(11) **EP 4 563 904 A1**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: **04.06.2025 Bulletin 2025/23**

(21) Application number: 24216376.4

(22) Date of filing: 29.11.2024

(51) International Patent Classification (IPC): F24F 1/0014 (2019.01) F24F 13/14 (2006.01) F24F 13/22 (2006.01)

(52) Cooperative Patent Classification (CPC): F24F 1/0014; F24F 13/14; F24F 13/22

(84) Designated Contracting States:

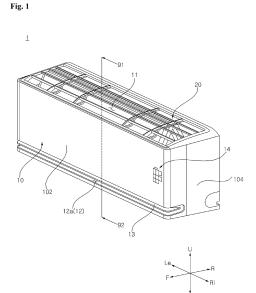
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA

Designated Validation States:

GE KH MA MD TN


(30) Priority: 29.11.2023 KR 20230170001

(71) Applicant: LG Electronics Inc. Yeongdeungpo-gu Seoul 07336 (KR) (72) Inventors:

- KIM, Sungjun 08592 Seoul (KR)
- KANG, Jinil 08592 Seoul (KR)
- KIM, Hankook 08592 Seoul (KR)
- JUNG, Seenchul 08592 Seoul (KR)
- (74) Representative: Ter Meer Steinmeister & Partner Patentanwälte mbB
 Nymphenburger Straße 4
 80335 München (DE)

(54) AIR CONDITIONER

(57) The present disclosure relates to an air-conditioner. The air-conditioner of the present disclosure includes a case having an intake port and a discharge port formed therein, a blower fan disposed inside the case to form an air flow, an indoor heat exchanger heat-exchanging air inside the case with a refrigerant, and a vane disposed at the discharge port and having an insulator disposed therein, wherein the vane includes a flat portion formed flatly and an inclined portion extending to be inclined from the flat portion, wherein the insulator includes a first insulator disposed on an inner side of the flat portion and a second insulator disposed on an inner side of the inclined portion, wherein the first insulator and the second insulator may be formed of different materials.

EP 4 563 904 A1

TECHNICAL FIELD

[0001] The present disclosure relates to an air-conditioner, and more particularly, to an air-conditioner having a vane combined with an insulator.

1

BACKGROUND

[0002] Air-conditioners control the temperature of indoor air to a temperature set by a user and cool and heat indoor air according to the principle of a refrigeration cycle. In particular, an air-conditioner in which an indoor unit is installed vertically in an indoor space is referred to as a stand-alone air-conditioner, an air-conditioner in which an indoor unit is installed on an indoor wall is referred to as a wall-mounted air-conditioner, and an air-conditioner in which an indoor unit is installed on an indoor ceiling is referred to as a ceiling-type air-conditioner.

[0003] The 'indoor unit of an air-conditioner' disclosed in Korean Patent No. 10-2149736 includes: a main body having an intake port and a discharge port; a heat exchanger that cools indoor air intaken through the intake port; a cross-flow fan that allows indoor air to be intaken through the intake port and discharges cooling air through the discharge port; and a blade disposed at the discharge port to control a wind direction of a discharged air flow and having sharply formed end portions, wherein the blade has an insulating material provided between an inner surface and an outer surface.

[0004] In the related art air-conditioner, since an insulator is not disposed at both end portions of the blade, there is a problem that dew formation occurs due to a temperature difference between the inner surface and the outer surface at both end portions of the blade.

[0005] In addition, in the related art air-conditioner, since a space formed inside both end portions of the blade is not uniform, it may be difficult to dispose an insulator with low elasticity.

[Related art document]

[Patent document]

[0006] Korean Patent No. 10-2149736 (Published on August 31, 2020).

SUMMARY

[0007] In view of the above, an object of the present disclosure is to provide a wind direction control structure of an air-conditioner.

[0008] Another object of the present disclosure is to provide an air-conditioner with reduced dew formation.

[0009] Yet another object of the present disclosure is to provide a structure of a vane that may function as a

discharge flow path.

[0010] A further object of the present disclosure is to provide a vane with improved insulation performance.

[0011] A further object of the present disclosure is to provide a structure of a vane with reduced dew formation.

[0012] A further object of the present disclosure is to provide a combined structure of an insulator and a vane.

[0013] A further object of the present disclosure is to provide a structure of a vane to which a plurality of insulators are applied.

[0014] A further object of the present disclosure is to provide an air-conditioner with improved hygiene performance.

[0015] A further object of the present disclosure is to provide an air-conditioner with improved air flow comfort.

[0016] A further object of the present disclosure is to provide an air-conditioner with improved wind direction control performance.

[0017] A further object of the present disclosure is to provide a lightweight vane structure.

[0018] A further object of the present disclosure is to provide a vane structure with reduced manufacturing costs.

[0019] The objects of the present disclosure are not limited to the objects mentioned above, and other objects not mentioned will be clearly understood by those skilled in the art from the description below.

[0020] One or more of the above-mentioned objects are achieved by the invention defined by the subject-matter of the independent claim.

[0021] In a first aspect, an air-conditioner includes: a case including an intake port, a first discharge port located on a front surface, and a second discharge port located on a lower surface; a blower fan disposed inside the case and forming an air flow; an indoor heat exchanger heat-exchanging air inside the case with a refrigerant; and a vane located at the second discharge port and opening and closing the second discharge port.

[0022] The vane may include: a guide panel forming one surface of the vane; a base panel forming the other surface of the vane; and an insulator disposed between the guide panel and the base panel.

[0023] The guide panel may include a flat portion and an inclined portion formed to be inclined from the flat portion.

[0024] The vane may include a flat portion, e.g. a portion that is formed to be flat or in other words the flat portion is formed to be flat; and an inclined portion extending to be inclined from the flat portion.

[0025] The insulator may include a first insulator and/or a second insulator. The first insulator may be disposed on an inner side of the flat portion. The second insulator may be disposed on an inner side of the inclined portion.

[0026] The first insulator and the second insulator may be formed of different materials. Therefore, the insulator may be disposed from one end to the other end of the vane.

[0027] The insulator may be disposed in an accom-

20

25

flow.

modating space formed between the guide panel and the base panel, so that heat transfer between the guide panel and the base panel may be reduced.

[0028] The first insulator is disposed between the flat portion and the base panel. The second insulator is disposed between the inclined portion and the base panel. Therefore, the first insulator having high insulation performance may be disposed between the flat portion formed with a relatively uniform volume and the base panel, and the second insulator having high shrinkage may be disposed between the inclined portion formed with an uneven volume and the base panel.

[0029] The vane may include a supporter disposed in an accommodating space and separating the guide panel and the base panel, for example the supporter may be located between the inclined portion and the flat portion, so that the supporter may support the guide panel.

[0030] The supporter may partition the accommodating space into a first accommodating space in which the first insulator is disposed and a second accommodating space in which the second insulator is disposed.

[0031] The inclined portion may include: a first inclined portion extending upstream from the flat portion in an air flow direction; and/or a second inclined portion extending downstream from the flat portion in the air flow direction. The second insulator may be disposed on at least one of an inner side of the first inclined portion and an inner side of the second inclined portion.

[0032] An accommodating space for accommodating the second insulator may decrease as the inclined portion is away from the flat portion.

[0033] The guide panel has an uneven portion formed on one surface guiding the air flow, so that a surface area of the guide panel exposed to the discharged air flow may be reduced.

[0034] The uneven portion may be formed at the flat portion and/or the inclined portion.

[0035] The uneven portion may be formed at each of the flat portion and the inclined portion.

[0036] The base panel may have an uneven portion formed on one surface facing the guide panel, so that the weight may be reduced.

[0037] In a second aspect, an air-conditioner includes: a case including an intake port and a discharge port; a blower fan disposed inside the case and forming an air flow; an indoor heat exchanger heat-exchanging air inside the case with a refrigerant; and a vane disposed at the discharge port, wherein the discharge port includes: a first discharge port opened forwardly of the case; and a second discharge port opened downwardly of the case, wherein the vane is disposed at the second discharge port to guide an air flow to the first discharge port or guide the air flow discharged through the second discharge port, and the vane includes an insulator disposed therein, so that the vane may close the second discharge port and function as a discharge flow path.

[0038] The vane may include: a guide panel guiding the air flow to the first discharge port or guiding the air flow

discharged through the second discharge port; and a base panel that opens or closes the second discharge port, and the insulator may be disposed between the guide panel and the base panel, so that dew formation occurring on the vane due to a temperature difference between the inner side and the outer side may be reduced.

[0039] The guide panel may include: a flat portion spaced from the base panel; and an inclined portion extending to be inclined from the flat portion, so that the air flow may flow smoothly and the air flow control performance of the vane may be improved.

[0040] The insulator may include: a first insulator disposed between the flat portion and the base panel; and/or a second insulator disposed between the inclined portion and the base panel. Additionally but optionally, the first insulator and the second insulator may be formed of different materials, so that the second insulator with high shrinkage may be disposed between the inclined portion in which an uneven space is formed and the base panel.

[0041] The inclined portion may include: a first inclined portion extending from the flat portion toward an upstream side in the flow direction of the air flow; and/or a second inclined portion extending from the flat portion

[0042] The second insulation member may be disposed in at least one of a space formed between the first inclined portion and the base panel and a space formed between the second inclined portion and the base panel, so that the insulation performance at both end portions of the vane may be improved.

toward a downstream side in the flow direction of the air

[0043] A front guide extending from the blower fan toward the first discharge port may further be included, and a discharge flow path through which the air flow toward the first discharge port flows may be formed between the front guide and the vane, so that the vane may function as a discharge flow path.

[0044] Any one of the first aspect, the second aspect, the third aspect (described later) and the further aspect (described later) may be combined with each other, as well as the features described for the first aspect may be combined with the air-conditioner defined in the second or the third or the fourth aspect, the features described for the second aspect may be combined with the air-conditioner defined in the first or the third or the fourth aspect, the features described for the third aspect may be combined with the air-conditioner defined in the first or the second or the fourth aspect, and the features described for the fourth aspect may be combined with the air-conditioner defined in the first or the second or the third aspect. Other features described in the following detailed description may be combined with any one of the airconditioner of the first, the second, the third and the fourth aspects. Specific details of embodiments are included in the detailed description and drawings.

55

15

20

30

45

ADVANTAGEOUS EFFECTS

[0045] The the air-conditioner of the afore-mentioned aspects may have one or more of the following advantages:

5

According to at least one of the embodiments of the present disclosure, the first insulator and the second insulator formed of different materials are respectively arranged inside the flat and inclined portions of the vane, so that the insulation performance of the vane may be improved. Accordingly, dew formation formed on the vane may be reduced.

[0046] According to at least one of the embodiments of the present disclosure, the second insulator having higher shrinkage than the first insulator may be provided, so that the insulator may be disposed even in the space inside the inclined portion of the vane that is not uniformly formed. Accordingly, an empty space inside the vane may be reduced.

[0047] According to at least one of the embodiments of the present disclosure, the vane includes a guide panel and a base panel coupled thereto, thereby providing the structure including the insulator.

[0048] According to at least one of the embodiments of the present disclosure, since the vane have the supporter that separates the guide panel and the base panel and supports the guide panel, the strength and durability of the vane may be improved. In addition, the supporter may fix the first insulator and the second insulator so that they may not move.

[0049] According to at least one of the embodiments of the present disclosure, the second insulator may be disposed on each of the inner side of the first inclined portion and the inner side of the second inclined portion, so that both end portions of the vane may be formed sharply. In addition, the insulation performance of the vane may be improved.

[0050] According to at least one of the embodiments of the present disclosure, the guide panel has an uneven portion formed on one surface that guides the air flow, so that the area of the guide panel exposed to a low-temperature discharged air flow may be reduced. Accordingly, the dew formation formed on the vane may be reduced.

