
(19) *EP004560478A1*
(11) EP 4 560 478 A1

(12) EUROPEAN PATENT APPLICATION
published in accordance with Art. 153(4) EPC

(43) Date of publication:
28.05.2025 Bulletin 2025/22

(21) Application number: 23859391.7

(22) Date of filing: 30.08.2023

(51) International Patent Classification (IPC):
G06F 11/36 (2025.01)

(52) Cooperative Patent Classification (CPC):
G06F 11/36

(86) International application number:
PCT/CN2023/115777

(87) International publication number:
WO 2024/046362 (07.03.2024 Gazette 2024/10)

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL
NO PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA
Designated Validation States:
KH MA MD TN

(30) Priority: 31.08.2022 CN 202211062729

(71) Applicants:
• BEIJING YOUZHUJU NETWORK TECHNOLOGY
CO. LTD.
Beijing 101299 (CN)

• Lemon Inc.
Grand Cayman, KY1‑1205 (KY)

(72) Inventors:
• JING, Xiaolin
Beijing 100028 (CN)

• ZHANG, Di
Beijing 100028 (CN)

• SIK, Robin
Los Angeles California 90066 (US)

• LU, Shan
Los Angeles California 90066 (US)

• WANG, Jian
Beijing 100028 (CN)

(74) Representative: Dentons UK and Middle East LLP
One Fleet Place
London EC4M 7WS (GB)

(54) VERIFICATION SYSTEM, VERIFICATION METHOD, ELECTRONIC DEVICE, AND STORAGE
MEDIUM

(57) The present disclosure provides a verification
system, a verification method, an electronic device, and a
storage medium. The verification system comprises a
simulation verification device, a first part, and a second
part. The first part comprises a first master module and
second slave modules. Each second slave module com-
prises a storage unit connected to a peripheral memory
access interface of a module under test. The second part
comprises first and second direct programming inter-
faces, a function library module, and a test case module
used for providing a test case. The first direct program-
ming interface communicates with the first master mod-
ule and is configured to call, in response to running a test
case, a first function of the function library module to
implement front door access of a register of the module
under test. The second direct programming interface
communicates with the storage unit and is configured
to call, in response to running a test case, a second
function of the function library module to implement back
door access of the storage unit. The verification system
achieves synchronization of a software side and a hard-

ware side, facilitates function verification for the module
under test, consumes less time for simulation, and
achieves reusability verification of chips.

EP
4
56
0
47
8
A
1

Processed by Luminess, 75001 PARIS (FR)



2

1 EP 4 560 478 A1 2

Description

[0001] The present application claims priority to Chi-
nese Patent Application No. 202211062729.2 filed on
August 31, 2022, the disclosure of which is incorporated
herein by reference in its entirety as part of the present
application.

TECHNICAL FIELD

[0002] Embodiments of the present disclosure relate to
a verification system, a verification method, an electronic
device and a storage medium.

BACKGROUND

[0003] At present, with the rapid development of elec-
tronic information industry, the scale of system-on-chip
(SoC) becomes larger and larger, the chip verification
work, which accounts for nearly 70% of the whole chip
development workload on average, becomes more and
more complex, and the requirements for chip risk control
become higher and higher.
[0004] The integrated circuit hardware models asso-
ciated with very large-scale integration (VLSI) integrated
circuit chips have become very complex, and the corre-
sponding design and verification calculations have also
greatly increased. Therefore, for more complex func-
tional test scenarios, it has been difficult for the speed,
capacity and efficiency of electronic design automation
(EDA) simulation to meet the needs of SoC verification,
and hardware accelerated verification technology should
be developed.
[0005] The hardware accelerated verification technol-
ogy verifies a chip design by a hardware emulator that
maps a design under test (DUT) to a processor array or
field programmable gate array (FPGA) and then verifies a
mapped equivalent system.
[0006] Compared with software simulation, the speed
of hardware accelerated verification is improved. An
average speed of the software simulation is, for example,
1 KHz, while an average speed of the hardware accel-
erated simulation verification method, for example, 2
MHz, which greatly improves the verification efficiency.

SUMMARY

[0007] At least one embodiment of the present disclo-
sure provides a verification system, which includes a
simulation verification device, and a first portion and a
second portion which are created on the simulation ver-
ification device respectively. The first portion includes a
first master module and at least one second slave module
which are connected to an object under test. The object
under test includes a design under test and a plurality of
object interfaces connected to a periphery of the module
under test, the plurality of object interfaces include a
memory access interface, the second slave module in-

cludes a memory unit, and the memory unit is connected
to the memory access interface. The second portion
includes a first direct programming interface, a second
direct programming interface, a function library module
and a test case module, and the test case module is
configured to provide at least one test case. The first
direct programming interface communicates with the first
master module, and the first direct programming inter-
face is configured to: in response to running the test case,
call at least one first function in the function library module
to implement front door access to a register of the module
under test. The second direct programming interface
communicates with the memory unit of the first portion,
and the second direct programming interface is config-
ured to: in response to running the test case, call at least
one second function in the function library module to
implement back door access to the memory unit.
[0008] At least one embodiment of the present disclo-
sure also provides a verification method based on the
verification system as described above, and the verifica-
tion method includes: performing register transfer level
code compilation based on the design under test; per-
forming comprehensive compilation based on the first
portion, the object under test, the design under test, the
first master module and the second slave module to
acquire a compiled first portion; selecting a usage mode
of the simulation verification device, adding the compiled
first portion to at least one compilation option according to
the usage mode, and calling a first assembler to decon-
struct the verification system to generate a hardware
information library for the simulation verification device,
so as to implement accelerator compilation; performing
code compilation of a behavioral modeling language for
the second portion; and running the compiled first portion
and the compiled second portion to acquire a verification
result.
[0009] At least one embodiment of the present disclo-
sure provides an electronic device, including a processor
and a memory; wherein a computer program is stored on
the memory, and when the computer program is exe-
cuted by the processor, the verification method described
in any one of the above is implemented.
[0010] At least one embodiment of the present disclo-
sure provides a computer-readable storage medium,
storing a computer program, wherein the computer pro-
gram, when executed by a processing module, imple-
ments the verification method described in any one of the
above.

BRIEF DESCRIPTION OF DRAWINGS

[0011] In order to more clearly illustrate the technical
solutions of the embodiments of the present disclosure or
the prior art, the drawings necessary for description of the
embodiments or the prior art will be briefly described in
the following; it is obvious that the described drawings as
below are only related to some embodiments of the
present disclosure, from which other drawings can be

5

10

15

20

25

30

35

40

45

50

55



3

3 EP 4 560 478 A1 4

obtained for those ordinary skilled in the art without
creative labors.

Fig. 1 is a schematic block diagram of a verification
system provided by some embodiments of the pre-
sent disclosure;
Fig. 2 is a schematic block diagram of a software side
of a verification system provided by some embodi-
ments of the present disclosure;
Fig. 3 is a schematic block diagram of a first master
module of a verification system provided by some
embodiments of the present disclosure;
Fig. 4 is a schematic diagram of address spaces of a
first master module and a second slave module
provided by some embodiments of the present dis-
closure;
Fig. 5 is a flowchart of a verification method provided
by some embodiments of the present disclosure;
Fig. 6 is a flowchart of an execution process of step
S5 of the verification method in Fig. 5;
Fig. 7 is a flowchart of a verification method provided
by some other embodiments of the present disclo-
sure; and
Fig. 8 is a schematic block diagram of an electronic
device provided by some embodiments of the pre-
sent disclosure.

