(11) **EP 4 571 201 A1**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: **18.06.2025 Bulletin 2025/25**

(21) Application number: 24206205.7

(22) Date of filing: 11.10.2024

(51) International Patent Classification (IPC):

F24D 17/02 (2006.01) F24D 3/18 (2006.01) F24F 5/00 (2006.01) F24D 19/10 (2006.01) F24D 3/10 (2006.01) F24H 15/156 (2022.01) F24H 15/174 (2022.01) F24H 15/215 (2022.01) F24H 15/219 (2022.01) F24H 15/238 (2022.01) F24H 15/242 (2022.01) F24H 15/34 (2022.01) F24H 15/355 (2022.01) F24H 15/375 (2022.01) F24H 15/223 (2022.01) F24H 15/254 (2022.01) F24H 15/258 (2022.01)

(52) Cooperative Patent Classification (CPC):

F24D 19/1012; F24D 3/1058; F24D 3/18; F24D 17/02; F24D 19/1072; F24F 5/0096; F24H 15/156; F24H 15/174; F24H 15/215; F24H 15/219; F24H 15/223; F24H 15/238; F24H 15/242; F24H 15/254; F24H 15/258; (Cont.)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA

Designated Validation States:

GE KH MA MD TN

(30) Priority: 15.12.2023 IT 202300026835

(71) Applicant: ARISTON S.P.A. 60044 Fabriano (AN) (IT)

(72) Inventor: MARRA, Lorenzo I-60044 FABRIANO, ANCONA (IT)

(74) Representative: Leihkauf, Steffen Falk Jacobacci & Partners S.p.A. Via Senato, 8 20121 Milano (IT)

Remarks:

A request for correction of the drawings has been filed pursuant to Rule 139 EPC. A decision on the request will be taken during the proceedings before the Examining Division (Guidelines for Examination in the EPO, A-V, 3.).

(54) CONTROL METHOD AND ROOM HEATING AND COOLING SYSTEM

(57)A method for controlling a heating and/or cooling system (1) comprises controlling a thermal generator (4) of the system (1) and controlling a primary circulator (8) of the system (1) in a first adjustment mode, determining a reduced efficiency condition when a thermal generator power (P_gen) is lower than a lower limit power (P_x) of a desired lower power range (Px < P_gen <= Px_u) and the current primary water delivery temperature (T_flow_out) of the system (1) is higher than a primary water delivery target temperature (T flow setpoint), if the reduced efficiency system has been determined and the operating speed (rpm pump) of the primary circulator is lower than an upper speed limit value (rpm_pump_limit), switching the control of the primary circulator (8) from the first adjustment mode to a second adjustment mode, in which the operating speed (rpm pump) of the primary circulator is increased so that a thermal generator power (P_gen) increases and returns to the desired lower power range $(Px < P \text{ gen } \leftarrow Px \text{ u}).$

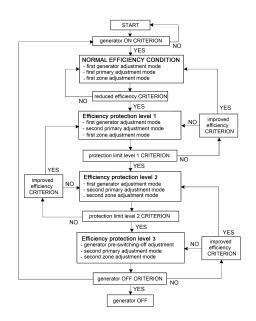


FIG. 3

EP 4 571 201 A1

(52) Cooperative Patent Classification (CPC): (Cont.) **F24H 15/34**; **F24H 15/355**; **F24H 15/375**; F24D 3/1091

30

45

Description

[0001] The invention relates to a room heating and/or cooling / cooling system and to a method of controlling a room heating and/or cooling / cooling system.

Background art

[0002] A water-based heating and/or cooling system to provide hot sanitary water and/or heating and/or cooling a room comprises:

- a primary water circuit,
- a heating and/or cooling circuit system connected to the primary water circuit,
- a thermal heat and/or cooling generator, e.g., a heat pump, a combustion generator (gas boiler) or an electric generator, having a heat exchanger connected in the primary water circuit,
- one or more thermal heat and/or cold emitters and/or accumulators, e.g., a radiator, a radiant panel, a fan coil, etc., placed in the room to be heated and/or cooled, a sanitary hot water tank, a water buffer tank, connected in the heating and/or cooling circuit system
- a primary circulator (e.g., a water pump) for:
- generating a primary water flow in the primary water circuit through the heat exchanger of the thermal generator, in which the primary water is heated or cooled,
- providing primary water from the heat exchanger of the thermal generator in the heating and/or cooling circuit system to supply said thermal emitters and/or accumulators to give or subtract heat to/from the room to be heated and/or cooled and/or to give heat to the sanitary water,
- returning primary water from the heating and/or cooling circuit system to the heat exchanger of the thermal generator,
- a control system, which actuates the thermal generator (controlling the operation, activation, switching-off, and power adjustment thereof) and (the activation, switching-off, and flow rate and head adjustment of) the circulators in the system (e.g., the primary circulator, the zone circulators).

[0003] The control system operates the thermal generator, the primary circulator, and the zone circulators, if present, as a function of the control parameters comprising one or more of an interior room temperature target value selectable by the user, a detected interior room temperature value, an external temperature value detected or communicated based on weather forecasts and/or depending on a sanitary water target temperature value set or selected by the user, a detected sanitary water temperature value, and a difference in the primary water temperature detected downstream and upstream of the heat exchanger of the thermal generator or be-

tween the delivery and return of heating zones.

[0004] It is known to determine, as a function of the aforesaid control parameters, a target temperature value (setpoint) of the primary delivery water downstream of the heat exchanger of the thermal generator (the target temperature value depends on the calculated delivery target temperature for the heating zones present), and to adjust the power of the thermal generator (e.g., the heat pump compressor frequency or the supply of fuel gas and combustion air of a gas boiler) to reach and maintain the target temperature (setpoint) of the primary delivery water.

[0005] Under certain conditions, the target temperature (setpoint) of the primary delivery water can be such that the power demanded from the thermal generator is less than the minimum operating power thereof, e.g., in case of very low demand for heating or cooling heat power during transient seasonal periods (autumn, spring).

[0006] Under these conditions, it is not possible to maintain the primary delivery water temperature setpoint stably when the thermal generator is on, but the detected primary delivery water temperature will systematically exceed the target temperature (setpoint) of the primary delivery water (either by excess, in case of heating, or by defect, in case of cooling), causing the thermal generator (e.g., the heat pump compressor or the burner of a gas boiler) to switch off and on alternately, known as "ON/OFF cycle operation".

[0007] The ON/OFF cycle operation reduces the energy efficiency of the thermal generator, increases the wear of the construction components thereof (compressor, heat pump refrigerant circuit, electrical circuits and components, any type of actuators and components used in the construction of the generators) reducing the service life thereof, and also causes a lack of comfort due to periodic failure to reach the target temperature desired by the user.

[0008] Under other operating conditions of the heating and/or cooling system, the target temperature (setpoint) of the primary delivery water requires a power from the thermal generator either equal or very close to the minimum operating power thereof, resulting in continuous and prolonged operation, without ON/OFF cycle operations, but at minimum power.

[0009] Typically, in both modulable heat pumps and modulable gas boilers, the minimum operating power can be far from their optimal operating power with a maximum COP (Coefficient Of Performance). By way of example, in heat pumps, the maximum COP is typically obtained at about 2/3 of the maximum operating power.

[0010] However, in practice, it is not possible to simply "undersize" the thermal generators to reach a higher demanded power level more frequently, thus closer to the optimal operating power and farther away from the ON/OFF cycle operation condition or from prolonged operating condition at minimum power.

[0011] Conversely, the design power of the thermal

20

40

generator is mainly determined by the need for hot sanitary water and/or the need for more power in the warm-up transients of the system, so that the minimum operating power is oversized compared to the heating/cooling needs of the room for most of the winter/summer period, thus being the cause of frequent ON/OFF cycle operation of the thermal generators, with particular criticality in heat pumps.

[0012] Therefore, for the explained reasons, it is desirable to reduce the occurrence of ON/OFF cycle operations and, in addition, to run the thermal generator for most of the time at a significantly higher power than the minimum operating power and then keep it off for longer idling intervals (in order to respect the target temperature settings by the user).

[0013] US9920967B2 describes a control system for a heating and cooling system which has two distinct modes of operation:

- an "on/off normal control" mode, in which the compressor is switched off and on at a first set of primary delivery water switching-off and switching-on threshold temperatures, and
- an "on/off restriction control" mode, in which the compressor is switched off and on at a second (different) set of primary delivery water switchingoff and switching-on threshold temperatures,

where the control system switches from the normal mode to the restrictive mode when, in the normal mode, a repetition of ON/OFF cycle operation occurs with the compressor operating at the minimum frequency.

[0014] A further control mode of the thermal generator, known to the inventors (unpublished, inhouse knowledge) comprises:

- modulating the power of the thermal generator in order to reach a current primary water delivery temperature equal to the primary water target temperature and,
- when the power of the thermal generator is at a minimum power value for a preset time, e.g., 3 minutes, and the current delivery temperature remains above the delivery target temperature, the thermal generator is switched off,
- in case of power demand, the thermal generator is switched on again only after a preset minimum switching-off time or a preset minimum time between two consecutive generator switching-on events (timer against cycle operation) has elapsed, e.g., 10 minutes.

