(19)
(11) EP 0 000 361 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
24.01.1979  Patentblatt  1979/02

(21) Anmeldenummer: 78100283.7

(22) Anmeldetag:  30.06.1978
(51) Internationale Patentklassifikation (IPC)2C08G 65/40
(84) Benannte Vertragsstaaten:
BE DE FR GB NL

(30) Priorität: 14.07.1977 DE 2731816

(71) Anmelder: BASF Aktiengesellschaft
67063 Ludwigshafen (DE)

(72) Erfinder:
  • Blinne, Gerd, Dr.
    D-6719 Bobenheim (DE)
  • Cordes, Claus, Dr.
    D-6719 Weisenheim (DE)


(56) Entgegenhaltungen: : 
   
       


    (54) Verfahren zur Herstellung von Poly(phenylenoxyphenylensulfon)


    (57) Polyäther, vorzugsweise sulfongruppenhaitige Polyäther, werden in einem mehrstufigen Kondensationsverfahren bei Temperaturen von 100 bis 230° C aus im wesentlichen äquivalenten Mengen eines Bisphenols und einer Dichlorbenzolverbindung in einem polaren, aprotischen Lösungsmittel in Gegenwart von wasserfreiem Alkalicarbonat und gegebenenfalls eines Azeotropbildners hergestellt.
    Die nach dem erfindungsgemässen Verfahren hergestellten Polyäther besitzen Molekulargewichte von 15 000 bis 120 000 und eignen sich vorzüglich zur Herstellung von Formkörpern, Fasern, Folien, Kleb- und Beschichtungsstofferi.


    Beschreibung


    [0001] Die Erfindung betrifft ein Verfahren zur Herstellung von Polyäthern, insbesondere sulfongruppenhaltigen Polyäthern.

    [0002] Polymere mit Sulfon- und Äthergruppen sind bereits bekannt. Nach Angaben der DT-OS 15 45 106 und DT-OS 17 95 725 werden Polysulfonäther vorzugsweise durch Umsetzung aromatischer Alkaliphenolate mit aromatischen Halogenverbindungen hergestellt. Bei der Herstellung des Alkalisalzes werden wäßrige Lösungen des Alkalihydroxids zugegeben. Hierbei müssen exakt stöchiometrische Mengen eingehalten werden, da ein Über- oder Unterschuß der Base zu unbefriedigenden Molekulargewichten führt. Außerdem bilden sich aufgrund des anwesenden Wassers häufig große Phenolatagglomerate, die zu erheblichen Störungen bei der Polykondensation führen können.

    [0003] In der DT-OS 19 57 091 sowie in der CA-PS 847 963 werden die beschriebenen Nachteile teilweise durch Verwendung von wasserfreiem Alkalicarbonat beseitigt. Nach Angaben der DT-OS 19 57 091 werden jedoch die geringen Wassermengen, die sich beim Zerfall des in situ entstehenden Alkalibicarbonates bilden, nicht entfernt. Dadurch ergeben sich ungenügende Molekulargewichte, und das Verfahren ist nur mit wenigen ausgewählten Monomeren durchführbar. In der CA-PS 847 963 wird dieser Nachteil durch Verwendung eines Lösungsmittels vermieden, das azeotrop mit Wasser abdestilliert. Zum Erreichen befriedigender Molekulargewichte werden hier allerdings relativ hohe Temperaturbereiche eingestellt, die zu mehr oder minder verfärbten Produkten führen. Außerdem ist das Verfahren auf wenige, hochsiedende Lösungsmittel beschränkt.

    [0004] Überraschenderweise wurde nun gefunden, daß man bei niedrigeren Reaktionstemperaturen Polyäther mit guter Eigenfarbe und hohem Molekulargewicht erhält, wenn man im wesentlichen äquivalente Mengen eines Bisphenols mit einer Dichlorbenzolverbindung in einem polar aprotischen Lösungsmittel in Gegenwart von wasserfreiem Alkalicarbonat stufenweise umsetzt.

