(19)
(11) EP 0 000 317 A1

(12) DEMANDE DE BREVET EUROPEEN

(43) Date de publication:
10.01.1979  Bulletin  1979/01

(21) Numéro de dépôt: 78430003.0

(22) Date de dépôt:  22.06.1978
(51) Int. Cl.2H01L 21/285, H01L 29/62
(84) Etats contractants désignés:
DE FR GB

(30) Priorité: 30.06.1977 US 811914

(71) Demandeur: International Business Machines Corporation
Armonk, N.Y. 10504 (US)

(72) Inventeurs:
  • Crowder, Billy Lee
    Putnam Valley New York 10579 (US)
  • Zirinsky, Stanley
    Bronx New York 10463 (US)

(74) Mandataire: Klein, Daniel Jacques Henri 
Compagnie IBM France Département de Propriété Intellectuelle
06610 La Gaude
06610 La Gaude (FR)


(56) Documents cités: : 
   
       


    (54) Procédé de fabrication d'une électrode en siliciure sur un substrat notamment semi-conducteur


    (57) ― Le procédé de la présente invention est principalement caractérisé en ce qu'il prévoit la dépôt simultané de métal et de silicium sur le substrat par évaporation et le chauffage du substrat pour former le siliciure. Le métal peut être choisi dans le groupe comprenant le tungstène, le molybdène, le tantale et le rhodium. Dans un transistor à effet de champ (FET), le procédé peut contribuer à la formation d'une électrode de composite de porte par exemple une couche de siliciure et une couche de silicium polycristallin 3; la couche de siliciure peut être aisément oxydée sans pour autant nuire à sa conductivité. Le présent procédé trouve en particulier application dans la fabrication des réseaux de mémoire à un seul FET.




    Description

    Domaine de l'invention



    [0001] La présente invention concerne un procédé permettant de déposer un siliciure tel qu'un siliciure de molybdène, de tantale, de rhodium ou de tungstène sur un substrat, et notamment sur un substrat semiconducteur constitué par du silicium dopé ou par du silicium polycristallin dopé.

    Etat de la technique antérieure



    [0002] Le silicium polycristallin est très utilisé depuis quelques années comme matériau d'interconnexion dans les circuits intégrés. L'emploi de ce type de silicium est souhaitable car il est très stable à température élevée et se prête au dépôt chimique en phase vapeur du dioxyde de silicium, ou à sa croissance thermique. Des interconnexions en silicium polycristallin ont été utilisées dans divers types de circuits intégrés, notamment dans des ensembles de dispositifs à couplage de charges, dans des ensembles logiques et dans des ensembles de cellules de mémoire à un seul dispositif à effet de champ.

    [0003] En revanche, le silicium polycristallin présente l'inconvénient d'offir une résistance électrique relativement élevée. Les tentatives qui ont été faites jusqu'à présent pour améliorer la performance de certains circuits intégrés en réduisant les dimensions des dispositifs, n'ont pas été couronnées de succès car les chutes de tension qui se produisent dans les interconnexions ne diminuent pas lorsqu'- on diminue les niveaux de tension requis aux fins du fonctionnement des circuits. Il serait donc souhaitable de réduire la résistance de couche (ou de feuille) des interconnexions en silicium polycristallin afin d'augmenter la vitesse du circuit.

    [0004] On a proposé de remplacer le silicium polycristallin par divers métaux réfractaires tels que le molybdène et le tungstène. Toutefois, ces métaux s'oxydent lors du dépôt chimique en phase vapeur du dioxyde de silicium, et comme ces oxydes sont beaucoup moins stables que le dioxyde de silicium, il posent un problème de fiabilité du circuit intégré finalement. Afin de résoudre le problème que pose l'utilisation de tels métaux réfractaires utilisés seuls, on a proposé de remplacer une partie de la couche de silicium polycristallin par une couche d'un siliciure de certains métaux. Par exemple, l'article de Rideout intitulé "Reducing the Sheet Resistance of Polysilicon Lines in Integrated Circuits" paru dans la publication "IBM Techni- cal Disclosure Bulletin", Volume 17, N°6, Novembre 1974, pages 18311833, suggère l'emploi d'un siliciure de hafnium obtenu en déposant du hafnium sur du silicium polycristallin, puis en chauffant l'ensemble pour faire réagir le .hafnium et le silicium polycristallin. Le même article suggère également l'emploi à cette fin des siliciures de tantale, de tungstène ou de molybdène; les bandes pouvant ensuite être recouvertes d'oxyde déposé chimiquement en phase vapeur.