DETAILED DESCRIPTION

[0012] Hereinafter, the technical solutions of the em-
bodiments of the present disclosure will be described in a
clearly and fully understandable way in connection with
the drawings related to the embodiments of the present
disclosure. Apparently, the described embodiments are
just a part but not all of the embodiments of the present
disclosure. Based on the described embodiments herein,
all other embodiment(s) that can be obtained by those
ordinary skilled in the art without any inventive work
should be fallen within the scope of protection of the
present disclosure.
[0013] Unless otherwise defined, all terms (including
technical terms and scientific terms) used in the embodi-
ments of the present disclosure have the same meanings
as commonly understood by one of ordinary skilled in the
art to which the present disclosure belongs. It should also
be understood that terms such as those defined in a
general dictionary should be interpreted to have mean-
ings consistent with their meanings in the context of the
relevant art, and are not to be interpreted in an idealized
or overly formal sense, unless an embodiment of the
present disclosure is explicitly defined so.
[0014] As used in the embodiments of the present
disclosure, words such as "first", "second" and similari-
ties do not indicate any order, quantity, or importance, but
rather are used to distinguish between different compo-
nents. Similar words such as "a", "an" or "the" do not
indicate a limitation of quantity, but rather indicate the
presence of at least one. Similarly, the use of the terms

"comprising/including" or "comprise/include" and the
like, is intended to mean that an element or article ap-
pearing before the word covers the listed element or
article appearing after the word and its equivalents, but
does not exclude other elements or articles. Similar terms
such as "connect" or "connected" are not limited to phy-
sical or mechanical connections, but may include elec-
trical or communicative connections, regardless of
whether it’s direct or indirect.
[0015] Flowcharts are used in the embodiments of the
present disclosure to illustrate steps of a method in
accordance with the embodiments of the present disclo-
sure. It should be understood that the preceding or fol-
lowing steps are not necessarily performed precisely in
order. Rather, various steps may be carried out in reverse
order or concurrently. Other operations can be added to
these processes, or one or more steps are removed from
these processes.
[0016] Studies of the present disclosure have found
that a hardware simulation accelerated verification plat-
form includes an FPGA-based verification platform, and
the FPGA-based verification platform includes HAPS or
ZEBU, etc. However, due to restrictions by characteris-
tics such as capacity limitations, long synthesis time,
difficult debugging, a requirement for manual dividing
of large systems and the need to modify clock trees,
the FPGA-based verification platform is not suitable for
functional simulation acceleration as a substitute for EDA
simulation.
[0017] Studies of the present disclosure have also
found that some of the current solutions for simulation
acceleration have the following disadvantages:
[0018] Firstly, the simulation acceleration based on
universal verification methodology (UVM) can reuse an
original UVM environment and test cases when simula-
tion acceleration is performed, but a shell analysis of
UVM related methodology is relatively complex and
the acceleration performance is low, and the migration
of UVM to a comprehensive simulation acceleration ver-
ification platform requires a lot of optimization work,
which is time-consuming and labor-intensive.
[0019] Secondly, the simulation acceleration based on
embedded interface is fast, but the test platform needs to
be written in an integrated form and integrated into a
simulation accelerator. The reusability is very low. When
different test platforms are combined with the simulation
accelerator, it is necessary to rewrite, parse and debug,
and the workload is large.
[0020] At least an embodiment of the present disclo-
sure provides a verification system including a simulation
verification device, and a first portion and a second por-
tion which are created on the simulation verification
device respectively. The first portion includes a first mas-
ter module and at least one second slave module which
are connected to an object under test. The object under
test includes a design under test and a plurality of object
interfaces connected to a periphery of the module under
test, the plurality of object interfaces include a memory

5

10

15

20

25

30

35

40

45

50

55



4

5 EP 4 560 478 A1 6

access interface, the second slave module includes a
memory unit, and the memory unit is connected to the
memory access interface. The second portion includes a
first direct programming interface, a second direct pro-
gramming interface, a function library module and a test
case module, and the test case module is configured to
provide at least one test case. The first direct program-
ming interface communicates with the first master mod-
ule, and the first direct programming interface is config-
ured to: in response to running the test case, call at least
one first function in the function library module to imple-
ment front door access to a register of the module under
test. The second direct programming interface commu-
nicates with the memory unit of the first portion, and the
second direct programming interface is configured to: in
response to running the test case, call at least one
second function in the function library module to imple-
ment back door access to the memory unit.
[0021] By providing the first direct programming inter-
face and the second direct programming interface, the
verification system of the above-mentioned embodiment
of the present disclosure can achieve the synchroniza-
tion between a software side of the verification system
and a hardware side of the verification system, facilitate
the operations such as register reading and writing,
memory accessing of the memory unit and so on in
function verification of the design under test, consume
less simulation time, improve chip verification efficiency,
and can achieve reusable verification at system level of a
chip and/or module level of a chip, with a wide application
prospect.
[0022] Fig. 1 is a schematic block diagram of a verifica-
tion system provided by some embodiments of the pre-
sent disclosure. Fig. 2 is a schematic block diagram of the
verification system at a software side provided by some
embodiments of the present disclosure.
[0023] For example, as shown in Fig. 1, the verification
system 1000 includes a simulation verification device
100, and a first portion 200 and a second portion 300
which are created on the simulation verification device
100 respectively. For example, the first portion 200 is a
hardware side and the hardware side is configured to be
created based on a hardware description language
(HDL). The second portion 300 is a software side and
the software side is configured to be created based on a
behavioral modeling language. For example, hardware
description languages include Verilog, System Verilog,
etc. and behavioral modeling languages include C lan-
guage or CPP language (also referred to as C++ lan-
guage), etc.
[0024] For example, as shown in Fig. 1, the first portion
200 includes a first master module 210 and at least one
second slave module 220 which are connected to an
object under test 230 respectively. The object under test
230 includes a design under test 231 and a plurality of
object interfaces connected to a periphery of the design
under test 231. The plurality of object interfaces includes
at least one memory access interface 232. The second

slave module 220 includes a memory unit 221, which is
connected to the memory access interface 232.
[0025] For example, the design under test 231 is also
called DUT, for example, the DUT is implemented by
register transfer level (RTL) design code.
[0026] For example, as shown in Fig. 1, the second
portion 300 includes a first direct programming interface
310, a second direct programming interface 320, a func-
tion library module 330 and a test case module 340. The
test case module 340 is configured to provide at least one
test case.
[0027] For example, each of the first direct program-
ming interface 310 and/or the second direct program-
ming interface 320 is a direct programming interface
(DPI), which is an interface for calling each other between
a hardware description language (e.g. System Verilog)
and a programming language for software (e.g. C/C++).
[0028] For example, the function library module 330 is
configured to be a function library formed based on a
plurality of functions for use by other programs. For
example, the library module 330 may select a static
library. An interior of the function library module 330
includes at least one first function and at least one second
function. The first function, when called for use, can
realize the configuration of the register, and the second
function, when called for use, can realize the access to
the memory unit.
[0029] For example, as shown in Fig. 1, the first direct
programming interface 310 communicates with the first
master module 210, and the first direct programming
interface 310 is configured to; in response to running
the test case originating from the test case module 340,
call at least one first function in the function library module
330 to implement front door access to a register of the
design under test 231. For example, the front door access
includes a front door reading data operation and/or a front
door writing data operation, and correspondingly, the first
function includes a function related to register reading
and/or writing.
[0030] For example, as shown in Fig. 1, the second
direct programming interface 320 communicates with the
memory unit 221 of the first portion 200, and the second
direct programming interface 320 is configured to: in
response to running the test case originating from the
test case module 340, call at least one second function in
the function library module 330 to implement back door
access of the memory unit 221. For example, the back
door access includes a back door data loading operation
and/or a back door data exporting operation, and corre-
spondingly, the second function includes a memory unit
loading and/or exporting function.
[0031] In some examples, "front door access" of em-
bodiments of the present disclosure refers to read-write
access to actual values of the register of DUT following
bus timing in response to simulating a central processing
unit (CPU) to issue read and write instructions on the bus
through a register configuration bus (e.g. AMBA proto-
col). The front door access involves real RTL transfers

