

(11) **EP 4 563 714 A1**

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication: **04.06.2025 Bulletin 2025/23**

(21) Application number: 23845735.2

(22) Date of filing: 31.07.2023

(51) International Patent Classification (IPC):

C22C 38/02 (2006.01)
C22C 38/06 (2006.01)
C22C 38/46 (2006.01)
C22C 38/50 (2006.01)
C22C 38/04 (2006.01)
C22C 38/50 (2006.01)
C22C 33/04 (2006.01)

(52) Cooperative Patent Classification (CPC):

C21D 8/02; C22C 33/04; C22C 38/02; C22C 38/04; C22C 38/06; C22C 38/42; C22C 38/44;

C22C 38/46; C22C 38/48; C22C 38/50; C22C 38/54; C22C 38/60

0220 00/04, 0220 00/00

(86) International application number:

PCT/CN2023/110178

(87) International publication number:

WO 2024/022531 (01.02.2024 Gazette 2024/05)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA

Designated Validation States:

KH MA MD TN

(30) Priority: 29.07.2022 CN 202210914393

(71) Applicant: BAOSHAN IRON & STEEL CO., LTD. Shanghai 201900 (CN)

(72) Inventors:

 LI, Hongbin Shanghai 201900 (CN) DING, Jianhua Shanghai 201900 (CN)

- MIAO, Yuchuan Shanghai 201900 (CN)
- LIU, Zicheng Shanghai 201900 (CN)
- MEI, Feng Shanghai 201900 (CN)
- (74) Representative: Kuhnen & Wacker
 Patent- und Rechtsanwaltsbüro PartG mbB
 Prinz-Ludwig-Straße 40A
 85354 Freising (DE)

(54) CORROSION-RESISTANT AND WEAR-RESISTANT STEEL PLATE AND MANUFACTURING METHOD THEREFOR

Disclosed in the present disclosure are a corrosion-resistant and wear-resistant steel plate and a manufacturing method therefor. The steel plate comprises, in percentages by weight: C: 0.15% \(\subseteq C \le 0.25\%; \) Si: $0.10\% \le Si \le 0.50\%$; Mn: 0.50%≤Mn≤1.50%; Mo: $0.01\% \le Mo \le 0.50\%$; Nb: $0.005\% \le Nb \le 0.050\%$; V: 0.01%≤V≤0.10%; Ti: 0.005% \(\lefta \text{Ti} \leq 0.050\); 0.010% \(\text{AI} \le 0.060%; Cr: 2.00% < Cr < 5.00%; 0.0005-0.0050 wt%; and P: 0.010%<P<0.030%. In addition, the steel plate further comprises one or more of Cu: $0.10\% \le \text{Cu} \le 0.40\%$, Ni: $0.20\% \le \text{Ni} \le 1.00\%$, RE: $0.01\% \le \text{RE} \le 0.10\%$, and Sb: $0.01\% \le \text{Sb} \le 0.20\%$, with the balance being Fe and inevitable impurities. The manufacturing method for the steel plate comprises the steps of: (1) a smelting and casting step; (2) a heating step; (3) a rolling step; and (4) an online cooling step. The steel plate of the present disclosure has both good acid and alkali resistance and wear resistance.

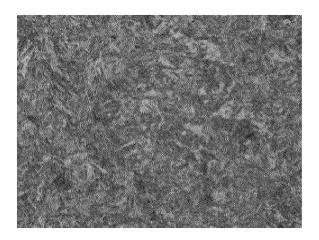


Fig. 1

Description

Technical Field

5 [0001] The present disclosure relates to a steel plate and a manufacturing method thereof, in particular a corrosion-resistant and wear-resistant steel plate and a manufacturing method thereof

Background Art

10 [0002] The working conditions of mechanical equipment used for engineering, mining, cement production, ports, electric power and metallurgy and the like are particularly harsh. For example, scraper conveyors, dump truck boxes and other products need to have high strength, high hardness and high toughness. However, in some special working conditions, such as the processing of industrial garbage, the service life of wear-resistant equipment is very short. This is mainly because that the environment caused by garbage rust and decay tends to cause corrosion of the equipment and shorten the service life.

[0003] At present, researches on acid-resistant steel plates are ongoing, such as the patent application number 201480021680.3 with a title of "steel plate for thick-walled high-strength wire pipe with excellent acid resistance, crush resistance and low temperature toughness and wire pipe ", which provides a steel plate for a thick-walled high-strength wire pipe with excellent acid resistance, crush resistance and low-temperature toughness and a manufacturing method thereof, but the steel plate only has acid resistance.

[0004] In addition, researches on alkali-resistant steel plates are also ongoing, such as the patent application number 201010168491.2, with a title of "steel for hot-rolled U-shaped steel plate piles resistant to alkaline soil corrosion and production method thereof", which provides a steel for hot-rolled U-shaped steel plate piles resistant to alkaline soil corrosion and a production method, but the steel plate only has alkali resistance.

[0005] However, in response to environmental changes, there is no steel plate that can resist alkalis and acids, and at the same time have excellent wear resistance.

[0006] In view of the above-mentioned defects of the prior art, it is expected to obtain a low-carbon low-alloy steel plate with both corrosion resistance and wear resistance, which has excellent acid resistance and alkali resistance while ensuring that the material has excellent wear resistance, and can reduce the manufacturing cost, and is suitable for mass production.

Summary

20

30

40

45

50

55

[0007] The purpose of the present disclosure is to provide a corrosion-resistant and wear-resistant steel plate and a manufacturing method thereof. The corrosion-resistant and wear-resistant steel plate has both excellent wear resistance, acid resistance and alkali resistance, can meet the requirements of wear resistance and corrosion resistance of the steel plate in a particularly harsh working environment, and reduce the manufacturing cost.