    [0005] Par ailleurs, un procédé connu (brevet des E.U.A. N°3381182 et analogue à celui qui vient d'être mentionné permet de procéder au dépôt chimique en phase vapeur d'un siliciure de molybdène sur du silicium polycristallin par la réduction, d'un mélange de chlorure de molybdène et de silane, par de l'hydrogène. D'autres procédés permettant de réaliser divers siliciures et notamment un siliciure de tungstène en pulvérisant du tungstène sur un substrat contenant du silicium, puis en chauffant l'ensemble pour provoquer la formation du siliciure, sont décrits dans le brevet français N° 2.250.193 et dans l'article de V. Kumar intitulé "Fabrication and Thermal Stability de W-Si Ohmic Contacts" paru dans la publication "Journal of the Electrochemical Society, Solid-State Science and Technology", Février 1975, pages 262 à 269.

    [0006] Toutefois, les techniques de pulvérisation proposées présentent un certain nombre d'inconvénients. En particulier, il est difficile de faire varier avec précision la composition de siliciure. D'autre part, lors de l'emploi de techniques de pulvérisation, il est nécessaire de procéder à un décapage pour retirer le métal de certaines régions où on ne doit pas former de siliciure.

    Exposé de la présente invention



    [0007] L'un des objets de la présente invention est donc de fournir un procédé permettant de réaliser des siliciures de certains métaux réfractaires qui permette de commander et de faire varier avec précision la composition du siliciure ainsi-réalisé.

    [0008] Un autre objet de l'invention est de fournir un procédé permettant de retirer le siliciure de certaines parties désirées du substrat en utilisant de simples techniques de décapage faisant appel à l'emploi d'un solvant, sans qu'il y ait lieu d'avoir recours à des techniques de décapage plus complexes qui nécessitent un masquage.

    [0009] La présente invention permet de former une couche d'un siliciure sur un substrat, le métal employé pouvant être du molybdène, du tantale, du tungstène, du rhodium ou des combinaisons de ces matériaux. Le siliciure métallique est obtenu en procédant au dépôt par évaporation simultanée du silicium et de l'un desdits métaux sur le substrat désiré, puis en soumettant l'ensemble. â un traitement thermique.

    [0010] Par ailleurs, du dioxyde de silicium peut être obtenu à partir de la couche de siliciure par oxydation thermique de celle-ci à température élevée. Ce que l'on sait des propriétés des siliciures dans la masse, c'est-à-dire dans le volume ne permet pas de supposer que l'on pourrait obtenir par oxydation thermique des couches d'oxyde d'une épaisseur suffisante pour pouvoir être employées dans des circuits intégrés. Par exemple, le siliciure de molybdène et le siliciure de tungstène quand ils constituent une masse ou un volume sont connus pour leur excellente résistance à l'oxydation. A cet égard, on se reportera utilement aux comptes-rendus de la "Fourth International Chemical Vapor Deposition Conference", publiés par l'Electrochemical Society", Princeton N.J.(U.S.A.) 1974 pour l'article de Lo et al. intitulé "A CVD Study of the Tungsten-Silicon System". On pourra également se reporter à l'ouvrage "Engineering Properties of Selected Ceramic Materials", paru dans la publication "The American Ceramic Society, Inc ...", Colombus Ohio (U.S.A.) 1966. En ce qui concerne notamment le di siliciure de molybdène, on a pu déterminer qu'une couche d'oxyde d'une épaisseur de 10 microns pourrait être obtenue en 60 minutes à 1.050°C en fonction de la quantité d'oxygène utilisée pour la formation du film. Une telle épaisseur conviendrait plus à des applications aérospatiales qu'à des applications aux circuits intégrés.