[0051] According to at least one of the embodiments of the present disclosure, the insulator is disposed inside the vane that guides the air flow to the first discharge port, so that dew formation formed on an outer surface of the vane that forms the discharge flow path may be reduced. [0052] According to at least one of the embodiments of the present disclosure, a front guide extending from the blower fan toward the first discharge port may be further included, and a discharge flow path through which air flow toward the first discharge port flows is formed between the front guide and the vane, so that the vane may function as an inner wall forming the discharge flow path connected to the first discharge port.

[0053] The effects of the present disclosure are not

limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the description and/or the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0054]

FIG. 1 is a perspective view of an air-conditioner according to an embodiment of the present disclo-

FIG. 2 is a cross-sectional view taken along line 91-92 of FIG. 1.

FIG. 3 is a perspective view of an air-conditioner according to an embodiment of the present disclosure.

FIG. 4 is a perspective view of a portion of an airconditioner according to an embodiment of the present disclosure.

FIG. 5 is a perspective view of a guide module according to an embodiment of the present disclosure.

FIG. 6 is an enlarged view of portion 93 of FIG. 5.

FIG. 7 is an exploded view of an assembly of FIG. 6.

FIG. 8 is a view of a guide module according to an embodiment of the present disclosure.

FIG. 9 is an enlarged view of portion 94 of FIG. 5.

FIG. 10 is a perspective view of a portion of an airconditioner according to an embodiment of the present disclosure.

FIG. 11 is a side view of a guide module according to an embodiment of the present disclosure.

FIG. 12 is a perspective view of an air-conditioner according to an embodiment of the present disclosure.

FIG. 13 is a perspective view of a second vane according to one embodiment of the present disclo-

FIG. 14 is an enlarged view of portion 95 of FIG. 13. FIG. 15 is a cross-sectional view taken along line 96-97 of FIG. 13.

FIG. 16 is an enlarged view of portion 98 of FIG. 2.

DETAILED DESCRIPTION

[0055] Hereinafter, the exemplary embodiments of the present invention will be described with reference to the accompanying drawings, in which like numbers refer to like elements throughout although the exemplary embodiments are different, and a redundant description thereof is omitted.

[0056] In the following description, usage of suffixes, such as 'module', 'part' or 'unit' used for referring to elements is given merely to facilitate explanation of the present invention, without having any significant meaning by itself.

[0057] In describing the present invention, if a detailed explanation for a related known function or construction

is considered to unnecessarily divert the gist of the present invention, such explanation has been omitted but would be understood by those skilled in the art. The accompanying drawings of the present invention aim to facilitate understanding of the present invention and should not be construed as limited to the accompanying drawings. Also, the present invention is not limited to a specific disclosed form, but is defined by the appended claims including all modifications, equivalents, and substitutions without departing from the scope of the appended claims.

[0058] It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another.

[0059] It is to be understood that when one element is referred to as being "connected to" or "coupled to" another element, it may be connected directly to or coupled directly to another element or be connected to or coupled to another element, having the other element intervening therebetween. Meanwhile, it is to be understood that when one element is referred to as being "connected directly to" or "coupled directly to" another element, it may be connected to or coupled to another element without the other element intervening therebetween.

[0060] A singular form may include a plural form if there is no clearly opposite meaning in the context.

[0061] The direction indications of up (U), down (D), left (Le), right (Ri), front (F), and rear (R) shown in the drawings are only for the convenience of description, and the technical ideas disclosed in this specification are not limited thereby.

[0062] An air-conditioner 1 is described with reference to FIG. 1.

[0063] The air-conditioner 1 may include a case 10 in which an intake port 11 and a discharge port 12 are formed. The case 10 may form an outer shape of the air-conditioner 1. The case 10 may be elongated. The case 10 may have an internal space in which a refrigeration cycle device is accommodated.

[0064] The case 10 may include a front wall 102 forming a front surface. The front wall 102 may face an indoor space. The front wall 102 may face the front. The case 10 may include a sidewall 104 forming a side surface. The sidewall 104 may cover a side surface of the case 10. The sidewall 104 may be connected to the front wall 102. The sidewall 104 may include a pair of sidewalls 104 bent from the front wall 102.

[0065] The intake port 11 may be formed in the case 10. The intake port 11 may be formed on one surface of the case 10. For example, the intake port 11 may be opened on an upper surface of the case 10. The intake port 11 may be open upwardly in the case 10. Through this, indoor air may be introduced into the interior of the case 10 through the intake port 11.

[0066] The discharge port 12 may be formed in the case 10. The discharge port 12 may be formed on the

other surface of the case 10. For example, the discharge port 12 may include a first discharge port 12a formed on the front wall 102 of the case 10. The discharge port 12 may be elongated. For example, the first discharge port 12a opened forwardly on the front wall 102 of the case 10 may be elongated in a left-right direction or in horizontal direction.

[0067] Air inside the case 10 may be discharged into an indoor space through the discharge port 12. In addition, air introduced through the intake port 11 may be discharged through the discharge port 12. For example, air inside the case 10 may be discharged to the front of the air-conditioner 1 through the first discharge port 12a. [0068] The air-conditioner 1 may include a filter 20 disposed in or at the intake port 11. The filter 20 may have a shape corresponding to a shape of the intake port 11. The filter 20 may purify air introduced into the intake port 11.

[0069] The air-conditioner 1 may include a vane disposed in the discharge port 12. The vane may guide the air flow discharged through the discharge port 12. The vane may be elongated in a length direction of the discharge port 12.

[0070] The vane may include a first vane 13 disposed at the first discharge port 12a. The first vane 13 may be fixed to the first discharge port 12a. The first discharge port 12a may be maintained in a normally open state. The first vane 13 may guide the air flow discharged through the first discharge port 12a forwardly.

[0071] The air-conditioner 1 may include a display 14 that displays operation information. The display 14 may display various types of information. For example, the display 14 may display information on an indoor temperature, a set temperature, a wind speed, a wind direction, indoor humidity, etc. The display 14 may be disposed in the case 10. For example, the display 14 may be disposed on the front wall 102. The display 14 may be coupled to a rear side of the front wall 102. Light emitted through the display 14 may penetrate through the front wall 102. Through this, the display 14 may display various information to a user.

[0072] Referring to FIG. 2, components disposed inside the air-conditioner 1 will be described. The air-conditioner 1 may include an indoor heat exchanger 16, a blower fan 17, and a guide structure forming a discharge flow path 180.

[0073] The air-conditioner 1 may include the indoor heat exchanger 16 disposed inside the case 10. The indoor heat exchanger 16 may heat-exchange air and a refrigerant inside the case 10. The indoor heat exchanger 16 may heat-exchange air introduced through the intake port 11 and the refrigerant. The air that has been heat-exchanged through the indoor heat exchanger 16 may be supplied to the indoor space through the discharge port 12. The indoor heat exchanger 16 may heat-exchange an air flow formed by the blower fan 17 with the refrigerant. The indoor heat exchanger 16 may function as an evaporator or a condenser. For example, the indoor

55

40

heat exchanger 16 may function as an evaporator to supply cold air to the indoor space. For example, the indoor heat exchanger 16 may function as a condenser to supply warm air to the indoor space.

[0074] The air-conditioner 1 may include a blower fan 17 disposed inside the case 10. The blower fan 17 may form an air flow flowing from the intake port 11 to the discharge port 12. The air flow formed by the blower fan 17 may be heat-exchanged with the refrigerant in the indoor heat exchanger 16.

[0075] The blower fan 17 may be disposed adjacent to the indoor heat exchanger 16. For example, the blower fan 17 may be located downstream of the indoor heat exchanger 16 in the air flow direction. However, the present disclosure is not limited thereto, and the blower fan 17 may be located upstream of the indoor heat exchanger 16 in the air flow direction.

[0076] A discharge flow path 180 may be formed in the case 10 through which the air flow formed by the blower fan 17 flows. The discharge flow path 180 may be located downstream of the blower fan 17 in the air flow direction. The discharge flow path 180 may be located downstream of the indoor heat exchanger 16 in the air flow direction. The air flow passing through the indoor heat exchanger 16 or the blower fan 17 may flow to the discharge port 12 through the discharge flow path 180. The discharge flow path 180 may be connected to the discharge port 12.

[0077] The air-conditioner 1 may include a front guide 184 forming the discharge flow path 180. The front guide 184 may be disposed inside the case 10. The front guide 184 may separate the indoor heat exchanger 16 and the discharge flow path 180. The front guide 184 may prevent air that has not passed through the indoor heat exchanger 16 from flowing into the discharge flow path 180. The front guide 184 may be disposed below the indoor heat exchanger 16.

[0078] The front guide 184 may be disposed adjacent to the discharge port 12. The front guide 184 may extend from the blower fan 17 toward the discharge port 12. For example, the front guide 184 may extend from the blower fan 17 toward the first discharge port 12a. The front guide 184 may extend to be bent. Through this, the discharged air flow may flow smoothly.

[0079] The air-conditioner 1 may include a middle guide 181 spaced apart from the front guide 184. The middle guide 181 may be disposed inside the case 10. The blower fan 17 may be disposed between the middle guide 181 and the front guide 184. The middle guide 181 may guide the air flow passing through the blower fan 17 to the discharge flow path 180. For example, the middle guide 181 may be spaced rearward from the front guide 184, and the blower fan 17 may be located between the front guide 184 and the middle guide 181 to form the air flow. The middle guide 181 may extend to be bent in a rotation direction of the blower fan 17.

[0080] The air-conditioner 1 may include a rear guide 182 forming the discharge flow path 180. The discharge flow path 180 may be formed between the front guide 184

and the rear guide 182. The rear guide 182 may be spaced apart from the front guide 184. For example, the rear guide 182 may be spaced rearward from the front guide 184.

[0081] The rear guide 182 may be connected to the middle guide 181. The rear guide 182 may extend from the middle guide 181 toward the discharge port 12. For example, the rear guide 182 may extend from the middle guide 181 toward a second discharge port (12b, not shown) described below. The rear guide 182 may be disposed below the middle guide 181. The rear guide 182 may be disposed below the blower fan 17. The rear guide 182 may be disposed adjacent to the discharge port 12.

[0082] The discharge port 12 may include the second discharge port (12b, not shown) open downwardly in the case 10. The second discharge port (12b, not shown) may be formed on the lower wall 106 of the case 10 i.e. a wall spanning or elongated in a substantially horizontal direction and facing vertically downward. The second discharge port (12b, not shown) may be adjacent to the first discharge port 12a. For example, the first discharge port 12a may be open forwardly in the front wall 102 of the case 10, and the second discharge port (12b, not shown) may be open downwardly in the lower wall 106 of the case 10. Through this, the discharged air may be discharged forwardly and/or downwardly through the first discharge port 12a and the second discharge port (12b, not shown), respectively.

[0083] The vane may include a second vane 15 disposed in the second discharge port (12b, not shown). The second vane 15 may open or close the second discharge port (12b, not shown).

[0084] The air-conditioner 1 may include a guide module 30 disposed in the discharge flow path 180. The guide module 30 may include a plurality of guide vanes (see in FIG. 5, reference signs 32 and 34). The guide module 30 may guide the flow direction of the air flow flowing in the discharge flow path 180. For example, the guide module 30 may guide the flow direction of the air flow flowing in the discharge flow path 180 in the left-right direction. Through this, the direction of the air flow discharged into the indoor space may be controlled more precisely.

[0085] The guide module 30 may be coupled to the rear guide 182. The guide module 30 may be disposed between the rear guide 182 and the front guide 184. The plurality of guide vanes 32, 34 may move, for example in the left-right direction. The guide module 30 may be located downstream of the blower fan 17 in the air flow direction. The guide module 30 may be located between the discharge port 12 and the blower fan 17 along the air flow path.

