The quantitative
metric may include a metric indicating a quantitative
property associated with the steady state, such as a
concentration of constituent parts of a compound at
the steady state, a particle size at the steady state, and/or
the like. For example, the detection device may store or
have access to a regression model (e.g., a partial least
square (PLS) regressionmodel, a support vector regres-
sion (SVR) model) that receives, as input, the spectral
data based on which the steady state was detected, and
provide, as output, the quantitative metric associated
with the steady state.
[0043] As shown by reference number 136, based on
determining that themanufacturing process has reached
the steady state, the detection device may provide (e.g.,
to a user device associated with monitoring the manu-
facturing process) an indication that the manufacturing
process has reached the steady state. As further shown,
the detection device may also provide information asso-
ciated with the quantitative metric.
[0044] In this way, a detection device may generate a
SVMclassificationmodel for determiningwhether aman-
ufacturing process has reached a steady state, and
determine, using the SVM classification model and
based on multivariate spectral data associated with the
manufacturing process, whether the manufacturing pro-
cess has reached the steady state.
[0045] As indicated above, Figs. 1A‑1C are provided
merely as an example. Other examples are possible and
may differ from what was described with regard to Figs.
1A‑1C.
[0046] Fig. 2 is a diagram of an example environment
200 in which systems and/or methods, described herein,
may be implemented. As shown in Fig. 2, environment
200 may include one or more spectrometers 210‑1
through 210-X (X ≥ 1) (herein collectively referred to as
spectrometers 210, and individually as spectrometer
210), a detection device 220, a user device 230, and a
network 240. Devices of environment 200 may intercon-
nect via wired connections, wireless connections, or a
combination of wired and wireless connections.
[0047] Spectrometer 210 includes a device capable of
performing a spectroscopic measurement on a sample
(e.g., a sample associated with a manufacturing pro-
cess). For example, spectrometer 210 may include a
desktop (i.e., non-handheld) spectrometer device that
performs spectroscopy (e.g., vibrational spectroscopy,
such as near infrared (NIR) spectroscopy, mid-infrared

spectroscopy (mid-IR), Raman spectroscopy, and/or the
like). In some implementations, spectrometer 210 may
be capable of providing spectral data, obtained by spec-
trometer 210, for analysis by another device, such as
detection device 220.
[0048] Detection device 220 includes one or more
devices capable of detecting whether a manufacturing
process has reached a steady state based on a classi-
fication model, associated with the manufacturing pro-
cess, and spectral data associated with the manufactur-
ing process. For example, detection device 220 may
include a server, a group of servers, a computer, a cloud
computing device, and/or the like. In some implementa-
tions, detection device 220maybe capable of generating
the classification model based on training spectral data
associated with the manufacturing process. In some
implementations, detection device 220 may receive in-
formation from and/or transmit information to another
device in environment 200, such as spectrometer 210
and/or user device 230.
[0049] User device 230 includes one or more devices
capable of receiving, processing, and/or providing infor-
mationassociatedwithwhetheramanufacturingprocess
has reached a steady state. For example, user device
230 may include a communication and computing de-
vice, suchasadesktop computer, amobile phone (e.g., a
smart phone, a radiotelephone, etc.), a laptop computer,
a tablet computer, a handheld computer, a wearable
communication device (e.g., a smart wristwatch, a pair
of smart eyeglasses, etc.), or a similar type of device.
[0050] Network 240 includes one or more wired and/or
wireless networks. For example, network 240 may in-
cludea cellular network (e.g., a long-termevolution (LTE)
network, a 3G network, a code division multiple access
(CDMA) network, etc.), a public land mobile network
(PLMN), a local area network (LAN), awide area network
(WAN), a metropolitan area network (MAN), a telephone
network (e.g., the Public Switched Telephone Network
(PSTN)), a private network, an ad hoc network, an in-
tranet, the Internet, a fiber optic-based network, a cloud
computing network, and/or the like, and/or a combination
of these or other types of networks.
[0051] The number and arrangement of devices and
networks shown in Fig. 2 are provided as an example. In
practice, there may be additional devices and/or net-
works, fewer devices and/or networks, different devices
and/or networks, or differently arranged devices and/or
networks than those shown in Fig. 2. Furthermore, two or
more devices shown in Fig. 2may be implementedwithin
a single device, or a single device shown in Fig. 2may be
implemented as multiple, distributed devices. Addition-
ally, or alternatively, a set of devices (e.g., one or more
devices) of environment 200 may perform one or more
functions described as being performed by another set of
devices of environment 200.
[0052] Fig. 3 is a diagram of example components of a
device 300. Device 300may correspond to spectrometer
210, detection device 220, and/or user device 230. In
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some implementations, spectrometer 210, detection de-
vice220,and/or userdevice230may includeoneormore
devices 300 and/or one or more components of device
300. As shown in Fig. 3, device 300 may include a bus
310, a processor 320, a memory 330, a storage compo-
nent 340, an input component 350, an output component
360, and a communication interface 370.
[0053] Bus 310 includes a component that permits
communication among the components of device 300.
Processor 320 is implemented in hardware, firmware, or
a combination of hardware and software. Processor 320
includes a central processing unit (CPU), a graphics
processing unit (GPU), an accelerated processing unit
(APU), a microprocessor, a microcontroller, a digital sig-
nal processor, a field-programmable gate array (FPGA),
an application-specific integrated circuit (ASIC), or an-
other type of processing component. In some implemen-
tations, processor 320 includes one or more processors
capable of being programmed to perform a function.
Memory 330 includes a random access memory
(RAM), a read only memory (ROM), and/or another type
of dynamic or static storage device (e.g., a flashmemory,
a magnetic memory, and/or an optical memory) that
stores information and/or instructions for use by proces-
sor 320.
[0054] Storage component 340 stores information an-
d/or software related to the operation and use of device
300. For example, storage component 340may include a
hard disk (e.g., a magnetic disk, an optical disk, a mag-
neto-optic disk, and/or a solid state disk), a compact disc
(CD), a digital versatile disc (DVD), a floppy disk, a
cartridge, a magnetic tape, and/or another type of non-
transitory computer-readable medium, along with a cor-
responding drive.
[0055] Input component 350 includes a component
that permits device 300 to receive information, such as
via user input (e.g., a touch screen display, a keyboard, a
keypad, a mouse, a button, a switch, and/or a micro-
phone). Additionally, or alternatively, input component
350 may include a sensor for sensing information (e.g.,
a global positioning system (GPS) component, an accel-
erometer, a gyroscope, and/or an actuator). Output com-
ponent 360 includes a component that provides output
information from device 300 (e.g., a display, a speaker,
and/or one or more light-emitting diodes (LEDs)).
[0056] Communication interface 370 includes a trans-
ceiver-like component (e.g., a transceiver and/or a se-
parate receiver and transmitter) that enables device 300
to communicate with other devices, such as via a wired
connection, a wireless connection, or a combination of
wired and wireless connections. Communication inter-
face 370 may permit device 300 to receive information
from another device and/or provide information to an-
other device. For example, communication interface 370
may include an Ethernet interface, an optical interface, a
coaxial interface, an infrared interface, a radio frequency
(RF) interface, a universal serial bus (USB) interface, a
Wi-Fi interface, a cellular network interface, and/or the