    [0011] D'autres objets, caractéristiques et avantages de la présente invention ressortiront mieux de l'exposé qui suit, fait en référence aux dessins annexés à ce texte, qui représentent un mode de réalisation préféré de celle-ci.

    Brève description des dessins



    [0012] Les figures 1A et 1B représentent schématiquement différentes étapes de la réalisation de circuits intégrés au moyen du procédé de la présente invention.

    [0013] Les figures 2A à 2C représentent schématiquement les étapes d'une autre réalisation d'un circuit intégré au moyen du procédé de la présente invention.

    [0014] Les figures 3A et 4A illustrent la relation qui existe entre la température et le temps d'oxydation, d'une part, et l'épaisseur d'une couche d'oxyde obtenue dans les cas du WSi2 et.au MOSi2 respectivement, d'autre part.

    [0015] Les figures 3B et 4B illustrent la relation qui existe entre le temps d'oxydation et la température, d'une,_part, et la résistance de couche dans les cas du WSi2 et du MOSi2 respectivement, d'autre part.

    Description des modes préférés de réalisation de la présente invention



    [0016] Le procédé de la présente invention peut être utilisé pour former des films du siliciure désiré sur n'importe quel substrat capable de résister aux températures élevées mises en oeuvre durant le procédé de dépôt par évaporation simultanée et suffisamment adhérent audit siliciure . Le présent procédé peut être avantageusement employé aux fins de.la réalisation de circuits intégrés et, de ce fait, présente un intérêt particulier lorsque le substrat est en silicium ou en silicium polycristallin. Par exemple, le présent procédé se prête particulièrement bien, à la réalisation de couches destinées à recouvrir des électrodes de porte en silicium polycristallin dopé, au remplacement du silicium polycristallin en tant que matériau constituant de telles électrodes, et enfin à la formation de couches recouvrant directement des bandes diffusées en silicium dopé.

    [0017] Les siliciures métalliques auxquels s'adresse la présente invention sont le siliciure de molybdène et/ ou le siliciure de tantale et/ou le siliciure de tungstène et/ou le siliciure de rhodium. Les métaux préférés pour constituer ces siliciures comprennent le molybdène, le tantale et le tungstène, et plus particulièrement encore ce dernier. En général, les siliciures métalliques comportent approximativement de 60 à 25% en poids atomique du métal.

    [0018] Selon la présente invention, le métal et le silicium sont vaporisés sous un vide poussé et déposés simultanément sur le substrat. Le vide employé est de l'ordre de 10-5 à 10-7 torr. Dans le procédé d'évaporation sous vide, le métal et le silicium sont chauffés sous un vide poussé et portés à une température suffisante pour provoquer leur évaporation. On utilise de préférence à cette fin un évaporateur à faisceau électronique et l'on utilise de préférence un canon à faisceau électronique pour le silicium et un autre canon pour le métal en raison du fait que l'évaporation de ces matériaux se produit à des vitesses différentes. L'emploi dudit évaporateur nécessite l'utilisation, comme source de chaleur, de la chaleur qui est dissipée lorsqu'un faisceau d'électrons fortement collimaté frappe le matériau. Les dispositifs et les techniques utilisés aux fins de l'évaporation du silicium et du métal sont bien connus et n'ont donc pas à être décrits ici de façon détaillée. De préférence, l'évaporation du métal et du silicium doit avoir lieu à raison de 25 à 50 Angstroms environ par seconde. Le substrat que l'on désire recouvrir est en général maintenu à une température comprise entre la température ambiante et 400°C environ, et de préférence entre 150°C et 250°C environ lors du dépôt du métal et du silicium.

    [0019] Une fois que la quantité désirée de métal et de silicium a été déposée sur le substrat, ce dernier est retiré de l'appareil utilisé aux fins de l'évaporation sous vide, puis chauffé dans une atmosphère inerte à des températures variant entre 700°C et 1100°C environ et de préférence entre 900°C et 1100°C. La température maximum convenable est essentiellement fonction de considérations pratiques et, en particulier, est choisie de=manière à éviter une formation excessive de grains dans la couche de siliciure. Les atmosphères inertes convenables dans lesquelles le traitement thermique peut être effectué comprennent l'argon, l'hélium et l'hydrogène.

