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(54) METHOD TO EXTRACT AND USE TIME‑RESOLVED ION CLOUDS FROM A SPECTROMETRIC
DATA SET

(57) A method is proposed for extracting single-par-
ticle and/or single-cell events from a spectrometric data
set comprising intensity values. A respective intensity
value is proportional to the number of ions collected by a
detector in a given time interval. The method comprises:
grouping (22) the intensity values into sets of groups of
consecutive intensity values, a respective set being char-
acterised by a distinct group size of intensity values;
determining (23) a threshold value separating a back-
ground fromcandidate event intensity values; calculating
(24) a dissolved intensity as a mean of the intensity
values forming a background signal; carrying out (25)
a first candidate event identification by obtaining candi-
date peak groups based on a feature characterising a
respective group; carrying (26) out a second candidate
event identification by obtaining ion cloud groups based
on the threshold value; carrying out (27) a true event
identification by comparing the first and second candi-
date event identifications to obtain one or more ion cloud
group events for a respective group size; and summing
(28) the intensity values of a respective ion cloud group
event and subtracting the dissolved intensity as scaled
from the summed intensity values of the respective ion
cloud group event to obtain a total intensity value per
particle or cell.
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Description

TECHNICAL FIELD

[0001] The present invention relates to amethod to extract and use time-resolved ion clouds from a spectrometric data
set, for instance in the context of a fast scanning inductively coupled plasma mass spectrometry.

BACKGROUND OF THE INVENTION

[0002] Inductively coupled plasmamass spectrometry (ICP-MS) is routinely used to perform (trace) elemental analysis
of samples, for example metals in a matrix by determining the concentration of ionic solutions. The ICP-MS system is
configured to use a plasma to atomise and ionise samples to be analysed by a mass analyser. The ICP-MS systemmay
include, for example, a peristaltic pumpandanebuliser for sample introduction andaerosol production,which are directed
towardsaplasmasource for atomisationand ionisation.Aplasma torch is often configuredasaflow through torchwithone
or more nested concentric tubes. A plasma-forming gas, such as argon, flows through, the outer tube of the torch and is
ionised to form a plasma with a sufficient energy source (typically a radio frequency generated by a coil). The aerosols of
the sample flow through the torch and are fed to the generated plasma. Introduction of the samples to the high-energy
plasma with temperatures greater than 5000 K typically atomises and ionises the introduced samples, which generally
carry a positive charge.
[0003] The ions generated by the plasma, containing the information of the elemental make-up of the sample, are
extracted and focused into an ion beam which is guided to a mass analyser. The mass analyser may use a time-varied
electric field, such as a quadrupole or a series of quadrupoles, or a combination of magnetic fields and electric fields, to
spectrally resolve the ions based on theirmass/charge (m/z) ratio. Alternatively, a time-of-flight (TOF) tubemaybeused to
accelerate the ions and spectrally resolve thembased on their flight times.Resolved ions are then counted bymeansof an
ion detector, such as an electronmultiplier, with the counts proportional to the absolute number of elements present in the
sample, which gives us the concentration.
[0004] Beyond routine tasks, ICP-MS has found in the past decade two application fields of profound impact: the first in
the field of nanotechnology and the second in the (bio)medical field. First, nanotechnology ismaking a profound impact on
a variety of industries, such as (bio)medical, energy engineering, consumer goods, etc. Active (nano)materials, such as
microparticles, nanoparticles, nanoclusters, quantum dots, in such technologies are often spatially confined, and are
becoming increasingly structurally complex and their characterisation expensive and time-consuming. Second, in the
(bio)medical field, i.e., in immunophenotyping, the demand for the classification of rare cell types is becoming more and
more urgent as pathologies becomemore diversified and become better at evading treatment. Faster andmore sensitive
immunophenotyping approaches are needed.
[0005] ICP-MS can be utilised to quantify elements in particles and cells in a sample by a technique known as a single-
particle (SP‑)ICP-MSor single-cell (SC‑)ICP-MS/mass cytometry. These techniquesobtain simultaneously the number of
particles or cells, the mass of the quantified elements present per particle or per cell, and the composition distributions of
theelementspresent in individual particlesandcells offering theopportunity to identify subsets inpopulations, i.e., perform
immunophenotyping. This is achieved through the fast acquisition of ion intensities of a nebulised, atomised and ionised
sample containing particles and/or cells in the microsecond time scale. To accurately quantify the particles and/or cells,
their ion intensities must be distinguished from a background signal, i.e., dissolved ionic species. Upon introducing the
sample to the ICP-MS, ion cloudsare generatedby theatomisation and ionisation of particles and/or cells that are spatially
correlated and therefore, temporally correlated. These ion plumes or ’particle/cell events’ are substantially higher than the
backgroundand canbedistinguished from thebackgroundbydeploying anappropriate algorithm to the ICP-MS rawdata,
to determine the ion intensity as a function of time, obtained by an ion detector of the ICP-MS system.
[0006] Banduraetal. described thepossibility todeterminesingle-cell eventsbymeansofaTOF-based ICP-MSmethod
in a publication entitled "Mass Cytometry: Technique for Real Time Single Cell Multitarget Immunoassay Based on
Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Anal. Chem. 2009, 81 (16), 6813‑6822. Pace et al.
described the possibility to count and size particleswith a quadrupolemass analyser in a publication entitled "Determining
Transport Efficiency for thePurpose of Counting andSizingNanoparticles via Single Particle Inductively Coupled Plasma
MassSpectrometry", Anal. Chem. 2011, 83 (24), 9361‑9369. Later, Borovinskaya et al. described the possibility to extract
short transient signals of particles from a time-of-flight tube mass analyser-coupled ICP, which offered the opportunity to
look at amultielement signal within the samepulse, as described in a publication entitled "APrototypeof aNew Inductively
Coupled Plasma Time-of-Flight Mass Spectrometer Providing Temporally Resolved, Multi-Element Detection of Short
Signals Generated by Single Particles and Droplets", J. Anal. At. Spectrom 2013, 28 (2), 226‑233. Recently, Koolen et al.
described that beyond the particle number concentrations and particle size, particle compositions and structural
information of the particles can be accessed as well of either quadrupole or time-of-flight generated particle events as
described in a publicationentitled "High-ThroughputSizing,Counting, andElemental Analysis of AnisotropicMultimetallic
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Nanoparticles with Single-Particle Inductively Coupled Plasma Mass Spectrometry", ACS Nano 2022. Prior art exists
around automatedmethods to extract particle or single-cell events from the raw signal as disclosed in US2014299763A1,
WO2015122920A1, and US11075066B2.
[0007] The prior art comeswith twomajor disadvantages: first, identified single-particle or single-cell events are always
integrated into a total intensity discarding valuable information. Second, identification of single-cell or single-particle
events are determined based on a static process with a pre-defined group size for intensity values reducing the quality of
the event identification.
[0008] First, in order to determine the total mass of an analyte present per particle or cell, the total intensity of the
transient signal is integrated (and background subtracted). Although this is an effective method if the total mass is the
parameter of interest, it reduces the information that can be extracted from the ion cloud. Beyond the total amount of
analyte present, the ion cloud contains spatial information, i.e., a fingerprint of the original 3-dimensional spatial
arrangement of the analyte in the particle and or cell as illustrated in Figure 1. This information can be used to extract
for instance particle shape and or cell morphology from the ion clouds.
[0009] Referring to Figure 1, ion clouds (or single-particle events) are identified as extracted from ICP-MS raw data
generated on cubic and spherical Au nanoparticles of equalmass. A) 920 ion clouds of Au are extracted from the raw data
set that are representative of a spherical particle. B) 1123 ion clouds of Au are extracted from the raw data set that are
representative of a cubic particle. A clear distinction in the distribution of the intensity (referred to as a "signal" in Figure 1)
can be observed for either shape even though the total intensity differs only by±5 intensity counts. It can be observed by
the length of the intensity distribution that cubic particles generate longer transient signals on average than spherical
particles.
[0010] Second, in the prior art, predefined criteria are set bywhich a signal or series of signals is identified as a peak and
thus a particle or cell event. This does not take into account the variability associated with the measurement including
variable particle size (with orders of magnitude differences in total mass), the relative height of the ionic background in
relation to the particle size, and the number concentration. This can result in false positives in case of high background as
illustrated in Figure 2, underestimation of the actual total particle intensity in case of large particles, false negatives in case
of small particles, and an overall incorrect number concentration. As especially in (nano)particle manufacturing low ionic
backgrounds cannot always be guaranteed, better particle event detection criteria are needed.
[0011] Figure2showsan intensity histogramgenerated from ICP-MSrawdatagenerated for sphericalAunanoparticles
with a diameter of 80 nm. A) Prior-art event extraction algorithm finds erroneous events that actually are part of the
background, i.e., < 20 counts (generate false positives). B) The event extraction algorithm according to the present
invention reduces the false positive rate by a factor of > 100 as becomes clear later.