[0086] An internal arrangement structure of the airconditioner 1 will be described with reference to FIG. 3. [0087] The air-conditioner 1 may include a radar module 40 that detects an occupant in an indoor space. The radar module 40 may detect a biosignal of the indoor space. For example, the radar module 40 may detect a

40

45

50

55

location of an occupant, the number of occupants, the amount of activity, the movement of the occupant, a respiratory rate of the occupant, a body temperature of the occupant, a vital state of the occupant, a posture of the occupant, etc. The air-conditioner 1 may control at least one of wind speed, wind direction, and set temperature based on the detected biosignal result value.

[0088] The radar module 40 may include a radar sensor 44 that detects a biosignal. The radar sensor 44 may transmit and/or receive radio waves. The radar sensor 44 may be disposed toward an indoor space. The radar sensor 44 may detect a biosignal in the indoor space. The radar sensor 44 may include a thermopile sensor. The radar sensor 44 may use radio waves that penetrate and/or reflect obstacles. The radar sensor 44 may detect a biosignal by transmitting and receiving radio waves of a specific Hz. For example, the radar sensor 44 may detect a biosignal in an indoor space using millimeter waves (mm-Wave).

[0089] The radar sensor 44 may be disposed inside the case 10. The radar sensor 44 may be disposed adjacent to an electrical portion 50. The internal space of the case 10 may be divided into a first internal space in which the indoor heat exchanger 16 and the blower fan 17 are disposed and a second internal space in which the electrical portion 50 is disposed. The radar sensor 44 may be disposed in the second internal space. The radar sensor 44 may be disposed between the indoor heat exchanger 16 and the electrical portion 50.

[0090] The radar sensor 44 may be disposed on the front surface of the case 10. The radar sensor 44 may be disposed on the front wall 102 of the case 10. The radar sensor 44 may be disposed on a rear surface of the front wall 102. The radar sensor 44 may use radio waves that penetrate the front wall 102. For example, the radar sensor 44 may detect a biosignal of an indoor space by transmitting and/or receiving a radio wave that penetrates the front wall 102.

[0091] The radar sensor 44 may be located to face the indoor space. The radar sensor 44 may be disposed forwardly. The radar sensor 44 may be located so as to face the front wall 102.

[0092] The air-conditioner 1 may include the electrical portion 50. The electrical portion 50 may be located in the second internal space of the case 10. The electrical portion 50 may be located apart from the indoor heat exchanger 16 and/or the blower fan 17.

[0093] The display 14 may be located in front of the electrical portion 50. The display 14 may be located on the rear side of the front wall 102. The display 14 may be located between the electrical portion 50 and the front wall 102.

[0094] The air-conditioner 1 may include a drain pan 19 that collects condensate occurring in the indoor heat exchanger 16. The drain pan 19 may be disposed inside the case 10. The drain pan 19 may be disposed below the indoor heat exchanger 16. Through this, condensate occurring in the indoor heat exchanger 16 may fall to

the drain pan 19. The drain pan 19 may be elongated in the length direction of the indoor heat exchanger 16.

[0095] The arrangement structure of components disposed inside the air-conditioner 1 will be described with reference to FIG. 4.

[0096] The air-conditioner 1 may include a chassis 60 disposed inside the case 10. The chassis 60 may be coupled to the case 10. The indoor heat exchanger 16 may be coupled to the chassis 60. The blower fan 17 may be coupled to the chassis 60.

[0097] The chassis 60 may include a fan holder 61 coupled to the blower fan 17. The fan holder 61 may include a first fan holder 61a and a second fan holder 61b spaced apart from each other in the length direction of the blower fan 17. The first internal space and the second internal space of the case 10 may be divided based on the second fan holder 61b. That is, based on the second fan holder 61b, a first internal space in which the blower fan 17 and the indoor heat exchanger 16 are disposed may be formed on one side, and a second internal space in which the electric portion 50 is disposed may be formed on the other side.

[0098] The rear guide 182 may be disposed in the first internal space. The rear guide 182 may be coupled to the chassis 60. The guide module 30 may be disposed in the first internal space. The guide module 30 may be coupled to the rear guide 182.

[0099] The guide module 30 will be described with reference to FIG. 5.

[0100] The guide module 30 may include a plurality of guide vanes 32 and 34 arranged in the discharge flow path 180. The plurality of guide vanes 32 and 34 may be arranged in a row. The plurality of guide vanes 32 and 34 may be spaced apart from each other. The plurality of guide vanes 32 and 34 may be arranged in a direction intersecting the flow direction of the air flow toward the discharge port 12. For example, the air flow may flow in an up-down direction, and the plurality of guide vanes 32 and 34 may be disposed in the left-right direction.

[0101] The guide vanes 32 and 34 may include a pair of first guide vanes 32 spaced apart from each other. The pair of first guide vanes 32 may be disposed at the edge of the guide module 30. The pair of first guide vanes 32 may be disposed close to an inner wall forming the discharge flow path 180. The pair of first guide vanes 32 may be disposed at one end and the other end of the guide module 30, respectively, in the length direction. The pair of first guide vanes 32 may be disposed at one end and the other end in a direction in which the plurality of guide vanes 32 and 34 are arranged, respectively. The first guide vane 32 may form or define the edge of the plurality of guide vanes 32 and 34.

[0102] The plurality of guide vanes 32 and 34 may include a plurality of second guide vanes 34 arranged between the pair of first guide vanes 32. The plurality of second guide vanes 34 may be arranged in a direction in which the pair of first guide vanes 32 are spaced apart from each other. That is, the direction in which the plur-

ality of second guide vanes 34 are arranged and the direction in which the pair of first guide vanes 32 are spaced apart from each other may be parallel.

[0103] The guide module 30 may include a coupling panel 31 to which the plurality of guide vanes 32 and 34 are coupled. The coupling panel 31 may be elongated. The coupling panel 31 may be coupled to the discharge flow path 180. The pair of first guide vanes 32 may be coupled to one end and the other end of the coupling panel 31, respectively. The plurality of second guide vanes 34 may be coupled to the coupling panel 31 between the pair of first guide vanes 32.

[0104] The guide module 30 may include a link 36 coupled to the plurality of guide vanes 32 and 34. The link 36 may be elongated. The link 36 may include a link panel 364 and a link stick 362 elongated from the link panel 364. A width of the link panel 364 may be greater than a width of the link stick 362. A length of the link panel 364 may be shorter than a length of the link stick 362.

[0105] The pair of first guide vanes 32 may be respectively coupled to one end and the other end of the link stick 362 in the length direction. A plurality of second guide vanes 34 may be coupled to the link stick 362 and the link panel 364. The plurality of guide vanes 32 and 34 may move integrally with the link 36. For example, as the link 36 moves in the left-right direction, the plurality of guide vanes 32 and 34 may move in the left-right direction. Accordingly, the flow direction of the air flow flowing through the discharge flow path 180 may be adjusted.

[0106] The pair of first guide vanes 32 will be described with reference to FIG. 6.

[0107] The first guide vane 32 may include a fixing member 322 coupled to the coupling panel 31. The fixing member 322 may be fixed to the coupling panel 31. The width of the fixed portion 322 may increase in the flow direction of the discharged air flow.

[0108] The first guide vane 32 may include a movable portion 326 to which a link 36 is coupled. The movable portion 326 may be separated from the fixed portion 322. The movable portion 326 may be movable. The movable portion 326 may be movable in a direction intersecting the flow direction of the discharged air flow. For example, the movable portion 326 may be movable in the left-right direction by the link 36 coupled thereto. The width of the movable portion 326 may be greater than the width of the fixed portion 322.

[0109] The first guide vane 32 may include a connecting portion 324 connecting the movable portion 326 to the fixed portion 322. The connecting portion 324 may be located between the movable portion 326 and the fixed portion 322. The width of the connecting portion 324 may gradually increase from the fixed portion 322 to the movable portion 326.

[0110] The thickness of the connecting portion 324 may be thinner than the thickness of the fixed portion 322. The thickness of the connecting portion 324 may be thinner than the thickness of the movable portion 326. Through this, the flexibility of the connecting portion 324

may be greater than the flexibility of the fixed portion 322 or the movable portion 326.

[0111] The connecting portion 324 may be connected to the moving movable portion 326 and may be bent. For example, the connecting portion 324 may be bent according to the movable portion 326 moving in the left-right direction.

[0112] The connecting portion 324 may include a first connecting portion 3242 connecting the movable portion 326 to the fixed portion 322 and a second connecting portion 3244 located between the movable portion 326 and the fixed portion 322. The second connecting portion 3244 may extend from the movable portion 326. The second connecting portion 3244 may extend from the movable portion 326 toward the fixed portion 322 and may be spaced apart from the fixed portion 322. That is, the second connecting portion 3244 may not be connected to the fixed portion 324. Accordingly, the second connecting portion 3244 may move integrally with the movement of the movable portion 326.

[0113] The second connecting portion 3244 may include a curved portion 3245 whose edge facing the fixed portion 322 is formed to be curved. That is, the edge of the second connecting portion 3244 facing the fixed portion 322 may be formed in a curved shape. Accordingly, the discharged air flow may smoothly pass through the second connecting portion 3244, thereby reducing noise.

[0114] The width of the connecting portion 324 may increase from the fixed portion 322 to the movable portion 326. The width of the second connecting portion 3244 may increase from the fixed portion 322 to the movable portion 326.

[0115] The first connecting portion 3242 and the second connecting portion 3244 may be spaced apart from each other. The connecting portion 324 may include a slit 3240 formed between the first connecting portion 3242 and the second connecting portion 3244. The slit 3240 may be elongated. The slit 3240 may extend from a gap between the second connecting portion 3244 and the fixed portion 322. The slit 3240 may be formed between the first connecting portion 3242 and the second connecting portion 3242 that moves dependently on the fixed portion 322 and the second connecting portion 3244 that moves freely may move independently without interfering with each other.

[0116] The movable portion 326 may include a first movable portion 3261 directly connected to the connecting portion and a second movable portion 3262 coupled to the link 36. The first movable portion 3261 may connect the second movable portion 3262 to the connecting portion 324. The first connecting portion 3242 and the second connecting portion 3244 may be connected to the first movable portion 3261. The first connecting portion 3242 may connect the first movable portion 3261 to the fixed portion 322. The thickness of the first movable portion 3261 may gradually increase from the first connecting portion 3242 to the second movable portion

45

50

3262. Due to the change in the thickness of the first movable portion 3261, a step may not be formed between the connecting portion 324 and the movable portion 326. Accordingly, the air flow flowing along the guide vanes 32 and 34 may flow smoothly.

[0117] The first guide vane 32 may include a communication hole 3260 formed in the movable portion 326. The communication hole 3260 may be a through-hole formed to penetrate the guide vanes 32 and 34. The communication hole 3260 may be formed in a direction intersecting the flow direction of the discharged air flow. The communication hole 3260 may be formed in a direction in which the plurality of guide vanes 32 and 34 are arranged. Accordingly, the air flow flowing along the first guide vane 32 may flow through the first guide vane 32. [0118] The communication hole 3260 may include a plurality of communication holes 3260 formed in the movable portion 326. The plurality of communication holes 3260 may be arranged in a direction intersecting the flow direction of the discharged air flow. The plurality of communication holes 3260 may be arranged in a direction intersecting the direction in which the plurality of guide vanes 32 and 34 are arranged. The plurality of communication holes 3260 may be arranged in a width direction of the movable portion 326. For example, the plurality of communication holes 3260 may be disposed in the up-down direction.

[0119] The communication hole 3260 may be elongated. The communication hole 3260 may be elongated in a direction parallel to the flow direction of the discharged air flow. The communication hole 3260 may be elongated in a direction intersecting the width direction of the movable portion 326. For example, the communication hole 3260 may be elongated in the up-down direction or a front-rear direction. Through this, the air flow flowing through the discharge flow path may smoothly pass through the communication hole 3260 and flow.