    [0020] L'atmosphère inerte ne doit pas comporter de vapeur d'eau, d'oxygène, de composés à base de carbone, d'azote ou d'autres substances qui pourraient provoquer la formation de carbure, d'oxyde ou de nitrure pendant le traitement thermique.

    [0021] Le substrat est chauffé aux températures ci-dessus pendant un intervalle de temps suffisant pour provoquer une réaction du métal et du silicium déposé sur celui-ci de manière à former le siliciure désiré. Cet intervalle de temps varie généralement entre 15 minutes et 2 heures environ, et il est inversement fonction de la température utilisée.

    [0022] Après le traitement thermique, le substrat racouvert de la couche de siliciure peut éventuellement faire l'objet d'une oxydation de manière à recouvrir ladite couche d'oxyde d'auto-passivation. On a constaté que la diminution de la conductivité de la couche de siliciure qui résultait de l'oxydation était très inférieure à celle qui aurait dû théoriquement résulter de l'oxydation d'une partie déterminée de la couche. Par exemple, une oxydation de 50% de la couche n'entraîne pas une diminution correspondante de 50% de sa conductivité. Ce résultat serait dû à une oxydation préférentielle du silicium contenu dans la couche de siliciure et à une rétro- diffusion du métal, provoquant ainsi la formation d'une couche de siliciure enrichie en métal au-des- sous de la couche oxydée. A cet égard, on se reportera utilement à l'article de J. Berkowitz-Matluck et al, intitulé "High Temperature Oxidation II. Molybdenum Silicide" paru dans la publication "J. Electrochemical Soc.." Vol. 112, N° 6, page 583, Juin 1965.

    [0023] Les figures 3B et 4B montrent les variations de la résistivité de certains siliciures oxydés selon les températures. Les résultats d'ensemble indiquent qu'une amélioration de 30% environ de la conductivité est obtenue par rapport à la conductivité théorique correspondant au pourcentage oxydé de la couche. L'oxydation du siliciure de molybdène à 1000°C pendant plus de 15 minutes a eu un effet nuisible sur la couche et modifié les propriétés de celle-ci. Il conviendrait donc d'éviter de telles conditions dans le cas du siliciure de molybdène afin que sa conductivité reste élevée. L'oxydation a été effectuée en phase vapeur dans les conditions spécifiées.

    [0024] Le procédé préféré d'oxydation est une oxydation humide (vapeur d'eau) ou une oxydation sèche-humide- sèche. Ce procédé permet en effet d'obtenir des meilleurs résultats en termes de claquage que les autres techniques. L'oxydation en phase vapeur doit de préférence être effectuée à des températures variant entre 800°C et 1100°C environ à une pression correspondant à peu près à la pression atmosphérique. La durée de l'oxydation est fonction de l'épaisseur de la couche d'oxyde que l'on désire obtenir et varie généralement entre 15 minutes et 2 heures environ. Par exemple, l'obtention d'une épaisseur voisine ou supérieure à 1.000 Angstroms nécessite plus de.2 heures à environ 800°C et 30 minutes environ à 950°C environ.

    [0025] Les figures 3A et 4A montrent la croissance de l'oxyde isolant sur le siliciure pendant l'exposition à la vapeur aux températures et pendant les intervalles de les temps indiqués.

    [0026] Le tableau I en annexe indique les valeurs mesurées de la résistance de film de siliciure réalisé conformément à la présente invention par évaporation au moyen d'un faisceau électronique. Les films déposés sur le substrat de silicium avaient une épaisseur d'environ 0,5 micron.

    [0027] Le tableau II en annexe permet de constater la conductivité améliorée du siliciure réalisé conformément au moyen du procédé de la présente invention comparée à celle du silicium dopé. Cette meilleure conductivité joue un rôle important en ce qui concerne l'augmentation de la vitesse de transmission des signaux sur une ligne de transmission.