like.
[0057] Device 300 may perform one or more pro-
cesses described herein. Device 300may perform these
processes in response to processor 320 executing soft-
ware instructions stored by a non-transitory computer-
readable medium, such as memory 330 and/or storage
component 340.Acomputer-readablemedium isdefined
herein as a non-transitory memory device. A memory
device includes memory space within a single physical
storage device or memory space spread across multiple
physical storage devices.
[0058] Software instructionsmay be read into memory
330 and/or storage component 340 from another com-
puter-readable medium or from another device via com-
munication interface 370. When executed, software in-
structions stored in memory 330 and/or storage compo-
nent 340 may cause processor 320 to perform one or
more processes described herein. Additionally, or alter-
natively, hardwired circuitry may be used in place of or in
combination with software instructions to perform one or
more processes described herein. Thus, implementa-
tions described herein are not limited to any specific
combination of hardware circuitry and software.
[0059] The number and arrangement of components
shown in Fig. 3 are provided as an example. In practice,
device 300 may include additional components, fewer
components, different components, or differently ar-
ranged components than those shown in Fig. 3. Addi-
tionally, or alternatively, a set of components (e.g., one or
more components) of device 300 may perform one or
more functions described as being performed by another
set of components of device 300.
[0060] Fig. 4 is a flow chart of an example process 400
for generating a classificationmodel for detectingwhen a
manufacturing process has reached a steady state. In
some implementations, one or more process blocks of
Fig. 4 may be performed by detection device 220. In
some implementations, one or more process blocks of
Fig. 4 may be performed by another device or a group of
devices separate from or including detection device 220,
such as spectrometer 210 and/or user device 230.
[0061] As shown in Fig. 4, process 400 may include
receiving training spectral data associated with a manu-
facturing process (block 410). For example, detection
device 220may receive training spectral data associated
with a manufacturing process.
[0062] The training spectral data may include spectral
data, associatedwith amanufacturing process, basedon
which iterations of a SVM classification model may be
generated. For example, the training spectral data may
include spectra (e.g., multivariate time series data, such
as NIR spectra) measured by spectrometer 210 during a
performance of the manufacturing process. In some im-
plementations, the manufacturing process may be a
continuous manufacturing process or a batch manufac-
turing process. In some implementations, detection de-
vice 220 may generate the iterations of the SVM classi-
fication model based on the training spectral data, as
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described below.
[0063] In some implementations, the training spectral
datamay include historical spectrameasured at different
times (e.g., periodically at a series of time steps) during
anearlier performanceof themanufacturingprocess. For
example, the training spectral data may include spectra
measured at a start time of the earlier performance of the
manufacturing process (herein referred to as time t0) and
spectra measured at an end time of the earlier perfor-
mance of the manufacturing process (herein referred to
as time te).
[0064] As another example, the training spectral data
may include spectra measured at a time at which the
earlier performance of the manufacturing process is
known to have been at an unsteady state (herein referred
to as time tus0). In some implementations, time tus0 may
be the same timeas time t0 (e.g., since themanufacturing
process is in the unsteady state at the start of the man-
ufacturing process). Alternatively, time tus0may be a time
that is after time t0, such as a time that is one time step
after time t0, five time steps after time t0, 40 time steps
after time t0, and/or the like. In some implementations,
time tus0 may be a time, after time t0, at which the earlier
performanceof themanufacturing process is assumed to
have been at the unsteady state.
[0065] As an additional example, the training spectral
datamay include spectrameasured at a timeatwhich the
earlier performance of the manufacturing process is
known to have been at a steady state (herein referred
to as time tss0). In some implementations, time tss0 may
be the same timeas time te (e.g., since themanufacturing
process is in the steady state at the end of the manu-
facturing process). Alternatively, time tss0 may be a time
that is before time te, such as a time that is one time step
before time te, five timestepsbefore time te, 40 timesteps
before time te, and/or the like. In some implementations,
time tss0maybe a time, before time te, at which the earlier
performanceof themanufacturing process is assumed to
have been at the steady state.
[0066] As yet another example, the training spectral
data may include spectra, measured at times between
time t0 and time te, for which the state of the earlier
performance of the manufacturing process is unknown.
[0067] In some implementations, detection device 220
may receive the training spectral data from one or more
other devices, such as one or more spectrometers 210
that obtain the training spectral data during the earlier
performance of the manufacturing process or a server
device that stores training spectral datameasuredbyone
or more spectrometers 210 during the earlier perfor-
mance of the manufacturing process.
[0068] In some implementations, the training spectral
data may be associated with multiple earlier perfor-
mances of the manufacturing process, where starting
conditions (e.g., total weight, particle size, distribution,
moisture level, etc.) vary among the multiple perfor-
mances of the manufacturing process. In such a case,
multiple sets of training spectral data, associatedwith the