    [0005] Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung von Polyäthern durch Umsetzung von im wesentlichen äquivalenten Mengen eines Bisphenols oder einer Mischung mehrerer Bisphenole mit einer Dichlorbenzolverbindung oder einer Mischung mehrerer Dichlorbenzolverbindungen in einem polaren, aprotischen Lösungsmittel in Gegenwart von wasserfreiem Alkalicarbonat, das dadurch gekennzeichnet ist, daß

    a) in einer ersten Reaktionsstufe eine Lösung von einem Mol Bisphenol mit ungefähr einem Mol der Dichlorbenzolverbindung in Gegenwart von 1 bis 2, vorzugsweise 1,0 bis 1,2 Mol wasserfreiem Alkalicarbonat und eines Wasser-Azeotropbildners bis zur Abtrennung von mindestens 90 Gew.%, bezogen auf das Gesamtgewicht, der theoretisch möglichen Wassermenge bei Temperaturen von 100°C bis 1700C. vorzugsweise 120°C bis 150°C umgesetzt wird,

    b) in einer zweiten Reaktionsstufe das Reaktionsgemisch bei Temperaturen von 150°C bis 230oC, vorzugsweise 170°C bis 200°C mit weiterem Azeotropbildner versetzt und gleichzeitig das entstehende azeotrope Gemisch bis zur völligen Wasserfreiheit abdestilliert wird,

    c) in einer dritten Reaktionsstufe das Reaktionsgemisch bei Temperaturen von 150°C bis 230oC, vorzugsweise 170°C bis 200°C bis zu einer reduzierten Viskosität von 0,4 bis 1,5 polykondensiert und anschließend die Polymerisation durch Zugabe von Methylchlorid abgestoppt wird und

    d) der entstandene Polyäther durch an sich bekannte Maßnahmen von Lösungsmitteln und anorganischen Bestandteilen abgetrennt wird.



    [0006] Als Bisphenole eignen sich Verbindungen, die sich von der allgemeinen Formel

    ableiten lassen, in der Ar einen aromatischen Rest mit 6 C-Atomen, A einen zweiwertigen Rest aus der Gruppe -S02-, -CO- und n und m 0 oder 1 bedeuten.

    [0007] Derartige Bisphenole sind beispielsweise Hydrochinon, Resorcin, 4,4f-Bisphenol, Bis-(4-oxyphenyl-)sulfon und Bis-(4-oxy- phenyl-)-keton. Die genannten Bisphenole können einzeln oder in Form von Mischungen zur Anwendung kommen. Vorzugsweise verwendet wird Bis-(4-oxyphenyl-)sulfon.

    [0008] Als Dichlorbenzolverbindungen eignen sich Derivate der allgemeinen Formeln





    in denen B den Rest -CO- oder -S02- bedeutet, D für -0-oder -S- steht und x 0 oder 1 ist.

    [0009] Als derartige Dichlorbenzolverbindungen seien beispielsweise genannt: Bis-(4-chlorphenyl-)sulfon, Bis-(4-chlorphenyl-) keton, 1,4-Bis-(4-chlorbenzoyl-)benzol, 1,4-Bis-(4-chlor- benzolsulfonyl-)benzol, 4,4'-Bis-(4-chlorbenzoyl-)diphenyläther, 4,4'-Bis-(4-chlorbenzyl-)diphenylsulfid, 4,4'-Bis-(4-chlorbenzoyl-)diphenyl, 4,4'-Bis-(4-chlorbenzolsulfonyl-) diphenyläther, 4,4'-Bis-(4-chlorbenzolsulfonyl-)diphenyl- sulfid oder 4,4'-Bis-(4-chlorbenzolsulfonyl-)diphenyl. Die Dichlorbenzolverbindungen können ebenfalls einzeln oder als Gemisch verwendet werden. Vorzugsweise verwendet wird Bis-(4-chlorphenyl)-sulfon.

    [0010] Als polare, aprotische Lösungsmittel gelangen Verbindungen zur Anwendung, die zu den N-substituierten Säureamiden, den Sulfoxiden oder Sulfonen zählen, beispielsweise N,N-Dimethylformamid, N,N-Dimethylacetamid, N-Methylpyrrolidon, Dimethylsulfoxid, Dimethylsulfon, Tetramethylensulfon (Sulfolan) oder Diphenylsulfon. Bevorzugt wird N-Methylpyrrolidon verwendet.

    [0011] Die polaren, aprotischen Lösungsmittel werden in'Mengen von 5 bis 100, vorzugsweise von 10 bis 20 Molen, bezogen auf ein Mol Bisphenol oder Dichlorbenzolverbindung, verwendet. Dies bedeutet, daß die Reaktionslösungen in Abwesenheit von Alkalicarbonat und Azeotropbildner einen Feststoffgehalt von 5 bis 50 Gew.%, vorzugsweise von 20 bis 35 Gew.%, bezogen auf das Gesamtgewicht, aufweisen.

