BACKGROUND OF THE INVENTION
[0001] This invention relates to a process for chlorinating or chlorosulfonating polyethylene
utilizing sulfuryl chloride and a particular solvent.
[0002] Valuable products can be made by chlorinating or chlorosulfonating polyethylene.
It is known that chlorosulfonated solid polymers of ethylene, which contain 25 percent
to 40 percent chlorine and 0.4 to 3 percent sulfur, can be cured to form elastic products
which have exceptional resistance to attack by oxygen, ozone and corrosive chemicals.
Valuable products are also made by chlorinating polyethylene with sulfuryl chloride
and cross-linking the polymer with peroxides or other free radical sources. Generally,
the chlorosulfonated polymers are manufactured commercially by simultaneously chlorinating
polyethylene to replace hydrogen by chlorine and reacting the chlorinated polyethylene
with a mixture of chlorine and sulfur dioxide to introduce chlorosulfonic groups into
the chlorinated polymer. These procedures are described in detail in U.S. Patents
2,586,363 and 3,296,222.
[0003] When polyethylene is chlorinated or chlorosulfonated to produce the resulting elastomeric
polyolefin the distribution of the chlorine atoms on the polyethylene has a most substantial
effect on the elastomeric properties of the resulting chlorinated polyolefin. The
effect of chlorinating is to convert the crystalline polyethylene to an amorphous
chlorinated polyethylene, and the more even the distribution of the chlorine atoms
on the polymer the more efficient the conversion from a crystalline to an amorphous
polymer. In order to obtain evenness of distribution of chlorine on polyethylene,
the chlorination or chlorosulfonation of the polyethylene with sulfuryl chloride is
conducted in a single phase in solution as described in U.S. Patent 3,299,014. However,
when such procedure is used a problem arises because it is difficult and expensive
to remove the solvent from the chlorinated polyolefin. Solvents suitable for use in
commercial processes to dissolve both polyethylene and chlorinated product are not
volatile enough to be vaporized by the heat of reaction. Accordingly, it has been
necessary to heat the mixture of solvent and chlorinated product to remove solvent
from the polymer. The separation procedure is slow and expensive. When more volatile
solvents are used the chlorinated polyethylene forms a separate phase in the reactor
before chlorination is complete, thus leading to uneven distribution of chlorine atoms
on the polyethylene. There has been a need for a procedure for making chlorinated
polyethylene with sulfuryl chloride by which one can obtain not only an even distribution
of chlorine atoms on the polyethylene but also a process in which the chlorinated
polyethylene can be easily and readily separated from solvent. The present invention
provides such a continuous process for making chlorinated or chlorosulfonated polyethylene.
SUMMARY OF THE INVENTION
[0004] The present invention is directed to an improvement in a continuous process for chlorinating
or chlorosulfonating polyethylene by dissolving polyethylene in a solvent and reacting
the resultant solution with sulfuryl chloride at a temperature and under sufficient
pressure to maintain reactants, the resulting chlorinated or chlorosulfonated polyethylene
and product gases in a single liquid phase, the improvement comprising using as the
solvent a mixture of methylene chloride and trichlorofluoromethane in a weight ratio
of 0.3-1.6, and reducing the pressure or increasing the temperature of the single
liquid phase to form two liquid phases, one a polymer-rich phase and the other a solvent-rich
phase, and separating the phases.
DESCRIPTION OF PREFERRED EMBODIMENTS
[0005] Any polyethylene can be utilized in the process of this invention, such as linear,
high density polyethylene or low density, branched-chain polyethylene. The polyethylene,
preferably, has a sufficiently high molecular weight, e.g., at least about 10,000
wt. avg. generally 80,000, to yield an elastomeric material having high tensile strength
upon chlorination or chlorosulfonation. The term "polyethylene" is also intended to
include polymers of ethylene containing minor amounts, i.e., up to 10 weight percent,
of other ethylenically unsaturated monomers copolymerizable therewith, especially
other lower alkenes such as propylene or butene-1, or other monomers such as acrylic
or methacrylic acids.