multiple performances of the manufacturing process,
may be averaged and/or otherwise combined in order
to form the training spectral data. In some implementa-
tions, measuring the training spectral data with varying
starting conditions results in increased accuracy and/or
robustness of a SVM classification model generated
based on the training spectral data (e.g., as compared
to a SVM classification model generated based on a
performance of the manufacturing process with single
set of starting conditions).
[0069] In some implementations, detection device 220
mayperformdimension reduction on the training spectral
data. Dimension reduction may include reducing a num-
ber of variables, of themultivariate training spectral data,
based on which a SVM classification model may be
generated. In some implementations, dimension reduc-
tion may be performed using a principal component
analysis (PCA) technique, whereby principal compo-
nents (i.e., a subset of themultiple variables) is identified
for use in generating the SVM classification model. Ad-
ditionally, or alternatively, dimension reduction may be
performed using a variable selection technique, whereby
variables, of the multiple variables, are selected that are
discriminative of, for example, a compound associated
with the manufacturing process. Examples of such vari-
able selection techniques include a selectivity ratio (SR)
technique, a variable importance in projection (VIP) tech-
nique, and/or the like. In some implementations, perform-
ing dimension reductionmay result in improved interpret-
ability of the SVM classification model and/or improved
generation of the SVM classification model by, for exam-
ple, removing interference and/or reducing noise among
the multiple variables (e.g., as compared to a SVM clas-
sification model generated on the entire set of training
spectral data).
[0070] As further shown in Fig. 4, process 400 may
includecreating,basedon the trainingspectral data,aset
of unsteady state data and a set of steady state data
(block 420). For example, detection device 220 may
create, based on the training spectral data, a set of
unsteady state data and a set of steady state data.
[0071] The set of unsteady state data may include
spectral data, included in the training spectral data, that
corresponds to timesatwhich themanufacturingprocess
is assumed to be in the unsteady state for purposes of
generating an iteration of aSVMclassificationmodel. For
example, an initial set of unsteady state data, associated
with generating an initial iteration of the SVM classifica-
tion model, may include spectral data measured at times
from time t0 to time tus0. Continuing with this example,
another set of unsteady state data, associated with gen-
erating a next iteration of the SVM model, may include
spectral data measured at times from time t0 to time
ttrans0, where time ttrans0 is a transition time (e.g., a time
of a transition from the unsteady state to the steady state)
as predicted by the initial iteration of the SVM classifica-
tion model. In general, an nth set of unsteady state data,
associated with generating an nth iteration of the SVM
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model,may include spectral datameasuredat times from
time t0 to time ttrans(n‑1),where time ttrans(n‑1) is a transition
time as determined by the (n‑1)th (i.e., previous) iteration
of the SVM classification model. Additional details re-
garding generating the iterations of the SVM classifica-
tion model are described below.
[0072] In some implementations, the set of unsteady
state data may be updated, modified, and/or recreated
for generating each iteration of the SVM model by, for
example, adding additional spectral data, included in the
training spectral data, to a set of unsteady state data
associated with generating a previous iteration of the
SVM model. For example, an nth set of unsteady state
data, for generating an nth iteration of the SVMclassifica-
tion model, may include spectral data included in an
(n‑1)th set of unsteady state data, used to generate an
(n‑1)th iteration of the SVM classification model, as well
as spectral datameasured at times from a last time in the
(n‑1)th set of unsteady state data to a transition time
predicted using the (n‑1)th iteration of theSVMclassifica-
tion model. As a particular example, a set of steady state
data for generating a fourth iteration of the SVM classi-
fication model may include spectral data measured from
time t0 to time ttrans3 (e.g., from the start time to a transi-
tion time determined using the third iteration of the mod-
el), whereas a set of steady state data for generating a
fifth (i.e., next) iteration of the SVM classification model
may include spectral data measured from time t0 to time
ttrans4 (e.g., from the start time to a transition time as
determined using the fourth iteration of the SVM classi-
fication model).
[0073] The set of steady state data may include spec-
tral data, included in the training spectral data, that cor-
responds to times at which the earlier performance of the
manufacturing process is assumed to be in the steady
state for purposes of generating an iteration of the SVM
classification model. For example, an initial set of steady
state data, associated with generating an initial iteration
of the SVM classification model, may include spectral
data measured at times from time tss0 to time te. Con-
tinuing with this example, another set of steady state
data, associated with generating a next iteration of the
SVM model, may include spectral data measured at
times from time tss0-dt*1 to time te, where time tss0-dt*1
is a time that is one time step before time tss0. In other
words, detection device 220 may iteratively add spectral
data, associated with time steps before time tss0, to each
set of steady state datawhengenerating each iteration of
the SVM classification model. In general, an nth set of
steady state data, associated with generating an nth
iteration of the SVM model, may include spectral data
measured at times from time tss0-dt*n to time te, where
time tss0-dt*n is a time that is n time steps before time tss0.
[0074] In some implementations, the set of steady
state data may be updated, modified, and/or recreated
for generating each iteration of the SVM model by, for
example, adding additional spectral data to a set of
steady state data associated with generating a previous