[0120] The movable portion 326 may include a brace 3264 formed between a plurality of communication holes 3260. The brace 3264 may partition the plurality of communication holes 3260. The brace 3264 may be elongated. The brace 3264 may extend in a direction parallel to the flow direction of the discharged air flow. For example, the brace 3264 may be elongated in the up-down direction or the left-right direction. The brace 3264 may include a plurality of braces 3264 formed between the plurality of communication holes 3260. By forming the braces 3264 extending in the flow direction of the discharged air flow between the communication holes 3260, the rigidity of the movable portion 326 may be improved. [0121] The guide vanes 32 and 34 may include a coupling slot 3263 in which the link 36 is disposed. The coupling slot 3263 may be formed in the movable portion 326. The coupling slot 3263 may be a through-hole formed in the guide vanes 32 and 34. The coupling slot 3263 may be formed in a direction intersecting the flow direction of the discharged air flow. The coupling slot

3263 may be elongated in a direction parallel to the flow direction of the discharged air flow. Through this, the discharged air flow may also flow through the guide vanes 32 and 34 also through the coupling slot 3263.

[0122] The coupling slot 3263 may be disposed in a row with the plurality of communication holes 3260. For example, the coupling slot 3263 and the plurality of communication holes 3260 may be formed in a row in the up-down direction or the front-rear direction on the movable portion 326.

[0123] The coupling panel 31 may include a hook 312 coupled to the discharge flow path 180. For example, the coupling panel 31 may be hook-coupled to the rear guide 182 forming the discharge flow path 180.

[0124] The second guide vane 34 will be described with reference to FIG. 7.

[0125] The second guide vane 34 may include a fixed portion 342 coupled to the coupling panel 31. The fixed portion 342 may be fixed to the coupling panel 31. The width of the fixed portion 342 may increase in the flow direction of the discharged air flow.

[0126] The second guide vane 34 may include a movable portion 346 to which the link 36 is coupled. The movable portion 346 may be separated from the fixed portion 342. The movable portion 346 is movable. The movable portion 346 may be movable in a direction intersecting the flow direction of the discharged air flow. For example, the movable portion 346 may be movable in the left-right direction by the coupled link 36. The width of the movable portion 346 may be greater than the width of the fixed portion 342.

[0127] The second guide vane 34 may include a connecting portion 344 connecting the movable portion 346 to the fixed portion 342. The connecting portion 344 may be located between the movable portion 346 and the fixed portion 342. The width of the connecting portion 344 may gradually increase from the fixed portion 342 to the movable portion 346.

[0128] The thickness of the connecting portion 344 may be thinner than the thickness of the fixed portion 342. The thickness of the connecting portion 344 may be thinner than the thickness of the movable portion 346. Through this, the flexibility of the connecting portion 344 may be greater than the flexibility of the fixed portion 342 or the movable portion 346.

[0129] The connecting portion 344 may be connected to the moving movable portion 346 and may be bent. For example, the connecting portion 344 may be bent according to the movable portion 346 moving in the left-right direction.

[0130] The connecting portion 344 may include a first connecting portion 3442 connecting the movable portion 346 to the fixed portion 342 and a second connecting portion 3444 located between the movable portion 346 and the fixed portion 342. The second connecting portion 3444 may extend from the movable portion 346. The second connecting portion 3444 may be connected from the movable portion 346 toward the fixed portion 342 and

45

50

may be spaced apart from the fixed portion 342. That is, the second connecting portion 3444 may not be connected to the fixed portion 342. Accordingly, the second connecting portion 3444 may move more freely along with the moving movable portion 346.

[0131] The second connecting portion 3444 may include a curved portion 3245 whose edge facing the fixed portion 342 is formed to be curved. That is, the edge of the second connecting portion 3444 facing the fixed portion 342 may be formed in a curved shape. Accordingly, the discharged air flow may smoothly pass through the second connecting portion 3444 and noise that occurs may be reduced.

[0132] The width of the connecting portion 344 may increase from the fixed portion 342 to the movable portion 346. The width of the second connecting portion 3444 may increase from the fixed portion 342 to the movable portion 346.

[0133] The first connecting portion 3442 and the second connecting portion 3444 may be spaced apart from each other. The connecting portion 344 may include a slit 3440 formed between the first connecting portion 3442 and the second connecting portion 3444. The slit 3440 may be elongated. The slit 3440 may extend from a gap between the second connecting portion 3444 and the fixed portion 342. The slit 3440 may be formed between the first connecting portion 3442 and the second connecting portion 3444 that moves dependently on the fixed portion 342 and the second connecting portion 3444 that moves freely may move independently without interfering with each other.

[0134] The movable portion 3466 may include a first movable portion 3461 that is directly connected to the connecting portion and a second movable portion 3462 to which the link 36 is coupled. The first movable portion 3461 may connect the second movable portion 3462 to the connecting portion 344. The first connecting portion 3442 and the second connecting portion 3444 may be connected to the first movable portion 3461. The first connecting portion 3442 may connect the first movable portion 3461 to the fixed portion 342. The thickness of the first movable portion 3461 may gradually increase from the first connecting portion 3442 to the second movable portion 3462. Due to the change in the thickness of the first movable portion 3461, a step may not be formed between the connecting portion 344 and the movable portion 346. Accordingly, the air flow flowing along the guide vanes 32 and 34 may flow smoothly.

[0135] The second guide vane 34 may include a coupling slot 3463 in which the link 36 is disposed. The coupling slot 3463 may be formed in the movable portion 346. The coupling slot 3463 may be a through-hole formed in the guide vanes 32 and 34. The coupling slot 3463 may be formed in a direction intersecting the flow direction of the discharged air flow. The coupling slot 3463 may be elongated in a direction parallel to the flow direction of the discharged air flow. Through this, the

discharged air flow may also flow through the guide vanes 32 and 34 also through the coupling slot 3463.

[0136] The coupling slot 3463 may be disposed in a row with a plurality of communication holes 3260. For example, the coupling slot 3463 and the plurality of communication holes 3260 may be formed in a row in the up-down direction or the front-rear direction in the movable portion 346.

[0137] The coupling structure of the guide vanes 32 and 34 and the link 36 will be described with reference to FIG. 8.

[0138] The guide vanes 32 and 34 may include a coupling pillar 3464 to which the link 36 is coupled. The coupling pillar 3464 may be formed in the coupling slots 3263 and 3463. The coupling pillar 3464 may extend in the width direction of the guide vanes 32 and 34. The movable portions 326 and 346 may include the coupling pillar 3464.

[0139] The guide vanes 32 and 34 may include a support member 3465 extending from the coupling pillar 3464. The support member 3465 may support the guide vanes 32 and 34. The support member 3465 may support the movable portions 326 and 346. The support member 3465 may slide as the movable portions 326 and 346 move. The support member 3465 may be formed in a cylindrical shape. The radius of the support member 3465 may be greater than the radius of the coupling pillar 3464.

[0140] The link 36 may include a coupling recess 363 coupled to the coupling pillar 3464. The link stick 362 may include the coupling recess 363. The coupling pillar 3464 may be inserted into the coupling recess 363. The coupling pillar 3464 may be rotatably coupled to the coupling recess 363. Through this, the coupling pillar 3464 may move while being coupled to the coupling recess 363.

[0141] The thickness of the guide vanes 32 and 34 is described with reference to FIG. 9.

[0142] The thickness of the guide vanes 32 and 34 may change in the flow direction of the discharged air flow. The thickness of the connecting portions 324 and 344 may be thinner than the thickness of the fixed portions 322 and 342. The thickness of the connecting portions 324 and 344 may be thinner than the thickness of the movable portions 326 and 346. Through this, the flexibility of the connecting portions 324 and 344 may be improved.

[0143] The thickness of the fixed portions 322 and 342 may be thicker than the thickness of the connecting portions 324 and 344. Since the thickness of the fixed portions 322 and 342 is thicker than the thickness of the connecting portions 324 and 344, fixing force fixed to the coupling panel 31 may be improved.

[0144] The thickness of the movable portions 326 and 346 may be thicker than the thickness of the connecting portions 324 and 344. Since the thickness of the movable portions 326 and 346 is thicker than the thickness of the connecting portions 324 and 344, the rigidity of the movable portions 326 and 346 moved by the link 36 may be improved.

55

[0145] One surfaces 32b and 34b of the guide vanes 32 and 34 may be formed flat. One surface 32b of the first guide vane 32 may be formed flat. One surface 34b of the second guide vane 34 may be formed flat.

[0146] The other surfaces 32a and 34a of the guide vanes 32 and 34 may be recessed. The other surfaces 32a and 34a of one region of the guide vanes 32 and 34 corresponding to the connecting portions 324 and 344 may be recessed. Through this, the thickness between one surfaces 32b and 34b and the other surfaces 32a and 34a of the guide vanes 32 and 34 may be reduced.

[0147] The chassis 60 to which the guide module 30 is coupled will be described with reference to FIG. 10.

[0148] The chassis 60 may form the discharge flow path 180. The guide module 30 may be coupled to the chassis 60. The guide module 30 may be coupled to the rear guide 182 forming the discharge flow path 180.

[0149] The rear guide 182 may include a recessed portion 632 to which the guide module 30 is coupled. The recessed portion 632 may be recessed from a surface of the rear guide 182. The surface of the rear guide 182 may refer to one surface of the rear guide 182 forming the discharge flow path 180. The coupling panel 31 of the guide module 30 may be coupled to the recessed portion 632. When the coupling panel 31 is disposed in the recessed portion 632, the surface of the coupling panel 31 may be located parallel to the surface of the rear guide 182. The surface of the coupling panel 31 may be referred to as one surface to which the plurality of guide vanes 32 and 34 are coupled. The surface of the coupling panel 31 and the surface of the rear guide 182 may be located on a continuous virtual surface. The surface of the coupling panel 31 and the surface of the rear guide 182 may form a continuous surface.

[0150] The rear guide 182 may include a driving recess 634. The guide module 30 may receive driving force through the driving recess 634. A driving unit (not shown) that drives the guide module 30 may be disposed on a rear surface of the rear guide 182. The driving unit (not shown) may drive the link 36 of the guide module 30 through the driving recess 634.

[0151] The guide module 30 will be described with reference to FIG. 11.

[0152] The guide module 30 may include a driving shaft 365 that receives driving force. The driving shaft 365 may be formed in the link 36. The driving shaft 365 may be formed in the link panel 364 of the link 36. The driving shaft 365 may be connected to the driving unit (not shown) through the driving recess 634 of the rear guide 182. The power of the driving unit (not shown) may drive the driving shaft 365. As the driving shaft 365 moves, the plurality of guide vanes 32 and 34 connected to the link 36 may move integrally.

[0153] The second vane 15 of the air-conditioner 1 will be described with reference to FIG. 12.

[0154] The first discharge port 12a may be open forwardly in the case 10. The first discharge port 12a may be formed on the front surface of the case 10. For example,

the first discharge port 12a may be elongated in a lower portion of the front wall 102 of the case 10.

[0155] The second discharge port (12b, not shown) may be open downwardly in the case 10. The second discharge port (12b, not shown) may be formed on a lower surface of the case 10. The second discharge port (12b, not shown) may be adjacent to the first discharge port 12a. For example, the second discharge port (12b, not shown) may be elongated in a lower front portion of the case 10.

[0156] The first discharge port 12a and the second discharge port (12b, not shown) may be adjacent to one corner of the case 10. For example, the first discharge port 12a and the second discharge port (12b, not shown) may be adjacent to the lower corner of the front wall 102. The lower corner of the front wall 102 may correspond to the front corner of the lower surface of the case 10.

[0157] The first discharge port 12a may be opened. The first discharge port 12a may not be closed. The second discharge port (12b, not shown) may be opened and closed. For example, the first discharge port 12a may be opened at all times, and the second discharge port (12b, not shown) may be opened when the air-conditioner 1 is in operation and closed when the air-conditioner 1 is stopped. However, without being limited thereto, the second discharge port (12b, not shown) may be closed when the air-conditioner 1 is in operation.