SUMMARY OF THE INVENTION

[0012] It is an object of the present invention to overcome at least some of the shortcomings identified above relating to
extracting single-particle and/or single-cell events from a spectrometric data set, for instance in the context of single-
particle ICP-MS or single-cell ICP-MS/mass cytometry.
[0013] According to a first aspect of the invention, there is provided a method of extracting one or more single-particle
and/or single-cell events from a spectrometric data set as recited in claim 1.
[0014] The present invention thus proposes a method to extract the full transient signal of an ion cloud, which can be
used to extract spatial information or used to learn to identify the shape with artificial intelligence (Al). Furthermore, the
present inventionmay be used as an automated single-particle or single-cell event identification algorithm of ICP-MS raw
data that adapts the criteria bywhich it refutes or accepts an event as a particle or cell event to the experimental conditions
using AI.
[0015] According to a second aspect of the invention, there is provided a non-transitory computer program product
comprising instructions for implementing thestepsof themethodaccording to thefirst aspectof thepresent inventionwhen
loaded and run on computing means of a data processing device.
[0016] According to a third aspect of the invention, there is provided an apparatus configured to carry out the method
according to the first aspect as recited in claim 15.
[0017] Other aspects of the invention are recited in the dependent claims attached hereto.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] Other features and advantages of the invention will become apparent from the following description of a non-
limiting example embodiment, with reference to the appended drawings, in which:

• Figure1shows intensityhistograms for twoexamplescenarios:A)920 ioncloudsofAuextracted from the rawdataset
that are representative of a spherical particle; and B) 1123 ion clouds of Au extracted from the raw data set that are
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representative of a cubic particle;

• Figure 2 shows intensity histogramsgenerated from ICP-MS rawdata generated for spherical Aunanoparticleswith a
diameter of 80 nm for two scenarios: A) conventional or static grouping; and B) dynamic grouping according to the
present invention;