[0015] It is known to the inventors (unpublished, inhouse knowledge) that the primary circulator and, if provided, also further zone circulators, of the heating and/or cooling system are typically (but not only) controlled in rotational speed or conveyance speed depending on a target temperature difference between a delivery

water temperature and a return water temperature of the primary water circuit (thermal generator) and of the zone water circuits (thermal emitters, radiators, hot sanitary water accumulators, etc.), e.g., of 5K in heat pumps.

[0016] It is also known to the inventors (unpublished, inhouse knowledge) that the primary circulator and, if provided, also further zone circulators, of the heating and/or cooling system are (but not only) controlled in rotational speed or conveyance speed depending on a target head (pressure difference) between a delivery pressure and a target suction pressure of circulated water, or depending on a target flow rate of circulated water.

[0017] Moreover, it is known to the inventors (unpublished, inhouse knowledge) that the zone circuits can be decoupled from the primary circuit of the thermal generator, by means of a hydraulic separator (intermediate buffer tank of capacity ranging from a few liters to tens/hundreds of liters).

Object of the invention

[0018] It is the object of the present invention to improve the method and system of controlling the heating and/or cooling system with the objective of increasing the energy efficiency and COP (Coefficient Of Performance) in addition to increasing the expected service life of the thermal generator.

[0019] It is a further object of the invention to improve the method and system of controlling the heating and/or cooling system to reduce the occurrence of conditions of ON/OFF cycle operations of the thermal generator.

[0020] It is a further object of the invention to improve the method and system of controlling the heating and/or cooling system to reduce the occurrence of prolonged and continuous periods of operation of the thermal generator at the minimum power limit thereof and thus with reduced energy efficiency.

[0021] These and other objects are achieved by a heating and/or cooling system according to claim 1 and by a method according to claim 13.

[0022] The dependent claims relate to advantageous and preferred embodiments.

45 Summary of the invention

[0023] According to an aspect of the invention, water-based heating and/or cooling system 1 for providing hot sanitary water and/or for heating and/or cooling a room comprises:

- a primary water circuit 2,
- a zone circuit system 3 connected to the primary water circuit 2,
- a thermal heat and/or cold generator 4, having a heat exchanger 5 connected in the primary water circuit 2,
- one or more thermal heat and/or cold emitters 6 and/or accumulators 7, connected in the zone circuit

25

30

45

- system 3 in corresponding emission or accumulation zones 11 of the system 1,
- at least one primary circulator 8 for circulating a primary water flow in the primary water circuit 2 through the heat exchanger 5, and from the heat exchanger 5 in the zone circuit system 3 for supplying the thermal emitters 6 and/or accumulators 7, and returning the primary water from the zone circuit system 3 to the heat exchanger 5,
- an electronic control system 9 which:
 - **A)** controls the thermal generator 4 and the primary circulator 8, and
 - B) adjusts a power P gen of the thermal generator 4 depending on a delivery target temperature T flow setpoint of the primary water downstream of the heat exchanger 5 and on a current temperature T_flow_out of the primary water detected downstream of the heat exchanger 5, C) in a primary adjustment mode, adjusts an operating speed rpm_pump of the primary circulator 8 depending on a primary water temdifference target value ta T flow setpoint and on a current primary water temperature difference delta T flow between the detected primary water delivery temperature T flow out and a current primary water return temperature T flow in detected upstream of the heat exchanger 5 (delta T flow = T_flow_out - T_flow_in),

wherein the control system 9 is configured to:

- **D)** determine a reduced efficiency condition (with risk of cycle operation and low COP) when the thermal generator power P_gen is lower (P_gen <= Px) than a lower limit power P_x of a desired lower power range (Px < P_gen <= Px_u) and the current primary water delivery temperature T_flow_out is higher than the primary water delivery target temperature T_flow_setpoint (T_flow_out > T_flow_setpoint + T_hyst_OFF),
- **E)** if the **reduced efficiency condition** has been determined and the operating speed rpm_pump of the primary circulator is lower than an upper speed limit value rpm_pump_limit, switch from the first primary adjustment mode to a second primary adjustment mode, in which the operating speed rpm_pump of the primary circulator is increased so that the thermal generator power P_gen increases and returns to the lower desired power range (Px < P_gen <= Px_u).

[0024] In the second primary adjustment mode, the aim of adjusting the operating speed of the primary circulator rpm pump is no longer reaching and maintain-

ing the primary water temperature difference target value delta_T_flow, but rather increasing and maintaining the power P_gen demanded from the thermal generator 4 above the lower power limit P_x and within the desired lower power range (Px < P_gen <= Px_u), in which range the coefficient of efficiency (COP) is considered acceptable.

[0025] Indeed, according to a not immediately intuitive consideration, the primary delivery water target temperature T_flow_setpoint being the same, increasing the primary delivery water rate reduces the current primary water temperature difference value delta_T_flow and therefore increases the thermal energy that can be transmitted from the thermal generator 4 to the rest of system 1 and the thermal energy that the system 1 can exchange with the environment, because the thermal emitters 6 and/or the thermal accumulators 7 will operate at a higher average temperature because of the current primary water temperature difference delta_T_flow being reduced as compared to the primary water target temperature difference delta_T_flow_setpoint.

[0026] According to a further aspect of the invention, a method for controlling a heating and/or cooling system 1, comprising:

- a primary water circuit 2,
- a zone circuit system 3 connected to the primary water circuit 2,
- a thermal heat and/or cold generator 4, having a heat exchanger 5 connected in the primary water circuit 2,
- one or more thermal heat and/or cold emitters 6 and/or accumulators 7, connected in the zone circuit system 3 in corresponding emission and accumulation zones 11 of the system 1,
- a primary circulator 8 for circulating a primary water flow in the primary water circuit 2 through the heat exchanger 5, and from the heat exchanger 5 in the zone circuit system 3 for supplying the thermal emitters 6 and/or accumulators 7, and returning the primary water from the zone circuit system 3 to the heat exchanger 5,

where said method comprises:

- **A)** controlling the thermal generator 4 and the primary circulator 8, and
 - **B)** adjusting a power P_gen of the thermal generator 4 depending on a delivery target temperature T_flow_setpoint of the primary water downstream of the heat exchanger 5 and on a current temperature T_flow_out of the primary water detected downstream of the heat exchanger 5,
 - **C)** in a primary adjustment mode, adjusting an operating speed rpm_pump of the primary circulator 8 depending on a primary water temperature difference target value delta_T_flow_setpoint and on a current primary water temperature difference delta_T_flow between the detected primary water de-

15

20

25

35

45

50

55

changer 5 connected in the primary water circuit 2,

livery temperature T_flow_out and a current primary water return temperature T_flow_in detected upstream of the heat exchanger 5 (delta_T_flow = T flow out - T flow in),

- **D)** determining a reduced efficiency condition (with risk of cycle operation and low COP) when the thermal generator power P_gen is lower (P_gen <= Px) than a lower limit power P_x of a desired lower power range (Px < P_gen <= Px_u) and the current primary water delivery temperature T_flow_out is higher than the primary water delivery target temperature T_flow_setpoint (T_flow_out > T_flow_setpoint + T hyst OFF).
- **E)** if the reduced efficiency condition has been determined and the operating speed rpm_pump of the primary circulator is lower than an upper speed limit value rpm_pump_limit, switching from the first primary adjustment mode to a second primary adjustment mode, in which the operating speed rpm_pump of the primary circulator is increased so that the thermal generator power P_gen increases and returns to the lower desired power range (Px < P_gen <= Px_u).

Brief description of the figures

[0027] Further advantageous aspects of the invention will become apparent from the following description of some embodiments thereof, given by way of non-limiting example, with reference to the accompanying drawings, in which:

- figure 1 shows a heating and/or cooling system with a primary circulator and zone circulators according to an embodiment,
- figure 2 shows a heating and/or cooling system with only one primary circulator according to an embodiment
- figures 3, 4, 5, 6 are flow charts of a method of controlling the heating and/or cooling system, according to embodiments,
- figure 7 graphically shows the determination of the reset integral and of the release integral as a condition for switching the thermal generator off and on.

Description of embodiments

[0028] With reference to the figures, a water-based heating and/or cooling system 1 for providing hot sanitary water and/or for heating and/or cooling a room comprises:

- a primary water circuit 2,
- a zone circuit system 3 connected to the primary water circuit 2,
- a thermal heat and/or cooling generator 4, e.g., a heat pump, a combustion generator (gas boiler) or an electric generator (resistive), having a heat ex-

- one or more thermal heat and/or cold emitters 6 and/or accumulators 7, e.g., a radiator 6.1, a radiant panel 6.2, a fan coil 6.3, etc., placed in the room to be heated and/or cooled, a sanitary hot water tank 7.1, a hydraulic separator 7.2 or a water buffer tank 7.3,
 - hydraulic separator 7.2 or a water buffer tank 7.3, connected in the zone circuit system 3 in corresponding accumulation and emission zones 11 of the system 1,
- at least one primary circulator 8 (e.g., a water pump) for circulating a primary water flow in the primary water circuit 2 through the heat exchanger 5, in which a temperature change of the primary water occurs, and from the heat exchanger 5 in the zone circuit system 3 for supplying the thermal emitters 6 and/or thermal accumulators 7 in order to change the temperature in the emission and accumulation zones 11, and returning the primary water from the zone circuit system 3 to the heat exchanger 5.