[0006] The polyethylene is melted and then dissolved at a temperature of from 90-125°C in
a solvent mixture of methylene chloride-trichlorofluoromethane. The concentration
of polyethylene in the solution usually ranges from about 2-20 weight percent. The
weight ratio of methylene chloride to trichlorofluoromethane in the solvent mixture
is within a range of about 0.3-1.6 preferably 0.7-1.2. The choice of a particular
ratio depends on the desired degree of chlorination (% Cl in the product) and the
final reaction temperature and is made so that the reactor contents remain single
phase but two phases are produced when the pressure is reduced or the temperature
increased as the solution passes to a vessel for separation, e.g., a decanter. An
increase in the ratio of methylene chloride to trichlorofluoromethane is usually required
when the degree of chlorination or the reactor temperature are increased, although
small changes in these variables can be compensated by increased reactor pressure.
[0007] Sulfuryl chloride is used in both the chlorosulfonation and the chlorination of polyethylene.
The process utilizes about the stoichiometric amount of chlorine in sulfuryl chloride
so that the amount introduced corresponds to the desired amount of chlorination. Generally,
about 77-385 parts of sulfuryl chloride is added for each 100 parts by weight of polyethylene.
The attachment of chlorine atoms along the polyethylene molecule in place of hydrogen
atoms originally present takes place in both instances and thus effects chlorination.
Chlorosulfonation occurs when there is attachment of a -SO
2Cl radical to the polyethylene molecule in significant amounts in addition to the
substitution of chlorine atoms. Chlorosulfonated polyethylene usually contains from
about 0.1-4, preferably 0.7-1.5, weight percent sulfur and from about 15-60, preferably
25-45, weight percent chlorine; however, higher or lower amounts can be present. Chlorinated
polyethylene usually contains 25-50 weight percent chlorine.
[0008] The reaction between polyethylene in solution in methylene chloride and trichlorofluoromethane
and sulfuryl chloride takes place in an elongated reaction zone, generally, a tubular
reactor. The solution of polyethylene, sulfuryl chloride and solvent mixture of methylene
chloride and trichlorofluoromethane passes through the reactor under viscous laminar
flow and is under pressure sufficient to maintain the reactants, the resultant chlorinated
polyolefin, and product gases in a single phase in the solvent. Any pressure range
that accomplishes this result is suitable and the upper value is limited only by apparatus
restrictions. Generally, pressures of the order of from about 4.5 MPa - 21 MPa, usually
7-17 MPa, are used. The temperature at the beginning of the reactor is at least sufficient
to dissolve the polyethylene, usually at least about 90°C, and as the reaction proceeds
the temperature can increase up to the point where polymer degradation begins, usually
not more than about 190°C. It is important to maintain the mixture in the tubular
reactor in a single liquid phase so as to obtain an even distribution of the chlorine
atoms on the polyethylene molecule. Such even distribution of the chlorine atoms on
the polyethylene lessens the crystallinity of the chlorinated polyolefin, imparts
elastomeric properties to the polyolefin, and improves durability of the product in
many applications. The mixture flows through the tubular reactor with little or no
mixing of more rapidly flowing portions of the mixture at or near the center of the
tube with the more slowly flowing portions at or near the wall of the tube.
[0009] Optionally, and preferably, a conventional free radical initiator for chlorination
or chlorosulfonation of the polyethylene is present during the reaction thus aiding
in the production of active sites on the polyethylene molecule. Typical of such free
radical initiators are azobis(cyanoalkanes) such as a,a-azobisisobutyronitrile, azodicyclohexenecarbonitrile,
and 2,(2'-hydroxyethylazo)-2,4-dimethylvaleronitrile, organic peroxides such as lauroyl
peroxide or diterti- arybutyl peroxide, and other free radical initiators such as
described in U.S. Patent Nos. 2,503,252 and 2,640,048.
[0010] Chlorosulfonation is enhanced when a conventional chlorosulfonation catalyst'is present
during the reaction with polyethylene. Suitable catalysts include tertiary amines,
e.g., pyridine, quinoline, quinaldine, nicotine, piperidine, dimethylaniline, tributylamine,
and others described in U.S. Patent No. 2,383,319, and sulfhydryl compounds such as
2-mercaptothiazoline and allyl thiourea, and amides such as dimethyl formamide or
acetamide.
