[0001] This invention relates to position-sensitive sensors for neutral particles such as
X-rays, gamma rays and neutrons.
[0002] It is known that multiwire proportional counters, normally used to detect charged
particles in the field of high energy physics, can also be used to detect neutral
particles. In Nuclear Instruments and Methods, Volume 124, 1975, pages 491 to 503,
A.P. Jeavons et al summarise the possible approaches and describe a device in which
incident gama rays are absorbed in a matrix structure of a suitable converting solid
material such as a lead alloy; photoelectrone are produced in the converter and escape
into the voids in the matrix which contain a typical gas mixture, and secondary electrons
are released in the gas. An electric field is applied to the matrix to cause the secondary
electrons to drift onto a conventional multiwire proportional counter at one end of
the matrix.
[0003] However, the device has the disadvantages that all signals occur in a single anode
plane, so that three-dimensional resolution is not possible, and that lone drift times
may occur so that good time resolution is not possible. Further, while particles having
energies of about 660 kev can be successfully detected, for particles having energies
of about 140 kev a very fine matrix must be used, having for example 0.08 millimetre
diameter holes on 0.1 millimetre centres. This is because the range of photoelectrons
varies rapidly with energy; such a fine structure is difficult to make accurately.
[0004] Also in Nuclear Instruments and Methods, volume 117, 1974, pages 599 to 603, U. Shimoni
et al describe investigations into the efficiency of metal converters for gamma ray
detection and disclose a mapping device based on cathode planes made of thin lead
strips (x direction) and anode planes made of very thin copper strips (y direction).
Detection on the electrodes of photoelectron-initiated ionisation in a gas between
the electrode planes gives the x and y co-ordinates of the gamma ray which was converted
to the photoelectron.
[0005] However, the disclosed device cannot work on the same principle as a multiwire proportional
counter because electrical breakdown would occur at the high electric fields required
for operation in this mode; it is believed that only pulsed operation, analogous to
a spark chamber, is possible for the device.
[0006] In the present invention, there is no need for a fine matrix structure, and the device
can operate continuously. Particles having a wide range of energies can be detected
by selection of the appropriate material.
[0007] According to the invention, a position-sensitive method of sensing a neutral particle
comprises receiving the particle in one of two spaced parallel cathode arrays, each
comprising a plurality of metal strips arranged adjacent and edge to edge, the strips
in one array being orthogonal to the strips in the other array, the metal of which
the cathode arrays are formed being such that the neutral particle is converted to
a fast electron which escapes from the cathode
f
[0008] receiving the fast electron in a gas between the two cathode arrays and converting
the fast electron to ions of the gas and secondary electrons;
[0009] converting the secondary electrons to an avalanche of electrons and positive ions
between the two cathode arrays;
[0010] and sensing in at least one strip of each cathode array the presence of an electrical
charge induced by the electrical field surrounding said positive ions in the avalanche.
[0011] It will be immediately understood that whereas conventionally in multi-wire particle
counters an incident particle is converted to an electron in the gas between the cathodes,
in the apparatus according to the invention, this conversion occurs within the cathode
material.
[0012] Also according to the invention, a position-sensitive neutral particle sensor comprises
two spaced parallel cathode arrays, each comprising a plurality ef metal strips arranged
adjacent and edge to edge, the strips in one array being orthogonal to the strips
in the other array, the metal of which the cathode arrays are formed being such that
an incident neutral particle is converted to a fast electron which escapes from the
cathode;
[0013] means for connecting each strip of each cathode array to a known electrical potential,
usually earth;
[0014] an anode array between and parallel to the cathode arrays and comprising a plurality
of spaced metal wires; and
[0015] means for connecting all of the wires of the anode array to a source of electrical
potential.
[0016] Further according to the invention, a multiple position-sensitive neutral particle
sensor comprises a plurality of sensors according to the invention arranged with at
least one cathode array in each sensor closely adjacent a cathode array of another
sensor, preferably with the strips in adjacent cathode arrays in the same orthogonal
direction; and means for supplying a gas to the volume between each anode array and
its two associated cathode arrays.