    [0012] Als wasserfreie Alkalicarbonate kommen beispielsweise Natrium- und vorzugsweise Kaliumcarbonat in Betracht. Zur Neutralisation des bei der Polykondensation entstehenden Chlorwas- .serstoffs werden pro Mol Bisphenol und Dichlorbenzolverbindung 1 bis 2, vorzugsweise 1,0 bis 1,2 Mol wasserfreies Alkalicarbonat eingesetzt.

    [0013] Geeignete Wasser-Azeotropbildner sind alle Substanzen, die im Bereich der Reaktionstemperatur bei Normaldruck sieden und sich mit dem Reaktionsgemisch homogen mischen lassen, ohne chemische Reaktionen einzugehen. Als Azeotropbildner der genannten Art seien beispielsweise genannt: Chlorbenzol, Toluol und Xylol.

    [0014] Bevorzugt zur Anwendung gelangt Chlorbenzol.

    [0015] Die Azeotropbildner werden in solchen Mengen verwendet, daß die quantitative Abtrennung des bei der Neutralisation von Chlorwasserstoff und Alkalicarbonat entstehenden Wassers gewährleistet wird.

    [0016] Da die Wasserabtrennung in üblichen Vorrichtungen, beispielsweise Wasserabscheidern verschiedener Art, durchgeführt werden kann, wobei der Azeotropbildner gegebenenfalls ständig im Kreislauf geführt werden kann, ist die benötigte Azeotropbildnermenge auch von der Art und Größe der Vorrichtung abhängig. Die erforderliche Menge kann jedoch auf einfache Weise experimentell bestimmt werden.

    [0017] Sofern der Azeotropbildner nicht im Kreislauf geführt wird, hat es sich als zweckmäßig erwiesen, pro Mol Alkalicarbonat in der ersten Reaktionsstufe ungefähr 2 bis 10 Mol Azeotropbildner zu verwenden.

    [0018] Das erfindungsgemäße Verfahren wird vorzugsweise zur Polykondensation von etwa 1 Mol Bis-(4-oxyphenyl-)sulfon mit etwa 1 Mol Bis-(4-chlorphenyl-)sulfon in N-Methylpyrrolidon als aprotischem Lösungsmittel in Gegenwart von 1,0 bis 1,2 Mol wasserfreiem Kaliumcarbonat und Chlorbezol als Wasser-Azeotropbildner zu Polyäthern verwendet.

    [0019] Zur Durchführung des erfindungsgemäßen Verfahrens wird die Reaktionsmischung in der ersten Reaktionsstufe bis zur Abtrennung von mindestens 90 Gew.%, vorzugsweise 90 bis 96 Gew.%, bezogen auf das Gesamtgewicht, der theoretisch möglichen Wassermenge vorteilhafterweise 0,5 bis 4 Stunden, vorzugsweise 1 bis 2 Stunden, erhitzt.

    [0020] In der zweiten Reaktionsstufe wird das Reaktionsgemisch bis zur völligen Wasserfreiheit polykondensiert und hierzu wird das Reaktionsgemisch ständig mit weiterem Azeotropbildner versetzt und gleichzeitig das entstehende Azeotropgemisch abdestilliert. Die Reaktionszeit beträgt ungefähr b,5 bis 4 Stunden, vorzugsweise 1 bis 2 Stunden.

    [0021] Die Reaktionszeit in der dritten Stufe zur Polykondensation bis zu einer reduzierten Viskosität von 0,4 bis 1,5, vorzugs. weise 0,50 bis 1,2, des Polyäthers beträgt ungefähr 3 bis 12 Stunden, vorzugsweise 4 bis 8 Stunden. Danach wird die Polykondensation durch Einleiten von Methylchlorid abgestoppt. Die Reaktionszeit hierfür beträgt ungefähr 0,1 bis 2, vorzugsweise 0,2 bis 0,5 Stunden.

    [0022] Die Isolierung des Polyäthers in der vierten Stufe schließlich kann auf verschiedene Weise durchgeführt werden. Eine Abscheidung des festen Polymeren kann durch Mischung der Reaktionslösung mit einem Fällungsmittel, z.B. Wasser und/oder Methanol, durch starkes Rühren, Verspritzen oder Verdüsen geschehen. Andererseits kann das Lösungsmittel auch verdampft werden. Die anorganischen Bestandteile können durch geeignete Methoden wie Lösen, Filtrieren oder Sieben aus dem Polyäther entfernt werden.