• Figures3aand3b showaflowchart illustrating theproposedmethodof extracting single-particle or single-cell events;

• Figure 4 illustrates how the raw data set is loaded or received and grouped by z consecutive intensities;

• Figure 5 illustrates the calculation of mean values for individual groups;

• Figure 6 illustrates the calculation of a first threshold value and how it is used to create a new data set of dissolved
intensities (background);

• Figure 7 illustrates the thresholding process during which an intensity threshold value ThR is found that defines what
portion of the signal is background signal;

• Figure 8 illustrates the extraction of the background intensity and calculation of the dissolved intensity, which is
proportional to the concentration of ions in the solution;

• Figure 9 illustrates the peak recognition algorithm;

• Figure 10 illustrates the calculation of the maximum value Ii within a peak group Pjz;

• Figure 11 illustrates how a Boolean series is created to identify intensity values Ii that are greater than the threshold
value ThR;

• Figure 12 illustrates how another Boolean series Ci is created providing an identifier for those intensities that may
contribute to a candidate ion cloud group or event candidate;

• Figure 13 illustrates how each consecutive value Ci is summed yielding Qi;

• Figure 14 illustrates the creation of data sets Elz of ion cloud intensities;

• Figure 15 illustrates the integration of the ion clouds to obtain the total intensity per particle or cell event;

• Figure 16 illustrates how mass distribution data sets are generated;

• Figure 17 illustrates how volume distributions are generated;

• Figure 18 illustrates how size distributions are generated;

• Figure 19 illustrates how composition distributions are generated for the measured analytes;

• Figure 20 illustrates how aspect ratio distributions are generated from master data;

• Figures 21a and 21b show a flow chart summarising the flow chart of Figures 3a and 3b;

• Figure 22 shows the outcome of the event extraction algorithm for different group sizes ranging from 1 to 15 and as
depicted by their corresponding (total) intensity histograms, and where the group sizes greater than 7 result in a
correct event extraction process;

• Figure 23 shows the data workflow once themaster data creation is completed, and the ion clouds of the events have
been obtained;

• Figure 24 shows examples of size distributions of Au nanoparticles of octahedral, cubic and spherical shape;
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• Figure 25 illustrates aspect ratio determination of NaYF4 rod-shaped particles;

• Figure 26 shows ion clouds extracted from mass cytometry data for a sample of antibody metal-tagged stained
peripheral blood mononuclear cells;

• Figure 27 shows an atomic composition distribution of a CuAg particle; and

• Figure 28 shows a machine learning prediction of the particle shape based on the ion cloud data (extracted true
events), the integrated intensity (total intensity) histogram, the mass and size distributions.

DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

[0019] In the present disclosure, an automated system and a computer-implemented method are described that can
extract single-particle or single-cell events froma spectrometric data set generated for instance on a time-of-flight, single‑
or multiple-quadrupole, or sector-field mass analyser.
[0020] As utilised herein, "and/or" means any one or more of the items in the list joined by "and/or". As an example, "x
and/or y" means any element of the three-element set {(x), (y), (x, y)}. In other words, "x and/or y" means "one or both of x
andy."Asanotherexample, "x, y, and/or z"meansanyelementof theseven-element set {(x), (y), (z), (x, y), (x, z), (y, z), (x, y,
z)}. In otherwords, "x, y and/or z"means "oneormore of x, y, and z." Furthermore, the term "comprise" is usedherein as an
open-ended term. This means that the object encompasses all the elements listed, but may also include additional,
unnamed elements. Thus, the word "comprise" is interpreted by the broader meaning "include", "contain" or "compre-
hend". Identical or corresponding functional and structural elements which appear in the different drawings are assigned
the same reference numerals. It is to be noted that the use ofwords "first", "second" and "third", etc.may not imply any kind
of particular order or hierarchy unless this is explicitly or implicitly made clear in the context.
[0021] Definitions of some terms used in the present description are first given in the following.
[0022] Time-resolved ion cloud: a series of consecutive intensity valuesmeasured at short integration times that allows
the whole ion cloud to be extracted, i.e., an event including the spatial information of that cloud.
[0023] Spatial information: the information that exists within an ion cloud, the distribution of ions in space that contains
the key or fingerprint of the original systematic atomic arrangement in space of the particle or cell, for example a cubic
shape.
[0024] Spatially confined: a (nano)material that is defined by its specific volume.
[0025] Background signal: intensities of a spectrometric data set that constitute the background.
[0026] Background: ions in a solution or random noise generating an intensity value.
[0027] Element: an element of the periodic table, such as copper (Cu).
[0028] Analyte: a species under investigation in the sample that may or may not be present, i.e., an ion of a specific
mass/charge ratio of a potential element or ion present in the sample.
[0029] Ion: the ionic state of an element, e.g., Cu2+ in which 2 electrons have been emitted from the Cu atom.
[0030] Particle: anyentitymadeupof anumberof elementswithin the size rangeof 10micrometres (µm) to1nanometre
(nm).
[0031] Cell: a species of biological origin whose elemental make-up is investigated with an ICP-MS, for instance.
[0032] Transient signal: a series of intensity values above the background that constitutes an event, i.e., an ion cloud
generated from a particle or cell.
[0033] Event: an ion cloud generated by ionisation of a spatially confinedmaterial, for instance a particle or cell upon its
introduction to the plasma and detected using a mass analyser.
[0034] Dwell: time interval in which ions are collected for a given intensity count.
[0035] Threshold: an intensity value, whichmay ormay not be an integer, determining a limit such that intensities equal
to, or smaller than the threshold constitute the background signal, and intensities greater than the threshold constitute
potential events.
[0036] In the present description, spectrometric raw data (intensity values as a function of time) is processed using a
series of algorithms that accurately identify single-particle and single-cell events and extracts the distributions of
intensities associated with each event and returns that as a new data set. This extracted true event data set containing
the ion clouds of single particles or single cells ionised with an ICP, for instance, can then be used for various algorithmic
applications, such as shape detection, mass quantification, composition determination, classification, etc.
[0037] The proposed process is next explained in more detail with reference to the figures, and in particular to the flow
chart of Figures3aand3b, andFigures4 to20. In step1, a samplecontainingparticles/cells is in this example introduced to
an inductively coupled plasma mass spectrometer (ICP-MS), which in step 2 generates and processes a spectrometric
rawdata set containing a time-series ti of ion intensities Ii of length i = 1 toN. Ii thus represents one intensity value in the raw
data set. The time interval between twoconsecutive time instants tj is in this example constant throughout one experiment.
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However, non-constant time intervals throughoutoneexperimentarealsopossible. In step3,andasshown inFigure5, the
rawdata set is grouped (Gjzwith j = 1 to [N/z]) by consecutive signals in the timedomainwith agroupsizeof zwith z=1 toN,
with z=N returning theoriginal rawdata set in a single group.For instance, if z =2, then the respectivegroupconsists of two
consecutive intensity values, if z = 3, then the respective group consists of three consecutive intensity values, etc. In other
words, in this step the intensity values are grouped into sets (representing the horizontal dimension in Figure 5) of groups
(representing the vertical dimension inFigure5) of consecutive intensity values,wherea respective set is characterisedby
a distinct group size of intensity values, Ii thus represents an intensity value proportional to the total number of ions
collected by the detector, which in this example is an electron multiplier, in a given time interval.
[0038] In step4andasshown inFigure5, themeanAjz is calculated for anyor someof thegroupsGjz fromz=1 toN. If z=
1, then themeanAj=i equals the respective intensity value,as in that caseeachgroupconsistsof onlyone intensity value. In
this example, the mean is calculated for all of the groups.
[0039] In step 2.1.1 and as is illustrated in Figures 6 and 7, we define a first or initial threshold Th1 which is used to
determine if a signal should be considered as part of the background or as a particle/cell event. The threshold Th1 is in this
case defined as the mean + 3 times the standard deviation of the raw data set (Ii). In other words, Th1 = mean(Ii) +
3*sigma(Ii). However, other ways to define the threshold are equally possible. The mean value is thus calculated for the
intensity values of column2 of Figure 6. Having defined the initial threshold, a newdata set Dk of length i = 1 toN is created
in step 2.1.1 of dissolved (background) intensities Ii such that Dik equals 1 if Ii is smaller than, or equal to the threshold Th1,
or else Djk equals zero. Index k in Figure 6 refers to a counter value of the threshold value as will become clear in the
following.
[0040] Having determined the initial threshold Th1 and intensities Dik below or equal to that threshold Th1, as shown in
Figure6, thealgorithmdetermines the thresholdThk+1with k=1 toRbydetermining themean for thenewdatasetsDikwith
k = 1 to R and i = 1 to N of dissolved intensities that match the criteria that the intensity Ii is smaller or equal to the threshold
Thk+1, else Dik+1 is zero. This process is repeated until the last determined threshold Thk+1 equals the immediately
preceding threshold Thk. The final threshold is than the threshold at convergence, which is the smallest definable
threshold. If the final threshold is zero, the last threshold greater than 0 is used instead. At this stage an iterative
thresholding process is thus carried out, during which the intensity value is found that defines what portion of the signal
belongs to the background signal. However, a non-iterative thresholding process could be used instead. It is to be noted
that other thresholding processes may be used instead as known in the prior art. For instance, the thresholding process
maybebasedona thresholdobtainedasmean+n*sigma,or the rawsignalmaybefitted toanexponential according to the
teachings ofUS11075066B2, or the compoundPoissondistribution fitmaybeusedaccording to the teachingsofHendriks
et al. "Performance of Sp-ICP-TOFMS with Signal Distributions Fitted to a Compound Poisson Model", J. Anal. At.
Spectrom, 2019, 34 (9), 1900‑1909.
[0041] In step 2.1.2 and as shown in Figure 8, the intensities Dik (for the last instance of Dik) for which intensities Ii ≤ Thk
are set to Ii, otherwise they are set to 0. In step 2.1.3 and as is shown in Figure 8, by using the final dissolved data set
intensities Dik with k = R, the dissolved intensity data set. In other words, the background intensity of the dissolved ions is
extracted. Intensity values equal to, or smaller thanThR,which is the sought after threshold value, are considered asbeing
background intensity values, and intensity values greater than ThR are considered as particle or cell intensities. In other
words, for k = R, non-zero intensity values reaching from D1 to DN form the dissolved data set, i.e., the background. The
"Dissolved", which is proportional to the concentration of ions in the solution, is obtained as the mean of Dik where k = R.
[0042] In step 5 and as illustrated in Figure 9, candidate peak groups are identified. More specifically, based on the
determined threshold ThR, a groupGjz is a candidate peak group if Ajz >Aj‑1z, andAjz >Aj+1z, andAjz > ThR. In otherwords,
a group will be recognised as a candidate peak group if themean value of that group is greater than themean value of the
immediately previous and/or immediately following group and that the mean value of that group is greater than the
threshold ThR. Thismeans that for z =N, it returns exactly P1 peaks, which in this example is one peak. Thus, at this stage,
peak group candidates are identified.
[0043] After recognising the peaks or candidate peak groups, in step 6 and as illustrated in Figure 10, the algorithm