iteration of the SVMmodel. For example, a set of steady
state data for generating a given iteration of the SVM
classificationmodelmay includespectral data included in
a set of steady state data used to generate a previous
iteration of the SVM classification model, as well as
spectral data measured at a time step immediately pre-
ceding an earliest time step associated with the set of
spectral data for generating the previous iteration of the
SVM classification model. As a particular example, a set
of steady state data for generating a fourth iteration of the
SVMclassificationmodelmay includespectral datamea-
sured from time tss0-dt*4 to time te,whereasaset of steady
state data for generating a fifth (i.e., next) iteration of the
SVMclassificationmodelmay includespectral datamea-
sured from time tss0-dt*5 to time te (i.e., spectral data for
one time step earlier than tss0-dt*4).
[0075] As further shown in Fig. 4, process 400 may
include generating, based on the set of unsteady state
data and the set of steady state data, an iteration of a
SVM classification model associated with detecting
whether the manufacturing process has reached a stea-
dy state (block 430). For example, detection device 220
may generate, based on the set of unsteady state data
and the set of steady state data, an iteration of a SVM
classification model associated with detecting when the
manufacturing process has reached a steady state.
[0076] In some implementations, detection device 220
may generate the iteration of the SVM classification
model based on applying a SVM technique to the set
of unsteady state data and the set of steady state data.
For example, detection device 220 may generate the
SVMclassificationmodel bymapping the set of unsteady
state data and the set of steady state data as points in
space such that the set of unsteady state data is sepa-
rated from the set of steady state data by, for example, a
set of hyperplanes.
[0077] In some implementations, detection device 220
may determine, based on the training spectral data and
the iteration of the SVM classification model, a predicted
transition time associated with (i.e., predicted by) the
iteration of the SVM classification model. For example,
detection device 220 may generate the iteration of the
SVMclassificationmodel basedon theset of steady state
data and the set of unsteady state data. Here, detection
device 220 may map the training spectral data (e.g.,
associated with each time step from time t0 to time te)
into the same space based on which the iteration of the
SVM classification model was generated. In this exam-
ple, based on where items of training spectral data are
mapped (e.g., with respect to the set of hyperplanes), the
SVM classification model may identify a transition time
(ttrans(n)), associated with the manufacturing process,
predicted by the initial iteration of the SVM classification
model. In some implementations, detection device 220
may determine a predicted transition time for each itera-
tion of the SVM classification model. In some implemen-
tations, detection device 220 may store information that
identifies predicted transition times associated with the
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iterationsof theSVMclassificationmodel inorder toallow
detection device 220 to determine a transition time as-
sociated with the manufacturing process, as described
below.
[0078] As further shown in Fig. 4, process 400 may
include determining whether to generate another itera-
tion of the SVM classification model (block 440). For
example, detection device 220 may determine whether
to generate another iteration of the SVM classification
model.
[0079] In some implementations, detection device 220
may determine whether to generate another iteration of
theSVMclassificationmodel based on a time associated
with the set of steady state data. For example, detection
device 220 may be configured to continue generating
iterations of theSVMclassificationmodel until an earliest
time, of the times associated with the set of steady state
data, satisfiesa threshold timeassociatedwith the timeat
which the manufacturing process is known to be at the
unsteady state (time tus0). As a particular example, de-
tection device 220 may be configured to continue gen-
erating iterations of the SVM classification model (and
determining predicted transition times) until an earliest
time, associated with the set of steady state data, differs
from time tus0 by a threshold amount (e.g., until tss0-dt*n is
one time step from tus0 (tss0-dt*n = tus0+dt)).
[0080] Additionally, or alternatively, detection device
220maydeterminewhether to generate another iteration
of the SVM classification model based on an iteration
threshold. For example, detection device 220 may be
configured to continue generating iterations of the SVM
classificationmodel for a threshold amount of time, until a
threshold number of iterations have been generated,
and/or the like. Here, detection device 220 may deter-
mine whether to generate another iteration of the SVM
classification model based on whether the threshold is
satisfied (e.g., whether the threshold amount of time has
lapsed, whether the threshold number of iterations have
been generated, and/or the like).
[0081] As further shown in Fig. 4, if another iteration of
the SVM classification model is to be generated (block
440 - YES), then process 400 may include creating,
based on the training spectral data, another set of steady
state data and another set of unsteady state data (block
420). For example, detection device 220 may determine
that another iteration of theSVMclassificationmodel is to
be generated (e.g., when tss0-dt*n > tus0+dt, when the
iteration threshold is not satisfied, and/or the like) and
detection device 220 may create, based on the training
spectral data, another set of steady state data and an-
other set of unsteady state data.
[0082] In some implementations, detection device 220
may create the other set of unsteady state data and the
other set of steady state data in the manner described
above with regard to block 420. In some implementa-
tions, upon creating the other set of steady state data and
the other set of unsteady state data, detection device 220
maygenerate theother iteration of theSVMclassification

model and determine a transition time, predicted by the
other iteration of the SVM classification model, as de-
scribed above with regard to block 430.
[0083] As an example of the above described iterative
process, detection device 220may create an initial set of
unsteady state data (e.g., including training spectral data
measured at times from time t0 to time tus0) and an initial
set of steady state data (e.g., including training spectral
data measured at times from time tss0 to time te). In this
example, detection device 220 may apply the SVM tech-
nique to the initial set of steady state data and the initial
set of unsteady state data in order to generate an initial
iteration of the SVM classificationmodel. Next, detection
device220mayprovide the trainingspectral dataas input
to the initial iteration of the SVM classification model and
determine, as an output, an initial predicted transition
time (ttrans0) associated with the initial iteration of the
SVM classification model.
[0084] Continuing with this example, detection device
220 may determine that tss0 > tus0+dt and, thus, that
detection device 220 may generate another iteration of
the SVM classification model. Detection device 220 may
then create, based on the training spectral data and the
initial predicted transition time, a first set of steady state
data (e.g., including trainingspectral datameasured from
time tss0-dt*1 to time te) and a first set of unsteady state
data (e.g., including training spectral data measured at
times from time t0 to time ttrans0). Detection device 220
may then apply the SVM technique to the first set of
steady state data and the first set of unsteady state data
in order to generate a first iteration of the SVM classifica-
tion model. Next, detection device 220 may provide the
training spectral data as input to the first iteration of the
SVMclassificationmodel, and determine, as an output, a
first predicted transition time (ttrans1) associated with the
first iteration of the SVM classification model. Detection
device 220 may continue generating iterations of the
SVM classification model (and determining predicted
transition times) in this manner, until detection device
220 determines that no additional iterations are to be
generated.
[0085] As further shown in Fig. 4, if another iteration of
the SVM classification model is not to be generated
(block 440 - NO), then process 400 may include deter-
mining a transition time, associated with themanufactur-
ing process, based on transition times predicted by itera-
tions of the SVM classification model (block 450). For
example, detection device 220 may determine that an-
other iteration of the SVM classification model is not be
generated, and detection device 220 may determine a
transition time, associated with the manufacturing pro-
cess, based on transition times predicted by iterations of
the SVM classification model.
[0086] In some implementations, detection device 220
may determine the transition time, associated with the
manufacturing process, based on predicted transition
times associated with the iterations of the SVM classifi-
cation model. For example, detection device 220 may
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determine n transition times, predicted by n iterations of
theSVMclassificationmodel, respectively, in themanner
described above. Here, detection device 220 may deter-
mine the transition time, associated with themanufactur-
ing process, as a dominant transition time (e.g., a pre-
dicted transition timewith themost occurrences) of those
predicted by the n iterations of the SVM classification
model.
[0087] Figs. 5A and 5B are example graphical repre-
sentations 500 and 550 associated with determining a
transition time of a manufacturing process based on
transition times predicted by iterations of a SVM classi-
fication model associated with the manufacturing pro-
cess. For the purposes of Figs. 5A and 5B, assume that
detection device 220 has determined n transition times
corresponding to n iterations of a SVM classification
model.
[0088] In Fig. 5A, each point represents a transition
time, predicted by an iteration of the SVM classification
model, plotted relative to a time tss0-dt*n associated with
the iteration of the SVM classification model (i.e., time
tss0-dt*n associated with a set of steady state associated
with generating the iteration of the SVM classification
model). As shown in Fig. 5A, a dominant transition time,
of the set of n transition times, is at time 130 (e.g., time
130 was predicted by more iterations than any other
transition time). In this example, detection device 220
may determine the transition time, associated with the
manufacturing process, as time 130.
[0089] An alternative graphical representation is
shown in Fig. 5B. In Fig. 5B, a total number of occur-
rences of each transition time is plotted. Again, as shown
in Fig. 5B, a dominant transition time, of the set of n
transition times, is at time 130. Thus, detection device
220 may determine the transition time, associated with
the manufacturing process, as time 130.
[0090] As indicated above, Figs. 5A and 5B are pro-
vided merely as an example. Other examples are pos-
sible andmay differ fromwhat was described with regard
to Figs. 5A and 5B.
[0091] Returning to Fig. 4, process 400 may include
generating a final SVM classificationmodel based on the
transition time associated with the manufacturing pro-
cess (block 460). For example, detection device 220may
generate a final SVM classification model based on the
transition time associated with the manufacturing pro-
cess.
[0092] The final SVM classification model may include
a SVM classification model generated based on the
transition time, associated with the manufacturing pro-
cess, determined based on the iterations of the SVM
classification model.
[0093] In some implementations, detection device 220
may generate the final classification model based on the
transition time associated with the manufacturing pro-
cess. For example, detection device 220 may determine
the transition time associated with the manufacturing
process, as described above. Here, detection device