5

10

15

20

25

30

35

40

45

50

55



5

7 EP 4 560 478 A1 8

and relies on the bus timing protocol for transfers, and
thus the front door access consumes simulation time. For
example, the front door access may not be read and
written according to domain.
[0032] In some examples, "back door access" of em-
bodiments of the present disclosure refers to an access
method that directly reads a two-dimensional array of the
memory unit. The back door access does not consume
simulation time. For example, the back door access may
be read and written according to domain.
[0033] By providing the first direct programming inter-
face and the second direct programming interface, the
verification system of the above-mentioned embodiment
of the present disclosure can achieve the synchroniza-
tion between a software side and a hardware side of the
verification system, facilitate the operations such as reg-
ister reading and writing, memory unit accessing and so
on in function verification of the design under test, con-
sume less simulation time, improve chip verification effi-
ciency, and can achieve reusable verification at system
level of a chip and module level of a chip, with a wide
application prospect.
[0034] In some examples, the object under test 230 of
the first portion 200 is a top layer on the hardware side of
the verification system 100, for example, the design
under test 231 of the object under test 230 includes an
intellectual property (IP) module of a SoC chip. For ex-
ample, the design under test 231 may be a standalone IP
in the SoC to be verified by the verification system 100.
For example, the SoC may be based on a microarchi-
tecture of instruction sets such as X86, ARM, RISC-V,
etc., which is not limited by the embodiment of the present
disclosure. The design under test 231 is universally
applicable to key IPs in the chip, for example, the design
under test 231 includes, but is not limited to, general
purpose graphics processor unit (GPGPU), and embodi-
ments of the present disclosure are not limited and de-
scribed in detail herein. The verification system of the
above-described embodiments of the present disclosure
is applicable to the acceleration of simulation verification
of IP level modules in SoC and the development of soft-
ware bare metal, and the time required for simulation
verification is greatly reduced.
[0035] It should also be noted that the design under test
231 of the embodiments of the present disclosure may
belongs to the IP module level in some scenarios and
may belong to the sub-system level in other scenarios,
and the embodiments of the present disclosure are not
limited thereto and this does not affect the protection
scope of the present disclosure.
[0036] It should be noted that the first master module
and the second slave module of the embodiments of the
present disclosure are referred to as a master module or
a slave module with respect to the object under test
respectively, which is merely a way of naming and facil-
itating the clarity and conciseness of the description of the
present disclosure, and the embodiments of the present
disclosure are not limited thereto, and the protection

scope of the embodiments of the present disclosure is
not limited thereto.
[0037] In some examples, the simulation verification
device 100 includes a first processor and the first pro-
cessor includes a plurality of second processors con-
nected in parallel, that is, the second processors are sub-
processors with respect to the first processor.
[0038] For example, the simulation verification device
includes a Palladium device of Cadence, and an under-
lying architecture of the Palladium device is a CPU pro-
cessor and an application-specific integrated circuit. In
the processors of the Palladium device, a large number of
processors are connected in parallel, so that the accel-
eration of simulation verification is performed through
parallel paths.
[0039] The embodiments of the present disclosure
perform hardware simulation accelerated verification
based on the simulation verification device such as the
Palladium device, which enables the chip RTL to remain
compatible with fewer modifications; and excellent de-
bugging performance and high signal visibility are
achieved, high platform compatibility is achieved to sup-
port System Verilog or System C or System CPP. Further-
more, the SoC design does not need to be divided
manually, and too much additional manpower input is
not needed, etc., so that the requirements for verification
time and the quality of chip delivery in a chip project can
be well met.
[0040] It should be noted that the simulation verifica-
tion device used in the verification system of the embodi-
ments of the present disclosure is not limited to only a
Palladium device, but may also be other processor-
based built simulation verification devices, and the em-
bodiments of the present disclosure are not limited and
described in unnecessary details.
[0041] In some examples, the second portion 300 is
configured to be created based on C language or CPP
language, for example, the second portion 300 is a soft-
ware side running on Cadence, e.g. a compiled software
Xcelium. In this way, the verification system according to
an embodiment of the present disclosure can conveni-
ently realize the execution of the relevant instructions
after the C language code or CPP language code is
compiled, which is widely used and convenient for the
development work of developers.
[0042] In some examples, the first master module 210
is configured to generate read instructions and/or write
instructions, configure the registers of the design under
test 231 and generate a reset (such as a global reset). For
example, as shown in Figs. 1 and 2, the second portion
200 further includes a driving module 350 for driving the
first master module 210 of the first portion 200, so that the
first master module 210 configures the register of the
design under test 231 and performs the global reset.
[0043] In some examples, the first master module 210
and the second slave module 220 are accelerated ver-
ification IPs (AVIP) designed for the simulation verifica-
tion device 100 based on a verification IP (VIP).

5

10

15

20

25

30

35

40

45

50

55



6

9 EP 4 560 478 A1 10

[0044] For example, as shown in Fig. 2, the first master
module 210 includes a master module with an advanced
microcontroller bus architecture, which can also be called
AMBA MASTER, that is, the first master module 210
supports the AMBA standard bus protocol. Accordingly,
the driving module 350 may also be referred to as an
AMBA MASTER Driver. For example, the second slave
module 220 includes a slave module with an advanced
microcontroller bus architecture, which can also be called
AMBA SLAVE, that is, the second slave module 220
supports the AMBA standard bus protocol.
[0045] The verification system of the above-described
embodiments of the present disclosure enables more
extensive bus protocol verification at the module level
and sub-system level by adopting an AVIP that can
support multiple standard bus protocols.
[0046] For example, as shown in Fig. 1, the first portion
200 also includes a clock excitation source module 240
for providing a system clock signal on the hardware side
for use by DUTor the like. For example, a clock frequency
of a clock signal may be 1 GHZ. This is merely exemplary
and is not a limitation of the present disclosure.
[0047] For example, as shown in Fig. 1, the plurality of
object interfaces of the object under test 230 further
includes at least one selected from the group consisting
of a first interface 233a, a second interface 233b, a third
interface 233c and a fourth interface 233d.
[0048] For example, as shown in Fig. 1, the first inter-
face 233a is connected to the clock excitation source
module 240 to receive the clock signal. The verification
system of the present disclosure may be driven by a
global clock, which facilitates synchronization of the
function, performance and stability of a digital system.
[0049] For example, as shown in Fig. 1, the second
interface 233b is configured to receive an interrupt re-
quest signal. For example, the interrupt request signal is
used to stop a current operation state of the relevant
hardware and switch to an operation task corresponding
to the interrupt request signal, and then switch back after
processing of the operation task is completed, so that
signal collision can be avoided.
[0050] For example, as shown in Fig. 1, the first master
module 210 is connected to the third interface 233c for
configuring the register of the design under test 231. For
example, as shown in Fig. 1, the first master module 210
is connected to the fourth interface 233d for resetting the
first portion 200.
[0051] For example, in the example of Fig. 1, the
quantity of memory access interfaces 232 is two, the
quantity of second slave modules 220 is two, and each
second slave module 220 includes one memory unit 221.
In this way, the memory units 221 are in one-to-one
correspondence with the memory access interfaces
232, so that a data transmission path between each
memory unit 221 and the design under test 231 can be
formed, so as to implement the front door access to the
register. This is merely exemplary and is not a limitation of
the present disclosure.