[0008] In order to achieve the above purpose, the present disclosure provides a corrosion-resistant and wear-resistant steel plate, which comprises, in percentages by weight:

C: 0.10% \(\subseteq \text{C} \le 0.30\%;

Si: 0.10% \(Si \le 0.50%;

Mn: 0.50%≤Mn≤1.50%;

Mo: 0.01% \le Mo \le 0.50%;

Nb: 0.005%≤Nb≤0.050%;

V: 0.01%≤V≤0.10%;

Ti: 0.005%≤Ti≤0.050%;

AI: 0.010% \(\text{AI} \le 0.060%; \)

Cr: 2.00% \(\screen \)Cr\(\leq 5.00%;

B: 0.0005% \(\leq B \leq 0.0050\);

Sb: 0.01% \le Sb \le 0.20%;

P: 0.010% \(P \le 0.030\);

[0009] In addition, it comprises one or more of Cu: 0.10≤Cu≤0.40%, Ni: 0.20≤Ni≤1.00% and RE: 0.01≤ RE≤0.10% with a balance of Fe and unavoidable impurities.

[0010] Another embodiment of the present disclosure is a corrosion-resistant and wear-resistant steel plate, in addition to Fe and unavoidable impurities, which comprises, in percentages by weight:

```
C: 0.10% < C < 0.30%;
          Si: 0.10% \le Si \le 0.50%;
          Mn: 0.50%≤Mn≤1.50%;
          Mo: 0.01% \le Mo \le 0.50%;
5
          Nb: 0.005% \le Nb \le 0.050%;
          V: 0.01% \le V \le 0.10%;
          Ti: 0.005% \( \text{Ti} \le 0.050\);
          AI: 0.010\% \le AI \le 0.060\%;
          Cr: 2.00% < Cr < 5.00%;
10
          B: 0.0005% < B < 0.0050%;
          Sb: 0.01% \le Sb \le 0.20%;
          P: 0.010% < P < 0.030%;
          and further comprises: one or more of Cu: 0.10%≤ Cu≤0.40%, Ni: 0.20%≤ Ni≤ 1.00% and RE: 0.01%≤ RE≤0.10%.
     [0011] In some embodiments, the corrosion-resistant and wear-resistant steel plate of the present disclosure com-
     prises, in percentages by weight: C: 0.15%≤C≤0.25%; Si: 0.10%≤Si≤0.50%; Mn: 0.50%≤Mn≤1.50%; Mo:
      0.01\% \le Mo \le 0.50\%; Nb: 0.005\% \le Nb \le 0.050\%; V: 0.01\% \le V \le 0.10\%; Ti: 0.005\% \le Ti \le 0.050\%; Al: 0.010\% \le Al \le 0.060\%; Cr.
      2.00%≤Cr≤5.00%; B: 0.0005%≤B≤0.0050%; and P: 0.010%≤P≤0.030%; further comprises: one or more of Cu: 0.10≤
      Cu≤0.40%, Ni: 0.20≤ Ni≤1.00%, RE: 0.01≤ RE≤0.10% and Sb: 0.01%≤ Sb≤0.20%, with a balance of Fe and unavoidable
20
     impurities.
     [0012] In some embodiments, the corrosion-resistant and wear-resistant steel plate of the present disclosure com-
      prises, in percentages by weight:
          C: 0.10% \( \subseteq \text{C} \le 0.30\%;
25
          Si: 0.25% \( \)Si \( \)0.45%;
          Mn: 0.65% \( \le Mn \le 1.50\);
          Mo: 0.10% \le Mo \le 0.35%;
          Nb: 0.01% \le Nb \le 0.045%;
          V: 0.01% \le V \le 0.08%;
30
          Ti: 0.010% < Ti < 0.045%:
          AI: 0.020% \( \text{AI} \le 0.050\( \text{%}; \)
          Cr: 2.30% < Cr < 4.60%;
          B: 0.0015% \( \le B \le 0.0040\);
          Sb: 0.06% \le Sb \le 0.19%;
35
          P: 0.010% < P < 0.016%;
          S: ≤0.005%;
          Cu: ≤0.35%;
          Ni: ≤0.75%:
          RE: ≤0.10%;
40
          with a balance of Fe and unavoidable impurities.
     [0013] The steel plate of the present disclose further comprises, in percentages by weight:
          0.10\le Mo\le 0.40\%;
45
          0.010% < Nb < 0.045%:
          0.02\% \le V \le 0.10\%;
          0.015%≤Ti≤0.050%.
      [0014] The steel plate of the present disclose further comprises, in percentages by weight:
50
          2.50% < Cr < 5.00%;
          0.012\% \le P \le 0.030\%;
```

[0015] Further, in the steel plate of the present disclosure, among the unavoidable impurities, S is < 0.010% by weight.
[0016] In the corrosion-resistant and wear-resistant steel plate of the present disclosure, the design principles of each chemical element are as follows (the following contents are measured in mass percentages):

0.12%≤Cu≤0.40%; 0.20%≤Ni≤0.90%.

5

10

15

20

25

30

35

40

45

50

55

Carbon (C): Carbon is the most basic and important element in wear-resistant steel, which can improve the strength and hardness of steel, and thus improve the wear resistance of steel, but it is not good for the toughness and welding performance of steel. Therefore, in the present disclosure, the carbon content is controlled to be $0.10\% \le C \le 0.30\%$, and further preferably $0.12\% \le C \le 0.29\%$.

Silicon (Si): Silicon solid solutions in ferrite and austenite increase their hardness and strength, however, too much silicon can cause a sharp decrease in the toughness of steel. At the same time, considering that the affinity between silicon and oxygen is stronger than that between iron and oxygen, it is easy to produce silicates with low melting points during welding, which increases the fluidity of slags and molten metals, and affects the quality of welds. Therefore, the content should not be too high. The content of silicon is controlled to be $0.10\% \le Si \le 0.50\%$ and further preferably $0.15\% \le Si \le 0.50\%$. In some embodiments, the silicon content is controlled to be $0.25\% \le Si \le 0.45\%$.