[0158] The air-conditioner 1 may include a lower cover 106 coupled to a lower portion of the case 10, or the case 10 may have an upper portion/case/cover/wall and a lower portion/cover/case/wall 106 coupled to each other forming the case, or may be integrally formed with each other. The lower cover 106 may be detachably coupled to the case 10 or upper portion/case/cover. The lower cover 106 may form a lower surface of the case 10.

[0159] The second vane 15 may be disposed in the second discharge port (12b, not shown). The second vane 15 may be coupled to the case 10. The second vane 15 may be coupled to the lower cover 106.

[0160] The second vane 15 may open or close the second discharge port (12b, not shown). For example, when an operation signal is input to the air-conditioner 1, the second vane 15 may be opened, and when an operation end signal is input to the air-conditioner 1, the second vane 15 may be closed. However, the present disclosure is not limited thereto, and the second vane 15 may be closed when the air-conditioner 1 is in operation.

[0161] The second vane 15 that closes the second discharge port (12b, not shown) may be aligned parallel to the lower cover 106. For example, a lower surface of the second vane 15 that closes the second discharge port (12b, not shown) may be aligned parallel to the lower surface of the lower cover 106.

[0162] The structure of the second vane 15 will be described with reference to FIGS. 13 and 14.

[0163] The second vane 15 may include a guide panel 152. The guide panel 152 may form one surface of the

50

second vane 15. The guide panel 152 may guide the discharged air flow. The guide panel 152 may be disposed on the inside of the case 10. The guide panel 152 may be disposed obliquely with respect to the second discharge port (12b, not shown). The guide panel 152 may open or close the second discharge port (12b, not shown).

[0164] The guide panel 152 may be elongated. The

guide panel 152 may include one surface that is elon-

gated. The guide panel 152 may have an uneven portion formed on a surface thereof. The uneven portion may be elongated in the length direction of the guide panel 152. The guide panel 152 may have a width formed in a direction intersecting the length direction. The uneven portion may be repeated in the width direction of the guide panel 152. By forming the uneven portion on the surface of the guide panel 152, the amount of condensate formed on the surface of the guide panel 152 may be reduced. [0165] The guide panel 152 may include a pair of longer sides LS1 and LS2 and a pair of shorter sides SS1 and SS2. The uneven portion may be elongated in a direction parallel to the pair of longer sides LS1 and LS2. The uneven portion may be arranged in the length direction of the pair of shorter sides SS1 and SS2. A region of the guide panel 152 in which the uneven portion is formed may be spaced apart from the pair of longer sides LS1 and LS2. A region of the guide panel 152 in which the uneven portion is formed may be spaced apart from the pair of shorter sides SS1 and SS2.

[0166] The second vane 15 may include a coupling flange 1522 for coupling to the case 10. The coupling flange 1522 may be formed on the guide panel 152. The coupling flange 1522 may protrude from the guide panel 152. The coupling flange 1522 may be formed at each end of the second vane 15 in the length direction. For example, a pair of coupling flanges 1522 may be formed at the left and right ends of the second vane 15, respectively

[0167] The structure of the second vane 15 will be described with reference to FIG. 15.

[0168] The second vane 15 may include a base panel 154. The base panel 154 may form the other surface of the second vane 15. The base panel 154 may open or close the second discharge port (12b, not shown). The base panel 154 may be disposed obliquely with respect to the second discharge port (12b, not shown). The base panel 154 may be disposed on or toward an outer surface of the case 10. The base panel 154 may be disposed parallel to the lower cover 106. The surface of the base panel 154 may be formed flat. For example, a lower surface of the base panel 154 may be formed flat.

[0169] The guide panel 152 may be coupled to the base panel 154, for example detachably coupled. The guide panel 152 may form an upper portion of the second vane 15, and the base panel 154 may form a lower portion of the second vane 15. The guide panel 152 may form an upper surface of the second vane 15, and the base panel 154 may form a lower surface of the second vane 15.

[0170] The second vane 15 may include an accommodating space 150. The accommodating space 150 may be formed between the guide panel 152 and the base panel 154. A rear or inner surface of the guide panel 152 and a rear or inner surface of the base panel 154 may form an outer circumferential surface of the accommodating space 150. The inner or rear surface of the guide panel 152 may be a lower surface of the guide panel 152 i.e. facing the base panel. The inner or rear surface of the base panel 154 may be an upper surface of the base panel 154 i.e. facing the guide panel.

[0171] The second vane 15 may include an insulator 156, i.e. thermal or heat insulator, disposed in the accommodating space 150. The insulator 156 may be disposed between the guide panel 152 and the base panel 154. The insulator 156 may be coupled to at least one of the guide panel 152 and the base panel 154. For example, the insulator 156 may be bonded to at least one of the guide panel 152 and the base panel 154.

[0172] The insulator 156 and the guide panel 152 may be formed of different materials. The insulator 156 and the base panel 154 may be formed of different materials. For example, the insulator 156 may be formed of a polyethylene (PE) material.

[0173] The second vane 15 may include a supporter 1528 disposed between the guide panel 152 and the base panel 154. The supporter 1528 may be disposed in the accommodating space 150. The supporter 1528 may be elongated in the length direction of the second vane 15. The supporter 1528 may protrude from the guide panel 152. For example, the supporter 1528 may protrude from the rear or inner surface of the guide panel 152 toward the base panel 154 or may protrude from the inner surface of base panel 154 toward the guide panel 152. The supporter 1528 protruding from the inner surface of the guide panel 152 may support the guide panel 152 on the base panel. The supporter 1528 protruding from the inner surface of the guide panel 152 may be abutted on the base panel. The supporter 1528 protruding from the inner surface of the base panel 154 may support the guide panel 152 on the base panel. The supporter 1528 protruding from the inner surface of the base panel 154 may be abutted on the guide panel. The supporter 1528 may separate the guide panel 152 and the base panel 154 from each other. The supporter 1528 may maintain a separation distance or gap between the guide panel 152 and the base panel 154 to maintain the accommodating space 150.

[0174] The supporter 1528 may divide the accommodating space 150 into a first accommodating space 1501 and a second accommodating space 1502. The first accommodating space 1501 may be located in front of the supporter 1528 i.e. facing or toward the front surface of the case. The second accommodating space 1502 may be located at the rear of the supporter 1528 i.e. facing or toward the rear surface of the case. The volume of the second accommodating space 1502 may be greater than the volume of the first accommodating space

45

50

1501.

[0175] The insulator 156 may include a first insulator 1561 disposed or filled in the first accommodating space 1501 and/or a second insulator 1562 disposed or filled in the second accommodating space. The first insulator 1561 and the second insulator 1562 may be formed of different materials. The elasticity of the second insulator 1562 may be higher than the elasticity of the first insulator 1561. For example, the first insulator 1561 may be formed of a polyethylene (PE) material, and the second insulator 1562 may be formed of a polyurethane (PU) material.

[0176] The guide panel 152 may include an uneven portion (or undulating or rippled or serrated portion) formed on a surface thereof. The surface of the guide panel 152 may be an upper or outer surface of the guide panel 152, i.e. with respect to the accommodating space 150. The guide panel 152 may include one or more first grooves 1524 recessed from or into the surface of guide panel 152. The guide panel 152 may include one or more first rib or ridge 1526 protruding from the surface of guide panel 152. The first groove 1524 and the first rib 1526 may be arranged alternately. The first groove 1524 and the first rib 1526 may be elongated in the length direction of the guide panel 152. The first groove 1524 and the first rib 1526 may be arranged alternately in the width direction of the guide panel 152.

[0177] The base panel 154 may include an uneven portion (or undulating or rippled or serrated portion) formed on a surface thereof. For example, the uneven surface of the base panel 154 may include a protrusion formed on a rear or inner surface thereof. The inner or rear surface of the base panel 154 may be an upper surface of the base panel 154. The base panel 154 may include one or more second grooves 1544 recessed into or from the rear or inner surface. The base panel 154 may include one or more second ribs 1546 protruding from the inner or rear surface for example into the accommodating space 150. The second groove 1544 and the second rib 1546 may be arranged alternately. The second groove 1544 and the second rib 1546 may be elongated in the length direction of the base panel 154. The second groove 1544 and the second rib 1546 may be arranged alternately in the width direction of the base panel 154.

[0178] Through this, the weight of the base panel may be reduced.

[0179] In addition, as the weight of the base panel is reduced, driving torque of a motor for driving the second vane may be lowered.

[0180] In addition, as the driving torque of the motor is lowered, driving noise of the motor may be reduced.

[0181] The guide panel 152 may have a flat portion 1521. A first insulator 1561 may be disposed between the flat portion 1521 and the base panel 154, for example in an up-down direction or vertical direction.

[0182] The guide panel 152 may have a height lowered toward the longer sides LS1 and LS2. For example, the guide panel 152 may have a height lowered toward the

first longer side LS1 and the second longer side LS2. The height may be measured in a direction perpendicular to the guide panel and/or the base panel or in a vertical direction

[0183] The guide panel 152 may have a height lowered toward a rear end. The guide panel 152 may include a first inclined portion 1523 that is inclined downwardly toward the rear of the vane 15 or the case 10. The first inclined portion 1523 may be connected to a flat portion 1521 of the guide panel 152. A second insulator 1562 may be disposed between the first inclined portion 1523 and the base panel 154.

[0184] Additionally and optionally, the guide panel 152 may have a height lowered toward a front end of the vane. The guide panel 152 may include a second inclined portion 1525 that is inclined downwardly toward the front of the vane 15 or the case 10. The second inclined portion 1525 may be connected to the flat portion 1521 of the guide panel 152. Another second accommodating space 1502 may be formed between the second inclined portion 1525 and the base panel 154. A second insulator 1562 may be disposed between the second inclined portion 1525 and the base panel 154. The second insulator disposed in the second accommodating space and the second insulator disposed in the other second accommodating space 1502 may be formed of the same material or may be formed of different materials.

[0185] The guide panel 152 may include the flat portion 1521 connected to the first inclined portion 1523 and/or the second inclined portion 1525. The flat portion 1521 may be located between the first inclined portion 1523 and the second inclined portion 1525. The flat portion 1521 may be spaced apart from the base panel 154.

[0186] In short, the guide panel may have the flat portion only or may have the flat portion and one or more of the first inclined portion 1523 and the second inclined portion 1525. Thus, the accommodating space 150 may include one continuous space extending from the front edge/end of the vane to the rear edge/end of the vane 15. Such continuous accommodating space 150 may include a central portion or middle portion defined between the flat portion 1521 of the guide panel and the base panel i.e. the first accommodating space 1501, and one or more edge or end portions (i.e. a front end portion and/or rear end portion) defined between the the first inclidined portion 1523 and/or the second inclined portion 1525 of the guide panel and the base panel i.e. one or more second accommodating spaces 1502. Alternatively, the accommodating space 150 may be physically sub-divided into (for example by one or more of the supporter 1528) into a plurality of sub-spaces (e.g. two sub-spaces or three subspaces) i.e. the first accommodating space 1501 and one or more second accommodating spaces 1502.

[0187] The first insulator 1561 may be disposed in or filled in the first accommodating space 1501, and/or the second insulator 1562 may be disposed in or filled in the second accommodating space 1502.

[0188] The uneven portion of the guide panel 152 may

55

be formed on the flat portion 1521. The uneven portion of the guide panel 152 may be formed on the first inclined portion 1523 and/or the second inclined portion 1525. For example, the uneven portion of the guide panel 152 may be formed from an upper surface of the first inclined portion 1523 to an upper surface of the second inclined portion 1525 through to an upper surface of the flat portion 1521.

[0189] The insulator 156 may be disposed at or on at least one of the first inclined portion 1523 and the second inclined portion 1525.