[0052] For example, as shown in Fig. 1, the memory
unit 221 of the second slave module 220 is used for
storing register data, that is, a main function of the second
slave module 220 in the verification system 100 is as a
memory of the verification system. For example, for im-
plementing a front door write operation, embodiments of
the present disclosure may implement storing the data
written by the front door write operation into the memory
unit 221 through the memory access interface 232.
[0053] For example, as shown in Fig. 1, if necessary
the first portion 200 may also include a rate matching
bridge 250, and the rate matching bridge 250 is config-
ured to be connected to the second slave module 220 and
the memory access interface 232 respectively. Embodi-
ments of the present disclosure can perform read-write
rate conversion and processing via the rate matching
bridge 250, so that the problems of metastability of data
transmission across clock domains and clock signal mis-
match between the design under test 231 and the mem-
ory unit 221 can be avoided.
[0054] In some examples, the sources of data in the
memory unit 221 of the second slave module 220 include
two types. The first type is to write data into the register of
the design under test 231 by the front door write operation
and transfer it to the memory unit 221 of the second slave
module 220 across the clock domain via the rate match-
ing bridge 250. The second type is to import data into the
memory unit 221 through a data loading operation of the
back door.
[0055] In some examples, the memory unit 221 of the
second slave module 220 has a virtual storage space. For
example, the present disclosure may divide a portion of
storage space to the memory unit 221 by a Palladium
device. This is merely illustrative and not a limitation of
the embodiments of the present disclosure.
[0056] For example, as shown in Fig. 2, the first direct
programming interface 310 includes a direct program-
ming interface (C/C++ DPI) based on C language or CPP
language, and the second direct programming interface
320 includes a one-time access type direct programming
interface (MARG DPI) based on C language or CPP
language. For example, MARG DPI is a type of interface
that is relatively well suited for one-time storage and
reading.
[0057] The embodiment of the present disclosure is
connected to the software side of the verification system
and the hardware side of the verification system through
the DPI interface, so that not only the first master module
210 can complete the front door access (such as a front
door read and write operation) to the register such as the
AMBA bus by a CPP interface function of the DPI, but also
the memory unit 221 of the second slave module 220 can
directly achieve the back door access to the memory unit
221 by calling a CPP interface function corresponding to
the MARG DPI based on the set MARG DPI, so that data
loading of the memory unit and data exporting of the
memory unit can be achieved.
[0058] The CPP interface function (e.g. the first func-

5

10

15

20

25

30

35

40

45

50

55



7

11 EP 4 560 478 A1 12

tion or the second function described above, for example,
the first function may include a function related to register
reading and/or writing, and the second function includes
a memory unit loading and/or exporting function, etc.)
adopted by the embodiment of the present disclosure can
be written and packaged by the CPP language, which is
convenient to call, and can realize functions with more
complex functions, functions more consistently with test
cases required by the chip, and achieve synchronization
between the software side and the hardware side, and
the efficiency of simulation acceleration is greatly im-
proved.
[0059] Fig. 3 is a schematic block diagram of a first
master module of a verification system provided by some
embodiments of the present disclosure.
[0060] For example, as shown in Fig. 3, the first master
module 210 includes a master core 211 and a third slave
module 212. For example, the third slave module 212 is
embedded in the first master module 210, and the third
slave module 212 is an embedded advanced peripheral
bus slave module, namely, an embedded APB module. It
should be noted that the third slave module 212 of the
embodiment of the present disclosure is referred to as a
slave module with respect to the master core 211, and this
is merely a way of naming and the embodiment of the
present disclosure is not limited thereto, and the protec-
tion scope of the embodiment of the present disclosure is
not limited thereto.
[0061] In some examples, the master core 211 of the
first master module 210 is an AVIP core, and the master
core 211 of the first master module 210 includes a
synthesizable RTL code.
[0062] For example, as shown in Fig. 3, the master
core 211 is connected to the first direct programming
interface 310 and the third interface 233c respectively, so
as to enable the master core 211 to acquire a register
access instruction (that is, an instruction for performing a
read operation or a write operation on the register of the
design under test 231) corresponding to the first function
of the test case, for configuring the register of the design
under test 231.
[0063] For example, when a user runs the test case
and calls the first function, the master core 211 of the first
master module 210 may acquire the register access
instruction for configuring the register of the design under
test 231.
[0064] In some examples, the master core 211 also
acquires control data associated with the register access
instruction. The control data includes basic data required
for performing a read operation or a write operation on the
register, such as a base address of the memory and a
base width of the memory, etc. This is merely exemplary
and is not a limitation of the present disclosure.
[0065] For example, as shown in Fig. 3, the third slave
module 212 of the first master module 210 is connected to
the master core 211 and the fourth interface 233d re-
spectively, so that a reset signal generated by the master
core 211 can be transmitted to the fourth interface 233d

for resetting the first portion 200. For example, a reset is
required before each test case starts running for simula-
tion, so that the state of all cores and the state of all
memories inside the hardware side are the most initial
states.
[0066] In some examples, when the second slave
module 220 is an AMBA module, a plurality of different
types of AMBA modules may be instantiated, such as an
APB module, an AXI module or an ACE module. This is
merely exemplary and is not a limitation of the present
disclosure.
[0067] In some examples, when instantiating the sec-
ond slave module 220, the AMBA parameter that needs
to be declared includes at least one selected from the
group consisting of the following: a memory size, a
memory base address, and a depth of a currently out-
standing operation that can be supported. This is merely
exemplary and is not a limitation of the present disclo-
sure.
[0068] In some examples, each of the first master
module 210, the second slave module 220 and the third
slave module 212 is configured with an independent
storage space. For example, after the verification system
1000 is initially built, storage space needs to be allocated
to each of various modules, such as the first master
module 210, the second slave module 220 and the third
slave module 212.
[0069] Fig. 4 is a schematic diagram of address spaces
of a first master module and a second slave module
provided by some embodiments of the present disclo-
sure.
[0070] In some examples, an address offset of the first
master module 210 is 0x0000_0000 and an address
offset of the third slave module 212 is 0x0010_0000
(1M Byte). For example, as shown in Fig. 4, an address
range of the first master module 210 includes
0x0000_0000~0x000F FFFF with a size of 1 MB and
0x0010_0000~0x001F_FFFF with a size of 1 MB. For
example, as shown in Fig. 4, one second slave module
220 of the two second slave modules 220 has an address
range of 0x4000_0000~0x7FFF_FFFF with a size of 1
GB, and the other second slave module 220 has an
address range of 0x8000_0000~0xFFFF_FFFF with a
size of 2 GB. This is merely exemplary and is not a
limitation of the present disclosure.
[0071] In some examples, the second portion 300
further includes a configuration file. The test case is
configured to perform case configuration for the front
door access based on the at least one first function of
the configuration file, or, the test case is configured to
perform case configuration for the back door access
based on the at least one second function of the config-
uration file.
[0072] In some examples, the function library module
330 includes a static library generated by compiling
through the behavioral modeling language based on
the test case and the configuration file.
[0073] For example, in the example of Fig. 2, the test