Manganese (Mn): Manganese strongly increases the hardenability of steel and reduces the transition temperature of a wear-resistant steel and the critical cooling rate of steel. However, when the content of manganese is high, it has a tendency to roughen the grains, increases the tempering brittleness sensitivity of steel, and it is easy to cause segregation and cracks in the casting billet, which reduces the performance of the steel plate. The content of manganese is controlled to be $0.50\% \le Mn \le 1.50\%$, and further preferably $0.60\% \le Mn \le 1.50\%$. In some embodiments, the content of manganese is controlled to be $0.65\% \le Mn \le 1.50\%$.

Molybdenum: Molybdenum can refine grains and improve strength and toughness. Molybdenum exists in both the solid solution phase and the carbide phase in steel. Therefore, molybdenum-containing steel has the effect of solution strengthening and carbide diffusion strengthening at the same time. Molybdenum is an element that reduces tempering brittleness and can improve tempering stability. The content of molybdenum is controlled to be $0.010\% \le Mos \le Mo$

Niobium (Nb): The grain refining and precipitation strengthening effects of Nb are extremely significant to improve the strength and toughness of materials, and Nb is a strong carbide and nitride formation element, and strongly inhibits the growth of austenite grains. Nb improves the strength and toughness of steel at the same time through grain refinement, Nb improves and enhances the properties of steel mainly through precipitation strengthening and phase change strengthening, and Nb has been used as one of the most effective reinforcing agents in HSLA steel. Therefore, the content of niobium is controlled be $0.005\% \le Nb \le 0.050\%$, and further preferably $0.010\% \le Nb \le 0.045\%$.

Vanadium (V): The addition of vanadium is mainly to refine the grains, so that the austenite grains of a billet will not grow too coarse in the heating stage. In this way, the grains of steel can be further refined in the subsequent multi-pass rolling process, and the strength and toughness of steel can be improved. Therefore, the content of vanadium is controlled to be $0.01\% \le V \le 0.10\%$, and further preferably $0.02\% \le V \le 0.10\%$. In some embodiments, the content of vanadium is controlled to be $0.01\% \le V \le 0.08\%$.

Titanium (Ti): Titanium is one of the strong carbide forming elements, and can form fine TiC particles with carbon. The TiC particles are fine and distributed in the grain boundaries to achieve the effect of refining the grain. Hard TiC particles can improve the wear resistance of steel. Therefore, the content of titanium is controlled to be $0.005\% \le Ti \le 0.050\%$, and further preferably $0.015\% < Ti \le 0.050\%$.

Aluminum (Al): Aluminum and nitrogen in steel can form fine insoluble AIN particles, which refine the grains of steel. Aluminum can refine the grains of steel, fix nitrogen and oxygen in steel, reduce the sensitivity of steel to notching, reduce or eliminate the aging phenomenon of steel, and improve the toughness of steel. Therefore, the content of aluminum is controlled to be $0.010\% \le Al \le 0.060\%$, and further preferably $0.015\% \le Al \le 0.060\%$. In some embodiments, the content of aluminum is controlled to be $0.02\% \le V \le 0.05\%$.

Chromium (Cr): Chromium can reduce the critical cooling rate and improve the hardenability of steel. Chromium can form a variety of carbides such as $(Fe,Cr)_3C$, $(Fe,Cr)_7C_3$ and $(Fe,Cr)_2C_7$ in steel, improving strength and hardness. Chromium can prevent or slow down the precipitation and aggregation of carbides during tempering, which can improve the tempering stability of steel. In addition, it can also improve the resistance of steel to acid corrosion. In the oxidizing medium, a strong and dense layer of chromium oxide is formed on the surface of steel, so that the steel is protected. The dissolution of chromium in steel can significantly increase the electrode potential of the steel and reduce the electrochemical corrosion caused by different electrode potentials. Therefore, the content of chromium is controlled to be $2.00\% \le Cr \le 5.00\%$, and further preferably $2.50\% \le Cr \le 5.00\%$.

Boron (B): Boron increases the hardenability of steel, but an overly high content will lead to hot embrittlement, affecting the welding performance and hot working performance of steel, so it is necessary to strictly control the content of B. Therefore, the content of boron is controlled to be $0.0005\% \le B \le 0.0050\%$, and further preferably $0.0008\% \le B \le 0.0050\%$. In some embodiments, the content of boron is controlled to be $0.0015\% \le B \le 0.0040\%$.

Antimony (Sb): Antimony can improve the resistance of steel to acid corrosion and increase the hardness of alloys. In an acidic environment, passivation occurs due to dissolution, and a passivation layer rich in alloying elements such as Sb forms on the surface of steel, which has a high resistance to acid corrosion. Therefore, the content of antimony is controlled to be 0.01% \leq Sb \leq 0.20%, and further preferably 0.03% \leq Sb \leq 0.20%. In some embodiments, the antimony content is controlled to be 0.05% \leq Sb \leq 0.20%.

Copper (Cu): In steel, it mainly exists in the state of solid solution and elemental phase precipitation, and the solid solution Cu plays a role in solution strengthening; since the solid solubility of Cu in ferrite decreases rapidly with the decrease of temperature, the supersaturated solid solution Cu is precipitated in the form of an element at a lower temperature, which plays a role in precipitation strengthening. At the same time, the addition of Cu to steel can significantly improve the resistance of the steel to atmospheric corrosion, and the effect is particularly significant when it coexists with phosphorus. Therefore, when copper is added, the content of copper can be controlled to be $0.10\% \le Cu \le 0.40\%$, and further preferably $0.12\% \le Cu \le 0.40\%$. The content of phosphorus is controlled to be $0.010\% \le P \le 0.030\%$, and further preferably $0.012\% \le P \le 0.030\%$.