[0029] The system 1 further comprises an electronic control system 9 which:

- **A)** controls (e.g., the operation, activation, switching-off, and power adjustment of) the thermal generator 4 and (e.g., the activation, switching-off, and flow rate and/or head adjustment of) the primary circulator 8, and
- **B)** adjusts a power P_gen of the thermal generator 4 depending on a delivery target temperature T_flow_setpoint of the primary water downstream of the heat exchanger 5 and on a current temperature T_flow_out of the primary water detected downstream of the heat exchanger 5,
- **C)** in a primary adjustment mode, adjusts an operating speed rpm_pump of the primary circulator 8 depending on a primary water temperature difference target value delta_T_flow_setpoint and on a current primary water temperature difference delta_T_flow between the detected current primary water delivery temperature T_flow_out and a current primary water return temperature T_flow_in detected upstream of the heat exchanger 5 (delta_T_flow = T_flow_out T_flow_in).

[0030] According to an aspect of the invention, the control system 9 is configured to:

- D) determine a reduced efficiency condition (with risk of cycle operation and low COP) when the thermal generator power P_gen is lower (P_gen <= Px) than a lower limit power P_x of a desired lower power range (Px < P_gen <= Px_u) and the current primary water delivery temperature T_flow_out is higher than the primary water delivery target temperature T_flow_setpoint (T_flow_out > T_flow_setpoint + T hyst OFF).
- E) if the reduced efficiency condition has been

determined and the operating speed rpm_pump of the primary circulator is lower than an upper speed limit value rpm_pump_limit, switch from the first primary adjustment mode to a second primary adjustment mode, in which the operating speed rpm_pump of the primary circulator is increased so that the thermal generator power P_gen increases and returns to the lower desired power range (Px < P_gen <= Px_u).

Description of the adjustment of thermal generator power P gen

[0031] Under a normal efficiency condition, in a first adjustment mode of the thermal generator, the thermal generator power P_gen is adjusted (by the electronic control system 9) as a function of a primary water delivery target temperature value T_flow_setpoint downstream of the heat exchanger 5 of the thermal generator 4 and a current primary water delivery temperature value T_flow_out (detected) downstream of the heat exchanger 5 of the thermal generator 4, so that (with the aim that) the current primary delivery water temperature value T_flow_out corresponds to the primary delivery water target temperature value T_flow_setpoint (generator adjustment aim: T_flow_out = T_flow_setpoint), possibly within a tolerance range around T_flow_setpoint, for example predetermined.

Determination of the primary water delivery temperature target T flow setpoint

[0032] According to an embodiment, the control method or control system 9 determines the primary water delivery target temperature value T_flow_setpoint as a function of a current external temperature value T_ext, detected for example by an external temperature sensor 10 and/or transmitted to the control system 9 by means of a data connection. For example, the control system 9 comprises, or the control method uses, a temperature adjustment table or curve, selectable or settable by the installer or user, and which defines a relationship between the current external temperature T_ext and the primary water delivery target temperature T_flow_setpoint.

[0033] According to an embodiment, the control method or system 9 determines the primary water delivery target temperature value T_flow_setpoint as a function of one or more internal temperature values, i.e., current zone temperature values T_zone of at least one or more of the emission and/or accumulation zones 11, detected by respective one or more zone temperature sensors 12 and transmitted to the control system 9 by means of a data connection. For example, the control method or the control system 9 determines the primary water delivery target temperature value T_flow_setpoint (at least also) as a function of a difference value between a current zone temperature value T_zone (detected) and a threshold

zone temperature value T_zone_threshold (selectable or settable by the user).

[0034] According to embodiments, the control method or system 9 determines the primary water delivery target temperature value T_flow_setpoint both as a function of the current external temperature value T_ext and as a function of the one or more current zone temperature values T_zone of the various zones present.

[0035] According to embodiments, the control method or system 9 uses a primary water delivery target temperature value T_flow_setpoint either fixed (factory setting) or settable by the user or installer.

Description of the first primary adjustment mode

[0036] In a normal efficiency condition or a protected efficiency condition (which will be described later), in a first primary adjustment mode, the control method or system 9 adjusts the operating speed rpm pump of the primary circulator 8 as a function of a primary water temperature difference target value delta_T_flow_setpoint and a current primary water temperature difference value delta_T_flow between the current primary water delivery temperature T flow out detected (by means of a primary delivery water temperature sensor 13) downstream of the heat exchanger 5 of the thermal generator 4 and the detected current primary water return temperature T flow in (by means of a primary return water temperature sensor 14) upstream of the heat exchanger 5 of the thermal generator 4 (delta_T_flow = T_flow_out -T_flow_in), so that (with the aim that) the current primary water temperature difference value delta T flow matches the primary water temperature difference target value delta T flow setpoint (primary adjustment aim: delta_T_flow = T_flow_out - T_flow_in = delta_T_flow_setpoint), possibly within a tolerance range, for example predetermined.

Determination of the primary water temperature difference target value delta T flow setpoint

[0037] According to an embodiment, the control method or system 9 determines the primary water delivery temperature difference target value delta_T_flow_setpoint as a function of one or more internal temperature values, i.e., current zone temperature values T_zone of at least one or more of the emission and/or accumulation zones 11, detected by respective one or more zone temperature sensors 12 and transmitted to the control system 9 by means of a data connection. For example, the control method or the control system 9 determines the primary water delivery temperature difference target value delta_T_flow_setpoint (at least also) as a function of a difference value between a current zone temperature value T_zone (detected) and a threshold zone temperature value T_zone_threshold (selectable or settable by the user).

[0038] According to embodiments, the control method

or system 9 determines the primary water delivery temperature difference target value delta_T_flow_setpoint both as a function of the current external temperature value T_ext and as a function of the one or more current zone differences values T_zone.

[0039] According to embodiments, the control method or system 9 uses a primary water temperature difference target value delta_T_flow_setpoint either fixed (factory setting) or settable by the user or installer, e.g., a delta_T_flow_setpoint of 5K for radiant systems and/or 10K for systems with radiators.

System 1 with zone circulators 17

[0040] According to an embodiment, the primary water circuit 2 is connected to zone circuit system 3 by means of the interposition of a hydraulic separator 15 (a primary water tank in communication with the primary water circuit 2 and in communication with one or more zone circuits 16 of the zone circuit system 3) and one or more zone circuits 16 of the zone circuit system 3 with its own zone circulator 17 for the circulation of primary water towards the thermal emitters 6 and/or the thermal accumulators 7.

Description of the first zone adjustment mode

[0041] In a normal efficiency condition or a protected efficiency condition (which will be described later), in a first zone adjustment mode, the control method or system 9 adjusts an operating speed rpm_zone of the zone circulator 17 as a function of a zone flow temperature difference target value delta T zone_setpoint and a current zone flow temperature difference value delta_T_zone between a current zone delivery flow temperature T_zone_out of the primary water (detected in zone circuit 16 by means of a zone delivery flow temperature sensor 18) downstream of the hydraulic separator 15 and a current zone flow return temperature T zone in of the primary water (detected in the zone circuit 16 by a zone return flow temperature sensor 19) upstream of hydraulic separator 15 (delta_T_zone = T_zone_out -T zone in), so that (with the aim that) the current zone flow temperature difference value delta_T_zone corresponds to the zone flow temperature difference target value (zone adjustment aim: delta_T_zone = T_zone_out - T_zone_in = delta_T_zone_setpoint), possibly within a tolerance range, for example predetermined.

Determination of the zone flow temperature difference target value delta T zone setpoint

[0042] According to an embodiment, the control method or system 9 determines the zone flow temperature difference target value delta_T_zone_setpoint as a function of one or more internal temperature values, i.e., current zone temperature values T_zone of at least one or more of the emission and/or accumulation zones

11, detected by respective one or more zone temperature sensors 12 and transmitted to the control system 9 by means of a data connection. For example, the control method or the control system 9 determines the zone flow temperature difference target value delta_T_zone_setpoint (at least also) as a function of a difference value between a current zone temperature value T_zone (detected) and a threshold zone temperature value T_zone_threshold (selectable or settable by the user).

[0043] According to embodiments, the control method or system 9 determines the zone flow temperature difference target value delta T zone_setpoint both as a function of the current external temperature value T_ext and as a function of the one or more current difference values T zone.

[0044] According to embodiments, the control method or system 9 uses a zone flow temperature difference target value delta_T_zone_setpoint either fixed (factory setting) or settable by the user or installer.

<u>Determination of a reduced efficiency condition</u> (risk of cycle operation or low energy efficiency)

[0045] Within this description, the term "reduced efficiency condition" denotes a situation of the system 1 in which the thermal generator 4 operates with a risk of cycle operation and/or undesirably low energy efficiency (COP).