5

10

15

20

25

30

35

40

45

50

55



8

13 EP 4 560 478 A1 14

cases provided by the test case module 340 include
test0-test3, and different test cases may call different
functions to verify the functions that meet the require-
ments. For example, as shown in Fig. 2, the test case
module 340 may call a configuration file by using test
_entry() to provide the relevant test cases. The test_en-
try() is an entry for the user to edit the test case under test,
and the configuration file (e.g. cfg file) is called in tes-
t_entry() to complete the configuration of the relevant test
case. The verification system 1000 can provide an API for
a user to configure the front door access to the register
and the back door access. For example, the configuration
file is compiled through C/CPP to generate a static library
("user lib"), which is further parsed by an API interface to
complete, for example, reading of the register and writing
of the register.
[0074] The simulation accelerated verification of the
above-described embodiments of the present disclosure
uses test cases constructed based on C/CPP code, so
that the environment is relatively simple, there is no
complex methodology, the simulation environment can
be built quickly, and the running speed is very fast.
[0075] In some examples, the first function includes: at
least one selected from the group consisting of a register
reading function reg_read, a register writing function
reg_write, a register post-reading checking function re-
g_read_check, a register reading-after-writing and
checking function reg_write_check, and a register polling
wake-up reading function poll_reg_equal.
[0076] For example, the function reg_write is config-
ured to directly implement writing 32 bit data at a specific
register address, and the function reg_read is configured
to directly implement reading 32 bit data at a specific
register address.
[0077] For example, the function reg_read_check is
configured to check whether the data written by a specific
address register is the same as expected. For example,
the data written by the specific address register may be
the data written by the function reg_write.
[0078] For example, the function reg_read_check first
reads data from a specific address register, then com-
pares the read data with expected data. If a comparison
result is that they are the same, the check is passed, and if
the comparison result is that they are not the same, the
current operation is stopped and an error is reported.
Embodiments of the present disclosure provide for writ-
ing data into a register at a particular address through the
function reg_read_check and automatically comparing
the read result with the expected result, so that the
degree of automation is relatively high, and the working
efficiency of verifiers can be improved.
[0079] The function of the function reg_write_check
and the method of the function reg_write_check may
also refer to the function reg_read _check, with the
difference that the function reg_write_check further in-
cludes writing data in the specific address register, which
will not be described in detail herein.
[0080] For example, the function poll_reg_equal is

configured to continuously poll and read a value of a
specific address register for multiple times until the value
read from the specific address register is equal to the
expected value; if not equal, reading is continued until the
quantity of times of reading exceeds a maximum quantity
of times (for example, 10000) of polling set by the user,
reporting an error and ending polling; if the value is read
multiple times from the register at the same address but
still different from the expected value, an error is reported
and the reading cycle ends.
[0081] For example, the function poll_reg_equal may
poll the relevant register to wake up and in turn check the
reading and writing results of the register data in a case
where part of the registers needs to be polled to wake up
the registers before the second function makes the back
door access to the memory unit of the second slave
module.
[0082] In some examples, the second function in-
cludes: at least one selected from the group consisting
of a memory unit polling wake-up reading function
poll_mem_equal, a memory unit initialization function
mem_init, a memory unit data loading function
mem_load, and a memory unit data-exporting function.
[0083] In some examples, the memory unit data-ex-
porting function includes a memory unit multi-byte read-
ing function or a memory unit data grabbing function
mem_dump, wherein lengths of data segment read by
the function mem_dump and the memory unit multi-byte
reading function are different, and the length of data
segment read by the function mem_dump is greater than
the length of the data segment read by the memory unit
multi-byte reading function.
[0084] For example, the memory unit multi-byte read-
ing function includes a function mem_read32 or a func-
tion mem_read64. The function mem_read32 is config-
ured to directly implement reading 32 bit data at a specific
memory unit address, and the function mem_read64 is
configured to directly implement reading 64 bit data at a
specific memory unit address.
[0085] For example, the function mem_dump may
grab data from the memory unit and grab the data of
the memory unit into a self-named hexadecimal format
file (hex file) in hexadecimal format.
[0086] For example, the function mem_load is config-
ured to load a readable file in hexadecimal format into the
verification system. This hexadecimal format file is a two-
dimensional array, which is preceded by an address and
followed by data. The function mem_load loads each
data into the corresponding storage space according
to its address.
[0087] For example, the function poll_mem_equal is
configured to continuously poll and read the value of the
memory unit of a specific address for multiple times until
the value read from the memory unit of the specific
address is equal to an expected value; if the comparison
result is that they are not equal, reading is continued until
the quantity of times of reading exceeds a maximum
quantity of times (for example, 10000) of polling set by

5

10

15

20

25

30

35

40

45

50

55



9

15 EP 4 560 478 A1 16

the user, reporting an error and ending polling; if the value
is read multiple times from the memory unit at the same
address but still different from the expected value, an
error is reported and the reading cycle ends.
[0088] For example, the function mem_init is config-
ured to initialize the memory unit in a used address range
to prevent the residual data of the memory unit after the
last test case run from affecting running of the next test
case and result comparison. The function mem_init in-
itializes the memory unit with a set address range in five
main modes:

Mode 0: all values of the memory unit are all initi-
alized to 0x0000_0000;
Mode 1: all the values of the memory unit are all
initialized to 0xFFFF_FFFF;
Mode 2: the value of the memory unit is initialized to a
value of each memory unit address;
Mode 3: the value of the memory unit is initialized to a
value with 0x4 increased each time starting from 0x0;
and
Mode 4: the value of the memory unit is initialized to a
value with 1 increased each time starting from 0.

[0089] The above-mentioned modes and correspond-
ing functions are merely exemplary and are not intended
to limit embodiments of the present disclosure.
[0090] In some examples, the function library module
330 may also include a file comparison function file_cmp
and/or a reset function glb_rst.
[0091] For example, the function file_cmp may com-
pare two hex files to obtain a comparison result. In the test
case of an embodiment of the present disclosure, a user
may specify the names of two hex files that need to be
compared on his own in definition of the function fi-
le_cmp.
[0092] For example, the function glb_rst may be con-
figured to reset the first portion 200, and reset the state of
the modules in the first portion 200.
[0093] In some examples, each test case of the plur-
ality of test cases provided by the test case module 340
may not be identical with each other, the corresponding
function(s) of each test case may be one or more. For
example, each test case may be any one of the functions
or any combination of the functions described above, and
the embodiments of the present disclosure are not limited
in this respect, and may be freely adjusted according to
actual verification requirements, which will not be de-
scribed in unnecessary detail herein.
[0094] It should be noted that the functions included in
the function library module 330 of the embodiments of the
present disclosure are not limited to the above-men-
tioned examples, but may be other corresponding func-
tions for satisfying verification requirements, and are not
exhaustive or redundantly described herein.
[0095] At least one embodiment of the present disclo-
sure also provides a verification method that can be
implemented based on the verification system described

in any of the embodiments described above. With regard
to specific embodiments and technical effects of the
verification method based on the verification system,
reference can be made to the verification system pro-
vided in the above-mentioned embodiments of the pre-
sent disclosure.
[0096] Fig. 5 is a flowchart of a verification method
provided by some embodiments of the present disclo-
sure.
[0097] With reference to Fig. 5, for example, at least
one embodiment of the present disclosure provides a
verification method including step S1 to step S5.
[0098] Step S1: performing RTL code compilation
based on the design under test 231.
[0099] Step S2: performing comprehensive compila-
tion based on the first portion 200, the object under test
230, the design under test 231, the first master module
210 and the second slave module 220 to acquire a
compiled first portion 200.
[0100] Step S3: selecting a usage mode of the simula-
tion verification device 100, adding at least one compila-
tion option to the compiled first portion 200 according to
the usage mode, and calling a first assembler to decon-
struct the verification system 1000 to generate a hard-
ware information library for the simulation verification
device 100, so as to implement accelerator compilation.
[0101] Step S4: performing code compilation of a be-
havioral modeling language for the second portion 300.
[0102] Step S5: running the compiled first portion 200
and the compiled second portion 300 to acquire a ver-
ification result.
[0103] In some examples, the verification method of
the present disclosure further includes the following pro-
cess or step: debugging according to the verification
result, so as to enable the verification to pass.
[0104] In some examples, the verification method of
the present disclosure further includes the following pro-
cess or step: configuring the verification result to be
visualized on the simulation verification device 100,
wherein the visualization methods include but not limited
to, a chart, a text, a waveform, etc. In this way, the
verification result can be reflected timely, conveniently
and accurately, which is beneficial to the management
and execution of verification.
[0105] For example, in step S1, the performing RTL
code compilation based on the design under test 231
includes the following process or step: using a second
assembler to compile a RTL file list of the design under
test 231 and a corresponding RTL file, and generating a
DUT netlist containing the set format of the object under
test 230, for example, generating a DUT netlist contain-
ing a vg format of the object under test 230. The gener-
ated DUT netlist is configured to run on the simulation
verification device 100. It should be noted that the set
format of the DUT netlist of the embodiment of the pre-
sent disclosure is not limited to the vg format, but may be
other types of formats, such as the edif format, etc., and
the embodiments of the present disclosure are not limited