[0017] A position-sensitive neutral particle sensing system comprises a multiple particle
sensor, and means for sensing the presence of an induced electrical charge in at least
one strip in each cathode array of at least one sensor and for providing an output
signal representing an orthogonal position in the at least one sensor. Usually a multiplicity
of particles will be received, and a display corresponding to each sensed particle
will be provided at the corresponding orthogonal position on a two- dimensional display
device, such as a cathode ray tube.
[0018] A gamma camera or an X-ray camera according to the invention comprises a position-sensitive'neutral
particle sensing system, and a collimator arranged to allow passage of neutral particles
only in a direction substantially perpendicular to each cathode plane of each sensor.
[0019] A positron camera according to the invention comprises two spaced position-sensitive
neutral particle sensing systems and coincidence sensing means arranged to sense the
simultaneous arrival of a neutral particle in each sensing system. Such a camera will
record the simultaneous arrival in each system of neutral particles emitted by a decaying
positron at a position between the two systems.
[0020] The invention will now be described by way of example with reference to the accompanying
drawings in which:-
Figure 1 is an exploded sketch view of a neutral particle sensor according to the
invention;
Figure 2 is a sectional diagram of a stack of sensors forming a multiple neutral particle
sensor
Figure 3 is a schematic diagram of electronic circuitry associated with a multiple
particle sensor;
Figure 4 indicates use of a multiple neutral particle sensor as a medical gamma camera;
and
Figure 5 indicates use of two multiple neutral particle sensors as a medical positron
imaging summer.
[0021] In Figure 1, a position-sensitive neutral particle sensor comprises first and second
planar cathode arrays 10, 12 and a planar anode array 14, all three arrays being parallel
and the anode array being between the cathode arrays.
[0022] The first cathode array 10 consists of a series of strips 16 of metal foil, arranged
closely spaced edge-to-edge in the cathode plane but insulated from each other; one
end of each strip is connected to earth through a 220 k resistor 17, and the other
end of each strip is connected to a delay line 18 which can provide an output signal
V
1. The second cathode plane is similar, consisting of a series of strips 20 arranged
with their longitudinal direction at 90 to the strips in the first cathode plane,
earthed through resistors 19 and connected to a delay line 22 which can provide an
output signal V . The anode plane 14 consists of a series of spaced metal wires 24
each connected at one end to a common lead 26 through which a positive electrical
potential is supplied to each wire and which also can provide an output signal V
o through a capacitor 28.
[0023] In the Figure, the anode wires are arranged at 45° to the cathode strips. This is
not essential; the wires can be parallel to one array of strips, or make an angle
other than 0 , 450 or 90
0 with the cathode strips.
[0024] A gas (not known) such as the gas used in a conventional multiwire proportional counter,
is supplied to surround the cathode and anode arrays.
[0025] The Figure is not to scale and is exploded so that the sequence of events can be
illustrated clearly.
[0026] Suppose a source of neutral particles, represented by reference 30, emits a particle
along a path 32 towards the sensor. If the metal foil cathodes are of the correct
material and thickness, considering the energy of the incident particle, the particle
is absorbed by one cathode strip and a fast electron 34 is emitted into the gas; this
electron has a speed approaching relativistic values and may be a photoelectron or
a Compton electron. The fast electron ionises gas atoms to produce secondary ions
and electrons. The ions drift slowly towards the cathode and can be ignored. The electrons
are attracted towards the anode along the path 36 and as they approach an anode wire
closely, encounter a very high electric field. An avalanche of electrons and positive
ions is initiated. The electrons are attracted to the anode wire, and are released
into the external anode circuit by the movement of the positive ion cloud 38 away
from the anode wires, and generate a negative output signal V
o at a time which is very shortly after the time of arrival of the initial neutral
particle, and can be regarded as indicating the time of that arrival.