determines themaximumvaluewithin a candidate peak groupPjzwith with z =1 toNand returns a new

data set Xjz with j = 1 to and z = 1 toN that in the case of z =N contains exactly 1 times the value 1 given that a true
maximum can be defined.
[0044] With the candidate peak groups defined, in step 2.2.1 and as illustrated in Figure 11, a Boolean series Hi is
created that will have the value of 1 in the case the intensity Ii >ThR and else 0 is returned. Hi can be interpreted as an
intensity value Ii that does not belong to the background. This step is used to identify a series of intensities that are not
background and can contribute to an event. In other words, here candidate intensities are identified that will be used to
identify candidate events. As is shown in Figure 11, a Boolean with the value 1 is created for each intensity value Ii >ThR.
This provides an identifier for those intensities that may contribute to a candidate ion cloud group or candidate event.
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[0045] With theBooleanseriesHi created, in step2.2.2andas illustrated inFigure12,anotherBooleanCi canbecreated
inwhich the shiftedHi+1 is compared toHiwith the criterium that it should not beequal toHi and that Ii > ThR. In sucha case,
Ci =1, else 0. This is used to find the start codon of the series of intensity values that are considered an event candidate or
ion cloud group. In other words, this step ensures that intensity values smaller than ThR directly following a series of Hi
values are included in the candidate event selection.
[0046] In step 2.2.3 and as illustrated in Figure 13, the cumulative sum Qi =ΣCi is then used to identify those series of
consecutive values Ii that are considered candidate particle events. Each series of values,which is equal to another series
of values is part of the same candidate event or ion cloud group. This step is used to ensure that the entire event candidate
is considered and not merely a portion of it.
[0047] In step 7 and as illustrated in Figure 14, using the maximum value of the peaks and the cumulative sum, for

different groupsizes,eachevent is identifiedasElz= Ilz if with l1≤ l2 such that b’ IE [l1, l2], Ql=Ql1 andΣlXlz=

1 for each z = 1 to N groups, where denotes a positive integer numbers set. This step in essence compares the
candidates found through steps 2 to 6 on the one hand, and the candidates found through steps 2.2.1 to 2.2.3 on the other
handandaccepts theassociatedcandidate ioncloudgroupsobtained throughsteps2.2.1 to2.2.3asevents if theyoverlap
with the candidate peak groups obtained through steps 2 to 6, i.e., the ion cloud groups contain a maximum of the
candidate peak groups. The entire ion cloud group is in that case considered an event Elz. These events Elz, referred to as
master data, are then used for further processing, for instance for ion cloud visualisation, shape/morphology extraction,
total mass determination, etc.
[0048] With the master data generated, in step 8 and as illustrated in Figure 15, the total intensity Slz of the identified
events Elz can be determined by summing over each element in Slz and subtracting the background intensity per dwell for
each z = 1 to N groups. The subtraction of the background is considered based on the event length, and therefore the
number of intensity values present in the event Elz. In step 9, by iterating over z = 1 to N, the most optimal z can be found,
which yields the lowest false positive/negative rate (z =α). The obtained z =α can then be fed back to Elz (steps 7 and 8) to
extract the correct or preferred events El which can be used for processing the spatial information, i.e. morphology in step
10.
[0049] Using the sum of the intensity values with z = α determined, in step 9.1 and as illustrated in Figure 16, mass
distributions are calculated using a provided ormeasured instrument sensitivity of the analyte. In Figure 3b, in connection
with steps 9.1 to 9.5, the word "total" refers to the integrated intensity of the consecutive intensity values defined and
extracted per particle or cell. Using the mass distributions, in step 9.2 and as illustrated in Figure 17, volume distributions
are calculated using a provided or measured density of the analyte. Using the volume distributions, in step 9.3 and as
illustrated in Figure 18, size distributions are calculated using a provided or measured shape associated with the analyte.
Given that amultitude of analytes are analysed in the same sample, in step 9.4 andas illustrated in Figure 19, composition
distributions are generated. In other words, provided that a multitude of elements dj has beenmeasured, and amol mass
MWd of the element is provided ormeasured, an atomic composition Cld distribution can be produced per event as shown
in Figure 19.
[0050] With themaster data generated, in step 9.5 andas illustrated inFigure 20, aspect ratios (RTlm) of the data set can
be generated by finding and paring events of matching total intensity (with the intensity count ±5, or by using any other
allowable total intensity differencebetween theeventsof thepair) anddividing the largestmaximumvalueof thepair by the
smallestmaximum intensity of the pair for each correspondingextractedevent (El) found. Thecount over eachelement I in
Sl (which isavalue) is the total numberof eventsextracted,whichcanbe related to theparticleor cell number concentration
in step 9.6 using a provided or measured transport efficiency and sample flow rate.
[0051] The above-described method, which is fully or predominantly a computer-implemented method, is next
summarised with reference to the flow chart of Figures 21a and 21b. In step 21 and corresponding to steps 1 and 2,
ICP-MS rawdata, ormore broadly spectrometric data, consisting of a series of intensity values is generatedor received. In
step 22 and corresponding to steps 3 and 4, the raw data is grouped or subdivided into a series or sets of (predefined)
consecutive intensity values considering all possible grouping possibilities available in the data set. Each set of intensity
values is distinguished fromother setsof intensity valueby their groupsize.Thegroupsize is thusuniqueandfixedwithin a
given set, possibly apart from the last group in the set due to the fact that the total number of intensity values when divided
by thegroupsizemay result in anon-integer value. In step23andcorresponding to steps2.1.1and2.1.2, a threshold value
separating the background from candidate event intensities is determined. This thresholding step may be carried in
parallel with step 22, i.e., substantially at the same time as step 22. In step 24 and corresponding to step 2.1.3, a dissolved
intensity is calculated as themean of all the intensities that constitutes the background signal. Step 24may also be carried
out in parallel with step 22, i.e., substantially at the same time as step 22. In step 25 and corresponding to step 5, a first
candidate event identification is carried out by obtaining one ormore candidate peak groups, which in this case forma first
setof candidateevents.Morespecifically, heredifferent groupsarecompared toanotherbasedona featurecharacterising
a respective group of intensity values, and the groups that contain a series of consecutive intensity values that may