220 may create a final set of unsteady state data, includ-
ing trainingspectral dataassociatedwith timesbefore the
transition time, and a set of final steady state data includ-
ing training spectral data associatedwith times at or after
the transition time. In this example, detection device 220
may apply the SVM technique to the final set of unsteady
state data and the final set of steady state data, and may
generate the finalized SVM classification model in a
manner similar to that described above.
[0094] In some implementations, as described above,
the SVM classification model may include a decision
boundary (e.g., a hyperplane) that may serve as a basis
for determining whether a later performance of the man-
ufacturing process has reached the steady state. Addi-
tional details regarding the decision boundary are de-
scribed below with regard to Fig. 6.
[0095] In some implementations, detection device 220
may store the final SVM classification model such that
detectiondevice220mayuse the finalSVMclassification
model in order to determine whether a later performance
of the manufacturing process is at the unsteady state or
the steady state, as described below. In this way, detec-
tion device 220maygenerate aSVMclassificationmodel
that can receive, as input, spectral data associated with
the manufacturing process and provide, as an output, an
indication of whether the manufacturing process is at the
unsteady state or the steady state.
[0096] In some implementations, amanufacturing pro-
cessmay includemultiple state transitions, and detection
device 220may repeat process 400 for each steady state
in order to determine multiple SVM classification models
associated with the manufacturing process. For exam-
ple, a manufacturing process may transition from a first
unsteady state to a first steady state, from the first steady
state to a second unsteady state, and from the second
unsteady state to a second steady state. In this example,
detection device 220 may perform process 400 (e.g.,
based on training spectral data measured associated
with the manufacturing process) in order to generate a
SVM classification model associated with a transition
time to the second steady state. Next, detection device
220may perform process 400 (e.g., based on a subset of
the training spectral data that does not include training
spectral data associated with the second steady state) in
order to generate a SVM classification model associated
with a transition time to the first steady state.
[0097] Although Fig. 4 shows example blocks of pro-
cess 400, in some implementations, process 400 may
include additional blocks, fewer blocks, different blocks,
or differently arranged blocks than those depicted in Fig.
4. Additionally, or alternatively, two or more of the blocks
of process 400 may be performed in parallel.
[0098] Fig. 6 is a flow chart of an example process 600
for determining, based on spectral data and using a SVM
classification model, whether a manufacturing process
has reached a steady state. In some implementations,
oneormoreprocessblocksofFig. 6maybeperformedby
detection device 220. In some implementations, one or
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more process blocks of Fig. 6 may be performed by
another device or a group of devices separate from or
including detection device 220, such as spectrometer
210 and/or user device 230.
[0099] As shown in Fig. 6, process 600 may include
identifying a SVM classification model for detecting
whether a manufacturing process has reached a steady
state (block610). For example, detectiondevice220may
identify a SVM classificationmodel for detecting whether
a manufacturing process has reached a steady state.
[0100] In some implementations, detection device 220
may identify the SVM classification model based on
information stored or accessible by detection device
220. For example, detection device 220 may identify
the SVM classification model based on storing a final
SVMclassificationmodel, generated by detection device
220, as described above with regard to process 400.
[0101] In some implementations, detection device 220
may identify the SVM classification model when detec-
tion device 220 receives (e.g., from spectrometer 210,
user device 230, based on user input, and/or the like) an
indication that detection device 220 is to monitor the
manufacturing process in order to determine when the
manufacturing process has reached a steady state. For
example, detection device 220 may receive, from spec-
trometer 210 and/or user device 230, an indication that a
particular manufacturing process is to be started or has
been started, and may (e.g., automatically) identify the
SVM classification model based on receiving the indica-
tion when, for example, detection device 220 is config-
ured to automatically monitor themanufacturing process
in order to detect when the manufacturing process has
reached a steady state.
[0102] As further shown in Fig. 6, process 600 may
include receiving spectral data associated with the man-
ufacturing process (block 620). For example, detection
device 220may receive spectral data associatedwith the
manufacturing process.
[0103] In some implementations, thespectral datamay
include spectrameasured by one ormore spectrometers
210 during a performance of the manufacturing process.
In some implementations, detection device 220 may
receive the spectral data in real-time or near real-time
during the manufacturing process. For example, detec-
tion device 220 may receive spectral data, measured by
spectrometer 210 during the performance of the manu-
facturing process, in real-timeor near real-time relative to
spectrometer 210 obtaining the spectral data. In some
implementations, detection device 220 may determine,
based on the spectral data and the SVM classification
model, whether the manufacturing process has reached
the steady state, as described below.
[0104] As further shown in Fig. 6, process 600 may
include determining, based on the spectral data and the
SVM classification model, whether the manufacturing
process has reached the steady state (block 630). For
example, detection device 220may determine, based on
the spectral data and the SVM classification model,