[0190] The second insulator 1562 may be disposed on the inner side of the second inclined portion 1525. The second insulator 1562 may be disposed in the second accommodating space 1502 formed between the second inclined portion 1525 and the base panel 154.

[0191] The second insulator 1562 may be disposed on the inner side of the first inclined portion 1523. The second insulator 1562 may be disposed between the first inclined portion 1523 and the base panel 154.

[0192] The first insulator 1561 may be disposed between the flat portion 1521 and the base panel 154, and/or the second insulator 1562 may be disposed in a space formed between the first inclined portion 1523 and the base panel 154 and a space formed between the second inclined portion 1525 and the base panel 154.

[0193] The coupling structure and function of the second vane 15 will be described with reference to FIG. 16. [0194] The second vane 15 may be disposed in the second discharge port (12b, not shown). The second vane 15 may open or close the second discharge port (12b, not shown). The second vane 15 may be operated in the second discharge port (12b, not shown). The second vane 15 that closes the second discharge port (12b, not shown) may be disposed parallel to the lower surface of the case 10. For example, the base panel 154 that closes the second discharge port (12b, not shown) may be disposed parallel to the lower cover 106. The second vane 15 that opens the second discharge port (12b, not shown) may be disposed obliquely with respect to the lower surface of the case 10.

[0195] The discharge flow path 180 may include a first discharge flow path 1801 formed between the rear guide 182 and the front guide 184. The discharge flow path 180 may include a second discharge flow path 1802 formed between the first discharge flow path 1801 and the discharge port 12. The second discharge flow path 1802 may be formed between the second vane 15 and the front guide 184.

[0196] The rear guide 182 may extend to be curved from the blower fan 17 toward the second vane 15. A downstream edge of the rear guide 182 may be adjacent to the second vane 15. A downstream end portion of the rear guide 182 may extend toward the first inclined portion 1523 of the second vane 15. The rear guide 182 may guide the air flow flowing through the first discharge flow path 1801 to the first inclined portion 1523 and the flat portion 1521. The second discharge guide 122 may

guide the air flow flowing through the second discharge flow path 1802 to the first discharge port 12a.

[0197] The air-conditioner 1 may include the discharge guide 122 disposed between the first discharge port 12a and the second discharge port (12b, not shown). The discharge guide 122 may be disposed at the corner of the case 10 in which the first discharge port 12a and the second discharge port (12b, not shown) are formed. For example, the discharge guide 122 may be disposed on the inner surface of the lower corner of the front wall 102. [0198] The discharge guide 122 may be bent. The discharge guide 122 may be formed to be curved. The discharge guide 122 may include a first guide surface 1222 forming the first discharge port 12a. The discharge guide 122 may include a second guide surface 1224 forming the second discharge port (12b, not shown).

[0199] The first guide surface 1222 may be formed to be inclined. The first guide surface 1222 may be inclined upwardly toward the front. The first guide surface 1222 may face the first vane 13. The first guide surface 1222 may be located below the first vane 13. The first guide surface 1222 may guide the air flow flowing through the second discharge flow path 1802 to the first discharge port 12a.

[0200] Through this, the first guide surface may guide the air flow discharged through the first discharge port upwardly.

[0201] In addition, indirect wind may be implemented as the air flow is guided upwardly.

[0202] The second guide surface 1224 may be formed to be inclined. The second guide surface 1224 may be inclined downwardly toward the front. The second guide surface 1224 may face the second vane 15. The second guide surface 1224 may face the second inclined portion 1525. The second guide surface 1224 may be located in front of the second vane 15. The second guide surface 1224 may guide the air flow flowing through the second discharge flow path 1802 to the second discharge port (12b, not shown). The first guide surface 1222 and the second guide surface 1224 may be connected in a curved manner. The connecting portion at which the first guide surface 1222 and the second guide surface 1224 are connected may be rounded.

[0203] The closed second vane 15 may be adjacent to the discharge guide 122. When the second vane 15 is closed, the gap from the discharge guide 122 may be narrowed. The second inclined portion 1525 of the second vane 15 may face the second guide surface 1224. The second inclined portion 1525 may be adjacent to the second guide surface 1224. The second inclined portion 1525 may be disposed parallel to the second guide surface 1224. The rear guide 182 may guide the air flow flowing in the first discharge flow path 1801 to the second vane 15. The second vane 15 may guide the air flow flowing in the second discharge flow path 1802 to the first guide surface 1222. Through this, the closed second vane 15 may guide the air flow flowing through the discharge flow path 180 to the first discharge port 12a.

[0204] The closed second vane 15 guides heat-exchanged air. The heat-exchanged air may flow along the guide panel 152 of the second vane 15. The heatexchanged air flows on the surface of the guide panel 152.

[0205] In the closed second vane 15, a temperature difference may occur between the guide panel 152 on which the heat-exchanged air flows and the surface of the base panel 154 that contacts the outside air.

[0206] Since the second vane 15 is thin compared to other components of the case, condensation may occur on the surface of the base panel 154 due to a difference in surface temperature between the guide panel 152 and the base panel 154.

[0207] However, the second vane 15 of the present disclosure may prevent condensation through the insulator 156 disposed between the guide panel 152 and the base panel 154, as shown in FIG. 15.

[0208] The opened second vane 15 may be separated from the discharge guide 122. When the second vane 15 is opened, the gap from the discharge guide 122 may increase. The second inclined portion 1525 of the second vane 15 may be separated from the second guide surface 1224. The air flow flowing through the second discharge flow path 1802 may be discharged to the second discharge port (12b, not shown) through the gap between the second guide surface 1224 of the discharge guide 122 and the second vane 15. Through this, the opened second vane 15 may control a wind direction of the air flow discharged through the second discharge port (12b, not shown).

[0209] Referring to FIGS. 1 to 16, an air-conditioner according to a third aspect aspect of the present disclosure includes: a case including an intake port and a discharge port; a blower fan disposed inside the case and forming an air flow; an indoor heat exchanger heatexchanging air inside the case with a refrigerant; and a vane disposed at the discharge port and including an insulator disposed therein.

[0210] The aforementioned air conditioner according to the third aspect may include one or more of the following:

The vane may include: a flat portion formed flatly; and an inclined portion extending to be inclined from the flat portion.

[0211] The insulator may include: a first insulator disposed on the inside of the flat portion; and a second insulator disposed on the inside of the inclined portion.

[0212] The first insulator and the second insulator may be formed of different materials.

[0213] The vane may include: a guide panel having the flat portion and the inclined portion and guiding air flow; and a base panel coupled to the guide panel and opening or closing the discharge port.

[0214] The insulator may be disposed in an accommodating space formed between the guide panel and the base panel.

[0215] The first insulator may be disposed between the

flat portion and the base panel.

[0216] The second insulator may be disposed between the inclined portion and the base panel.

[0217] The vane may include: a supporter disposed in the accommodating space to separate the guide panel and the base panel.

[0218] The supporter may be located between the inclined portion and the flat portion.

[0219] The supporter may partition the accommodating space into a first accommodating space in which the first insulator is disposed and a second accommodating space in which the second insulator is disposed.

[0220] The inclined portion may include: a first inclined portion extending upstream from the flat portion in a flow direction of the air flow; and a second inclined portion extending downstream from the flat portion in the flow direction of the air flow.

[0221] The second insulation member may be disposed on at least one of the inner side of the first inclined portion and the inner side of the second inclined portion.

[0222] An accommodating space for accommodating the second insulator may decrease as the inclined portion is away from the flat portion.

[0223] The guide panel may have an uneven portion formed on one surface guiding the air flow.

[0224] The uneven portion may be formed at each of the flat portion and the inclined portion.

[0225] The base panel may have an uneven portion formed on one surface facing the guide panel.

[0226] Referring to FIGS. 1 to 16, an air-conditioner according to a fourth aspect of the present disclosure includes: a case including an intake port and an discharge port; a blower fan disposed inside the case and forming an air flow; an indoor heat exchanger heat-exchanging between air inside the case with a refrigerant; and a vane disposed at the discharge port, wherein the discharge port includes: a first discharge port opened forwardly of the case; and a second discharge port opened downwardly of the case, and the vane is disposed at the second discharge port to guide an air flow to the first discharge port or guide the air flow discharged through the second discharge port.

[0227] The aforementioned air conditioner according to the fourth aspect may include one or more of the following:

The vane may include: an insulator disposed therein.

[0228] The vane may include: a guide panel guiding the air flow to the first discharge port or guiding the air flow discharged through the second discharge port; and a base panel opening or closing the second discharge port. [0229] The insulator may be disposed between the

guide panel and the base panel.

[0230] The guide panel may include: a flat portion spaced apart from the base panel; and an inclined portion extending to be inclined from the flat portion.

[0231] The insulator may include: a first insulator disposed between the flat portion and the base panel; and a second insulator disposed between the inclined portion

10

15

20

25

40

50

55

and the base panel.

[0232] The first insulator and the second insulator may be formed of different materials.

[0233] The inclined portion may include: a first inclined portion extending from the flat portion toward an upstream side in the flow direction of the air flow; and a second inclined portion extending from the flat portion toward a downstream side in the flow direction of the air flow.

[0234] The second insulator may be disposed in at least one of a space formed between the first inclined portion and the base panel and a space formed between the second inclined portion and the base panel.

[0235] A front guide extending from the blower fan toward the first discharge port may be further included. [0236] A discharge flow path through which the air flow toward the first discharge port flows may be formed between the front guide and the vane.

[0237] Certain or other embodiments of the invention described above are not mutually exclusive or distinct from each other. Certain or other embodiments of the invention described above may be used together or combined with each other in configuration or function.

[0238] For example, it means that a component A described in a specific embodiment and/or drawing may be combined with a component B described in another embodiment and/or drawing. That is, it means that, even if the combination of the components is not directly described, the combination is possible except for a case where the combination is described as impossible.

[0239] The detailed description should not be construed as being limitative from all aspects, but should be construed as being illustrative. The scope of the present invention should be determined by reasonable analysis of the attached claims, and all changes within the equivalent range of the present invention are included in the scope of the present invention.

Claims

1. An air-conditioner comprising:

a case (10) including an intake port (11), a first discharge port (12a) located at a front surface of the case (10), and a second discharge port (12b) located at a lower surface of the case (10); a blower fan (17) disposed inside the case (10) and configured to form an air flow for discharing through the first discharge port (12a) and/or the second discharge port (12b) to an outside of the case (10);

an indoor heat exchanger (16) configured to heat-exchange air inside the case (10) with a refrigerant; and

a vane (15) located at the second discharge port (12b) and configured to open and close the

second discharge port (12b), wherein the vane (15) includes:

a base panel (154) forming a surface of the vane (15) facing an outside of the case (10); a guide panel (152) forming another surface of the vane (15) facing an inside of the case (10) and configured to guide the air flow, wherein the guide panel (152) and the base panel (154) define an accommodating space (150) thereinbetween; and an insulator (156) disposed in the accommodating space (150) between the guide panel (152) and the base panel (154).

- 2. The air-conditioner of claim 1, wherein an inner surface of the guide panel (152) faces an inner surface of the base panel (154) and the accommodating space (150) is defined between the inner surface of the guide panel (152) and the inner surface of the base panel (154).
- 3. The air-conditioner of any one of the preceding claims, wherein the vane (15) includes one or more supporters (1528) disposed in the accommodating space (150) and extending between the guide panel (152) and the base panel (154) to maintain the accommodating space (150).
- 30 **4.** The air-conditioner of claim 3, wherein:

at least one of the one or more supporters (1528) is integrally formed with the guide panel (152) and extends from the guide panel (152) toward the base panel (154); and/or at least one of the one or more supporters (1528) is integrally formed with the base panel (154) and extends from the base panel (154) toward the guide panel (152).