[0011] The single-phase liquid mixture of chlorinated polyolefin and solvent flows from
the reactor to a phase decanter for separation of the chlorinated or chlorosulfonated
polyethylene from the solvent. Separation of the chlorinated or chlorosulfonated polyethylene
and solvent is accomplished by reducing the pressure or increasing the temperature
on the single phase material until two phases separate. One phase, the upper lighter
material, is the solvent-rich phase, whereas the lower phase heavier material is the
polymer-rich phase. Phase separation occurs when the pressure is reduced, generally,
from 3-15 MPa, below the reactor pressure. There is no need to regulate the temperature
of the material and it remains about the same during phase separation as it was leaving
the reactor, i.e., about 130-180°C, usually 140-170°C. Alternatively, one obtains
two liquid phases if the temperature of the single liquid phase solution is increased.
For example, if the temperature of the solution leaving the reactor is increased at
least about 10-20°C in the decanter, two separate liquid phases form and can be separated.
The upper temperature value is limited only by the decomposition temperature of the
product. Since this procedure requires energy input, it is less desirable. In any
event, by regulating pressure or temperature in the decanter one can achieve phase
separation and the formation of a polymer-rich phase and a solvent-rich phase. The
particular solvent mixture used in the process allows phase decantation, provides
low solution viscosities, high volatility and high diffusion rates, all of which are
essential to an economical process for making chlorinated polyethylene.
[0012] The polymer-rich phase is readily separated from the solvent rich phase in the settling
chamber of the decanter by the action of gravity. The solvent-rich phase is removed
overhead and can be recirculated after by-product gases are removed. The polymer-rich
phase flows to a devolatizing extruder maintaired at subatmospheric pressure for further
removal of traces of solvent.
[0013] The invention may be more clearly understood by reference to the accompanying drawing,
which illustrates diagramatically equipment adapted for carrying out this invention.
[0014] Solid polyethylene in particulate form is supplied from hopper 10 to melt extruder
11 where the polyethylene is pumped and heated to a temperature, usually about from
l00-l80°C, to form a molten mass. The resultant liquid polyethylene then flows to
mixer 12. Simultaneously, a solvent mixture of methylene chloride and trichlorofluoromethane
in a weight ratio of about 0.3-1.6 is introduced from solvent supply vessel 13 to
mixer 12. At the same time sulfuryl chloride is introduced from supply vessel 14 to
mixer 12. A free radical initiator, and if the polyethylene is to be chlorosulfonated,
a conventional chlorosulfonatin
g catalyst, e.g., a tertiary amine, are introduced from storage vessel 15 to mixer
12. All the ingredients are intimately mixed in mixer 12 to dissolve the polyethylene
and the reactants in the solvent, and form a solution which has a temperature of about
90-125°C. Adequate mixing is accomplished in about 1 to 10 seconds at which time the
ingredients are passed to tubular reactor 16 and, due to the fact that the chlorination
or chlorosulfonation reaction is exothermic, exits from tubular reactor 16 at a temperature
of the order of l40-l80°C. Pressure and temperature are maintained in tubular reactor
16 to keep the reaction mixture in a single phase. Thus, polyethylene and resulting
chlorinated polyolefin together with other reactants, such as catalysts, free radical
initiator, and product gases, remain dissolved in the solvent. Pressures of about
at least 4.5 MPa are generally used; the maximum amount of pressure that can be employed
is limited only by apparatus restrictions. Usually, from a practical standpoint, the
maximum pressure is not greater than about 21 MPa. It is important to the successful
operation of this invention that the reaction in which the chlorinated polyolefin
is made is conducted in a single liquid phase. This is necessary in order to obtain
a homogeneous product that exhibits improved durability in use as well as elastomeric
properties which are due primarily to evenness of distribution of the chlorine atoms
in the polyethylene molecale.
[0015] The single phase reaction mixture that contains, primarily, chlorinated polyolefin
and solvent is passed through a pressure regulator to phase decanter 17 where formation
and separation of the solvent-rich phase from the polymer-rich phase takes place as
a result of the reduction in pressure. Generally, such conditions require pressure
reductions of from about 3-15 MPa below the reactor pressure or, alternatively, an
increase in the temperature of the single liquid phase by at least about 10-20°C above
the reactor temperature.
[0016] The polymer-rich phase from phase decanter 17 is drawn off by gravity flow and passed
to devolatilizing extruder 18 where the remaining solvents, HC1 and S0
2, are removed at subatmospheric pressures and the dried chlorinated polyolefin product
is recovered.
[0017] Solvent and S0
2 from the phase decanter and devolatilizing extruder can be recovered by distillation,
as described, for example, in Kalil, U.S. Patent 3,299,014, and reused in the process.