[0046] The control method or system 9 verifies whether the thermal generator power P_gen (currently adjusted) is lower than or equal to a lower limit power P_x of a desired lower power range (or lower power dead band) (Px < P_gen <= Px_u) for efficient operation of the thermal generator 4 (criterion: P_gen <= Px) and if the current primary water delivery temperature T_flow_out is greater than the primary water delivery target temperature T_flow_setpoint, possibly with a hysteresis switching-off margin T_hyst_OFF, for example of T_hyst OFF = +1K (criterion: T_flow_out > T_flow_setpoint + T hyst_OFF).

[0047] If the verification result is affirmative, the control method or system 9 determines the existence of a reduced efficiency condition.

Switching from the first primary adjustment mode to the second primary adjustment mode

[0048] According to an embodiment, if the reduced efficiency condition is determined (condition P_gen <= Px and T_flow_out > T_flow_setpoint + T_hyst_OFF), and the primary circulator operating speed rpm_pump of the primary circulator 8 is lower than a upper primary speed limit value rpm_pump_max, the control method or system 9 switches from the first primary adjustment mode to a second primary adjustment mode, increasing the operating speed of the primary circulator rpm_pump until an efficiency protection condition (understood as a COP safeguard and protection against cycle operations) is

reached, in which the heat generator power P_gen is returned to the lower desired power range (Px < P_gen <= Px u).

[0049] In the second primary adjustment mode, the aim of adjusting the operating speed of the primary circulator is no longer to reach and maintain the primary water temperature difference target value delta_T_flow, but rather to increase and maintain the thermal generator power P_gen above the lower limit power P_x and within the desired lower power range (Px < P_gen <= Px_u). **[0050]** The switching is a first, second or nth level of efficiency protection of the system 1, depending on the sequence of steps of the control method.

[0051] For the same primary delivery water target temperature T_flow_setpoint, an increase in the primary delivery water rate reduces the current primary water temperature difference value delta_T_flow and thus increases the thermal energy that can be transmitted from the thermal generator 4 to the rest of system 1 and the thermal energy that the system 1 can exchange with the environment, because the thermal emitters 6 and/or the thermal accumulators 7 will operate at an averagely higher temperature because the current primary water temperature difference delta_T_flow being reduced compared to the primary water target temperature difference delta_T_flow_setpoint.

$\frac{\text{Switching from the first zone adjustment mode to}}{\text{the second zone adjustment mode}}$

[0052] According to an embodiment, if the reduced efficiency condition (condition P_gen <= Px and T_flow_out > T_flow_setpoint + T_hyst_OFF) is determined, and the operating speed (rpm_zone) of the one or more zone circulators 17 (which are active if there is a request for heating or cooling that zone) is lower than an upper zone speed limit value rpm_zone_max (criterion rpm_zone < rpm_zone_max), the control system 9 switches from the first zone adjustment mode to a second zone adjustment mode, increasing the zone circulator operating speed rpm_zone until an efficiency protection condition is reached, in which the thermal generator power value P_gen has returned to the desired lower power range (Px < P gen <= Px u).

[0053] This switching is also a first, second or nth level of efficiency protection of the system 1, depending on the sequence of steps of the control method.

[0054] Similarly to the second primary adjustment mode, also the second zone adjustment mode, the aim of adjusting the operating speed of the zone circulator rpm_zone is no longer to reach and maintain the zone flow temperature difference target value delta_T_flow, but rather to increase and maintain the thermal generator power P_gen above the lower limit power P_x and within the desired lower power range (Px < P_gen <= Px_u). **[0055]** For the same primary water delivery target temperature T_flow_setpoint, increasing the water flow rate in the zone circuits 16 reduces the current zone flow

temperature difference value delta_T_zone and, as a result, increases the thermal energy transmissible to the system 1 and the thermal energy which the system 1 can exchange with the room, because the thermal emitters 6 will operate at a higher average temperature due to the delta_T_zone value being lower than the delta_T_zone_setpoint value.

[0056] According to an embodiment, the control method or system 9 switches from the first zone adjustment mode to the second zone adjustment mode only if the reduced efficiency condition is determined (P_gen <= Px and T_flow_out > T_flow_setpoint + T_hyst_OFF) and if the primary circulator operating speed rpm_pump is already adjusted to the predetermined rpm_pump_max primary speed upper limit (criterion rpm_pump >= rpm_pump_max).

[0057] This additional criterion makes it possible to determine that the method or system 1 is already in an efficiency protection condition (e.g., first level) but has reached the adjustment possibility limit, so the further (e.g., second) protection level is activated by switching from the first zone adjustment mode to the second zone adjustment mode.

Pre-switching-off adjustment of the thermal generator 4 without increasing the primary water delivery target temperature T flow setpoint

[0058] According to an embodiment, or according to a first pre-switching-off adjustment mode of the thermal generator 4, settable or selectable by the user or installer, for example by means of a user interface 20 of the control system 9,

if the reduced efficiency condition is determined (P_gen <= Px and T_flow_out > T_flow_setpoint + T_hyst OFF criterion), and the system 1 is already in the (maximum) efficiency protection condition (with no possibility of further increase in efficiency protection), i.e., when the operating speed of the primary circulator rpm_pump is already adjusted to a upper primary speed limit value (condition rpm_pump >= rpm_pump_max) and (only in the presence of zone circulators 17) the operating speed of the zone circulator(s) rpm_zone is already adjusted to a zone speed upper limit value rpm_zone_max (criterion rpm_zone >= rpm_zone_max), then the method or control system 9:

adjusts the thermal generator power P_gen to the lower limit power value Px (condition P_gen = Px) and allows an increase in the current primary water delivery temperature T_flow_out beyond the primary water delivery target temperature T_flow_setpoint (condition T_flow_out > T_flow_setpoint + T_hyst_OFF), keeping the primary circulator operating speed (rpm_pump) and the operating speed rpm_zone of the zone

10

15

20

25

35

40

45

50

55

circulator(s) (only in presence of zone circulators 17) at maximum levels, and

- verifies one or a combination of several switching-off conditions chosen from the group consisting of:
 - reaching a predetermined reset integral limit value of the integral over time of the function (T_flow_out T_flow_setpoint) of the difference between T_flow_out and T_flow_setpoint, starting from the instant in which T_flow_out exceeds T_flow_setpoint (or exceeds T flow setpoint+Reset integral_hyst, e.g., +1K),
 - reaching the predetermined reset integral limit value (see the listed point above) and, necessarily, a continuous switching-on time of the thermal generator t_on_gen has exceeded a predetermined minimum switching-on time value t on min,
 - the current primary water delivery temperature T_flow_out exceeds a predetermined admissible maximum delivery temperature value T_flow_max (T_flow_out >= T_flow_max),
 - absence of a power request signal,
 - in case of heating, the current zone temperature T_zone is higher than the upper threshold zone temperature T_zone_threshold (T_zone > T_zone_threshold) in all emission and/or accumulation zones 11,
 - in case of heating, the current external temperature T_ext is higher than the threshold external temperature T_ext_threshold (T_ext > T_ext threshold),
 - a continuous thermal generator switchingon time t_on_gen has exceeded a predetermined minimum switching-on time value t on min,

and switches off the thermal generator 4 if one or more of the switching-off conditions occur.

[0059] In the first pre-switching-off adjustment mode of the thermal generator 4, a temporary increase in the current primary delivery water temperature T_flow_out in primary water circuit 2 and also a (only temporary) reduction in the coefficient of efficiency (COP) is accepted.

Pre-switching-off adjustment of the thermal generator 4 with increase in the target value T flow setpoint

[0060] According to a further embodiment, or according to a second pre-switching-off adjustment mode of the thermal generator 4, settable or selectable by the user or installer, for example by means of the user interface 20 of

the control system 9,

if the reduced efficiency condition is determined (P_gen <= Px and T_flow_out > T_flow_setpoint + T_hyst OFF criterion), and the system 1 is already in (maximum) efficiency protection condition (with no possibility of further increase in efficiency protection), i.e., when the operating speed of the primary circulator rpm_pump is already adjusted to an upper limit value of primary speed (condition rpm_pump >= rpm_pump_max) and (only in the presence of zone circulator(s) rpm_zone is already adjusted to a zone speed upper limit value rpm_zone_max (criterion rpm_zone >= rpm_zone_max), the control method or system 9:

- calculates an increased delivery target temperature value T_flow_setpoint_incr (T_flow_setpoint_incr = T_flow_setpoint + T_incr) as the sum of the primary water delivery target temperature value T_flow_setpoint and an increase value T_incr, variable in an increase range (0 K < T_incr < T_incr_max) predetermined or settable by the user or installer, e.g., 0 K < T_incr < T_incr max = 5K,
- uses, for the power control of thermal generator P_gen, the increased delivery target temperature value T_flow_setpoint_incr instead of the primary water delivery target temperature value T_flow_setpoint, so as to return to the efficiency protection condition, in which the thermal generator power value P_gen is returned to the lower desired power range (Px < P_gen <= Px_u),

maintaining the primary operating speed rpm_pump and (if a zone circulator 17 is provided) the zone operating speed rpm_zone at maximum levels, and verifies a chosen switching-off condition in the group consisting of:

- the increase value T_incr reaches the upper limit
 T_incr_max of the predetermined increase interval (0 K < T_incr < T_incr_max) (condition T_incr >= T_incr_max),
- the current primary water delivery temperature T_flow_out exceeds an admissible maximum increased target temperature value T_flow_setpoint_max (condition T_flow_out >= T_flow_setpoint_max = T_flow_setpoint + T_incr_max),
- reaching a predetermined reset integral limit value of the integral over time of the function (T_flow_out - T_flow_setpoin_incr) of the difference between the current primary water delivery temperature T_flow_out and the increased delivery target temperature T_flow_setpoint_incr,

25

starting from the instant in which the current primary water delivery temperature T_flow_out exceeds the increased delivery target temperature T flow setpoint incr,

- the current primary water delivery temperature T_flow_out exceeds a predetermined admissible maximum delivery temperature value T_flow_max (T_flow_out >= T_flow_max),
- absence of a power request signal,
- in case of heating, the current zone temperature T_zone is higher than the upper threshold zone temperature T_zone_threshold (T_zone > T_zone_threshold) in all emission and/or accumulation zones 11,
- in case of heating, the current external temperature T_ext is higher than the threshold external temperature T_ext_threshold (T_ext > T_ext threshold),
- a continuous thermal generator switching-on time t_on_gen has exceeded a predetermined minimum switching-on time value t_on_min,

and switches off the thermal generator 4 if one or more than one switching-off condition occurs.

[0061] In this embodiment, the primary aim is to further delay a thermal generator switching-off (e.g., if the lower limit power Px also corresponds to a minimum deliverable power Pmin of thermal generator 4), in order to avoid the cycle operation of the thermal generator 4, and/or to keep the generator power P_gen above the lower limit power Px, at which the efficiency of the thermal generator is better than at lower powers.

[0062] In the second pre-switching-off adjustment mode of the thermal generator 4, the current zone temperature T_zone will increase faster than in the first switching-off mode.

[0063] The switching-off of the primary circulator 8 and (if provided) of the zone circulators 17 takes place after a post-circulation time t_post of e.g. 1 minute to 5 minutes, or 3 minutes, for example, from the switching-off of the thermal generator 4.

Condition of thermal generator (re)ignition

[0064] With the thermal generator 4 off, the control system verifies a condition of (re)ignition of the thermal generator 4 comprising, for example:

- presence of a power request signal, and
- reaching a predetermined release integral limit value of the integral over time of the function (T_flow_out-T_flow_setpoint) of the difference between the current primary water delivery temperature T_flow_out and the primary water delivery target temperature T_flow_setpoint, starting from the instant in which the current primary water delivery temperature (T flow out) drops under the primary water delivery

- target temperature (T flow setpoint), and/or
- a continuous thermal generator switching-off time t_off_gen has exceeded a predetermined minimum switching-off time value t off min, and/or
- an elapsed time between two consecutive switchingon events t_cic of the thermal generator 4 has exceeded a predetermined minimum cycle operation time value t_cic_min,
- the current primary water delivery temperature T_flow_out is lower than the primary water delivery target temperature value T_flow_setpoint, possibly including a switching-on hysteresis margin value T_hyst ON, for example of - 1 K (T_flow_out < T_flow_setpoint + T_hyst_ON),

and (re)ignites the thermal generator 4 if the (re)ignition condition occurs, or at least one or all of the (re)ignition conditions occur.

[0065] The (re)ignition of the primary circulator 8 and (if provided) of the zone circulators 17 occurs (with a possible time offset) together with the (re)ignition of the thermal generator 4.

Determination of an improved efficiency condition

[0066] If the system 1 is in the efficiency protection condition, for example in one of the conditions:

- first generator adjustment mode and second primary adjustment mode, or
- first generator adjustment mode and second primary adjustment mode and first zone adjustment mode, or
- first generator adjustment mode and second primary adjustment mode and second zone adjustment mode, or
- first generator adjustment mode and first primary adjustment mode and second zone adjustment mode.
- the control method or system 9 verifies whether the power output of the thermal generator P_gen exceeds the upper limit of the desired lower power range Px_u (criterion: P_gen > Px_u) and the primary water delivery target temperature T_flow_setpoint exceeds the current detected primary water delivery temperature T_flow_out (criterion T_flow_setpoint >= T_flow_out), possibly for a switching waiting time t_com, for example predetermined, e.g., 1 minute to 5 minutes, e.g., 3 minutes.

[0067] If the verification result is affirmative, the control method or system 9 determines (the return to) an improved efficiency condition.

[0068] An improved efficiency condition, under efficiency protection condition, can occur, for example, in case of a change in the current zone temperature T_zone and/or in case of a change in the current external temperature T_ext.

Switching from the second primary adjustment mode to the first primary adjustment mode

[0069] In an embodiment, if the system 1 is in the second primary adjustment mode and (only if a zone circulator 17 is provided) in the first or second zone adjustment mode, then the control method or system 9 switches from the second primary adjustment mode to the first primary adjustment mode, by means of a reduction of the operating speed of the primary circulator rpm_pump until the current primary water temperature difference value delta_T_flow reaches or again exceeds the primary water target temperature difference value delta_T_flow_setpoint (criterion: delta_T_flow = T flow out - T flow in >= delta T flow setpoint).

Switching from the second zone adjustment mode to the first zone adjustment mode

[0070] In an embodiment, if the system 1 is in the second zone adjustment mode and in the first or second primary adjustment mode and an improved efficiency condition is determined, then the control method or system 9 switches from the second zone adjustment mode to the first zone adjustment mode, by means of a reduction of the operating speed of the rpm_zone circulator until the current zone flow temperature difference value delta_T_zone reaches or again exceeds the zone flow temperature difference target value delta T zone_setpoint (condition delta_T_zone = T_zone_out - T_zone_in >= delta T zone_setpoint).

[0071] According to embodiments, if a primary circulator 8 and one or more zone circulators 17 are present, the switching of the control of the zone circulators 17 from the second zone adjustment mode to the first zone adjustment mode can occur before, after or concurrently with the switching of the control of the primary circulator 8 from the second primary adjustment mode to the first primary adjustment mode.

Generation of a power request signal

[0072] The control method or system 9 generates a power request signal from at least one of the emission and/or accumulation zones 11 depending on:

- a current zone temperature value T_zone (detected or transmitted) and a threshold zone temperature value T_zone_threshold (set or selected by the user) and/or
- a current external temperature value T_ext (detected or transmitted) and a threshold external temperature value T_ext_threshold (set or selected by the user).

[0073] For example, in case of heating, a power request signal from one of the emission and/or accumulation zones 11 is generated when:

- the current zone temperature value T_zone is lower than a lower threshold zone temperature value T_zone_threshold (T_zone < T_zone_threshold) and/or
- the current external temperature value T_ext is lower than a lower threshold external temperature value T_ext threshold (T_ext < T_ext_threshold).

[0074] For example, in case of cooling, a power request signal from one of the emission and/or accumulation zones 11 is generated when the current zone temperature value T_zone is higher than an upper threshold zone temperature value T_zone_threshold (T_zone > T zone threshold).

[0075] According to an embodiment, the system comprises a room thermostat (e.g., for each heating/cooling zone), and when the current zone temperature value T_zone exceeds the threshold zone temperature value T_zone_threshold (T_zone > T_zone_threshold condition) in all emission and/or accumulation zones of the system, no power request signal generation takes place and, therefore, the thermal generator is switched off and/or stays off.

List of reference signs

[0076]

25

40

45

50

system 1 primary water circuit 2 zone circuit system 3 thermal generator 4 heat exchanger 5 thermal emitters 6 radiator 6.1 radiant panel 6.2 fan coil 6.3, thermal accumulators 7 sanitary hot water tank 7.1 hydraulic separator 7.2 water buffer tank 7.3 primary circulator 8 electronic control system 9 external temperature sensor 10 emission and/or accumulation zones 11 zone temperature sensors 12 primary delivery water temperature sensor 13 primary return water temperature sensor 14 hydraulic separator 15 zone circuits 16 zone circulator 17 zone delivery flow temperature sensor 18 zone return flow temperature sensor 19 user interface 20 thermal generator power P gen lower limit power P x desired lower power range Px < P_gen <= Px_u upper limit of the desired lower power range Px_u current external temperature T ext

threshold external temperature T ext threshold current zone temperature T zone zone threshold temperature value t zone threshold delivery target temperature primary water T flow setpoint 5 current primary temperature water delivery T_flow_out current primary water return temperature T flow in maximum admissible delivery temperature value T flow max 10 primary water temperature difference target value delta T flow setpoint current primary water temperature difference value delta T flow switching-off hysteresis margin T hyst OFF 15 switching-on hysteresis margin T hyst ON increased delivery target temperature T flow setpoint incr increase value T incr current zone flow delivery temperature T zone out 20 current zone flow return temperature T zone in zone flow temperature difference target value delta T zone_setpoint current zone flow temperature difference value del-25 ta T zone primary circulator operating speed rpm_pump upper primary speed limit value rpm pump max zone circulator operating speed rpm zone upper zone speed limit value rpm zone max switching waiting time t_com 30 continuous thermal generator switching-on time t on gen minimum switching-on time t on min continuous switching-off time t off gen time between two consecutive switching-on events minimum cycle operation time t cic min post-circulation time t post