5. The air-conditioner of any one of the preceding claims, wherein the guide panel (152) includes a flat portion (1521) and one or more inclined portions (1523, 1525) formed to be inclined from the flat portion (1521); or

wherein the guide panel (152) includes a flat portion (1521) spaced apart from the base panel (154), and one or more inclined portions (1523, 1525) formed to be inclined from the flat portion (1521) and extending to contact the base panel (154).

6. The air-conditioner of claim 3 or 4 when depending on claim 5, wherein at least one of the one or more supporters (1528) is located between the inclined portion (1523, 1525) and the flat portion (1521) partitioning the accommodating space (150) into a first accommodating space (1501) and at least one second accommodating space (1502).

15

20

35

40

45

- 7. The air-conditioner of claim 6, wherein the insulator (156) includes a first insulator (1561) disposed in the first accommodating space (1501) and a second insulator (1562) disposed in the at least one second accommodating space (1502).
- 8. The air-conditioner of claim 5, wherein the insulator (156) includes a first insulator (1561) disposed between the flat portion (1521) and the base panel (154), and a second insulator (1562) disposed between the one or more inclined portions (1523, 1525) and the base panel (154).
- **9.** The air-conditioner of any one of claim 5 to 8, wherein the inclined portion (1523, 1525) includes:

a first inclined portion (1523) extending upstream from the flat portion (1521) with respect to an air flow direction or extending toward a front side of the case; and a second inclined portion (1525) extending downstream from the flat portion (1521) with respect to the air flow direction or extending toward a rear side of the case, and wherein the insulator (156) includes a first insulator (1561) and a second insulator (1562), the second insulator (1562) is disposed at at least one of an inner side of the first inclined portion (1523) and an inner side of the second inclined portion (1525).

- **10.** The air-conditioner of any one of claims 7 to 9, wherein a space for accommodating the second insulator (1562) decreases from the flat portion (1521) along the inclined portion (1523, 1525).
- **11.** The air-conditioner of any one of claims 7 to 10, wherein the first insulator (1561) and the second insulator (1562) are formed of different materials.
- **12.** The air-conditioner of any one of claims 5 to 11, wherein the guide panel (152) has an uneven portion formed on a surface of the guide panel (152) configured to guide the air flow and wherein the uneven portion is formed at each of the flat portion (1521) and the inclined portion (1523, 1525) of the guide panel (152).
- **13.** The air-conditioner of any one of the preceding claims, wherein the guide panel (152) has an uneven portion formed on a surface of the guide panel (152) configured to guide the air flow.
- **14.** The air-conditioner of any one of the preceding claims, wherein the base panel (154) has an uneven portion formed on a surface of the base panel (154) facing the guide panel (152).

15. The air-conditioner of any one of the preceding claims, further comprising:

a front guide (184) extending from the blower fan (17) toward the first discharge port (12a), wherein a discharge flow path (180) through which the air flow toward the first discharge port (12a) flows is formed between the front guide (184) and the vane (15).

Fig. 1

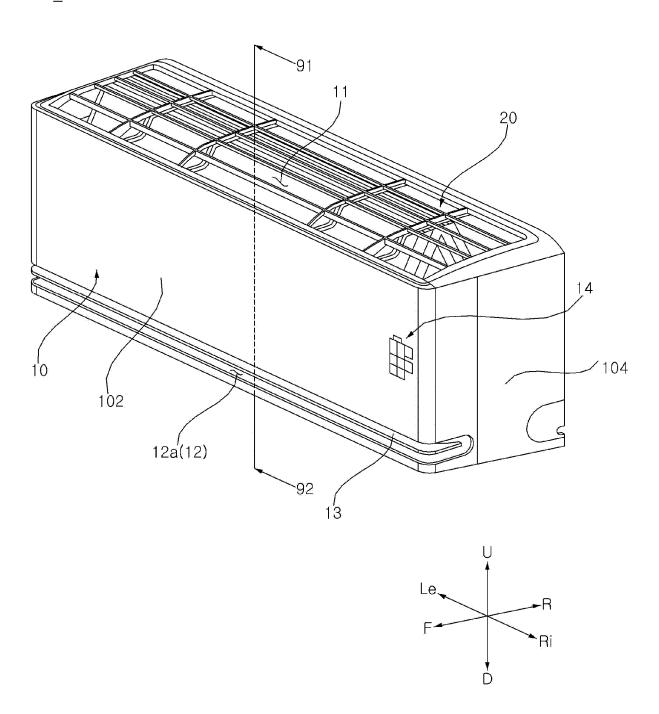


Fig. 2

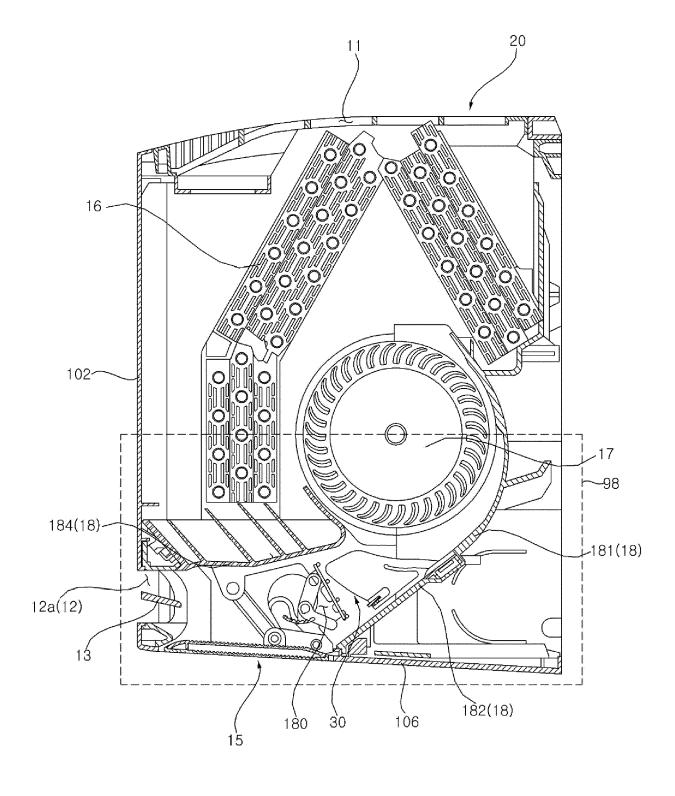


Fig. 3

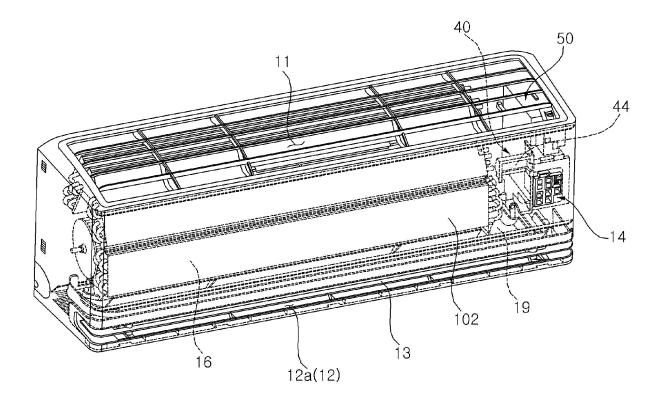


Fig. 4

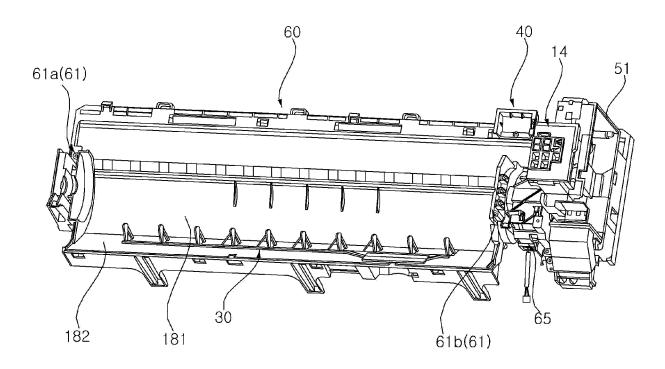


Fig. 5

<u>30</u>

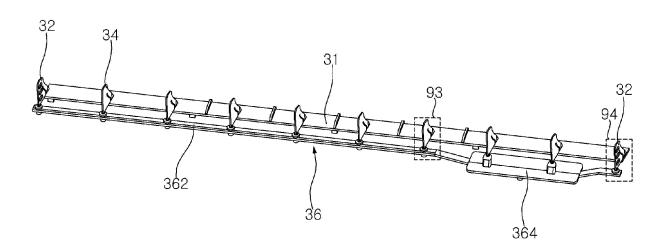
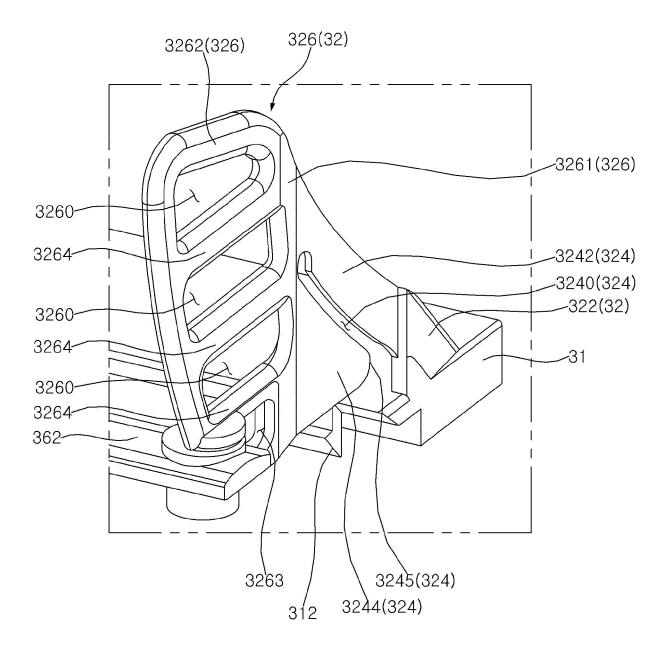