5

10

15

20

25

30

35

40

45

50

55



10

17 EP 4 560 478 A1 18

thereto.
[0106] For example, in step S1, the second compilation
tool includes Cadence’s compilation tool vavlog or com-
pilation tool vaelab. This is, of course, merely exemplary
and is not a limitation of the present disclosure.
[0107] For example, in step S2, the performing com-
prehensive compilation based on the first portion 200, the
object under test 230, the design under test 231, the first
master module 210 and the second slave module 220 to
acquire a compiled first portion 200 includes the following
process or step: performing comprehensive compilation
for the first portion 200, the object under test 230, the
design under test 231, the first master module 210, the
second slave module 220 (for example, two second slave
modules 220 in Fig. 1) and the clock excitation source
module 240 based on the a third assembler of the simu-
lation verification device 100 to acquire a compiled hard-
ware side.
[0108] For example, the third assembler includes the
Palladium-based vlan tool of Cadence. This is, of course,
merely exemplary and is not a limitation of the present
disclosure.
[0109] For example, in step S2, objects of the compre-
hensive compilation of the embodiment of the present
disclosure include not only the first portion 200, the object
under test 230, the design under test 231, the first master
module 210 and the second slave module 220, but also,
for example, performing comprehensive compilation on
necessary Cadence AVIP files and other required per-
ipheral test resources. Since this is not the focus of the
description of the embodiment of the present disclosure,
it is not exhaustive and redundant here. Thus, a compiled
hardware side can be generated by the comprehensive
compilation of this step.
[0110] For example, in step S3, the selecting a usage
mode of the simulation verification device 100, adding at
least one compilation option to the compiled first portion
200 according to the usage mode, and calling a first
assembler to deconstruct the verification system to gen-
erate a hardware information library for the simulation
verification device includes the following process or step:
selecting an IXCOM mode of the Palladium device, add-
ing the at least one compilation option to the compiled first
portion 200 according to the IXCOM mode, and calling
the first assembler to deconstruct the verification system
1000 to generate the hardware information library (hard-
ware lib). For example, the hardware information library
includes a lib base of information such as RTL, simulation
environment, compilation environment, etc. This is
merely exemplary and is not a limitation of the present
disclosure.
[0111] The embodiments of the present disclosure se-
lect the IXCOM mode of Palladium, which makes it more
compatible for the part of the design that is not compre-
hensive, supports putting part of the design into the
simulation verification device, and it is also compatible
with other modes, which can reduce the verification work-
load, reduce the cost and improve the verification effi-

ciency.
[0112] For example, in step S3, by means of a IXCOM
compilation tool based on Cadence, the compiled first
portion 200 generated by comprehensive compilation is
compiled by adding compilation options such as -z1,
‑ua+1xua, ‑dpi, ‑timescale, and the first assembler such
as vxe of Cadence can also be called to perform a
process such as deconstruction (for example, program-
ming and assembling a natural language into a machine
language) on the whole of the verification system 1000,
so as to generate a hardware information library which
can be directly used for the simulation verification device
100, thereby completing accelerator compilation. This is
merely exemplary and is not a limitation of the present
disclosure.
[0113] For example, in step S4, the behavioral model-
ing language may be the CPP language, that is, step S4 is
used for CPP code compilation of the second portion 300.
[0114] For example, the CPP code of the test case set
by the user is mainly compiled in step S4, which may, for
example, include: setting a type of the first function and/or
the second function specifically called, how to collocate
the first function and/or the second function called, spe-
cific settings of the first function and/or the second func-
tion (for example, a register reading and writing address
and specifically written data), and a first reference file
used for comparison (see below for details), etc. Thus,
the verification system calls the file of the static library
generated by this step S4 at a final run time, so that the
test case set by the user can take effect in the simulation
accelerated verification process and complete the test
function.
[0115] In some examples, the verification method of
the present disclosure further includes the following pro-
cess or step: checking whether the register configuring
the module under test as described above meets the
target requirement of the design under test 231.
[0116] For example, for different designs under test
231, the test case module 340 of the embodiments of
the present disclosure provides different test cases, and
the same design under test 231 may also develop a
plurality of different test cases based on a plurality of
different verification requirements, and different test
cases may correspond to different function settings, reg-
ister settings, expected data results, etc., so that different
data will be written to the registers for AMBA bus.
[0117] In some examples, for the first portion 200 and
the second portion 300 created on the simulation verifi-
cation device 100 in the embodiments of the present
disclosure, which represent a verification environment
built on the basis of the simulation verification device 100,
the verification environment is divided into a hardware
side and a software side, and the hardware side and the
software side can interact with each other. For example, it
may be that the first portion 200 is transplanted on the
simulation verification device 100, such as, a Palladium
device, and that the first portion is located on another
device, such as, a server, which can realize communica-

5

10

15

20

25

30

35

40

45

50

55



11

19 EP 4 560 478 A1 20

tion connection with the hardware side connection. Of
course, it is also possible that the first portion 200 and the
second portion 300 run together on the Palladium device,
and the embodiment of the present disclosure does not
limit this.
[0118] Fig. 6 is a flowchart of an execution process of
step S5 of the verification method in Fig. 5. For example,
as shown in Fig. 6, one example of step S5 includes at
least step S51 to step S53.
[0119] Step S51: in response to the design under test
231 being a first module, reading first data of the memory
unit 221 through the back door access to acquire a first
reference file.
[0120] Step S52: in response to the design under test
231 being a second module, reading second data of the
memory unit 221 through the back door access to acquire
a second file.
[0121] Step S53: comparing the second file with the
first reference file to acquire the verification result.
[0122] For example, in step S51, the reading first data
of the memory unit 221 through the back door access to
acquire a first reference file includes the following pro-
cess or step: in response to an end of running of the test
case (for example, after the end of the first running of the
test case), reading the first data of the memory unit 221
through the back door access to obtain a self-named first
target hexadecimal format file; and generating a standard
version of a second target hexadecimal format file based
on the first target hexadecimal format file to acquire the
first reference file.
[0123] For example, the first target hexadecimal format
file is referred to as a first hex file, and the second target
hexadecimal format file is referred to as a golden version
of a second hex file. This is merely exemplary and is not a
limitation of the present disclosure.
[0124] For example, in step S52, the second module is
configured as a module that is updated based on the first
module. The second module is a design under test that is
iteratively updated based on the first module in a process
of chip development. Therefore, each time a change in
RTL code occurs for an iterative update of the design
under test 231, the test case needs to be rerun to test for a
change in RTL functionality and to calibrate the RTL by
using the first reference file.
[0125] For example, in step S52, the reading second
data of the memory unit 222 through the back door
access to acquire a second file includes the following
process or step: running the test case again, and reading
the second data of the memory unit 221 through the back
door access to acquire the second file. For example, the
test case in this step S52 is theoretically expected to be
the same as the first-run test case in the above-men-
tioned step S51, so that it can be determined whether the
verification is passed.
[0126] For example, in step S53, the comparing the
second file with the first reference file to acquire the
verification result includes the following process or step:
if the comparison result between the second file and the