whether the manufacturing process has reached the
steady state.
[0105] In some implementations, detection device 220
may determine whether the manufacturing process has
reached the steady state based on a decision boundary
associated with the SVM classification model. For ex-
ample, based on identifying the transition time of the
manufacturing process using the training spectral data
(as described above), detection device 220 may gener-
ate the SVM classification model including a decision
boundary represented by a hyperplane in spectroscopic
space. Here, points in the spectroscopic space that are
inside the decision boundary represent spectroscopic
conditions at which the manufacturing process is at the
steady state, while points outside of the decision bound-
ary represent spectroscopic conditions atwhich theman-
ufacturing process is at the unsteady state. In some
implementations, the decision boundary may be gener-
ated based on applying the SVM classification model
technique to the training spectral data after determining
the transition time associated with the manufacturing
process, as described above.
[0106] Figs. 7A and 7B are example graphical repre-
sentations 700 illustrating a simplified decision boundary
associated with the SVM classification model. For illus-
trative purposes, the decision boundary shown in Figs.
7A and 7B is shown as being associated with a first
principal component (PC1) and a second principal com-
ponent (PC2) only. In practice, the decision boundary
may be associated with a different number of compo-
nents (e.g., 80 variables, 120 variables, and/or the like).
[0107] In Figs. 7A and 7B, the gray points and lines
represent training spectral data measured at times at
which themanufacturing process is in the unsteady state
(i.e., from t0 to the transition timeassociatedwith theSVM
classification model), while the black points and lines
represent training spectral data measured at times at
which the manufacturing process is in the steady state
(i.e., from the transition time associated with the SVM
classification model to time te). The light gray circles
represent the last point at which the manufacturing pro-
cess was in the unsteady state and the first at which the
manufacturing processwas in the steady state. Fig. 7A is
graphical representation of all training spectral data as-
sociated with the manufacturing process (e.g., from time
t0 to time te), while Fig. 7B is a close-up view of points
within the space indicated by the dashed rectangle in Fig.
7A. In Fig. 7B, the decision boundary is represented by
the thick line surrounding the points associated with the
steady state (as well as a subset of the points associated
with the unsteady state). As indicated above, Figs. 7A
and 7B are provided merely as simplified illustrative
examples. Other examples are possible and may differ
from what was described with regard to Figs. 7A and 7B.
[0108] In some implementations, detection device 220
may determine whether the manufacturing process has
reached the steady state basedon thedecisionboundary
(e.g., a decision boundary such as that shown in Fig. 7B).

5

10

15

20

25

30

35

40

45

50

55



13

23 EP 4 553 722 A1 24

For example, detection device 220 may receive spectral
data associated with the manufacturing process, and
may map the spectral data as a point in the space
associated with the decision boundary. Here, if the point,
associated with the spectral data, is on or within the
decision boundary, then detection device 220 may de-
termine that the manufacturing process has reached the
steady state. Alternatively, if the point, associated with
the spectral data, is outside of the decision boundary,
then detection device 220 may determine that the man-
ufacturing process has not reached the steady state (i.e.,
is at the unsteady state).
[0109] In some implementations, detection device 220
maygeneratea confidencemetric (herein referred to as a
decision value) associated with the determination of
whether the manufacturing process has reached the
steady state. For example, detection device 220 may
determine, based on the decision boundary and the point
representing the spectral data, a distance from the de-
cision boundary to the point representing the spectral
data (e.g., a distance to a closest point on the decision
boundary). Here, points inside the decision boundary
may be assigned positive (or negative) decision values,
while points outside of the decision boundary may be
assigned negative (or positive) decision values. In this
example, decision values with higher absolute values
(e.g., 4.0, 2.5, ‑2.5, ‑4.0, and/or the like) represent a
higher confidence in a determination of the state of the
manufacturing process than those with lower absolute
values (e.g., 0.5, 0.2, ‑0.2, ‑0.5, and/or the like).
[0110] As indicated above, Figs. 7A and 7B are pro-
vided merely as illustrative examples. Other examples
are possible andmay differ fromwhatwas describedwith
regard to Figs. 7A and 7B.
[0111] Fig. 8 is a graphical representation 800 of ex-
ample decision values determined based on the decision
boundary of Figs. 7A and 7B. In Fig. 8, negative decision
values correspond to spectral data, measured during a
manufacturing process, with points that fall outside of the
decision boundary, while positive decision values corre-
spond to spectral data,measured during themanufactur-
ing process, with points that fall inside of the decision
boundary.Asshownby thevertical line inFig. 8, detection
device 220 determines a first positive decision value at
approximately time step 65.
[0112] In some implementations, detection device 220
may determine whether the manufacturing process has
reached the steady state based on a decision value
threshold. For example, detection device 220 may de-
termine that the manufacturing process has reached the
steady state when a decision value, associated with a
point inside the decision boundary, satisfies a threshold.
Using Fig. 8 as a particular example, if detection device
220 is configured to determine that the manufacturing
process has reached the steady state when detection
device 220 determines a positive decision value that is
greater than or equal to 2.0, then detection device 220
may make such a determination at approximately time