Claims

1. A heating and/or cooling system (1), comprising:

- a primary water circuit (2) with a zone circuit system (3),
- a thermal heat and/or cold generator (4), having a heat exchanger (5) connected in the primary water circuit (2),
- one or more thermal heat and/or cold emitters (6) and/or accumulators (7), connected in the zone circuit system (3) in corresponding emission or accumulation zones (11) of the system (1),
- at least one primary circulator (8) for circulating a primary water flow in the primary water circuit (2) through the heat exchanger (5), and from the heat exchanger (5) in the zone circuit system (3)

for supplying the thermal emitters (6) and/or thermal accumulators (7), and returning the primary water from the zone circuit system (3) to the heat exchanger (5),

- an electronic control system (9) which:
 - **A)** controls the thermal generator (4) and the primary circulator (8), and
 - **B)** adjusts a power (P_gen) of the thermal generator (4) depending on a delivery target temperature (T_flow_setpoint) of the primary water downstream of the heat exchanger (5) and on a current temperature (T_flow_out) of the primary water detected downstream of the heat exchanger (5),
 - **C)** in a primary adjustment mode, adjusts an operating speed (rpm_pump) of the primary circulator (8) depending on:
 - at least one primary water temperature or flow rate or pressure value, or - a primary water temperature difference target value (delta_T_flow_setpoint) and a current primary water temperature difference value ta_T_flow) between the current primary water delivery temperature (T flow out) and a current primary water return temperature (T flow in) detected upstream of the heat exchanger (5), wherein the control system (9) is configured to:
 - **D)** determine a reduced efficiency condition when the thermal generator power (P_gen) is lower than a lower limit power (P_x) of a desired lower power range (Px < P_gen <= Px_u) and the current primary water delivery temperature (T_flow_out) is higher than the primary water delivery target temperature (T_flow_setpoint),
 - **E)** if the reduced efficiency condition has been determined and the operating speed (rpm_pump) of the primary circulator is lower than an upper speed limit value (rpm_pump_limit), switch from the first primary adjustment mode to a second primary adjustment mode, wherein the operating speed (rpm_pump) of the primary circulator is increased so that the thermal generator power (P_gen) increases and returns to the lower desired power range (Px < P_gen <= Px u).
- 2. A system (1) according to claim 1, comprising a hydraulic separator (15) interposed between the primary water circuit (2) and the zone circuit system (3), and one or more zone circuits (16) of the zone

10

20

25

40

45

circuit system (3) each with an own zone circulator (17) for circulating the primary water towards the thermal emitters (6) and/or the thermal accumulators (7),

wherein, in a first zone adjustment mode, the control system (9) adjusts an operating speed (rpm zone) of the zone circulator (17) as a function:

- of at least one temperature or flow rate or pressure value of the primary water in the zone circuit (16), or

- of a zone flow temperature difference target value (delta T zone setpoint) and a current zone flow temperature difference value (delta T zone) between a current zone flow delivery temperature (T_zone out) of the primary water detected downstream of the hydraulic separator (15) and a current zone flow return temperature (T_zone_in) of the primary water detected upstream of the hydraulic separator (15), and verifies the reduced efficiency condition,

wherein, if the reduced efficiency condition (P gen <= Px and T flow out > T flow setpoint + T hyst OFF) is determined, and the operating speed (rpm_zone) of the one or more zone circulators (17) is lower than an upper zone speed limit value (rpm_zone_max), the control system (9) switches from the first zone adjustment mode to a second zone adjustment mode, increasing the zone circulator operating speed (rpm_zone) until the efficiency protection condition is reached, in which the thermal generator power value (P gen) has returned to the desired lower power range (Px < P_gen <= Px_u).

- 3. A system (1) according to claim 2, wherein the control system (9) switches from the first zone adjustment mode to the second zone adjustment mode only if the operating speed (rpm pump) of the primary circulator has reached a predetermined upper primary speed limit value (rpm_pump_max).
- 4. A system (1) according to claim 3, wherein, if the control system (9) determines the reduced efficiency condition (P_gen <= Px and T_flow_out > T_flow_setpoint + T_hyst_OFF), and the operating speed (rpm pump) of the primary circulator has reached an upper primary speed limit value (rpm pump max) and the operating speed (rpm_zone) of the zone circulator(s) has also reached an upper zone speed limit value (rpm zone_max), the control system (9):

-adjusts the thermal generator power (P gen) to the lower limit power value (Px) and allows an increase in the current primary water delivery temperature (T flow out) beyond the primary water delivery target temperature (T flow setpoint) and keeps the primary circulator operating speed (rpm_pump) and the operating speed (rpm_zone) of the zone circulator(s) at maximum levels, and

- verifies a switching-off condition of the thermal generator (4),
- switches off the thermal generator (4) if the switching-off condition occurs.
- 15 **5.** A system (1) according to claim 1, wherein, if the control system (9) determines the reduced efficiency condition (P gen <= Px and T flow out > T_flow_setpoint + T_hyst_OFF), and the operating speed (rpm pump) of the primary circulator has reached an upper primary speed limit value (rpm_pump_max), the control system (9):
 - adjusts the thermal generator power (P_gen) to the lower limit power value (Px) and allows an increase in the current primary water delivery temperature (T_flow_out) beyond the primary water delivery target temperature (T flow setpoint) and keeps the primary circulator operating speed (rpm pump) at maximum level, and
 - verifies a switching-off condition of the thermal generator (4), and
 - switches off the thermal generator (4) if the switching-off condition occurs.
 - A system (1) according to claim 3, wherein, if the control system (9) determines the reduced efficiency condition (P gen <= Px and T flow out > T flow setpoint + T hyst OFF), and the operating speed (rpm_pump) of the primary circulator has reached an upper primary speed limit value (rpm_pump_max) and the operating speed (rpm zone) of the zone circulator(s) has also reached an upper zone speed limit value (rpm zone max), the control system (9):
 - determines an increased delivery target temperature (T_flow_setpoint_incr) as the sum of the primary water delivery target temperature value (T_flow_setpoint) and an increase value (T incr), and
 - uses, for controlling the thermal generator power (P gen), the increased delivery target temperature value (T flow setpoint incr) instead of the primary water delivery target temperature value (T flow setpoint),
 - so as to return to the efficiency protection condition, where the power value (P_gen) of the thermal generator has returned to the desired

20

35

45

lower power range (Px < P_gen <= Px_u), and - keeps the operating speed (rpm_pump) of the primary circulator and the operating speed (rpm_zone) of the zone circulator(s) at maximum levels, and

- verifies a switching-off condition of the thermal generator (4), and
- switches off the thermal generator (4) if the switching-off condition occurs.
- 7. A system (1) according to claim 1, wherein, if the control system (9) determines the reduced efficiency condition (P_gen <= Px and T_flow_out > T_flow_setpoint + T_hyst_OFF), and the operating speed (rpm_pump) of the primary circulator has reached an upper primary speed limit value (rpm pump max), the control system (9):
 - determines an increased delivery target temperature (T_flow_setpoint_incr) as the sum of the primary water delivery target temperature value (T_flow_setpoint) and an increase value (T_incr), and
 - uses, for controlling the thermal generator power (P_gen), the increased delivery target temperature value (T_flow_setpoint_incr) instead of the primary water delivery target temperature value (T flow setpoint),
 - so as to return to the efficiency protection condition, where the power value (P_gen) of the thermal generator has returned to the desired lower power range (Px < P_gen <= Px_u), and keeps the operating speed (rpm pump) of the
 - primary circulator at maximum level, and verifies a switching-off condition of the thermal
 - switches off the thermal generator (4) if the switching-off condition occurs.
- **8.** A system (1) according to claim 4 or 5, wherein the switching-off condition is selected from the group consisting of:

generator (4),

- reaching a predetermined reset integral value of the integral over time of the function (T_flow_out T_flow_setpoint) of the difference between the current primary water delivery temperature (T_flow_out) and the primary water delivery target temperature (T_flow_setpoint), starting from the instant in which the current primary water delivery temperature (T_flow_out) exceeds the primary water delivery target temperature (T_flow_setpoint),
- the current primary water delivery temperature (T_flow_out) exceeds a predetermined admissible maximum delivery temperature value (T flow max),
- absence of a power request signal,

- a continuous thermal generator switching-on time (t_on_gen) has exceeded a predetermined minimum switching-on time value (t_on_min).
- **9.** A system (1) according to claim 6 or 7, wherein the switching-off condition is selected from the group consisting of:
 - the current primary water delivery temperature (T_flow_out) exceeds an admissible maximum increased target temperature value (T_flow_setpoint_max),
 - reaching a predetermined reset integral limit value by the integral over time of the function (T_flow_out T_flow_setpoint_incr) of the difference between the current primary water delivery temperature (T_flow_out) and the increased delivery target temperature (T_flow_setpoint_incr), starting from the instant in which the current primary water delivery temperature (T_flow_out) exceeds the increased delivery target temperature (T_flow_setpoint incr),
 - the current primary water delivery temperature (T_flow_out) exceeds a predetermined admissible maximum delivery temperature value (T_flow_max),
 - absence of a power request signal,
 - a continuous thermal generator switching-on time (t_on_gen) has exceeded a predetermined minimum admissible switching-on time value (t_on_min).
 - **10.** A system (1) according to any one of the preceding claims,

wherein, if the system (1) is in the efficiency protection condition, and in the second primary adjustment mode,

the control system (9):