8

EP 4 576 162 A1

5

10

15

20

25

30

35

40

45

50

55



constitute an event are identified. The feature is in this example a mean value, but other features characterising a given
group could instead be used. In otherwords, in this case, one ormore first candidate events are formedby intensity values
of a given group if theirmean intensity value is above the threshold defined in step 23, and if themean value is greater than
the mean intensity value of an immediately preceding group and/or of an immediately following group.
[0052] In step 26 and corresponding to steps 2.2.1 to 2.2.3, a second candidate event identification is carried out by
obtaining ion cloud groups based on the threshold value defined in step 23. In otherwords, to ensure that a complete set of
intensity values that construes an event is identified and not only a portion of it, intensity values that are equal to, or below
the threshold value but are adjacent to a series of values that are above it are identified and form one or more second
candidate events. In step27and corresponding to steps6and7, a trueevent identification is carriedout for different sets of
intensity values, i.e., for different group sizes, by comparing the first and second candidate event identifications to obtain
one ormore ion cloud group events.More specifically, the true event identification is carried out by comparing the first and
second candidate events such that their overlap forms the true events for a given group size. It is to be noted that quite
different ion cloud group events are typically obtained for different group sizes, which may for instance be comprised
between 1 and 15. Thus, the true event identificationmay carried out for all of the group sizes leading tomutually different
ion cloud group events.
[0053] In step 28 and corresponding to step 8, the intensity values of a respective ion cloud group event are summed,
and the dissolved intensity as scaled based on the number of intensity values in the respective ion group event is
subtracted from the summed intensity values of the respective ion group event to obtain a total intensity value per particle
or cell. In step 29 and corresponding to step 9, the correct group size z is determined. In this example, the most optimal
group size is identified iteratively bymeans of an Al algorithm trained with a labelled database of experiments with known
group size values.
[0054] With the true events identified for the correct group size, in step 30 and corresponding to steps 9.1 and10, the ion
cloud group events are used to extract spatial information and/or the total intensity per particle or cell is used to extract
measurables. In other words, with the true events identified for the correct group size, the ion cloud group events can be
used to extract spatial information, and/or the integrated intensity per particle or cell can be used to extract measurables
such as mass, volume, size, composition and aspect ratio distributions and number concentration.
[0055] According to prior art solutions, a typical approach is to fix z = 5 to group the consecutive intensity values and
commence with the peak recognition step. However, as Figures 2 and 22 show, choosing a group size of z = 5 is often not
feasible. Figure 22 shows the outcomeof the event extraction algorithmwith z = 1 to 15 as depicted by their corresponding
(total) intensity histograms. The X-axis represents the intensity values, while the Y-axis represents the intensity value
count.Only z>7 results inacorrect eventextractionprocess.Especiallywhenparticlesaresmall, or thebackgroundsignal
is high, a static group size results in erroneous peak recognition and eventual event extraction. Therefore, the present
invention optionally uses a machine learning-based approach to determine the optimal group size per experiment by
meansof a trainingset generatedoncalibrant samplesof knownsizes.Table1belowshows theoutcomeof thepredictions
for a subset of a series of unseen calibrated data sets of Au, Cu, and Ag, cubic, spherical and octahedral nanoparticles of
sizes ranging from 30 nm to 120 nm. Out of 30 experiments, only 19 had the optimal group size z = 5 meaning that
conventional algorithms would erroneously group 37.7% of this specific data set resulting in high false positives, false
negatives and over/underestimation of the size or particle count.

Table 1. Predicted versus true optimal group sizes z = 3 to 15.