step 75.
[0113] As another example, detection device 220 may
determine that the manufacturing process has reached
the steady state when a number of consecutive decision
values, representing spectral data associated with a
number of consecutive time steps, satisfies a threshold.
Using Fig. 8 as a particular example, if detection device
220 is configured to determine that the manufacturing
process has reached the steady state when detection
device 220determines five consecutive positive decision
values, then detection device 220 may make such a
determination at approximately time step 69.
[0114] As another example, detection device 220 may
determine that the manufacturing process has reached
the steady statewhena threshold number of consecutive
decision values satisfy a threshold. Using Fig. 8 as a
particular example, if detection device 220 is configured
todetermine that themanufacturingprocesshas reached
the steady state when detection device 220 determines
three consecutive positive decision values that are great-
er than or equal to 1.0, then detection device 220 may
make such a determination at approximately time step
68.
[0115] As another example, detection device 220 may
be determine that the manufacturing process has
reached the steady state when an average or a weighted
average of a number of decision values (e.g., a series of
consecutive positive decision values) satisfies a thresh-
old. In some implementations, use of a decision value
thresholdmay protect against an incorrect determination
that the manufacturing process has reached the steady
state (e.g., since the manufacturing process may be
stochastic in nature).
[0116] As indicated above, Fig. 8 is providedmerely as
an illustrative example. Other examples are possible and
may differ from what was described with regard to Fig. 8.
[0117] Returning toFig. 6, if themanufacturingprocess
has not reached the steady state (block 630 - NO), then
process 600 may include receiving additional spectral
data associated with the manufacturing process (block
620). For example, detection device 220 may determine
that the manufacturing process has not reached the
steady state (e.g., that the manufacturing process is still
in the unsteady state), andmaywait to receive additional
spectral data (e.g., collectedat anext timestepduring the
manufacturing process).
[0118] In some implementations, may determine,
based on the additional spectral data, whether the man-
ufacturing process has reached the steady state, in the
manner described above. In some implementations, de-
tection device 220 may continue receiving spectral data
and determining whether themanufacturing process has
reached the steady state until detection device 220 de-
termines that themanufacturing processhas reached the
steady state.
[0119] As further shown in Fig. 6, if the manufacturing
process has reached the steady state (block 630 - YES),
then process 600may include determining a quantitative
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metric associated with the steady state (block 640). For
example, detection device 220 may determine that the
manufacturing process has reached the steady state,
and may determine a quantitative metric associated with
the steady state.
[0120] The quantitative metric may include a metric
indicating a quantitative property associated with the
steady state, such as a concentration of constituent parts
of a compound at the steady state, a particle size at the
steady state, and/or the like. In some implementations, a
steady state, detected by detection device 220 based on
the spectral data, may correspond to a particular com-
position of constituent compounds with particular physi-
cal properties, such as particle size. Thus, the quantita-
tive metric may be predicted based on the spectral data
associated with the steady state.
[0121] For example, in some implementations, detec-
tion device 220may store or have access to a regression
model (e.g., PLS regression model, a SVR model) that
receives, as input, the spectral data based on which the
steady state was detected, and provide, as output, the
quantitative metric associated with the steady state. In
this example, the output from the regression model may
be, for example, a concentration of each constituent part
of the compound, a particular size of the compound,
and/or the like.
[0122] In some implementations, detection device 220
may store or have access to the regression model. Ad-
ditionally, or alternatively, detection device 220may gen-
erate the regression model (at an earlier time) based on
the training spectral data and training quantitative data
(e.g., information that identifies quantitative metrics cor-
responding to the training spectral data). In some imple-
mentations, thedeterminationof thequantitativemetric is
optional.
[0123] As further shown in Fig. 6, process 600 may
include providing an indication that the manufacturing
process has reached the steady state and information
associated with the quantitative metric (block 650). For
example, detection device 220may provide an indication
that the manufacturing process has reached the steady
state and information associated with the quantitative
metric.
[0124] In some implementations, detection device 220
may provide the indication that the manufacturing pro-
cess has reached the steady state and/or the information
associatedwith the quantitativemetric to another device,
such as user device 230 (e.g., such that a user can be
informed that themanufacturingprocesshas reached the
steady state and/or view the information associated with
the quantitative metric).
[0125] Additionally, or alternatively, detection device
220 may provide the indication that the manufacturing
processhas reached thesteadystate inorder to causean
action to be automatically performed. For example, de-
tection device 220 may provide the indication to a device
associatedwith performing themanufacturing process in
order to cause the manufacturing process to stop the