- verifies whether the thermal generator power (P_gen) exceeds the upper limit of the desired lower power range (Px_u) and the primary water delivery target temperature (T_flow_setpoint) exceeds the current primary water delivery temperature (T_flow_out) for a switching waiting time (t_com), and if yes, determines an improved efficiency condition, and
- if the improved efficiency condition has been determined, switches from the second primary adjustment mode to the first primary adjustment mode, by means of a reduction of the operating speed (rpm_pump) of the primary circulator.
- 11. A system (1) according to claim 2 or any one of the

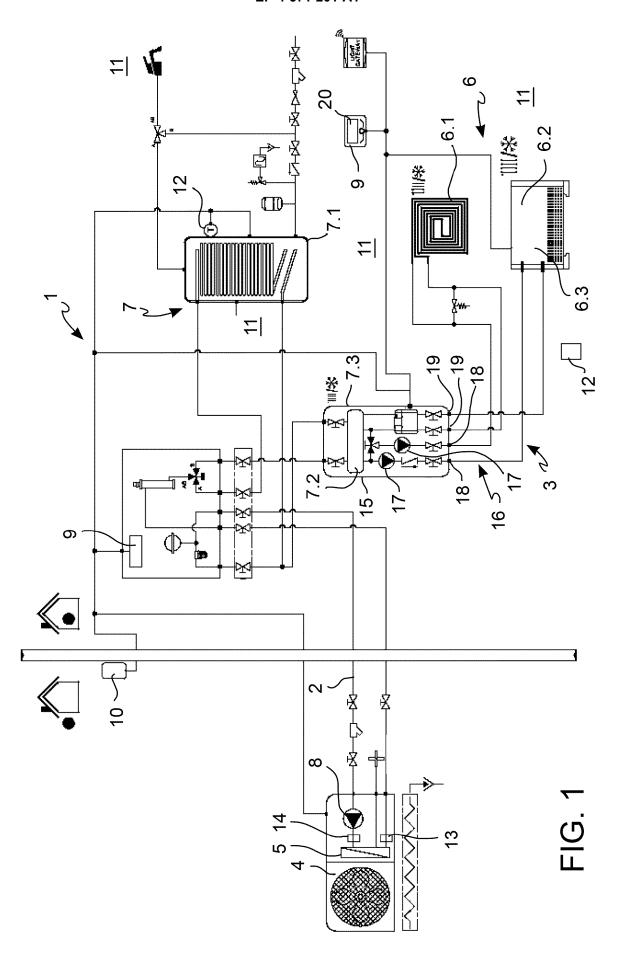
10

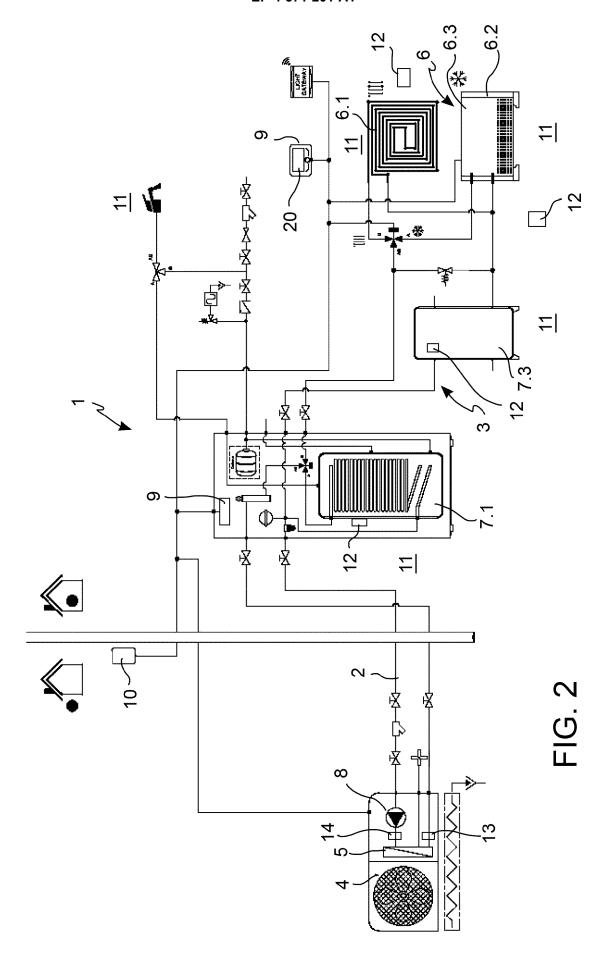
20

40

45

claims dependent on claim 2, wherein, if the system (1) is in the efficiency protection condition, and in the second zone adjustment mode, the control system (9):


- verifies whether the thermal generator power (P_gen) exceeds the upper limit of the desired lower power range (Px_u) and the primary water delivery target temperature (T_flow_setpoint) exceeds the current primary water delivery temperature (T_flow_out) for a switching waiting time (t_com), and if yes, determines an improved efficiency condition, and
- if the improved efficiency condition has been determined, switches from the second zone adjustment mode to the first zone adjustment mode, by means of a reduction of the operating speed (rpm_zone) of the zone circulator.
- **12.** A system (1) according to claim 11, wherein the switching of the control of the zone circulators (17) from the second zone adjustment mode to the first zone adjustment mode occurs:
 - prior to the switching of the control of the primary circulator (8) from the second primary adjustment mode to the first primary adjustment mode, or
 - after the switching of the control of the primary circulator (8) from the second primary adjustment mode to the first primary adjustment mode, or
 - together with the switching of the control of the primary circulator (8) from the second primary adjustment mode to the first primary adjustment mode
- **13.** A method for controlling a heating and/or cooling system (1), comprising:
 - a primary water circuit (2) with a zone circuit system (3),
 - a thermal heat and/or cold generator (4), having a heat exchanger (5) connected in the primary water circuit (2),
 - one or more thermal heat and/or cold emitters (6) and/or accumulators (7), connected in the zone circuit system (3) in corresponding emission or accumulation zones (11) of the system (1),
 - at least one primary circulator (8) for circulating a primary water flow in the primary water circuit (2) through the heat exchanger (5), and from the heat exchanger (5) in the zone circuit system (3) for supplying the thermal emitters (6) and/or accumulators (7), and returning the primary water from the zone circuit system (3) to the heat exchanger (5),


wherein the method comprises:

- **A)** controlling the thermal generator (4) and the primary circulator (8), and
- **B)** adjusting a power (P_gen) of the thermal generator (4) depending on a delivery target temperature (T_flow_setpoint) of the primary water downstream of the heat exchanger (5) and on a current temperature (T_flow_out) of the primary water detected downstream of the heat exchanger (5),
- **C)** in a primary adjustment mode, adjusting an operating speed (rpm_pump) of the primary circulator (8) depending on:
 - at least one temperature value or flow rate value or pressure value of the primary water, or
 - a primary water temperature difference target value (delta_T_flow_setpoint) and a current primary water temperature difference value (delta_T_flow) between the current primary water delivery temperature (T_flow_out) and a current primary water return temperature (T_flow_in) detected upstream of the heat exchanger (5),

characterized by the steps of:

- **D)** determining a reduced efficiency condition when the thermal generator power (P_gen) is lower than a lower limit power (P_x) of a desired lower power range (Px < P_gen <= Px_u) and the current primary water delivery temperature (T_flow_out) is higher than the primary water delivery target temperature (T flow setpoint),
- **E)** if the reduced efficiency condition has been determined and the operating speed (rpm_pump) of the primary circulator is lower than an upper speed limit value (rpm_pump_limit), switching from the first primary adjustment mode to a second primary adjustment mode, in which the operating speed (rpm_pump) of the primary circulator is increased so that the thermal generator power (P_gen) increases and returns to the desired lower power range (Px < P_gen <= Px_u).