Nickel (Ni): Nickel has the effect of significantly reducing the cold brittleness transition temperature, however, if the content is too high, it will tend to cause the oxide scale on the surface of the steel plate to be difficult to fall off and the cost will increase significantly. Therefore, when nickel is added, the content of nickel is controlled to be $0.20\% \le Ni \le 1.00\%$, and further preferably $0.45\% \le Ni \le 0.8\%$.

Rare Earth (RE): The addition of rare earths to steel can reduce the segregation of elements such as sulfur and phosphorus, improve the shape, size and distribution of non-metallic inclusions, and refine grains to achieve ultra-high hardness. In addition, rare earths can improve the corrosion resistance of steel. The content of rare earth should not be too high, otherwise it will cause serious segregation and reduce the quality and mechanical properties of the casting billet. Therefore, the content of RE is controlled to be $0.01\% \le RE \le 0.10\%$ and further preferably $0.02\% \le RE \le 0.90\%$. Sulfur: Sulfur is a harmful element, and the content should be strictly controlled. The sulfur content in the steel grades involved in this disclosure is controlled to be 0.01%.

[0017] Further, the Brinell hardness of the steel plate of the present disclosure is 350-520HBW, such as 350~500HBW. In some embodiments, the Brinell hardness of the steel plate of the present disclosure is 370-520HBW.

[0018] Further, the steel plate of the present disclosure comprises a lath martensitic structure, bainite and residual austenite, wherein the volume fraction of the bainite is 10-40% and the volume fraction of the residual austenite is 5-15%. **[0019]** Further, the thickness of the steel plate of the present disclosure is 15~40mm.

[0020] The second aspect of the present disclosure is a method for manufacturing the corrosion-resistant and wear-resistant steel plate, comprising the following steps:

- (1) a smelting and casting step;
- (2) a heating step;

5

10

15

20

30

50

55

- (3) a rolling step; and
- (4) an on-line cooling step.

[0021] In the manufacturing method of the corrosion-resistant and wear-resistant steel plate of the present disclosure, in the heating step (2), the slab heating temperature is 1000-1200 °C, and the holding time is 1-3 hours; in the rolling step (3), the start rolling temperature of rough rolling is 900-1150 °C (such as 1000~1100 °C), and the final rolling temperature of finish rolling is 780-880 °C (such as 810~870 °C); in the on-line cooling step (4), the cooling can be carried out by water-cooling, and it can be water-cooled to a temperature not higher than 350 °C (such as 150~350 °C) and then air-cooled to room temperature, and the cooling rate of the water cooling can be 15-50 °C/s.

40 [0022] Further, in the steel plate of the present disclosure, the finish rolling deformation rate of the steel plate is 60~80%.

Beneficial effects

[0023] Compared with the prior art, the corrosion-resistant and wear-resistant steel plate of the present disclosure and the manufacturing method thereof have the following advantages and beneficial effects:

The corrosion-resistant and wear-resistant steel plate involved in the present disclosure has obvious advantages, and the wear-resistant steel plate with both excellent acid resistance and wear resistance is obtained by controlling the contents of carbon and alloying elements and each heat treatment process, and it can be manufactured at low cost with a simple process, and it has high strength and hardness, excellent machining performance, easy weldability, and excellent acid corrosion resistance. Specifically:

- 1. From the point of view of chemical composition, the corrosion-resistant and wear-resistant steel plate of the present disclosure mainly has an alloy composition of low-carbon and low-alloy, and makes full use of the characteristics of refinement and strengthening of alloying elements such as Cr, Mo, Ni, Cu, Nb, Ti, etc., to ensure that the steel plate has good mechanical properties and good corrosion resistance, etc., and the corrosion-resistant and wear-resistant steel plate of the present disclosure has the advantages of high strength, high hardness and excellent acid resistance and alkali resistance, and has good welding performance.
- 2. From the point of view of production process, the corrosion-resistant and wear-resistant steel plate of the present

disclosure improves the structural refinement and strengthening effect by controlling the process parameters such as the start and final rolling temperature, finish rolling deformation rate and cooling rate in the manufacturing method, thereby reducing the content of carbon and alloying elements, and obtaining a steel plate with excellent mechanical properties and welding properties. In addition, the process also has the characteristics of short production process, high efficiency, energy saving and low cost.

3. The corrosion-resistant and wear-resistant steel plate of the present disclosure makes full use of the addition of alloying elements and the controlled rolling and cooling process to obtain the lath martensitic structure and residual austenite, which is beneficial to the good matching of the strength, hardness and toughness of the wear-resistant steel plate. The higher the residual austenite content, the higher the self-corrosion potential, the lower the residual austenite content, the lower the self-corrosion potential, and the increase of residual austenite helps to improve the corrosion resistance of the material.

Description of the drawings

[0024] Fig. 1 is the metallographic structure of the steel plate in the present disclosure.

Embodiments

5

10

20

30

35

40

45

50

[0025] The embodiments of the present disclosure are illustrated below by specific examples, and those skilled in the art can easily understand other advantages and effects of the present disclosure from the contents disclosed in the present specification. Although the description of the present disclosure will be presented in conjunction with the preferred example, this does not mean that the features of the present disclosure are limited to those examples. On the contrary, the purpose of the description of the present disclosure in conjunction with embodiments is to cover other options or modifications that may be extended from the claims of the present disclosure. In order to provide an in-depth understanding of the present disclosure, many specific details will be included in the following description. This disclosure may also be implemented without these details. In addition, in order to avoid confusion or obscurity of the main points of the present disclosure, some specific details will be omitted from the description.