    [0023] Die mit Hilfe des erfindungsgemäßen Verfahrens hergestellten Polyäther besitzen reduzierte Viskositäten (gemessen bei 24°C in 1 %iger Schwefelsäurelösung) von 0,4 bis 1,5. Dies entspricht Molekulargewichten von 15 000 bis 120 000. Die hergestellten Polyäther sind vorzüglich zur Herstellung von Formkörpern, Fasern, Folien, Kleb- und Beschichtungsstoffen geeignet.

    [0024] Die Erfindung wird durch die nachfolgenden Beispiele und Vergleichsbeispiele näher erläutert. Die genannten Teile sind Gewichtsteile. Die reduzierten Viskositäten (η red) wurden bei 24°C in 1 %lger Schwefelsäurelösung gemessen und entsprechend der Formel

    bestimmt.

    [0025] Die Farbbeurteilung der Polyäther wurde durch UV-Messung an 1 %igen Schwefelsäurelösungen durchgeführt. Dazu wurde die Lichtdurchlässigkeit der Lösung im Bereich von 400 bis 800 mµ in Intervallen von 50 m/u gemessen und daraus die durchschnittliche Durchlässigkeit berechnet.

    Beispiel 1



    [0026] 150,2 Teile Bis-(4-oxyphenyl-)sulfon und 172,3 Teile Bis-(4- chlorphenyl-)sulfon werden. in 900 Teilen N-Methylpyrrolidon und 300 Teilen Chlorbenzol gelöst und mit 87,2 Teilen wasserfreiem Kaliumcarbonat versetzt. Das Reaktionsgemisch wird unter ständigem Abdestillieren eines Gemisches aus Wasser und Chlorbenzol innerhalb von zwei Stunden auf 150°C erhitzt. Anschließend wird die Temperatur auf 180°C gesteigert. Innerhalb weiterer zwei Stunden werden nochmals 300 Teile Chlorbenzol zugetropft, die sofort wieder azeotrop abdestillieren. Das Reaktionsgemisch wird dann 6 Stunden bei 180°C bis zu einer reduzierten Viskosität von 0,6 gehalten. Durch 30-minütiges Einleiten eines Methylchlorid-Stromes wird die Polykondensation abgebrochen. Die anorganischen Bestandteile werden nach Zugabe von 600 ml Chlorbenzol abfiltriert, das Polymere in Wasser ausgefällt und 12 Stunden bei 80°C im Vakuum getrocknet. Es besitzt eine reduzierte Viskosität von ηred = 0,60 und eine durchschnittliche Lichtdurchlässigkeit von 3,4 %.

    Beispiel 2



    [0027] Verfährt man analog den Angaben von Beispiel 1, verwendet jedoch anstelle des Kaliumcarbonats 66,8 Teile wasserfreies Natriumcarbonat, so erhält man einen Polyäther mit einer reduzierten Viskosität von ηred = 0,45 und einer durchschnittlichen Lichtdurchlässigkeit von 3,7 %.

    Vergleichsbeispiel A



    [0028] Die Polykondensation wird analog Beispiel 1, jedoch in Abwesenheit des Chlorbenzols durchgeführt. Man erhält einen Polyäther der reduzierten Viskosität ηred = 0,25 mit einer durchschnittlichen Absorption von 6,1

    Vergleichsbeispiel B



    [0029] Die Polykondensation wird entsprechend Beispiel 1, jedoch unter Verwendung von 900 Teilen Tetramethylensulfon (Sulfolan) anstelle des N-Methylpyrrolidons als Lösungsmittel durchgeführt. Ferner wird das Reaktionsgemisch in der dritten Reaktionsstufe 6 Stunden bei 235°C polykondensiert. Das erhaltene Polymere besitzt eine reduzierte Viskosität von ηred = 0,50 und eine durchschnittliche Absorption von 14,5 %.

    Vergleichsbeispiel C



    [0030] Man verfährt analog den Angaben des Beispiels 1, setzt jedoch das gesamte Chlorbenzol (600 Teile) dem Reaktionsgemisch bereits zu Beginn der Polykondensation hinzu und führt die Reaktion bei 180°C unter azeotroper Destillation zu Ende. Man erhält ein Oligomeres mit einer reduzierten Viskosität von ηred = 0,10 und einer durchschnittlichen Absorption von 5,8 %.

    Beispiel 3



    [0031] 66,1 Teile Hydrochinon und 172,3 Teile Bis-(4-chlorphenyl-) sulfon werden in 900 Teilen N-Methylpyrrolidon und 300 Teilen Chlorbenzol gelöst, mit 87,2 Teilen wasserfreiem Kaliumcarbonat versetzt und wie in Beispiel 1 weiterbehandelt. Der erhaltene Polyäther besitzt eine reduzierte Viskosität von ηred = 1,1 und eine durchschnittliche Absorption von 6,2 %.