    [0028] Le tableau III en annexe montre que l'emploi du siliciure métallique réalisé conformément

    polvcristalin, compte tenu le la tenseon de bance plate et de la tensien de claquaqe électrucye dans le cas où l'oxyde recouvre le siliciure. La tennsion de bande plate est l'un. parmi les paramètres qui sont directement reliés à la tension de commande de porte nécessaire pour faire conduire le transistor effet de champ (FET) et sa spécification limitée à une plage étroite est un facteur important du fonctionnement des transistors FET utilisés dans les circuits intéqurés.

    [0029] Par ailleurs, on a constate que le champ de claquaqe moven dans le cas d'un silicture auto-oxzdé d'une épaisseur d'environ 3.000 Anqstroms disposé entre un conducteur d'.aluminium st la couche de siliciure était supérieur a 2 à 3 mV am.





    [0030] D'autre part, la présente invention peut s'appliquer également à un substrat constitué par un matériau autre que le silicium. Les expressions "bande d'interconnexion de type métallique" et "bande d'interconnexion de conductivité élevée" employées ci-après se rapportent à des bandes d'un métal tel que l'aluminium ainsi qu'à des matériaux non métalliques qui peuvent néanmoins présenter une conductivité comparable.

    [0031] Les références .faites ci-après à des impuretés d'un "premier type" et d'un "second type" signifient par exemple que, si le "premier type" est p, le "second type" est n, et inversement.

    [0032] On a représenté sur la figure 1A une partie d'un substrat en silicium 1 de type p présentant une orientation cristalline désirée (par exemple <100>) et réalisé en découpant et en polissant une boule ou un barreau de silicium de type p (c'est-à-dire en présence d'un dopant du type p tel que le bore) conformément à des techniques classiques. D'autres dopants de type p utilisables avec le silicium sont l'aluminium, le gallium et l'indium.

    [0033] On fait ensuite croître ou l'on dépose un isolant de porte constitué par une mince couche de dioxyde de silicium 2. Cette couche, dont l'épaisseur est généralement comprise entre 200 et 1000 Angstroms est de préférence formée par oxydation thermique de la surface de silicium à 1000°C en présence d'oxygène sec.

    [0034] On procéda ensuite au dépôt d'une ccuche de silicium polycristallin 3. Cette couche a généralement une épaisseur variant entre 500 et 2000 Angstroms enviror. et peut être réalisée par dépôt chimique en phase vapeur. On dope ensuite cette couche au moyen d'un dopant de type n tel que l'arsenic, le phosphore ou l'antimoine, en utilisant une technique classique. Par exemple, on peut doper cette couche avec du phosphore en utilisant la technique qui consiste à déposer une couche de POCℓ3 et en la chauffant à 1000°C environ de manière à introduire le phosphore dans la couche 3, qui devient, alors de type n. On retire ensuite le résidu de la couche de POCℓ3 en décapant la pastille dans de l'acide, fluorhydrique tamponné. Une couche de siliciure 4 d'une épaisseur d'environ 2000 à 4000 Angstroms est ensuite formée sur la couche 3 en utilisant le procédé de la présente invention et décrit ci-dessus.

    [0035] Une configuration de porte peut étre réalisée en utilisant pour la lithcgrapnie une technique connue quelconque, par exemple le décapage chimique, le décapage dans un plasma, le décapage par ions réactifs, etc... Les techniques susceptibles d'être utilisées à cette fin varient dans leurs détails, mais permettent toutes d'obtenir une couche composite, siliciure silicium polycristallin, présentant une configuration déterminée. Dans le das d'un décapage chimirue, on a constaté que du H3PO, chaud permettait de décaper de façon sélective les ciliciures par rapport au silicium polycristallin ou au SiO2. Les silicruros doivent le préférenze stre décapés au moyen d'une technique dite "sèche" telie que la technique to décapage par ions réactifs faisant appel à l'empioi d'un matériau tel que le CF4.

    [0036] Les régions de source et de drain de type n sont ensuite formées au moyen des techniques bien connues d'implantation ou de diffusion ionique. Par exemple, des régions de source et de drain 7 et 8 de type n, respectivement, d'une profondeur de 2.000 Angstroms peuvent être réalisées par implantation d'As75 en utilisant une énergie d'environ 100 KeV et une dose de 4 x 1015 atomes/cm2. Pendant l'implantation, la couche en silicium polycristallin 3 et la couche de siliciure 4 font fonction de masque et empêchent les impuretés de type n de pénétrer dans la région du canal du FET qui se trouve au-dessous de la couche 3.