Example 1-8 and Comparative Example 1

[0026] Table 1 lists the mass percentage of each chemical element of the corrosion-resistant and wear-resistant steel plates of Example 1-8 and Comparative Example 1.

Table 1: Chemical compositions of Example 1-8 and Comparative Example 1 (wt.%)

	Example	Comparative							
	1	2	3	4	5	6	7	8	Example 1
С	0.1	0.15	0.17	0.19	0.22	0.25	0.27	0.3	0.17
Si	0.36	0.3	0.25	0.45	0.4	0.35	0.28	0.3	0.25
Mn	1.5	1.45	1.25	0.95	1.05	0.65	0.75	0.83	1.56
Р	0.015	0.012	0.011	0.013	0.01	0.013	0.015	0.016	0.012
S	0.003	0.005	0.002	0.003	0.004	0.003	0.003	0.002	0.005
Cr	2.3	3	2.5	4	3.2	4.6	3.15	4.35	ı
Мо	0.15	0.1	0.35	0.2	0.3	0.25	0.2	0.35	ı
Nb	0.015	0.01	0.035	0.025	0.03	0.045	0.015	0.015	-
V	0.05	0.05	0.03	0.08	0.02	0.06	0.03	0.01	-
Ti	0.03	0.015	0.025	0.01	0.035	0.045	0.04	0.035	-
Al	0.035	0.02	0.04	0.035	0.025	0.05	0.03	0.02	0.05
В	0.002	0.004	0.002	0.0035	0.0025	0.0015	0.0025	0.002	-
Sb	0.06	0.1	0.08	0.16	0.11	0.19	0.15	0.12	-
Cu	0.15	-	0.2	-	-	0.3	0.25	0.35	-
Ni	0.35	-	0.45	ı	-	0.75	0.6	0.75	-

55

(continued)

	Example 1	Example 2	Example 3	Example 4	Example 5	Example 6	Example 7	Example 8	Comparative Example 1
RE	0.05	0.08	0.02	-	-	-	0.1	0.09	-

[0027] The corrosion-resistant and wear-resistant steel plates of Example 1-8 of the present disclosure were prepared by adopting the following steps:

The manufacturing method of the wear-resistant steel plates of Example 1-8 was as follows:

5

10

15

25

30

35

40

45

50

- (1) a smelting and casting steps, heating, rolling, online quenching and other steps;
- (2) a heating step, wherein the heating temperature of the slab was 1000-1200 °C, and the holding time was 1-3 hours;
- (3) a rolling step, wherein start rolling temperature of rough rolling was 900-1150 $^{\circ}$ C, and the final rolling temperature of finish rolling was 780-880 $^{\circ}$ C;
- (4) an online quenching step, wherein water cooling was used to cool the steel plate to a temperature not greater than $350\,^{\circ}\text{C}$ (stop cooling temperature) and then the steel plate was air cooled to room temperature, wherein the cooling rate of the water cooling was $15-50\,^{\circ}\text{C/s}$.
- [0028] For the wear-resistant steel plate of Comparative Example 1, except that the composition of the raw material and the specific process parameters in each step were different from those of the above Example 1-8, the wear-resistant steel plate was manufactured with the same steps described above. The specific process parameters of Example 1-8 and Comparative Example 1 are shown in Table 2.

5	
10	
15	1
20	mparative Examp
25	e 1-8 and Comr
30	in Examul
35	oces parameters
40	a 7. snacific proces
45	Table
50	

		volum fractio of bainite	12	38	15	59	21	10	38	25	
5		volume fraction of residual austenite, %	8	13	8	6	8	9	11	6	
10		thickness of steel plate, mm	15	30	20	32	40	25	20	20	20
15	ple 1	cooling rate, °C/s	45	32	19	27	30	25	32	28	ı
20	mparative Exam	stop cooling temperature, °C	265	350	200	280	230	150	315	275	
25	1-8 and Co	Cooling manner	water cooling	Air cool- ing							
30	ters in Example	finish rolling deformation rate, %	92	99	63	09	92	62	22	62	50
35	Table 2: specific process parameters in Example 1-8 and Comparative Example 1	final rolling temperature, °C	865	810	835	870	835	820	855	820	920
40	Table 2: specific	start rolling temperature, °C	1050	1000	1060	1020	1020	1100	1090	1110	1000
45		holding time, h	2	1	1.5	2	2	2	2	2	2
50		slab heating temperature, °C	1110	1090	1120	1200	1160	1140	1175	1180	1165
55			Example 1	Example 2	Example 3	Example 4	Example 5	Example 6	Example 7	Example 8	Comparative Example 1

[0029] Acid resistance test, alkali resistance test and mechanical property test were carried out on the corrosion-resistant and wear-resistant steel plates of Example 1-8 and Comparative Example 1, and the obtained test results were listed in Table 3~5.

[0030] The acid resistance test method was as follows: the corrosion test was carried out under the conditions of "temperature 23±2°C, 10%H₂SO₄+3.5%NaCl, and total immersion for 24 hours" using a constant temperature test tank. For the specific method, please refer to the "JB/T7901-2001 Laboratory Uniform Corrosion Total Immersion Test Method for Metallic Materials".

[0031] The alkaline resistance test method was as follows: an alternate immersion test was carried out under alkaline atmosphere, the experimental temperature was $45\pm2^{\circ}$ C, the relative humidity was $70\pm5\%$, the alternate immersion speed was 1/60 (cycles/min), and the PH value was 9.5.

[0032] Brinell hardness test: SCL246 Brinell hardness testing machine was used at room temperature according to GB/T 231.1 standard for Brinell hardness test. The hardness test was carried out on the surface position of the wear-resistant steel samples of Example 1-8 and Comparative Example 1 respectively to obtain the corresponding Brinell hardness.