    Beispiel 4



    [0032] Analog Beispiel 3 werden 66,1 Teile Resorcin zur Umsetzung verwendet. Das Polymere hat eine reduzierte Viskosität von ηred = 0,60 und eine durchschnittliche Absorption von 4,8 %.

    Beispiel 5



    [0033] Analog Beispiel 3 werden 111,7 Teile 4,4'-Dioxy-diphenyl eingesetzt. Man erhält einen Polyäther mit einer reduzierten Viskosität von ηred = 1,0 und einer durchschnittlichen Absorption von 8,0 %.

    Beispiel 6



    [0034] 150,2 Teile Bis-(4-oxyphenyl-)sulfon und 268,2 Teile 4,4'-Bis-(4-chlorbenzoyl-)diphenyläther werden in 900 Teilen Tetramethylensulfon (Sulfolan) und 300 Teilen Chlorbenzol gelöst und mit 87,2 Teilen wasserfreiem Kaliumcarbonat versetzt. Es wird dann wie in Beispiel 1 verfahren mit dem Unterschied, daß das Reaktionsgemisch iin der dritten Reaktionsstufe 12 Stunden bei 200°C gehalten wird. Nach der Aufarbeitung erhält man ein Polymeres mit einer reduzierten Viskosität von ηred = 0,40.


    Ansprüche

    1. Verfahren zur Herstellung von Polyäthern durch Umsetzung von im wesentlichen äquivalenten Mengen eines Bisphenols oder einer Mischung mehrerer Bisphenole mit einer Dichlorbenzolverbindung oder einer Mischung mehrerer Dichlorbenzolverbindungen in einem polaren, aprotischen Lösungsmittel in Gegenwart von wasserfreiem Alkalicarbonat, dadurch gekennzeichnet, daß

    a) in einer ersten Reaktionsstufe eine Lösung von einem Mol Bisphenol mit ungefährt einem Mol der Dichlorbenzolverbindung in Gegenwart von 1 bis 2 Mol wasserfreiem Alkalicarbonat und eines Wasser-Azeotropbildners bis zur Abtrennung von mindestens 90 Gew.%, bezogen auf das Gesamtgewicht, der theoretisch möglichen Wassermenge bei Temperaturen von 100°C bis 170°C umgesetzt wird,

    b) in einer zweiten Reaktionsstufe das Reaktionsgemisch bei Temperaturen von 150°C bis 2300C solange mit weiterem Azeotropbildner versetzt und gleichzeitig das entstehende azeotrope Gemisch bis zur völligen Wasserfreiheit abdestilliert wird,

    c) in einer dritten Reaktionsstufe das Reaktionsgemisch bei Temperaturen von 150°C bis 2300C zu einer reduzierten Viskosität von 0,4 bis 1,5 polykondensiert und anschließend die Polymerisation durch Zugabe von Methylchlorid abgestoppt wird und

    d) der entstandene Polyäther von Lösungsmitteln und anorganischen Bestandteilen abgetrennt wird.


     
    2. Verfahren na.ch Anspruch 1, dadurch gekennzeichnet, daß man als Bisphenol eine Verbindung der allgemeinen Formel

    verwendet, in der Ar einen aromatischen Rest mit 6 C-Atomen, A einen zweiwertigen Rest aus der Gruppe -S02-, -CO- und n und m 0 oder 1 bedeuten.
     
    3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als Dichlorbenzolverbindung eine Substanz der allgemeinen Formel





    verwendet, in denen B den Rest -CO- oder -S02- bedeutet, D für -0- oder -S- steht und x 0 oder 1 ist.
     
    4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als polare aprotische Lösungsmittel Verbindungen aus der Gruppe der N-substituierten Säureamide, Sulfoxide oder Sulfone verwendet.
     
    5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß man als polares aprotisches Lösungsmittel N-Methylpyrrolidon verwendet.
     
    6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als wasserfreies Alkalicarbonat Kaliumcarbonat und als Wasser-Azeotropbildner Chlorbenzol verwendet.
     
    7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man in vier Reaktionsstufen etwa 1 Mol Bis-(4-oxyphenyl-) sulfon mit etwa 1 Mol Bis-(4-chlorphenyl-)sulfon in N-Methylpyrrolidon in Gegenwart von 1,0 bis 1,2 Molen wasserfreiem Kaliumcarbonat und Chlorbenzol als Azeotropbildner zu Polyäthern umsetzt.
     





    Recherchenbericht