EXPERIMENT ID GROUP SIZE z = PREDICTED VALUE TRUE VALUE
Experiment 1 3 0 0
Experiment 1 4 1 1
Experiment 1 5 0 0
Experiment 1 6 0 0
Experiment 1 7 0 0
Experiment 1 8 0 0
Experiment 1 9 0 0
Experiment 1 10 0 0
Experiment 1 11 0 0
Experiment 1 12 0 0
Experiment 1 13 0 0
Experiment 1 14 0 0
Experiment 1 15 0 0
Experiment 2 3 0 0
Experiment 2 4 0 0
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(continued)

EXPERIMENT ID GROUP SIZE z = PREDICTED VALUE TRUE VALUE
Experiment 2 5 0 0
Experiment 2 6 0 0
Experiment 2 7 0 0
Experiment 2 8 1 1
Experiment 2 9 0 0
Experiment 2 10 0 0
Experiment 2 11 0 0
Experiment 2 12 0 0
Experiment 2 13 0 0
Experiment 2 14 0 0
Experiment 2 15 0 0
Experiment 3 3 0 0
Experiment 3 4 0 0
Experiment 3 5 1 1
Experiment 3 6 0 0
Experiment 3 7 0 0
Experiment 3 8 0 0
Experiment 3 9 0 0
Experiment 3 10 0 0
Experiment 3 11 0 0
Experiment 3 12 0 0
Experiment 3 13 0 0
Experiment 3 14 0 0
Experiment 3 15 0 0

[0056] Figures 23 to 28 show some examples illustrating the above-described method and its applications. Figure 23
shows the dataworkflowonce themaster data creation is completed, and the ion cloudsof the events havebeenobtained.
Figure 24 shows examples of size distributions of Au nanoparticles of octahedral, cubic and spherical shape. Figure 25
illustrates aspect ratio determination of NaYF4 rod-shaped particles. Maxima of events of equal total intensity but with
longest duration (lowest maximum) and shortest duration (highest maximum) are used for the short and long axis of the
rods, respectively. In this example, the extracted aspect ratio equals 4 (transmission electronmicroscopy (TEM)), and the
determinedaspect ratio equals 4. Figure26 shows ion cloudsextracted frommass cytometry data for a sample of antibody
metal-tagged stained peripheral blood mononuclear cells. Figure 27 shows an atomic composition distribution of an Ag
particle and aCu particle. Figure 28 shows amachine learning prediction of the particle shape (CUB stands for cube, SPH
stands for sphere,THDstands for tetrahedron, andOCTstands foroctahedron) basedon the ionclouddata (extracted true
events), the integrated intensity (total intensity) histogram, the mass distribution and the size distribution.
[0057] An interesting use case of the present invention is next explained. Using a provided expected particle or cell
shape, sizeand/or coefficientof variance (thestandarddeviationof thesizedistributionover themeansize), it is possible to
construct a virtual expected particle or cell size distribution. By comparing the actual measured particle or cell size
distribution to the virtual expected size distribution, it is possible to determine to what degree a particle or cell production
processwas successful. This allows to tune the parameters of the production process until themeasured size distribution
matches the expected virtual size distribution. Using this process, the algorithm could be deployed as a quality control tool
that monitors the state of the production process. If this is done in-line, one could perform a quality control in-line always
guaranteeing that the outcome of the production process would pass quality control. This is possible for all the
measurables, i.e., aspect ratio distribution, composition distribution, volume distribution, etc.
[0058] Different advantages and applications of the present invention are summarised below.

• The algorithm can distinguish single-particle and single-cell events from background by means of a background
subtraction and single-particle and single-cell event identification process.

• The algorithm can distinguish particle and cell events up to 1000 particles/cells per second.

• The algorithm makes it possible to extract the transient signal of an event of an analyte in a sample.
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• The algorithm makes it possible to extract the total intensity of an event of an analyte in a sample.

• The algorithm makes it possible to extract the total mass of an event of an analyte in a sample.

• The algorithm makes it possible to extract the analyte particle sizes for known particle shapes and densities.

• The algorithm makes it possible to extract the analyte particle densities of known particle volumes.

• The algorithmmakes it possible to extract composition distributions in the case of a plurality of analytes present in the
same particle and/or cell.

• Thealgorithmmakes it possible to perform immunophenotyping on cells that contain a plurality of elements, basedon
metal tag composition.

• The algorithmmakes it possible to determine particle and cell number concentrations using a provided or measured
transport efficiency value and sample flow rate.

• The algorithm makes it possible to extract spatial distributions of analytes present in particles and cells.

• The present algorithm makes it possible to extract the shape information for particles and cells.

• The algorithm makes it possible to extract the aspect ratio information for particles and cells.

• The algorithm makes it possible to classify particles and cells based on their shape information.

• Thealgorithmmakes it possible to perform immunophenotyping on cells that contain a plurality of elements, basedon
metal tag ion cloud distributions, i.e., cell morphology.

[0059] The method steps described above may be carried out by suitable circuits or circuitry when the process is
implemented inhardwareorusinghardware for individual steps.However, themethodorat least someof themethodsteps
may also or instead be implemented in software. Thus, at least someof themethod steps can be considered as computer-
implemented steps. The terms "circuits" and "circuitry" refer to physical electronic components or modules (e.g.,
hardware), and any software and/or firmware ("code") that may configure the hardware, be executed by the hardware,
and or otherwise be associated with the hardware. The circuits may thus be operable (i.e., configured) to carry out or they
comprisemeans for carryingout the requiredmethodstepsasdescribedabove.Different computationsmayormaynot be
cloud-computation operations depending on the implementation.
[0060] While the invention has been illustrated and described in detail in the drawings and foregoing description, such
illustration and description are to be considered illustrative or exemplary and not restrictive, the invention being not limited
to thedisclosedembodiment.Other embodiments and variants areunderstoodand canbeachievedby those skilled in the
art when carrying out the claimed invention, based on a study of the drawings, the disclosure and the appended claims.
Further variants may be obtained by combining the teachings of any of the examples explained above.
[0061] In the claims, theword "comprising" doesnot excludeother elementsor steps, and the indefinite article "a" or "an"
does not exclude a plurality. The mere fact that different features are recited in mutually different dependent claims does
not indicate that a combinationof these features cannot beadvantageously used.Any reference signs in the claimsshould
not be construed as limiting the scope of the invention.