Table 3: Corrosion properties of Example 1-8 and Comparative Example 1

Example/Comparative Example No.	test time, h	acid corrosion rate, g/(m²·h)
Example 1	24	0.31
Example 2	24	0.33
Example 3	24	0.30
Example 4	24	0.28
Example 5	24	0.35
Example 6	24	0.23
Example 7	24	0.26
Example 8	24	0.22
Comparative Example 1	24	3.51

Table 4: Alkaline Corrosion Resistance of Example 1-8 and Comparative Example 1

Example/Comparative Example No.	test time, h	alkali corrosion rate, g/(m²·h)
Example 1	290	0.49
Example 2	290	0.51
Example 3	290	0.48
Example 4	290	0.45
Example 5	290	0.58
Example 6	290	0.41
Example 7	290	0.44
Example 8	290	0.39
Comparative Example 1	290	2.56

Table 5: mechanical properties of Example 1-8 and Comparative Example 1

Example/Comparative Example No.	hardness, HBW
Example 1	375
Example 2	416
Example 3	426
Example 4	449
Example 5	440

15

10

20

25

30

35

40

45

50

(continued)

Example/Comparative Example No.	hardness, HBW
Example 6	463
Example 7	495
Example 8	513
Comparative Example 1	235

10

30

35

45

50

5

[0033] As can be seen from Table 1-5, the maximum acid corrosion rate of the steel plates of Example 1-8 obtained by optimizing the chemical elements and controlling the manufacturing process is only 0.33 g/(m²-h), the maximum alkali corrosion rate is only 0.51 g/(m²-h), and the minimum hardness (HBW) is 375. The chemical element and manufacturing method of Comparative Example 1 are different from those of the present disclosure, and the acid corrosion rate of Comparative Example 1 is 3.51g/(m²-h), the alkali corrosion rate is 2.56g/(m²-h), and the hardness (HBW) is 235. The acid corrosion and alkali corrosion rates of the steel plate of Comparative Example 1 are much greater than the corrosion rates of the steel plates of the present disclosure, that is, the acid resistance and alkali resistance are poorer, and the hardness is also poorer. That is, the acid resistance and alkali resistance of the steel plate of the present disclosure obtained by optimizing the chemical elements and controlling the manufacturing process have been greatly improved. The wear-resistant steel plate has excellent acid and alkali resistance, and the hardness HBW is greater than 375.

[0034] In summary, it can be seen that through the reasonable chemical composition design in combination with the optimized process, the steel plate of the present disclosure has excellent acid resistance, alkali resistance and wear resistance at the same time, and its production process is simple, can be used in harsh working environments, improve the service life, and has broad application prospects.

[0035] It should be noted that the prior art part of the scope of protection of the present disclosure is not limited to the examples given in the application documents, and all prior art that does not contradict the solution of the present disclosure, including but not limited to prior patent documents, prior publications, prior public use, etc., can be included in the scope of protection of the present disclosure. In addition, the combination of various technical features in this case is not limited to the combination mode recorded in the claims of this case or the combination mode recorded in the specific embodiment, and all the technical features recorded in this case can be freely combined or combined in any way, unless there is a contradiction between them.

[0036] It should also be noted that the examples listed above are only specific examples of the present disclosure. Obviously, the present disclosure is not limited to the above examples, and similar changes or modifications made thereby are directly derived from the contents of the present disclosure by those skilled in the art or can be easily envisaged, and shall fall within the scope of protection of the present disclosure.

Claims

1. A corrosion-resistant and wear-resistant steel plate comprising, in percentages by weight: C: 0.15%≤C≤0.25%; Si: 0.10%≤Si≤0.50%; Mn: 0.50%≤Mn≤1.50%; Mo: 0.01%≤Mo≤0.50%; Nb:

 $0.005\% \leq \text{Nb} \leq 0.050\%; \text{ V: } 0.01\% \leq \text{V} \leq 0.10\%; \text{ Ti: } 0.005\% \leq \text{Ti} \leq 0.050\%; \text{ Al: } 0.010\% \leq \text{Al} \leq 0.060\%; \text{ Cr: } 2.00\% \leq \text{Cr} \leq 5.00\%; \text{ B: } 0.0005\% \leq \text{B} \leq 0.0050\%; \text{ and } \text{P:} 0.010\% \leq \text{P} \leq 0.030\%; \text{ and further comprising one or more of } \text{Cu: } 0.10 \leq \text{Cu} \leq 0.40\%, \text{ Ni: } 0.20 \leq \text{Ni} \leq 1.00\%, \text{ RE: } 0.01 \leq \text{RE} \leq 0.10\% \text{ and } \text{Sb: } 0.01\% \leq \text{Sb} \leq 0.20\%, \text{ with a balance of Fe and unavoidable impurities.}}$

2. A corrosion-resistant and wear-resistant steel comprising, in percentages by weight:

0.10%≤C≤0.30%; 0.10%≤Si≤0.50%; 0.50%≤Mn≤1.50%; 0.01%≤Mo≤0.50%; 0.005%≤Nb≤0.050%; 0.01%≤V≤0.10%; 0.005%≤Ti≤0.050%; 0.010%≤Al≤0.060%; 2.00%≤Cr≤5.00%; 0.0005%≤B≤0.0050% and P: 0.010%≤P≤0.030%; and further comprising one or more of Cu: 0.10%≤ Cu≤0.40%, Ni: 0.20%≤ Ni≤1.00%, RE: 0.010%≤%≤ RE≤0.10% and Sb: 0.01%≤Sb≤0.20% in addition to Fe and unavoidable impurities.