    [0037] Les limites entre les régions de source et de drain de type n et donc le canal du FET sont déterminées par les dimensions de la porte en silicium polycristallin. Cette technique est généralement dite technique de "porte auto-alignée".

    [0038] Une couche de dioxyde de silicium de passivation auto-formée 5 est ensuite formée in situ sur les régions de porte au moyen des techniques d'oxydation précédemment décrites. Par exemple, l'ensemble fait l'objet d'une oxydation en phase vapeur à 950°C environ pendant 30 minutes environ pour obtenir une épaisseur d'oxyde également supérieure à 1.000 et 3.000 Angstroms qui dépend bien sur du métal choisi comme on l'a vu ci-dessus.

    [0039] On procède ensuite au dépôt chimique en phase vapeur d'une couche de. dioxyde de silicium d'une épaisseur d'environ 1.000 à.1.500 Angstroms pour prévenir toute inter-action entre la couche de siliciure et une interconnexion métallique, par exemple, en aluminium, qui serait ultérieurement appliquée. Les couches d'oxyde et les couches métalliques sont définies au moyen de techniques classiques de masquage et de décapage. Par exemple, le dioxyde de silicium peut être retiré en utilisant de l'acide fluorhydrique tamponné et l'aluminium peut être décapé au moyen d'un mélange d'acide phosphorique et d'acide nitrique. L'aluminium peut être déposé par pulvérisation ou par évaporation.

    [0040] Les figures 2A à 2C illustrent une autre utilisation de la présente invention aux fins de la fabrication de circuits intégrés. La technique ci-après est particulièrement avantageuse parce qu'elle offre la possibilité de retirer le siliciure déposé de régions prédéterminées du substrat, en utilisant des techniques d'élimination par décollement (lift off).

    [0041] Le substrat 11 est recouvert d'une couche d'un matériau 13 qui permet d'obtenir une configuration convenable en vue de l'étape de décollement. Dans le cas le plus simple, le matériau constituant la couche 13 est un matériau résistant sensible au rayonnement dans lequel la configuration désirée est engendrée au moyen de techniques classiques (par exemple au moyen d'un électron résist du type PMMA avec un appareil de masquage à faisceau électronique). On notera que la couche 13 pourrait être constituée par plusieurs couches de matériaux sensibles, de façon à obtenir la géométrie de décollement désirée dans le cas de matériaux seulement capables de résister à des températures de traitements modérément élevées.

    [0042] Une fois que la configuration désirée de la couche 13 a été obtenue, le substrat est dopé dans les régions qui ne sont pas protégées par le masque de manière à former régions 12 de type n par exemple des régions de source et de drain d'un FET . Des techniques. telles que l'implantation ionique d'As, de P ou de Sb peuvent être employées aux fins du dopage de cette région.

    [0043] Une couche 14 de métal et de silicium est déposée sur le substrat au moyen de l'étape d'évaporation simultanée précédemment décrite. La couche 14 n'est pas continue, c'est-à-dire qu'il n'y a pas de liaisons entre les régions qui se trouvent au-dessus du masque et celles qui ne le sont pas, comme cela se produirait dans le cas de l'emploi d'une technique de pulvérisation, car cette dernière provoquerait un recouvrement des bords qui pourrait entraîner une telle liaison ou interconnexion. Le matériau constituant le masque et celui qui le recouvre peuvent donc être aisément retirés au moyen d'une simple technique de décollement en utilisant un solvant tel que l'acétone qui élimine le matériau résistant qui subsistait pour former ledit masque.

    [0044] L'ensemble est ensuite soumis à un traitement thermique à des températures variant entre 700 et 1.100°C environ dans une atmosphère inerte telle que de l'argon, de l'hydrogène ou de l'hélium, comme l'exige la présente invention, pour former le siliciure. La couche de siliciure 14 pourra ensuite être oxydée de manière à être recouverte d'une couche d'oxyde de passivation.