manufacturing process (e.g., stop a mixing process as-
sociated with the steady state), initiate a next step in the
manufacturing process, cause the manufacturing pro-
cess to be restarted (e.g., restart the mixing process
on new raw materials), and/or the like.
[0126] Although Fig. 6 shows example blocks of pro-
cess 600, in some implementations, process 600 may
include additional blocks, fewer blocks, different blocks,
or differently arranged blocks than those depicted in Fig.
6. Additionally, or alternatively, two or more of the blocks
of process 600 may be performed in parallel.
[0127] Implementations described herein provide a
detection device capable of generating a SVMclassifica-
tion model for determining whether a manufacturing pro-
cess (e.g., a continuous manufacturing process, a batch
manufacturing process, and/or the like) has reached a
steady state, and determining, using the SVM classifica-
tion model and based on multivariate spectral data as-
sociated with the manufacturing process, whether the
manufacturing process has reached the steady state. In
some implementations, the SVM classification model
may take into account multiple variables (e.g., 80 vari-
ables, 120 variables, 150 variables, and/or the like),
thereby increasing accuracy and/or robustness of the
SVM classification model (e.g., as compared to a uni-
variate technique or a PCA technique).
[0128] The foregoing disclosure provides illustration
and description, but is not intended to be exhaustive or
to limit the implementations to theprecise formdisclosed.
Modifications and variations are possible in light of the
above disclosure or may be acquired from practice of the
implementations.
[0129] Asusedherein, the termcomponent is intended
to be broadly construed as hardware, firmware, and/or a
combination of hardware and software.
[0130] Some implementations are described herein in
connection with thresholds. As used herein, satisfying a
threshold may refer to a value being greater than the
threshold, more than the threshold, higher than the
threshold, greater than or equal to the threshold, less
than the threshold, fewer than the threshold, lower than
the threshold, less than or equal to the threshold, equal to
the threshold, etc.
[0131] It will be apparent that systemsand/ormethods,
described herein, may be implemented in different forms
of hardware, firmware, or a combination of hardware and
software. The actual specialized control hardware or
software code used to implement these systems and/or
methods is not limiting of the implementations. Thus, the
operation and behavior of the systems and/or methods
were described herein without reference to specific soft-
ware code-it being understood that software and hard-
ware can be designed to implement the systems and/or
methods based on the description herein.
[0132] Even though particular combinations of fea-
tures are recited in the claims and/or disclosed in the
specification, thesecombinationsarenot intended to limit
the disclosure of possible implementations. In fact, many
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of these features may be combined in ways not specifi-
cally recited in the claims and/or disclosed in the speci-
fication. Although each dependent claim listed below
may directly depend on only one claim, the disclosure
of possible implementations includes each dependent
claim in combination with every other claim in the claim
set.
[0133] No element, act, or instruction used herein
should be construed as critical or essential unless ex-
plicitly described as such. Also, as used herein, the
articles "a" and "an" are intended to include one or more
items, and may be used interchangeably with "one or
more." Furthermore, as used herein, the term "set" is
intended to includeoneormore items (e.g., related items,
unrelated items, a combination of related items, and
unrelated items, etc.), and may be used interchangeably
with "one or more." Where only one item is intended, the
term "one" or similar language is used. Also, as used
herein, the terms "has," "have," "having," and/or the like
are intended tobeopen-ended terms.Further, thephrase
"based on" is intended to mean "based, at least in part,
on" unless explicitly stated otherwise.

Claims

1. A method, comprising:

identifying, by a device, a support vector ma-
chine (SVM) classification model for determin-
ing whether a manufacturing process has
reached a steady state;
receiving, by the device and from one or more
spectrometers, multivariate spectral data mea-
sured during a performance of the manufactur-
ing process;
determining, by the device, based on the multi-
variate spectral data, and using the SVM clas-
sification model, whether the manufacturing
process is at the steady stateat a particular time;
and
providing, by the device and after determining
whether the manufacturing process is at the
steady state at the particular time, an indication
that themanufacturing process has reached the
steady state.

2. The method of claim 1, further comprising:
generating the SVM classification model based on a
dominant transition time associated with the manu-
facturing process.

3. The method of claim 1 or claim 2, wherein the SVM
classification model takes into account 80 or more
variables.

4. The method of any of claims 1 to 3, wherein deter-
mining whether the manufacturing process is at the

steady state at the particular time comprises:

providing the multivariate spectral data as input
to the SVM classification model; and
determining, based on an output of the SVM
classificationmodel, that themanufacturing pro-
cess is not at the steady state at the particular
time.

5. The method of any of claims 1 to 4, wherein the
particular time is a time at which the multivariate
spectral data was measured, and/or
wherein the multivariate spectral data comprises
near infrared (NIR) spectra data that includes data
associated with more than a hundred variables.

6. The method of any of claims 1 to 5,

wherein determiningwhether themanufacturing
process is at the steady state at the particular
time comprises:
determining that themanufacturing process has
reached the steady state, and
wherein the method further comprises:

determining a quantitative metric, asso-
ciated with the steady state, based on de-
termining that the manufacturing process
has reached the steady state; and
providing information associated with the
quantitative metric.

7. The method of claim 6, wherein the quantitative
metric includes one or more of:

a concentration of constituent parts of a com-
pound at the steady state, or
a particle size at the steady state.

8. The method of claim 6 or claim 7, wherein determin-
ing the quantitative metric comprises:
providing, based on determining that the manufac-
turing process has reached the steady state, the
multivariate spectral data as input to a regression
model and
receiving the quantitative metric as output from the
regression model.

9. A device, comprising:

one or more memories; and
one or more processors, coupled to the one or
more memories, configured to:

identify a support vector machine (SVM)
classification model for determining
whether a manufacturing process has
reached a steady state;
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receive, from one or more spectrometers,
spectral data measured during a perfor-
mance of the manufacturing process;
determine, based on the spectral data and
using the SVM classification model,
whether the manufacturing process is at
the steady state at a particular time; and
provide, after determiningwhether theman-
ufacturing process is at the steady state at
the particular time, an indication that the
manufacturing process has reached the
steady state.

10. The device of claim 9, wherein the one or more
processors are further configured to:
generate the classification model based on a domi-
nant transition time associated with the manufactur-
ing process.

11. The device of claim 9 or claim 9, wherein the classi-
fication model takes into account 80 or more vari-
ables.

12. The device of any of claims 9 to 11, wherein the
particular time is a time at which the spectral data
was measured; and/or
wherein the spectral data comprises multivariate
spectral data.

13. The device of any of claims 9 to 12,

wherein the one or more processors, when de-
termining whether themanufacturing process is
at the steady state at the particular time, are
configured to:
determine that the manufacturing process has
reached the steady state, and
wherein the one or more processors are further
configured to:

determine a quantitative metric, associated
with the steady state, based on determining
that the manufacturing process has
reached the steady state; and
provide information associated with the
quantitative metric.

14. A non-transitory computer-readable medium storing
a set of instructions, the set of instructions compris-
ing:
one ormore instructions that, when executed by one
or more processors of a device, cause the device to:

identify a support vector machine (SVM) classi-
fication model for determining whether a man-
ufacturing process has reached a steady state;
receive, from one or more spectrometers, multi-
variate spectral data measured during a perfor-

mance of the manufacturing process;
determine, based on the multivariate spectral
data and using the SVM classification model,
whether the manufacturing process is at the
steady state at a particular time; and
provide, after determining whether the manu-
facturing process is at the steady state at the
particular time, an indication that the manufac-
turing process has reached the steady state.

15. The non-transitory computer-readable medium of
claim 14, wherein the particular time is a time at
which the multivariate spectral data was measured;
and/or
wherein the multivariate spectral data comprises
near infrared (NIR) spectra data that includes data
associated with more than a hundred variables.
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