[0027] The movement of the cloud of ions away from the anode wires also generates an electrostatic
induction field 40, which in turn results in a positive charge pulse in several cathode
strips in each array. Each strip provides a positive output pulse; the cathode strips
immediately above and below the electron avalanche provide the largest signals; adjacent
strips receive less charge and provide lower signals. The output pulses from the strips
in each cathode array are coupled onto the respective delay lines 18, 22, and the
delay lines, in effect, merge the separate pulses to provide a single pulse, slightly
spread in time, which travels along the delay line; the time of arrival of the pulse
maximum at the delay line output can be related to the position along the delay line
of the strip receiving maximum charge. Since the strips in each cathode array are
arranged orthogonally, the x-y co-ordinates of the electron avalanche, and thus the
position of the received neutral particle, can be determined. Such an arrangement
of delay lines and time measurement means is well known in the field of multiwire
proportional counters.
[0028] It has already been stated that a plurality of sensors according to the invention
will be required to provide a sufficiently high detection efficiency for a practical
neutral particle counter, and a typical multiple sensor is shown in section in Figure
2.
[0029] The multiple sensor comprises twenty cathode arrays 50 and ten anode arrays 52. Each
cathode array comprises a series of strips of metal foil supported by a film of a
suitable plastics material, such as polyethyleneteraphthalate; an example is a Kaptan
(Registered Trade Mark) film 12.5 microns thick. The two outer cathodes have metal
strips on only the inner side of the film, but the other cathodes have strips, in
the same orthogonal direction, on both sides of the film. The films are supported
at their edges between spacers 54 which are bolted together to form a rigid stack,
and the spacers are bolted to a base board 55.
[0030] In a neutral particle sensor according to the invention, as explained above, each
cathode array acts as a converter for a neutral particle as well as a position read-out.
The material and the thickness of the cathode strips must be chosen in accordance
with the energy of the neutral particle to be detected, considering the binding energy
of the converter material and the escape probability of a fast electron produced in
the matarial; the escape probability varies with thickness.
[0031] For the detection of X-rays having an energy of 60 KeV, such as those emitted by
241 Americium, each cathode strip in Figure 2 may be made of copper about 5 microns thick.
[0032] For the detection of gamma rays having an energy 140 KeV, such as those emitted by
99m Technicium, each cathode strip in Figure 2 may be made of tin about 12.5 microns
thick, and a typical multiple sensor would comprise 20 to 25 sensors.
[0033] For the detection of gamma rays having an energy of 510 KeV, such as those provided
by positron annihilation, each cathode strip in Figure 2 may be made of lead about
125 microns thick, and a typical counter would comprise 10 to 15 sensors.
[0034] For the detection of thermal neutrons having an energy of 100 meV each cathode strip
in Figure 2 may be made of gadolinium about 10 microns thick.
[0035] In the examples of materials and thicknesses given above, each thickness is half
the preferred thickness provided from the calculations; this is because each inner
cathode array is spaced very close to another cathode array, the combination giving
the desired thickness; the insulating film between the two arrays must be very thin
to prevent absorption of the fast electrons.
[0036] Typically the spacing between each anode and the adjacent cathodes is 4 millimetres.
The smaller this gap, the better the spatial resolution of the counter. The anode
wires may, for example, be gold-plated tungsten wires 20 microns in diameter, spaced
at 2 millimetres.
[0037] The baseboard 55 carrying the spacers 54 is supported by lips 64 within a gas-tight
enclosure 66, for example a glass fibre-epoxy composite box. Conveniently the array
of electrodes 58 and the delay lines 62 are outside the container. A gas inlet tube
68 and gas outlet tube 70 are provided.
[0038] Any gas conventionally used in a multiwire proportional counter may be used; the
more dense the gas, the better the spatial resolution of the counter. Xenon or 2-2
dimethylpropane or pure isobutane or a mixture of 70% argon and 30% isobutane may
be used. It is an advantage of a counter according to the invention, in which the
anode-cathode spacing can be quite small, that slightly electronegative gases can
be used. In use, the gas is caused to flow continuously through the sensor; the gas
may need to be at a pressure higher than atmospheric pressure.