3. A corrosion-resistant and wear-resistant steel plate comprising, in percentages by weight: C: 0.10%≤C≤0.30%; Si: 0.10%≤Si≤0.50%; Mn: 0.50%≤Mn≤1.50%; Mo: 0.01%≤Mo≤0.50%; Nb:

 $0.005\% \le Nb \le 0.050\%$; V: $0.01\% \le V \le 0.10\%$; Ti: $0.005\% \le Ti \le 0.050\%$; Al: $0.010\% \le Al \le 0.060\%$; Cr:

 $2.00\% \le Cr \le 5.00\%$; B: $0.0005\% \le B \le 0.0050\%$; Sb: $0.01\% \le Sb \le 0.20\%$; P: $0.010\% \le P \le 0.030\%$; and further comprising one or more of Cu: $0.10 \le Cu \le 0.40\%$, Ni: $0.20 \le Ni \le 1.00\%$ and RE: $0.01 \le R \le 0.10\%$, with a balance of Fe and unavoidable impurities.

- 5 4. The corrosion-resistant and wear-resistant steel plate of any one of claims 1-3, comprising, in percentages by weight: 0.10≤Mo≤0.40%; 0.010%≤Nb≤0.045%; 0.02%≤V≤0.10%; 0.015%≤Ti≤0.050%; and/or comprising, in percentages by weight: 2.50%<Cr<5.00%; 0.012%≤P≤0.030%; 0.12%≤Cu≤0.40%; 0.20%≤Ni≤0.90%.</p>
- **5.** The corrosion-resistant and wear-resistant steel plate of any one of claims 1-3, wherein among the unavoidable impurities, S is < 0.010% by weight.
 - **6.** The corrosion-resistant and wear-resistant steel plate of any one of claims 1-3, wherein the content of B is: 0.0015%≤B≤0.0040% by weight.
- 7. The corrosion-resistant and wear-resistant steel plate of any one of claims 1-3, wherein the corrosion-resistant and wear-resistant steel plate comprises, in percentages by weight C: 0.10%≤C≤0.30%; Si: 0.25%≤Si≤0.45%; Mn: 0.65%≤Mn≤1.50%; Mo: 0.10%≤Mo≤0.35%; Nb:
- $2.30\% \le Cr \le 4.60\%; \ B: \ 0.0015\% \le B \le 0.0040\%; \ Sb: \ 0.06\% \le Sb \le 0.19\%; \ P: \ 0.010\% \le P \le 0.016\%; \ S: \le 0.005\%; \ Cu: \le 0.35\%; \ Ni: \le 0.75\%; \ RE: \le 0.10\%; \ with \ a \ balance \ of \ Fe \ and \ unavoidable \ impurities.$

 $0.01\% \le Nb \le 0.045\%$; V: $0.01\% \le V \le 0.08\%$; Ti: $0.010\% \le Ti \le 0.045\%$; Al: $0.020\% \le Al \le 0.050\%$; Cr:

- **8.** The corrosion-resistant and wear-resistant steel plate of any one of claims 1-7, wherein the steel plate has a Brinell hardness of 350-520HBW, preferably 350~500HBW.
- **9.** The corrosion-resistant and wear-resistant steel plate of any one of claims 1-8, wherein the steel plate comprises a lath martensitic structure, bainite and residual austenite, wherein the volume fraction of the bainite is 10-40% and the volume fraction of the residual austenite is 5-15%.
- **10.** A method for manufacturing the corrosion-resistant and wear-resistant steel plate of any one of claims 1-9, comprising the following steps:
 - (1) a smelting and casting step;
 - (2) a heating step;
 - (3) a rolling step, wherein the final rolling temperature of finish rolling is 780-880 °C; and
 - (4) an on-line cooling step.
 - **11.** The method for manufacturing the corrosion-resistant and wear-resistant steel plate of claim 10, wherein the on-line cooling step (4) is performed by water cooling and the cooling rate of the water cooling was 15-50 °C/s.
 - **12.** The method for manufacturing the corrosion-resistant and wear-resistant steel plate of claim 10, wherein in the heating step (2), the slab heating temperature is 1000-1200 °C, and the holding time is 1-3 hours; in the on-line cooling step (4), the steel plate is water-cooled to a temperature not higher than 350 °C and then air-cooled to room temperature.
 - **13.** The method for manufacturing the corrosion-resistant and wear-resistant steel plate of claim 10, wherein the finish rolling deformation rate of the steel plate is 60~80%.
- **14.** The method for manufacturing the corrosion-resistant and wear-resistant steel plate of claim 10, wherein in step (3), the start rolling temperature of rough rolling is 900-1150 °C.
 - **15.** The method for manufacturing the corrosion-resistant and wear-resistant steel plate of claim 12, wherein in the rolling step (4), the steel plate is water-cooled to 150-350 °C and then air-cooled to room temperature.