first reference file is that they are the same, the verifica-
tion is passed, for example, "testcase pass" characters or
patterns can be printed to a graphical interface, and the
flow ends; if the comparison result between the second
file and the first reference file is that they are different, the
verification fails, for example, "testcase fail" characters or
patterns can be printed to the graphical interface, the test
case can be debugged, and the RTL code of the design
under test 231 can also be checked. Thus, after mod-
ification and debugging, rerunning is performed, the pro-
cess of comparison is repeated until the obtained com-
parison result is that the second file and the first reference
file are the same, the verification is passed, and the flow
ends.
[0127] Thus, when the verification fails, in step S52, the
reading second data of the memory unit 222 through the
back door access to acquire a second file further includes
the following process or step: debugging the test case,
running the test case after debugging, and reading the
second data of the memory unit 221 through the back
door access to acquire the second file. For example, the
test case after debugging in step S52 is a test case
subject to the same test case configuration with respect
to the test case initially run in step S51, so that the
problem of verification failure due to the error of test
cases in the actual process can be avoided, thereby
enabling the simulation verification process to be
smoothly performed.
[0128] In some examples, before running the test case
again, the test case may also be debugged, which is not
limited by embodiments of the present disclosure.
[0129] In some examples, when running the compiled
first portion 200 and the compiled second portion 300, the
graphical interface of the Palladium device may be
started directly by executing an already packaged in-
struction Make emu_run in Makefile, so that a running
result of the test case and the corresponding necessary
log information are printed on the graphical interface for
the user to perform further debugging and result record-
ing.
[0130] The verification file and the basic verification
process of the embodiments of the present disclosure
have versatility, which helps to reduce the workload of
verification. With the deepening of verification work, the
quantity of test cases is increasing, the complexity of test
cases is also increasing, and the designs are continually
iterated. Through the work of automatic regression test, it
is helpful to ensure the project quality and reduce the
workload of tedious tasks.
[0131] Fig. 7 is a flowchart of a verification method
provided by some other embodiments of the present
disclosure.
[0132] With reference to Fig. 7, for example, some
embodiments of the present disclosure provide a verifi-
cation method including step T1 to step T8.
[0133] Step T1: a test case running for a first time.
[0134] Step T2: reading first data of the memory unit
through the back door access to acquire a first reference

5

10

15

20

25

30

35

40

45

50

55



12

21 EP 4 560 478 A1 22

file.
[0135] Step T3: rerunning the test case.
[0136] Step T4: reading second data of the memory
unit through the back door access to acquire a second
file.
[0137] Step T5: comparing data of the second file with
data of the first reference file.
[0138] Step T6: determining whether the data of the
second file is the same as the data of the first reference
file; if yes, it turns to step T8; if no, the verification fails, and
the debugging of the test case in step T7 and the RTL
check of the module under test in step T7 are performed,
and steps T3 to T6 are performed in a loop until the
determination result is that the data of the second file
is the same as the data of the first reference file, and then
it turns to step T8.
[0139] Step T8: the verification being passed, and
ending verification flow.
[0140] For example, the first reference file in step T2 is
the second hex file of the golden version.
[0141] For example, the test case in step T3 may be a
test case after being debugged if the verification fails, or
may be a test case obtained by debugging the test case
before starting step T3, which is not limited by the embo-
diments of the present disclosure.
[0142] Based on the above-mentioned test case ver-
ification flow, the embodiments of the present disclosure
can achieve an automatic flow with a certain universality,
thereby achieving a simple and efficient hardware accel-
erated test method and flow with strong reusability, which
greatly saves the time of chip verification engineering and
greatly improves the chip verification efficiency.
[0143] Fig. 8 is a schematic block diagram of an elec-
tronic device provided by some embodiments of the
present disclosure. The electronic device 400 includes
a processing module 410 and a memory 420, wherein a
computer program is stored in the memory 420, and
when the computer program is executed by the proces-
sing module 410, the verification methods of at least
some embodiments of the present disclosure are imple-
mented.
[0144] The electronic device in the embodiment of the
present disclosure may include but not be limited to a
mobile terminal such as a notebook computer and a
tablet computer, and a fixed terminal such as a desktop
computer, a conventional server and a cloud server. The
electronic device shown in Fig. 8 is only an example and
should not impose any limitations on the functions and
use scopes of the embodiments of the present disclo-
sure.
[0145] Particularly, according to some embodiments of
the present disclosure, the processes described above
with reference to the flowcharts may be implemented as a
computer software program. For example, some embo-
diments of the present disclosure include a computer
program product, which includes a computer program
carried by a non-transitory computer-readable medium.
The computer program includes program codes for per-

forming the methods shown in the flowcharts. When the
computer program is executed by the processing mod-
ule, the verification method of some embodiments of the
present disclosure are performed.
[0146] It should be noted that the above-mentioned
computer-readable medium in the present disclosure
may be a computer-readable signal medium or a com-
puter-readable storage medium or any combination
thereof. For example, the computer-readable storage
medium may be, but not limited to, an electric, magnetic,
optical, electromagnetic, infrared, or semiconductor sys-
tem, apparatus or device, or any combination thereof.
More specific examples of the computer-readable sto-
rage medium may include but not be limited to: an elec-
trical connection with one or more wires, a portable
computer disk, a hard disk, a random-access memory
(RAM), a read-only memory (ROM), an erasable pro-
grammable read-only memory (EPROM or flash mem-
ory), an optical fiber, a compact disk read-only memory
(CD-ROM), an optical storage device, a magnetic sto-
rage device, or any appropriate combination of them. In
the embodiments of the present disclosure, the compu-
ter-readable storage medium may be any tangible med-
ium containing orstoring a program that can be used by or
in combination with an instruction execution system,
apparatus or device. In the embodiments of the present
disclosure, the computer-readable signal medium may
include a data signal that propagates in a baseband or as
a partof acarrier and carriescomputer-readable program
codes. The data signal propagating in such a manner
may take a plurality of forms, including but not limited to
an electromagnetic signal, an optical signal, or any ap-
propriate combination thereof. The computer-readable
signal medium may also be any other computer-readable
medium than the computer-readable storage medium.
The computer-readable signal medium may send, pro-
pagate or transmit a program used by or in combination
with an instruction execution system, apparatus or de-
vice. The program code contained on the computer-read-
able medium may be transmitted by using any suitable
medium, including but not limited to an electric wire, a
fiber-optic cable, radio frequency (RF) and the like, or any
appropriate combination of them.
[0147] The above-mentioned computer-readable
medium may be included in the above-mentioned elec-
tronic device, or may also exist alone without being
assembled into the electronic device.
[0148] It should be noted that, in the embodiment of the
present disclosure, the specific functions and technical
effects of the electronic device 400 can refer to the above
description of the verification method, and will not be
repeated here.
[0149] The following points need to be clarified:

(1) The drawings of the embodiments of the present
disclosure only refer to the structures to which the
embodiments of the present disclosure relate, and
other structures may refer to general designs.

5

10

15

20

25

30

35

40

45

50

55



13

23 EP 4 560 478 A1 24

(2) In case of no conflict, the embodiments of the
present disclosure and the features in the embodi-
ments may be combined with each other to obtain
new embodiment(s).

[0150] The above description is only about specific
implementations of the present disclosure, but the scope
of protection of the present disclosure is not limited there-
to. The scope of protection of the present disclosure
should be subject to the scope of protection of the ap-
pended claims.

Claims

1. A verification system, comprising a simulation ver-
ification device, and a first portion and a second
portion which are created on the simulation verifica-
tion device respectively, wherein

the first portion comprises a first master module
and at least one second slave module which are
connected to an object under test respectively;
the object under test comprises a design under
test and a plurality of object interfaces con-
nected to a periphery of the design under test,
the plurality of object interfaces comprise a
memory access interface, the second slave
module comprises a memory unit, and the mem-
ory unit is connected to the memory access
interface;
the second portion comprises a first direct pro-
gramming interface, a second direct program-
ming interface, a function library module and a
test case module, and the test case module is
configured to provide at least one test case;
the first direct programming interface commu-
nicates with the first master module, and the first
direct programming interface is configured to: in
response to running the test case, call at least
one first function in the function library module to
implement front door access to a register of the
design under test; and
the second direct programming interface com-
municates with the memory unit of the first por-
tion, and the second direct programming inter-
face is configured to: in response to running the
test case, call at least one second function in the
function library module to implement back door
access to the memory unit.