[0039] It is to be understood, however, that in a sensor according to the invention, the
gas does not convert neutal particles to fast electrons, as in a conventional multiwire
proportional counter, but provides a medium in which an electron avalanche and ion
cloud can be initiated by a fast electron produced in the cathode of the device by
a neutral particle.
[0040] Figure 2 shows that some cathode strips are arranged with their length parallel to
the plane of the Figure, such as in cathode arrays 50A, 50B, 50C, while other cathode
strips are arranged with their length perpendicular to the plane of the Figure, such
as in cathode arrays 50D, 50E.
[0041] Considering the former type of array, and considering the section of the Figure to
be a vertical section in the x-z plane with z being the co-ordinate in the vertical
direction, then all strips vertically above each other have the same x or y co-ordinate.
Since the cathode arrays are required to provide only x or
X co-ordinates, all the vertically-stacked strips can be bussed, as indicated by the
connector 56 for the stack of strips through which the section is taken; the connector
56 is connected to an electrode 58, which is one of a series of electrodes spaced,
in the plane perpendicular to the Figure, on a support 60. A delay line 62, of the
wire-wound type, is placed in contact with the electrode series. A similar arrangement
is used to bus strips having their length perpendicular to the plane of the Figure.
[0042] A bussed arrangement allows a much simpler readout system to be used.
[0043] The anode arrays are not bussed vertically, because a signal indicating in which
anode plane an electron avalanche is received may be required to give the z co-ordinate.
[0044] Suitable electrical readout circuitry is shown in Figure 3. The arrays of cathode
strips 16 and 20 and the anode wires 24 are indicated schematically. The delay lines
18, 22 are connected through respective amplifiers 72, 74 and discriminators 76, 78,
each to one input of respective time-to-amplitude converters (TAC) 80, 82, which supply
respectively the x and
I signals to a display unit 84. The anode array is connected through an amplifier 86
and discriminator 88 to the other input of each TAC 80, 82. The amplifier 86 is also
connected to a linear gate 90 both directly and through the discriminator 88, and
the gate is connected to the display unit 84 through a single channel analyser (SCA)
92 and delay device 94.
[0045] When a negative pulse, reference 96, is received from one anode plane as an electron
avalanche occurs, this pulse is used as a prompt pulse for the circuit. The prompt
pulse causes the TAC's 80, 82 to start; arrival of the respective positive pulses
98, 100 from the cathodes through the delay lines stops the TAC's. The TAC output
signals indicate the co-ordinates in the x-y plane of an initiating neutral particle
event, and a display is provided on the display unit 84 at the corresponding position
on the screen.
[0046] The prompt pulse also provides a bright-up pulse for the display unit 84, through
the SCA 92, which integrates the total charge deposited in the counter by the electron
avalanche and acts as a pulse height selector, and through the delay device 94 which
delays the bright-up pulse by a time interval required by the display system 84.
[0047] If many neutral particles are incident on the multiple:sensor, a picture may be built
up, either by using a storage oscilloscope as the display unit, or by use of photographic
methods or of a digital computer.
[0048] It is a particular advantage of a sensor according to the invention that a large
sensing area may be provided, for example of the order of one square metre. Such a
device may be extremely useful in medical applications. For example, the sensor may
be used as a gamma camera to detect gamma radiation emitted by an organ of the human
body after the administration of
99m Technicium in suitable form.
[0049] An example of such an arrangement is illustrated in Figure 4 in which a gamma camera
comprising a multiple position-sensitive neutral particle sensor according to the
invention 102, is connected through suitable circuitry 103 to a display unit 104.
A collimator 106, consisting of a lead plate 25 millimetres thick and having a matrix
of parallel open channels of about 4 millimetres diameter, is arranged between the
sensor and a live human body 108. In this arrangement, the collimator 106 absorbs
all ga rays which do not pass substantially vertically upwards, and a two- dimensional
picture of a gamma-ray emitting organ is obtained.