Fig. 6

Fig. 7

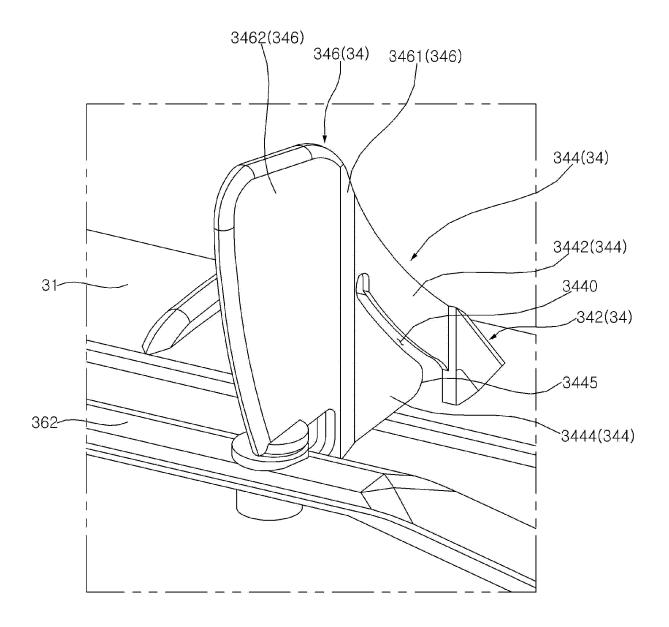
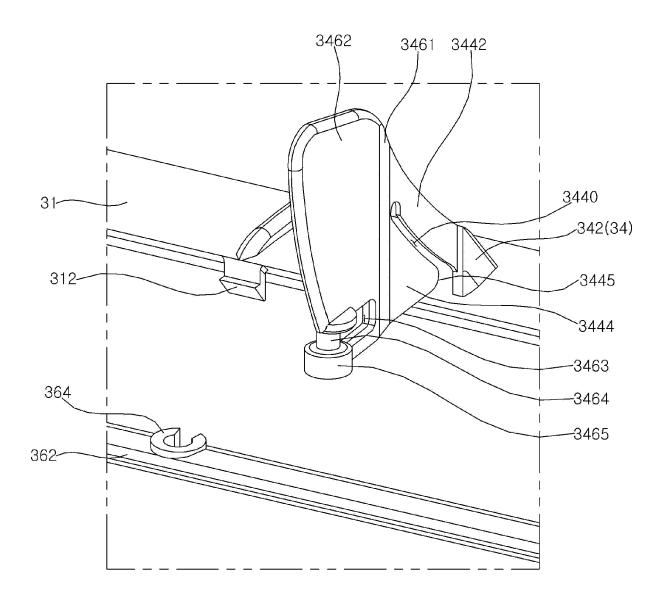
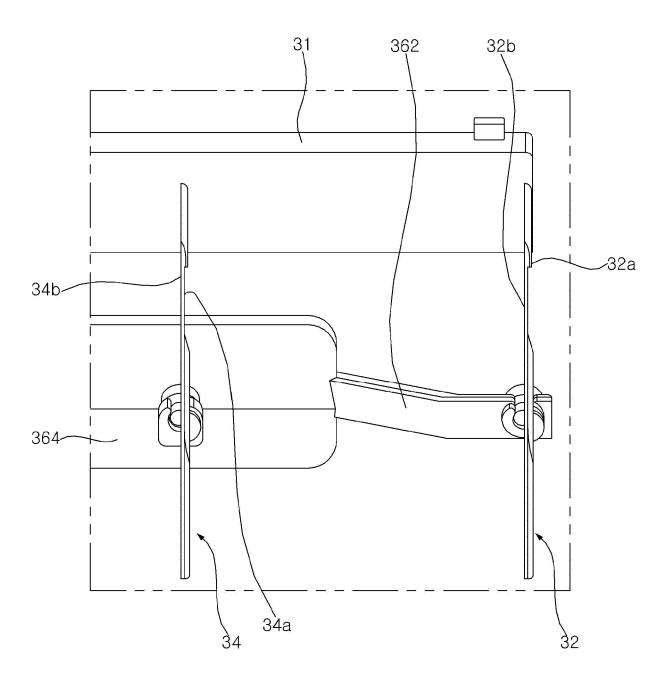
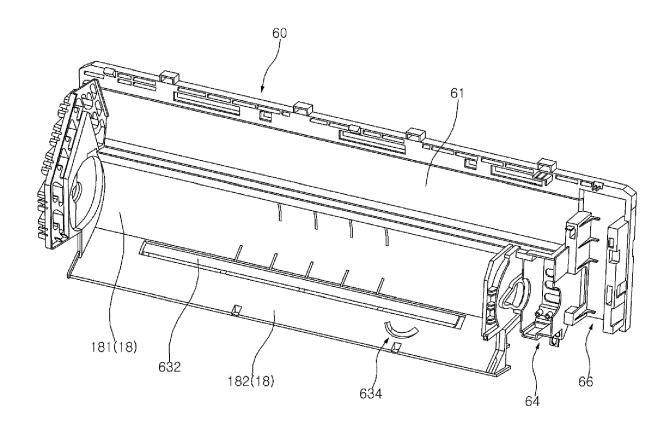
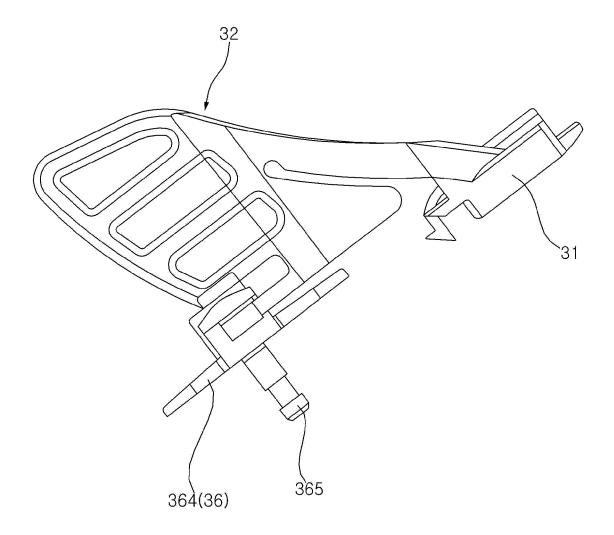
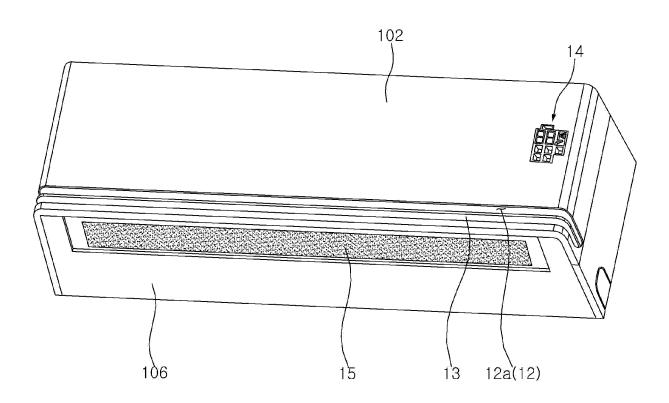


Fig. 8


Fig. 9


Fig. 10

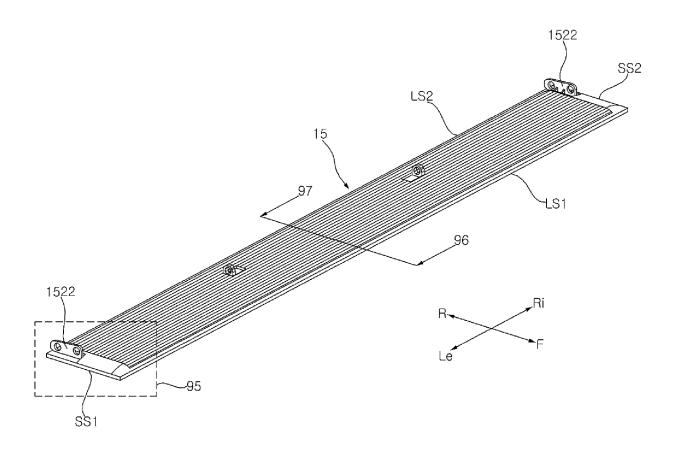

Fig. 11

Fig. 12

Fig. 13

Fig. 14

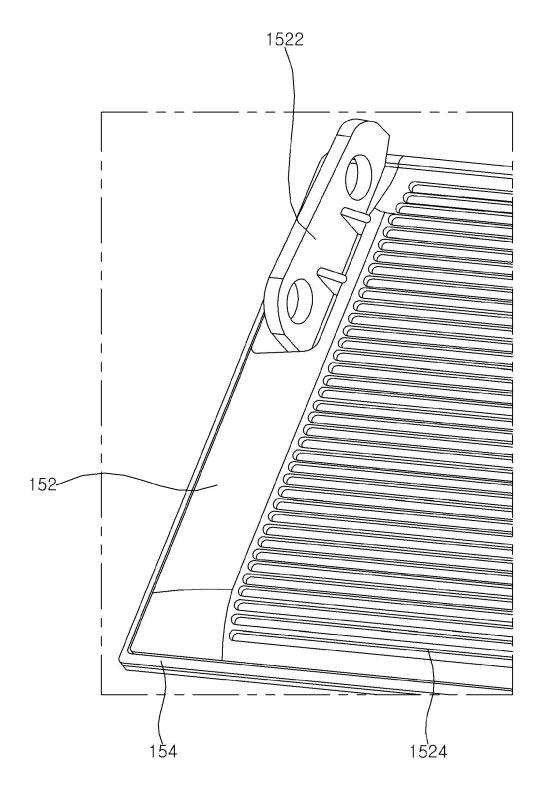
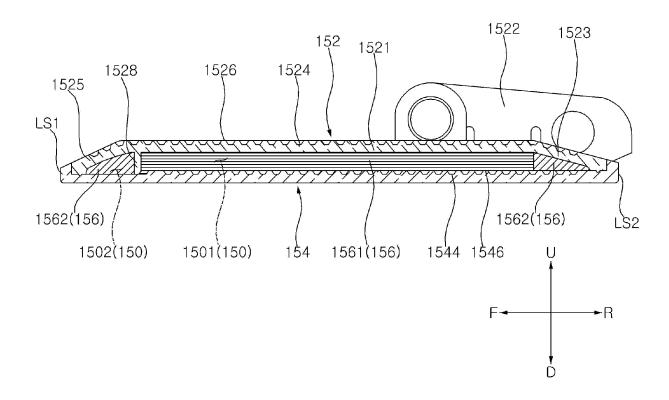
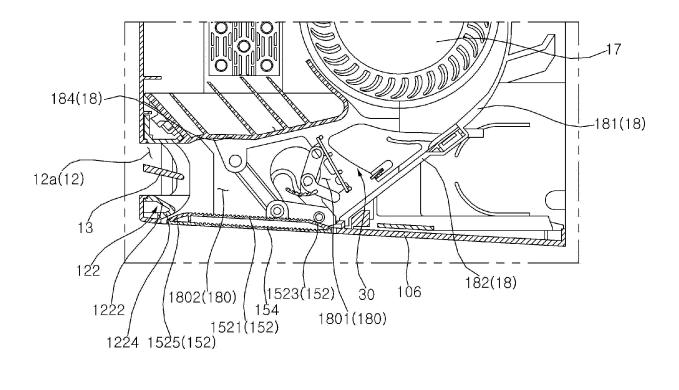




Fig. 15

Fig. 16

EUROPEAN SEARCH REPORT

Application Number

EP 24 21 6376

		DOCUMENTS CONSID					
)	Category	Citation of document with in of relevant pass	ndication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)		
	Y	CN 213 362 671 U (GINC ZHUHAI) 4 June	REE ELECTRIC APPLIANCES 2021 (2021-06-04)	1-10, 12-15	INV. F24F1/0014		
	A	* the whole documen	t *	11	F24F13/14 F24F13/22		
	Y	CN 106 524 463 B (GREFRIGERATION EQUIP GROUP CO LTD) 17 Ma * paragraphs [0071]	MENT CO LTD; MIDEA y 2022 (2022-05-17) - [0087]; figures 5-9	1-10, 12-15	·		
	Y	CN 107 208 924 B (M CORP) 6 December 20 * figure 9 *		3-10,12			
	A	KR 101 824 962 B1 (12 March 2018 (2018 * paragraph [0013];		11			
					TECHNICAL FIELDS SEARCHED (IPC)		
					F24F		
1		The present search report has	been drawn up for all claims				
		Place of search	Date of completion of the search		Examiner		
,04C0	Munich		24 March 2025	4 March 2025 Blo			
EPO FORM 1503 03.82 (P04C01)	X : parl Y : parl doc	ATEGORY OF CITED DOCUMENTS ticularly relevant if taken alone ticularly relevant if combined with anot ument of the same category anological background	T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date D: document cited in the application L: document cited for other reasons				
PO FOR	O : nor	niological background n-written disclosure rmediate document		& : member of the same patent family, corresponding			

EP 4 563 904 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 24 21 6376

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

								24-03-2025
10		t document search report		Publication date	F	Patent family member(s)		Publication date
		3362671	υ (04-06-2021	NONE		1	
15			в 1	L7-05-2022	NONE			
20	CN 107	7208924	в (06-12-2019	CN 10 EP JP JP WO201	07208924 3385634 6505251 17094116	A1 B2 A1	26-09-2017 10-10-2018 24-04-2019 07-06-2018
						18313572 17094116		01-11-2018 08-06-2017
					NONE			
25								
30								
35								
40								
45								
50								
55	RM P0459							
	≧							

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

EP 4 563 904 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• KR 102149736 [0003] [0006]