2. The verification system according to claim 1, wherein

the first portion is a hardware side, and the
hardware side is configured to be created based
on a hardware description language; and
the second portion is a software side, and the
software side is configured to be created based

on a behavioral modeling language.

3. The verification system according to claim 1 or 2,
wherein
the simulation verification device comprises a first
processor, and the first processor comprises a plur-
ality of second processors connected in parallel.

4. The verification system according to claim 3, wherein
the simulation verification device comprises a Palla-
dium device, the first direct programming interface
comprises a direct programming interface based on
C language or CPP language, and the second direct
programming interface comprises a one-time ac-
cess type direct programming interface based on
C language or CPP language.

5. The verification system according to any one of
claims 1 to 4, wherein the first portion further com-
prises a clock excitation source module for providing
a clock signal, and the plurality of object interfaces
further comprise at least one selected from the group
consisting of a first interface, a second interface, a
third interface and a fourth interface;

the first interface is connected to the clock ex-
citation source module to receive the clock sig-
nal;
the second interface is configured to receive an
interrupt request signal;
the first master module is connected to the third
interface for configuring the register of the de-
sign under test; and
the first master module is connected to the fourth
interface for resetting the first portion.

6. The verification system according to claim 5, wherein

the first master module comprises a master
module with an advanced microcontroller bus
architecture, and the second slave module com-
prises a slave module with an advanced micro-
controller bus architecture;
the first master module comprises a master
core, wherein a third slave module, and the
master core is connected to the first direct pro-
gramming interface and the third interface re-
spectively, so as to enable the master core to
acquire a register access instruction corre-
sponding to the first function of the test case
for configuring the register of the design under
test; and
the third slave module is connected to the mas-
ter core and the fourth interface respectively,
and transmits a reset signal generated by the
master core to the fourth interface for resetting
the first portion.

5

10

15

20

25

30

35

40

45

50

55



14

25 EP 4 560 478 A1 26

7. The verification system according to any one of
claims 1 to 6, wherein
the first portion further comprises a rate matching
bridge, wherein the rate matching bridge is con-
nected to the second slave module and the memory
access interface respectively.

8. The verification system according to claim 2, wherein
the second portion further comprises a configuration
file,

the test case is configured to perform case con-
figuration for the front door access based on the
at least one first function of the configuration file,
or, the test case is configured to perform case
configuration for the back door access based on
the at least one second function of the config-
uration file; and
the function library module comprises a static
library generated by compiling through the be-
havioral modeling language based on the test
case and the configuration file.

9. The verification system according to any one of
claims 1 to 8, wherein

the at least one first function comprises at least
one selected from the group consisting of a
register reading function, a register writing func-
tion, a register post-reading checking function, a
register reading-after-writing and checking func-
tion, and a register polling wake-up reading
function; and
the at least one second function comprises at
least one selected from the group consisting of a
memory unit polling wake-up reading function, a
memory unit initialization function, a memory
unit data loading function, and a memory unit
data-exporting function.

10. The verification system according to claim 6, wherein
each of the first master module, the second slave
module and the third slave module is configured with
an independent storage space.

11. A verification method based on the verification sys-
tem according to any one of claims 1‑10, comprising:

performing register transfer level code compila-
tion based on the design under test;
performing comprehensive compilation based
on the first portion, the object under test, the
design under test, the first master module and
the second slave module to acquire a compiled
first portion;
selecting a usage mode of the simulation ver-
ification device, adding at least one compilation
option to the compiled first portion according to

the usage mode, and calling a first assembler to
deconstruct the verification system to generate
a hardware information library for the simulation
verification device, so as to implement accel-
erator compilation;
performing code compilation of a behavioral
modeling language for the second portion; and
running the compiled first portion and the com-
piled second portion to acquire a verification
result.

12. The verification method according to claim 11,
wherein

the simulation verification device includes a Pal-
ladium device; and
the first portion is a hardware side and the hard-
ware side is configured to be created based on a
hardware description language; and the second
portion is a software side and the software side is
configured to be created based on a behavioral
modeling language.

13. The verification method according to claim 11 or 12,
wherein the performing register transfer level code
compilation based on the design under test, com-
prises:
using a second assembler to compile a register
transfer level file list of the design under test and a
corresponding register transfer level file, and gen-
erating a design-under-test netlist containing a set
format of the object under test, wherein the design-
under-test netlist generated is configured to run on
the simulation verification device.

14. The verification method according to claim 12,
wherein, in response to the first portion further com-
prising a clock excitation source module for providing
a clock signal, the performing comprehensive com-
pilation based on the first portion, the object under
test, the design under test, the first master module
and the second slave module to acquire a compiled
first portion, comprises:
performing comprehensive compilation for the first
portion, the object under test, the design under test,
the first master module, the second slave module
and the clock excitation source module based on a
third assembler of the simulation verification device
to acquire a compiled hardware side.

15. The verification method according to claim 12,
wherein the selecting a usage mode of the simulation
verification device, adding at least one compilation
option to the compiled first portion according to the
usage mode, and calling a first assembler to decon-
struct the verification system to generate a hardware
information library for the simulation verification de-
vice, comprises:

5

10

15

20

25

30

35

40

45

50

55



15

27 EP 4 560 478 A1 28

selecting an IXCOM mode of the Palladium device,
adding the at least one compilation option to the
compiled first portion according to the IXCOM mode,
and calling the first assembler to deconstruct the
verification system to generate the hardware infor-
mation library.

16. The verification method according to any one of
claims 11 to 15, wherein the running the compiled
first portion and the compiled second portion to
acquire a verification result, comprises:

in response to the design under test being a first
module, reading first data of the memory unit
through the back door access to acquire a first
reference file;
in response to the design under test being a
second module, reading second data of the
memory unit through the back door access to
acquire a second file, wherein the second mod-
ule is configured as a module for updating based
on the first module; and
comparing the second file with the first reference
file to acquire the verification result.

17. The verification method according to claim 16,
wherein the reading first data of the memory unit
through the back door access to acquire a first re-
ference file, comprises:

in response to an end of running of the test case,
reading the first data of the memory unit through
the back door access to obtain a self-named first
target hexadecimal format file; and
generating a standard version of a second target
hexadecimal format file based on the first target
hexadecimal format file to acquire the first re-
ference file.

18. The verification method according to claim 16 or 17,
wherein the reading second data of the memory unit
through the back door access to acquire a second
file, comprises:
debugging the test case, running the test case after
debugging, and reading the second data of the
memory unit through the back door access to acquire
the second file.

19. An electronic device, comprising:

a processor and a memory,
wherein a computer program is stored on the
memory, and when the computer program is
executed by the processor, the verification
method according to any one of claims 11 to
18 is implemented.

20. A computer-readable storage medium, storing a

computer program, wherein the computer program,
when executed by a processing module, implements
the verification method according to any one of
claims 11 to 18.

5

10

15

20

25

30

35

40

45

50

55



16

EP 4 560 478 A1



17

EP 4 560 478 A1



18

EP 4 560 478 A1



19

EP 4 560 478 A1



20

EP 4 560 478 A1



21

EP 4 560 478 A1

5

10

15

20

25

30

35

40

45

50

55



22

EP 4 560 478 A1

5

10

15

20

25

30

35

40

45

50

55



23

EP 4 560 478 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• CN 202211062729 [0001]


	bibliography
	abstract
	description
	claims
	drawings
	search report
	cited references