[0050] In another medical use, instead of
99m Technicium, a positron- emitting substance is administered to a patient. Two multiple
position-sensitive neutral particle sensors may be arranged to detect the gamma rays
emitted back-to-back by positron annihilation. Such an arrangement is shown in Figure
5 in which two multiple sensors according to the invention 110, 112 are spaced above
and below a live human body 114. The sensors are connected through suitable circuitry
116 to a display unit 118 in such a way that only coincident gamma rays are displayed
and a reconstruction of the distribution of the positron emitting substance within
the live human body is exhibited on the display unit 122 by means of a suitable computer.
1. A method of sensing the position of a neutral particle characterised by comprising
receiving the particle in one of two spaced parallel cathode arrays, each comprising
a plurality of metal strips arranged adjacent and edge to edge, the strips in one
array being orthogonal to the strips in the other array, the metal of which the cathode
arrays are formed being such that the neutral particle is converted to a fast electron
which escapes from the cathode;
receiving the fast electron in a gas between the two cathode arrays and converting
the fast electron to ions of the gas and secondary electronsi
converting the secondary electrons to an avalanche of electrons and positive ions
between the two cathode arrays;
and sensing in at least one strip of each cathode array the' presence of an electrical
charge induced by the electrical field surrounding said positive ions in the avalanche.
2. A position-sensitive neutral particle sensor comprising two spaced parallel cathode
arrays (10, 12) each comprising a plurality of metal strips (16, 20) arranged adjacent
and edge to edge, the strips in one array being orthogonal to the strips in the other
array, characterised in that the metal of which the cathode arrays are formed is such
that an incident neutral particle is converted to a fast electron which escapes from
the cathode;
means (17, 19) for connecting each strip of each cathode array to'a known electrical
potential;
an anode array (14) between and parallel to the cathode arrays and comprising a plurality
of spaced wires (24);
and means (26, 28) for connecting all of the wires of the anode array to a source
of electrical potential.
3. A multiple position-sensitive neutral particle sensor characterised by comprising
a plurality of sensors (50, 52) according to Claim 2 arranged with at least one cathode
array in each sensor closely adjacent the cathode array of another sensor; and means
(66, 68) for supplying a gas to the volume around each anode array.
4. A multiple position-sensitive neutral particle sensor according to Claim 3 in which
the strips of the closely adjacent cathode arrays are supported on opposite faces
of a thin layer of a plastics material and are in the same orthogonal direction.
5. A multiple sensor according to Claim 4 for sensing X-rays having an energy of approximately
60 keV in which each cathode array comprises a plurality of copper strips 5-microns
thick.
6. A multiple sensor according to Claim 4 for sensing gamma rays having an energy
of approximately 140 keV in which each cathode array comprises a plurality of tin
strips 12.5 microns thick.
7. A multiple sensor according to Claim 4 for sensing gamma rays having an energy
of approximately 510 keV in which each cathode array comprises a plurality of lead
strips 125 microns thick.
8. A multiple sensor according to Claim 4 for sensing thermal neutrons having an energy
of approximately 100 MeV in which each cathode array comprises a plurality of gadolinium
strips 10 microns thick.
9. A position-sensitive neutral particle sensing system characterised by comprising
a multiple sensor (16, 18, 20, 22, 24) according to any one of Claims 4 to 9, and
means (74,78, 82) for sensing the presence of an induced electrical charge in at least
one strip in each cathode array of at least one sensor and for providing an output
signal representing an orthogonal position in the at least one sensor.
10. A system according to Claim 9 further comprising display means (84) arranged to
provide an orthogonal display for each of a multiplicity of received particles.
11. A camera sensitive to gamma rays or X-rays characterised by comprising a position-sensitive
neutral particle sensing system (102, 103) according to Claim 9 or Claim 10, and a
collimator (106) arranged to allow passage of gamma rays or X-rays only in a direction
substantially perpendicular to the planes of the cathode arrays.
12. A camera sensitive to.positrons characterised by comprising two spaced position-sensitive
neutral particle sensing systems (110, 112) according to Claim 9 or Claim 10, and
coincidence sensing means (116) arranged to sense the simultaneous arrival of a.neutral
particle in each sensing system.