    [0045] Un masque composite 15 tel qu'une couche de nitrure de silicium déposée au-dessus d'une couche de dioxyde de silicium, est disposé au-dessus de la région de canal du dispositif FET, afin de servir comme masque empêchant ou bloquant toute oxydation du substrat à cet emplacement.

    [0046] Des impuretés de dopage 16 telles que des atomes de bore peuvent être introduites au moyen de techniques d'implantation ionique, dans les régions de champ. On fait croître ensuite une couche 17 de dioxyde de silicium, par exemple, par dépôt chimique en phase vapeur, sur les parties du substrat qui ne sont pas protégées par le masque 15.

    [0047] Le masque composite de blocage d'oxydation est ensuite retiré au moyen d'un solvant approprié. Si, par exemple, on utilise du nitrure de silicium, celui-ci peut être décapé dans une solution d'acide phosphorique à 180°C. Le dioxyde de silicium peut être décapé dans une solution d'acide fluorhydrique tamponné.

    [0048] On fait ensuite croître sur le substrat un isolant de porte en dioxyde de silicium 18. Le dopage de la région du canal, si nécessaire, est effectué par une implantation ionique. On procède ensuire au dépôt du matériau constituant la porte, puis à sa délimitation selon une configuration désirée au moyen des techniques connues de masquage et de décapage. Ce matériau peut être obtenu par évaporation simultanée et chauffage du silicium et du métal, par dépôt de silicium polycristallin seul, ou par dépôt du silicium polycristallin et d'une couche formée par évaporation simultanée et chauffage du silicium et du métal conformément aux techniques de la présente invention.

    [0049] Bien que l'on ait décrit dans ce qui précède et représenté sur les dessins les caractéristiques essentielles de la présente invention appliquées à un mode de réalisation préféré de celle-ci, il est évident que l'homme de l'art peut y apporter toutes modifications de forme ou de détail qu'il juge utiles, sans pour autant sortir du cadre de ladite invention.












    Revendications

    1. Procédé de fabrication d'une électrode en siliciure sur un substrat, caractérisé en ce qu'il consiste à déposer simultanément un métal et du silicium sur le substrat par évaporation, puis à faire subir au substrat un traitement thermique approprié pour obtenir ledit siliciure.
     
    2. Procédé selon la revendication 1, caractérisé en ce que le substrat est choisi dans le groupe comprenant: le silicium polycristallin, et le silicium monocristallin.
     
    3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le métal est choisi dans le groupe comportant le molybdène, le tantale, le tungstène, le rhodium, et les mélanges de ces métaux.
     
    4. Procédé selon la revendication 3, caractérisé en ce que le métal est du molybdène.
     
    5. Procédé selon la revendication 3, caractérisé en ce que le métal est du tantale.
     
    6. Procédé selon la revendication 3, caractérisé en ce que le métal est du tungstène.
     
    7. Procédé selon l'une des revendications ci-dessus, caractérisé en ce que le traitement thermique du substrat implique de porter ce dernier à une température comprise approximativement entre 700°C et 1.100°C, dans une atmosphère inerte choisie dans le groupe comprenant: l'hydrogène, l'argon, l'hélium et les mélanges de ces gaz.
     
    8. Procédé selon l'une quelconque des revendications ci-dessus, caractérisé en ce que ladite évaporation simultanée est effectuée sous un vide poussé en utilisant comme source de chaleur un faisceau électronique pour évaporer le silicium et un faisceau électronique pour évaporer le métal.
     
    9. Procédé selon l'une quelconaue des revendications ci-dessus, caractérisé en ce que le siliciure comprend de 60 à 25% environ en poids atomique dudit métal et de 40 à 75% environ en poids atomique de silicium respectivement.
     
    10. Procédé selon l'une quelconque des revendications ci-dessus, caractérisé en ce qu'il consiste en outre à oxyder une partie de la couche de siliciure.
     
    11. Procédé selon la revendication 10, caractérisé en ce que l'oxydation de ladite partie de la couche de siliciure est une oxydation sèche- humide-sèche effectuée à une température variant entre approximativement 800°C et 1.100°C pendant un intervalle de temps variant approximativement entre 15 minutes et 1 heure.
     




    Dessins













    Rapport de recherche