55

25

35

40

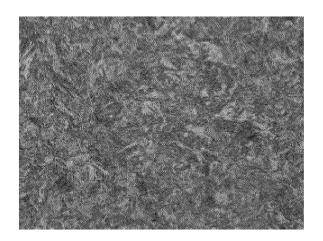


Fig. 1

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CN2023/110178

A. CLA	ASSIFICATION OF SUBJECT MATTER			
	C38/02(2006.01)i; C22C38/04(2006.01)i; C22C38/06 C38/48(2006.01)i; C22C38/50(2006.01)i; C21D8/02(C38/46(2006.01)i;	
According	to International Patent Classification (IPC) or to both na	tional classification and IPC		
B. FIE	LDS SEARCHED			
	documentation searched (classification system followed	by classification symbols)		
IPC:0	C22C C21D			
Documenta	tion searched other than minimum documentation to the	e extent that such documents are included in	n the fields searched	
	data base consulted during the international search (nam		· · · · · · · · · · · · · · · · · · ·	
锰,钅	BS; DWPI; WPABS; CNKI; CNTXT; USTXT; WOTX 目, 铌, 钒, 钛, 铝, 铬, 硼, 磷, 铜, 镍, 锑, 稀土, C, carbo dium, Ti, titanium, Al, aluminum, Cr, chrome, B, boron	n, Si, silicon, Mn, manganese, Mo, molybo	lenum, Nb, niobium, V,	
C. DO	CUMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where a	appropriate, of the relevant passages	Relevant to claim No.	
X	CN 101258257 A (NIPPON STEEL CORP.) 03 Sep claims 1-4, description, page 5, lines 17-21	tember 2008 (2008-09-03)	1-15	
X CN 104662193 A (JFE STEEL CORP.) 27 May 2015 (2015-05-27) 1-15 claims 1-5				
X	CN 114402086 A (JFE STEEL CORP.) 26 April 20. claims 1-3	1-15		
X	Y) 01 January 2021 (2021-01-01)	1-15		
A	CN 111748728 A (BAOSHAN IRON & STEEL CO claims 1-11	., LTD.) 09 October 2020 (2020-10-09)	1-15	
A	CN 113322409 A (BAOSHAN IRON & STEEL CO claims 1-8	., LTD.) 31 August 2021 (2021-08-31)	1-15	
A	CN 107937806 A (WUHAN IRON & STEEL CO., 1 claims 1-5	LTD.) 20 April 2018 (2018-04-20)	1-15	
Further	documents are listed in the continuation of Box C.	See patent family annex.		
"A" docume to be of	categories of cited documents: ent defining the general state of the art which is not considered particular relevance	"T" later document published after the intern date and not in conflict with the application principle or theory underlying the invent	on but cited to understand the ion	
"E" earlier a		"X" document of particular relevance; the considered novel or cannot be considered when the document is taken alone	I to involve an inventive step	
cited to special "O" docume	ent which may throw doubts on priority claim(s) or which is o establish the publication date of another citation or other reason (as specified) ent referring to an oral disclosure, use, exhibition or other	"Y" document of particular relevance; the considered to involve an inventive st combined with one or more other such d being obvious to a person skilled in the a	tep when the document is ocuments, such combination rt	
	ent published prior to the international filing date but later than crity date claimed	"&" document member of the same patent far	nily	
Date of the a	ctual completion of the international search	Date of mailing of the international search	1	
	05 September 2023	20 October 202:	3	
	ailing address of the ISA/CN	Authorized officer		
China N CN)	ational Intellectual Property Administration (ISA/			
	o. 6, Xitucheng Road, Jimenqiao, Haidian District, 100088			
		Telephone No.		

Form PCT/ISA/210 (second sheet) (July 2022)

INTERNATIONAL SEARCH REPORT International application No. Information on patent family members PCT/CN2023/110178 Patent document Publication date Publication date Patent family member(s) 5 cited in search report (day/month/year) (day/month/year) CN 101258257 US A 03 September 2008 2010059150 **A**1 11 March 2010 17 January 2012 US 8097099 B2 EP 1930459 11 June 2008 A1 EP 1930459 11 January 2012 A4 10 WO 2007029515 15 March 2007 A122 March 2007 JP 2007070713 Α JP 4846308 B2 28 December 2011 20080034987 KR A 22 April 2008 ΙN 200801973 **P**1 20 March 2009 15 CN 101258257 В 19 January 2011 ΙN 271702 В 04 March 2016 BR PI0615885 A2 31 May 2011 PI0615885 04 August 2015 BR В1 20 CN 104662193 27 May 2015 ΑU 2013319622 A126 February 2015 Α AU 2013319622 B2 13 October 2016 US 13 August 2015 2015225822 A1US 9982331 B229 May 2018 KR 20150036798 07 April 2015 Α 25 JP 5648769 B2 07 January 2015 JPWO 2014045553 18 August 2016 A1MX 370891 В 09 January 2020 EP 2873747 A120 May 2015 ΕP 2873747 28 October 2015 A4 30 ΕP 2873747 B127 June 2018 BR 112015005986 A2 04 July 2017 BR112015005986 B113 August 2019 WO 2014045553 A127 March 2014 05 June 2015 MX 2015003378 A135 ΙN 201500769 **P**1 03 July 2015 CN 104662193 В 08 March 2017 ΙN 341795 В 24 July 2020 CN 114402086 26 April 2022 EP 22 June 2022 Α 4015659 A1TW202113098 01 April 2021 40 US 2022333227 A120 October 2022 AU 2020350261 A128 April 2022 WO 2021054015 25 March 2021 A1JPWO 21 October 2021 2021054015 A1JP 7088407 B2 21 June 2022 45 KR 20220062609 17 May 2022 Α JP 2022050705 Α 30 March 2022 JP 7226598 B2 21 February 2023 25 March 2021 CA 3153769 A1CN 114402086 В 22 November 2022 50 IN 202217017764A 15 July 2022 TW 742812 B111 October 2021 01 January 2021 CN 112159934 None 09 October 2020 CNВ 14 January 2022 CN 111748728 A 111748728 55 A 31 August 2021 WO CN 113322409 2021169941 **A**1 02 September 2021 CN 113322409 В 28 June 2022

Form PCT/ISA/210 (patent family annex) (July 2022)

INTERNATIONAL SEARCH REPORT Information on patent family members

International application No.
PCT/CN2023/110178

						-	C1/CN2023/1101/8
5	Patent cited in s	document earch report	Publication date (day/month/year)	Pat	tent family membe	r(s)	Publication date (day/month/year)
				IN	202247051074	A	16 September 2022
				KR	20220129609	A	23 September 2022
				BR	112022016824	A2	11 October 2022
10				EP	4089197	A1	16 November 2022
10				JP	2023515115	A	12 April 2023
	CN	107027906 A	20 April 2019				
	CN	107937806 A	20 April 2018	CN	107937806	В	07 February 2020
15							
15							
20							
25							
30							
35							
40							
45							
50							
55							

Form PCT/ISA/210 (patent family annex) (July 2022)

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• WO 201480021680 A [0003]

• WO 201010168491 A [0004]