Claims

1. Amethod for extracting oneormore single-particle and/or single-cell events froma spectrometric data set comprising
intensity values, a respective intensity value being proportional to the number of ions collected by a detector in a given
time interval, the method comprising:

- grouping (22) the intensity values into sets of groups of consecutive intensity values, a respective set being
characterised by a distinct group size of intensity values;
- determining (23) a threshold value separating a background from candidate event intensity values;
- calculating (24) a dissolved intensity as amean of the intensity values forming a background signal characteris-
ing the background;
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- carrying out (25) a first candidate event identification by obtaining candidate peak groups based on a feature
characterising a respective group of intensity values;
- carrying (26) out a second candidate event identification by obtaining ion cloud groups based on the threshold
value;
- carrying out (27) a true event identification by comparing the first and second candidate event identifications to
obtain one or more ion cloud group events for a respective group size, a respective ion cloud group event being
formed by overlapping intensity values from the peak candidate groups and ion cloud groups; and
-summing (28) the intensity valuesofa respective ioncloudgroupeventandsubtracting thedissolved intensityas
scaled basedon thenumber of intensity values in the respective ion cloud groupevent from the summed intensity
values of the respective ion cloud group event to obtain a total intensity value per particle or cell.

2. Themethodaccording to claim1,wherein themethod further comprises thestepof determining (29) apreferredgroup
size by iterating over different group sizes to obtain the preferred group size, which yields the lowest false positive
and/or negative rate in intensity histograms depicting the ion cloud group event.

3. Themethod according to claim 2, wherein the preferred group size is determined bymeans of an artificial intelligence
algorithm trained with a labelled database of experiments with known group size values.

4. Themethodaccording toanyoneof thepreceding claims,wherein themethod further comprises thestepof using (30)
the ion cloud group events to extract spatial information, and/or use the total intensity per particle or cell to extract
measurables.

5. The method according to claim 4, wherein the measurables are at least one of the following: a mass distribution, a
volume distribution, a size distribution, a composition distribution, an aspect ratio distribution, and a number
concentration.

6. Themethod according to any one of the preceding claims, wherein the feature characterising the respective group of
intensity values is a mean value of the intensity values of the respective group.

7. The method according to claim 6, wherein the respective group of intensity values is a candidate peak group if the
mean value of the intensity values of the respective group is above the threshold value, and if the mean value of the
intensity values of the respective group is greater than a mean intensity value of an immediately preceding group
and/or of an immediately following group.

8. The method according to any one of the preceding claims, wherein the dissolved intensity as scaled is obtained by
multiplying the dissolved intensity by the number of intensity values in the respective ion group event.

9. The method according to any one of the preceding claims, wherein the ion cloud groups are obtained by including
intensity values in a respective ion cloudgroup that are below the threshold value, butwhich are adjacent to a series of
intensity values that are above the threshold value.

10. The method according to any one of the preceding claims, wherein the spectrometric data is obtained by a scanning
inductively coupled plasma mass spectrometer.

11. The method according to any one of the preceding claims, wherein the threshold value is obtained by an iterative
thresholding process.

12. The method according to any one of the preceding claims, wherein the threshold value is derived from a standard
deviation value of intensity values of a respective set of intensity values, or the threshold value is derived from the
intensity values fitted to an exponential, or the threshold value is derived from a compound Poisson distribution fit.

13. The method according to any one of the preceding claims, wherein the method further comprises providing an
expected particle or cell shape, size and/or coefficient of variance to construct a virtual expected particle or cell size
distribution, and comparing an actual measured particle or cell size distribution obtained from the total intensity per
particle or cell to the virtual expected particle or cell size distribution to determine to what degree a particle or cell
production process was successful.

14. A non-transitory computer program product comprising instructions for implementing the steps of the method
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according to any one of the preceding claims when loaded and run on computingmeans of a data processing device.

15. An apparatus for extracting one or more single-particle and/or single-cell events from a spectrometric data set
comprising intensity values, a respective intensity value being proportional to the number of ions collected by a
detector in a given time interval, the apparatus comprising means for:

- grouping the intensity values into sets of groups of consecutive intensity values, a respective set being
characterised by a distinct group size of intensity values;
- determining a threshold value separating a background from candidate event intensity values;
- calculatingadissolved intensity asameanof the intensity values formingabackgroundsignal characterising the
background;
- carrying out a first candidate event identification by obtaining candidate peak groups based on a feature
characterising a respective group of intensity values;
- carrying out a second candidate event identification by obtaining ion cloud groups based on the threshold value;
- carryingout a trueevent identificationby comparing the first andsecondcandidate event identifications toobtain
one or more ion cloud group events for a respective group size, a respective ion cloud group event being formed
by overlapping intensity values from the peak candidate groups and ion cloud groups; and
- summing the intensity values of a respective ion cloud group event and subtracting the dissolved intensity as
scaled basedon thenumber of intensity values in the respective ion cloud groupevent from the summed intensity
values of the respective ion cloud group event to obtain a total intensity value per particle or cell.
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