[0018] The following examples are presented as illustrative of the process of the invention.
EXAMPLE I
[0019] A solution of polyethylene in a mixed solvent is prepared by continuously mixing
30 g/min. molten polyethylene at a temperature of 160°C with a mixture of 200 g/min.
of trichlorofluoromethane solvent and 105 g/min. of methylene chloride solvent. To
this solution is added 66 g/min. of a solution of 0.5 g azobisisobutyronitrile and
1 cm
3 of pyridine per liter of methylene chloride and subsequently 64 g/min. of sulfuryl
chloride. The resulting solution, containing 0.85 g of methylene chloride per gram
of trichlorofluoromethane at a temperature of about 105°C, is fed to the bottom of
a 5 cm diameter x 120 cm long cylindrical reactor (vol. = 2400 cm
3) where during the average residence time of 6 min. the chlorosulfonation reaction
takes place and the heat of reaction raises the temperature of the solution to about
150°C. Pressure in the reactor is maintained at 7.5 MPa by a control valve at the
exit; thus the reactants, chlorinated polyethylene and product gases are a single
liquid phase. The solution coming from the reactor is conducted to a decanter which
is a pressure vessel maintained at a pressure of about 2.8 MPa and a temperature of
148°C where it separates into a solvent-rich phase containing less than 2 wt. % polymer
and polymer-rich phase containing about 35 wt. % polymer. The polymer-rich phase is
separated by gravity flow and is passed into a devolatilizing extruder where the remaining
product gases are removed. Chlorosulfonated polyethylene containing 34 wt. % Cl and
1 wt. % sulfur is recovered at a rate of 46 g/min.
EXAMPLE II
[0020] To produce a chlorinated polyethylene with a minimum number of sulfuryl chloride
side groups, the procedure described above in Example I is repeated except that the
pyridine is omitted. Infrared analysis of the chlorinated polyethylene indicates that
the polymer contains 34 wt. % Cl and less than .02 wt. % sulfur.
EXAMPLE III
[0021] The procedure described in Example I is repeated except that the temperature of the
material entering the chlorosulfonation reactor is adjusted to 120°C; the heat of
reaction increases the temperature of the solution to about 163°C. 15 MPa pressure
in the reactor is required to maintain a single liquid phase in the reactor. Phase
separation is achieved by reducing the pressure to 3 MPa in the decanter. The temperature
remains at about 160°C and a solvent-rich phase is removed overhead. The heavier polymer-rich
phase is drawn off the bottom of the separator.
1. In a continuous process for chlorinating or chlorosulfonating polyethylene which
comprises dissolving polyethylene in a solvent and reacting the resultant solution
with sulfuryl chloride at a temperature and under sufficient pressure to maintain
reactants, the resulting chlorinated or chlorosulfonated polyethylene and product
gases in a single liquid phase, the improvement comprising using as the solvent a
mixture of methylene chloride and trichlorofluoromethane in a weight ratio of 0.3-1.6,
and reducing the pressure or increasing the temperature of the single liquid phase
to form two liquid phases, one a polymer-rich phase and the other a solvent-rich phase,
and separating the phases.
2. A process of Claim 1 wherein pressure on the single liquid phase is reduced to
form two liquid phases.
3. A process of Claim 1 wherein a chlorosulfonating catalyst is added to the polyethylene.
4. A process of Claim 1 wherein a free radical initiator is added to the polyethylene.
5. A process of Claim 1 wherein the weight ratio of methylene chloride to trichlorofluoromethane
is from about 0.7-1.2.
6. A process of Claim 2 wherein the pressure on the single liquid phase is reduced
from about 3-15 MPa below the reactor pressure to form the two liquid phases.
7. A process of Claim 6 wherein temperature during formation of the two liquid phases
is between about 130-180°C.
8. A process of Claim 6 wherein pressure during reaction of polyethylene with sulfuryl
chloride is from about 4.5-21 MPa.
9. A process of Claim 2 wherein the weight ratio of methylene chloride to trichlorofluoromethane
is from about 0.7-1.2.
10. A process of Claim 9 wherein the polymer-rich phase is separated by gravity flow.
11. A process of Claim 9 wherein a free radical initiator and chlorosulfonating catalyst
are added to the polyethylene.