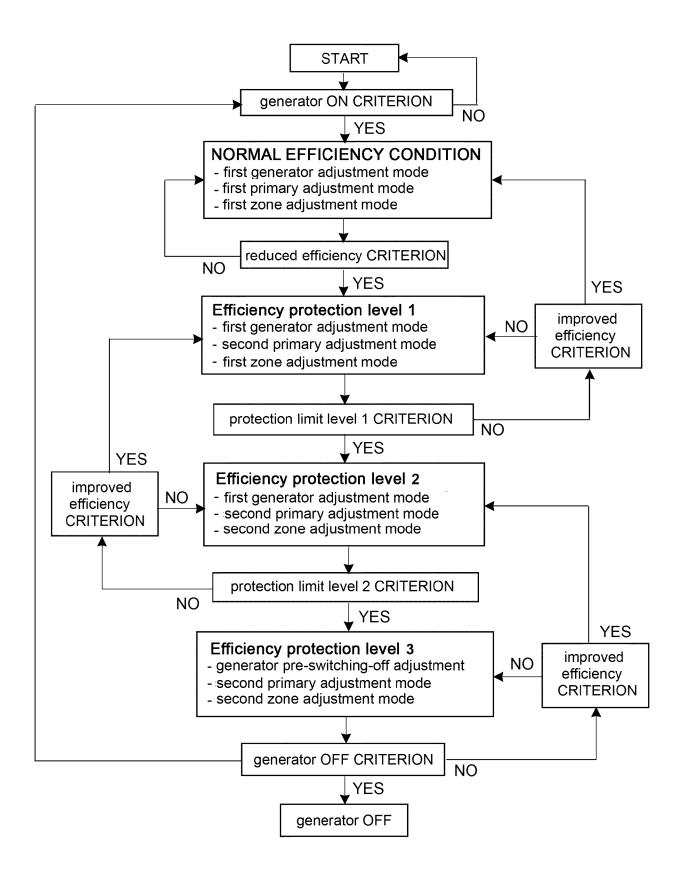


FIG. 3

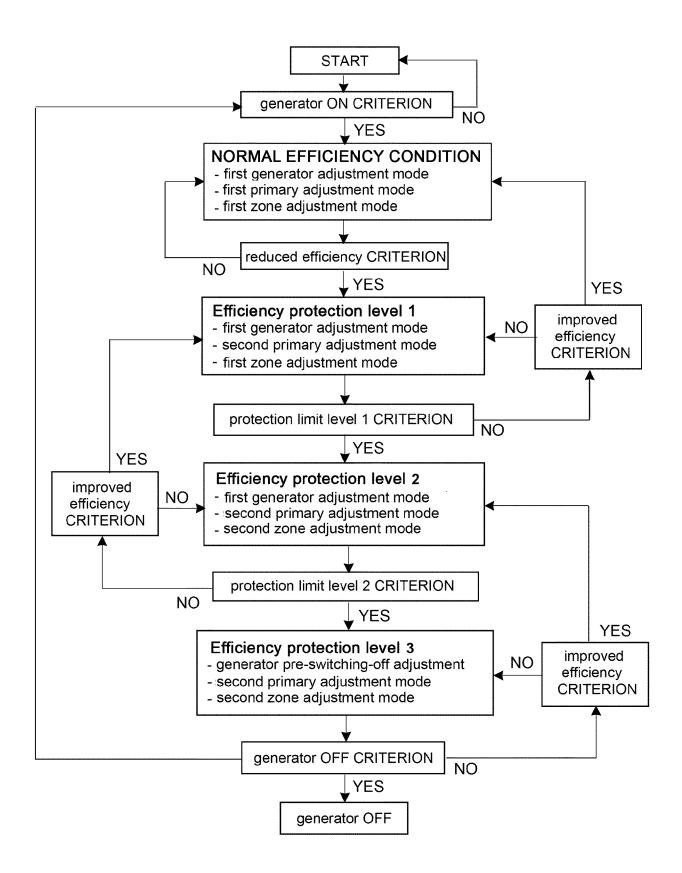


FIG. 4

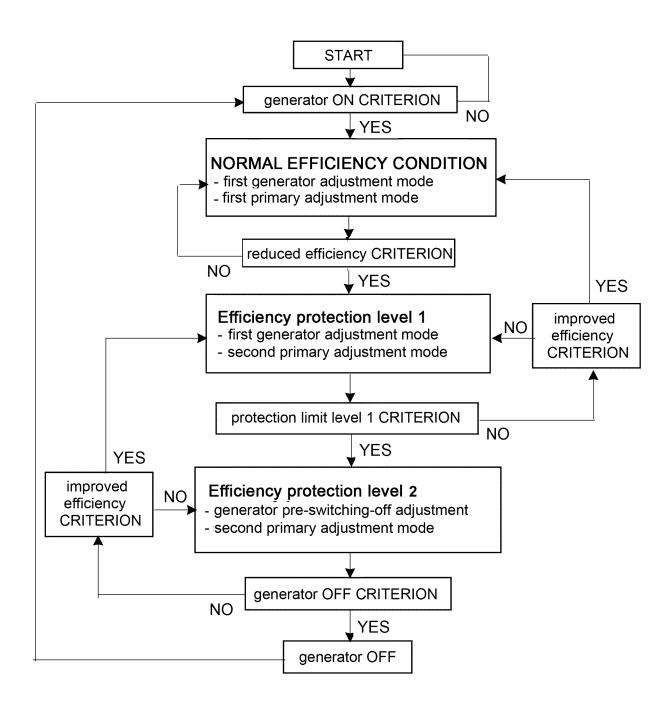
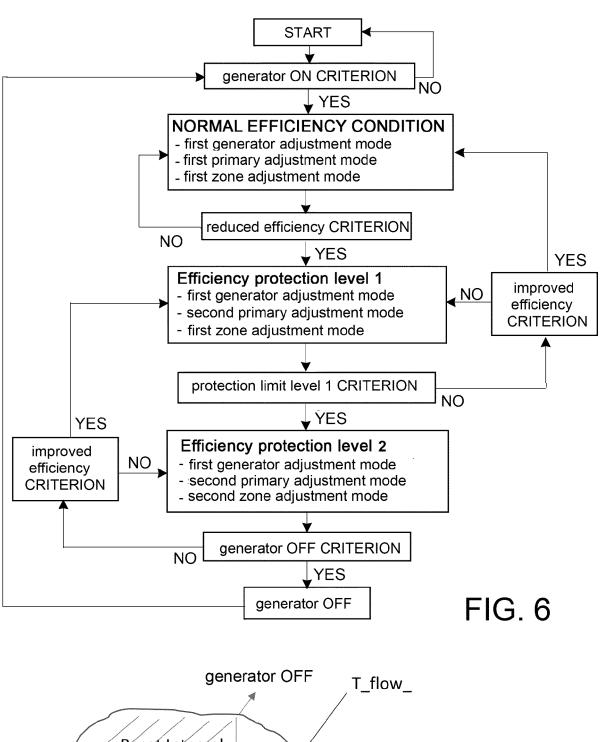
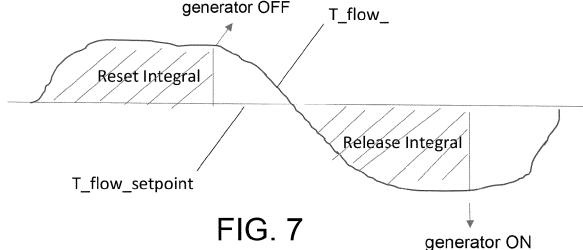




FIG. 5

EUROPEAN SEARCH REPORT

Application Number

EP 24 20 6205

ı	DOCUMENTS CONSID	EKEN IOB	EKELEVAI	N I		
Category	Citation of document with i of relevant pass		appropriate,		Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
A	DE 43 12 808 A1 (ST KG [DE]) 27 October * columns 1-3; figu	1994 (199	94-10-27)	co 1	-13	INV. F24D3/18 F24D17/02
A	EP 3 450 875 B1 (DARINNAI KK [JP]) 2 C	June 2021			-13	F24D19/10 F24F5/00 F24D3/10 F24H15/156
A	US 2017/219219 A1 (AL) 3 August 2017 (* the whole document)	(2017-08-03		ET 1	-13	F24H15/174 F24H15/215 F24H15/219 F24H15/238
	EP 2 159 495 B1 (HC SARL [CH]) 15 Novem * the whole documen	ber 2017			-13	F24H15/242 F24H15/34 F24H15/355 F24H15/375 F24H15/223 F24H15/254 F24H15/258
						TECHNICAL FIELDS SEARCHED (IPC)
						F24D F24F F24H
	The present search report has	·				
	Place of search		f completion of the sea			Examiner
Munich 2 CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another			T: theory or E: earlier par after the fi	principle un tent docum iling date t cited in the		
A : tech O : non	ument of the same category inological background -written disclosure rmediate document			of the same		y, corresponding

EPO F

EP 4 571 201 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 24 20 6205

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

20-02-2025

10	

	Publication date	Patent family member(s)			Publication date	
A1	27-10-1994	NONE	1		,	
в1	02-06-2021	CN	109073273	A	21-12-2018	
		EP	3450875	A1	06-03-2019	
		JP	6716333	в2	01-07-2020	
		JP	2017198425	A	02-11-2017	
		WO	2017188068	A1	02-11-2017	
A1	03-08-2017	NONE	3			
в1	15-11-2017	NONE	E			
	B1	A1 27-10-1994 B1 02-06-2021 A1 03-08-2017	A1 27-10-1994 NONE B1 02-06-2021 CN EP JP JP WO A1 03-08-2017 NONE	date member(s) A1 27-10-1994 NONE B1 02-06-2021 CN 109073273	date member(s) A1 27-10-1994 NONE B1 02-06-2021 CN 109073273 A EP 3450875 A1 JP 6716333 B2 JP 2017198425 A WO 2017188068 A1 A1 03-08-2017 NONE	

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

EP 4 571 201 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 9920967 B2 [0013]