[0001] This invention relates to over-based, oil-soluble magnesium salts of sulphonic acids
having metal ratios ranging from 10 up to 40 and processes for preparing such over-based
magnesium salts of sulphonic acids.
[0002] Over-based, oil-soluble magnesium salts of sulphonic acids are used as additives
in oil-based compositions, such as lubricants, greases, fuels, and the like. They
function as detergents and acid neutralizers, thereby reducing wear and corrosion
and extending the engine life.
[0003] Highly basic magnesium salts of a sulphonic acid having a metal ratio of equivalents
of magnesium to equivalents of sulphonic acid ranging from 10 up to 40 or more, particularly
the higher metal ratios of 20 to 40 have been difficult to prepare in a one-step operation
using MgO as a Mg source. In systems previously described, either insufficient magnesium
was dispersed or an unfiltered product resulted.
[0004] It has been discovered that over-based magnesium sulphonates may be prepared in a
one-step operation by using a reaction promoter system comprising (1) a carboxylic
compound selected from the group of compounds consisting of lower carboxylic acids,
lower carboxylic anhydrides, substituted lower carboxylic acids, metals salts and
esters of lower carboxylic acids and mixture thereof, all having from 1 to 5 carbon
aroms; (2) water and optionally (3) an alcohol selected from the group of compounds
consisting of lower alkanols, lower alkoxy alkanols and mixtures thereof, all having
from 1 to 5 carbon atoms. Such a promoter system gives a high quality over-based magnesium
sulphonate having very high metal ratios which is suitable for use in various types
of oil-based compositions.
[0005] It is therefore an object of the invention to provide a process for manufacturing
oil-soluble, over-based magnesium salts of sulphonic acids having metal ratios ranging
from 10 and upwards to 40 where the product is prepared in a one-step operation of
containing the reaction mixture with an acidic gas.
[0006] It is a further object of the invention to provide a reaction promoter system for
use in processes for manufacturing oil-soluble, over-based magnesium salts of sulphonic
acids having metal ratios of 10 up to 40.
[0007] It is another object of the invention to provide a process for preparing a magnesium
salt of a sulphonic acid having very high metal ratios wherein over-basing of the
sulphonic acid is accomplished by using a promoter system in combination with a light
form of magnesium oxide.
[0008] This invention provides a reaction promotor system for use in the manufacture of
an over-based, oil-soluble magnesium salt of a sulphonic acid having metal ratios
of from 10 up to 40, in a one-step operation of contacting an acidic gas with a mixture
containing the sulphonic acid to be over-based.
[0009] According to the present invention there is provided a process for preparing an over-based
oil soluble magnesium salt of a sulphonic acid having a metal ratio of equivalents
of magnesium to equivalents of sulphonic acid of from 10 to 40; comprising contacting
an acidic gas with a mixture comprising:
(a) an oil-soluble magnesium salt of a sulphonic acid,
(b) from 10 equivalents up to 40 equivalents of a light magnesium oxide per equivalent
of sulphonic acid,
(c) a promoter system comprising:
(1) from 0.5 to 5 equivalents of an essentially oil-insoluble carboxylic compound
per equivalent of sulphonic acid, said compound being selected from the group of compounds
consisting of lower carboxylic acids, lower carboxylic anhydrides, substituted lower
carboxylic acids, metal salts and esters of lower carboxylic acids and mixtures thereof,
all having from 1 to 5 carbon atoms;
(2) from 2 to 30 equivalents of water per equivalent of sulphonic acid, and
(3) from 0 to 35 equivalents of an alcohol per equivalent of sulphonic acid, said
alcohol being selected from the group consisting of lower alkanols, lower alkoxy alkanols
and mixtures thereof, all having from 1 to 5 carbon atoms, and
(d) an inert solvent for lowering the viscosity of said mixture to facilitate mixing:
said contacting being conducted at a temperature ranging from 10°C (50° F) up to reflux
temperature of said mixture and the volatile components being stripped from the reaction
mixture after absorption of the acidic gas by the reaction mixture is at a desired
level to give an over-based, oil-soluble magnesium salt of a sulphonic acid.
[0010] The reaction mixture may be filtered either before or after the stripping of the
volatile components to give the product in solution or in concentrated form.
4
[0011] Additional water and/or alcohol may be added continuously or portion-wise to the
reaction mixture during the time that the acidic gas is contacted with the mixture.
The amount of water used in total should not exceed 30 equivalents per equivalent
of sulphonic acid and the total amount of alcohol used should not exceed 35 equivalents
per equivalent of sulphonic acid.
[0012] The aforementioned, and other objects, advantages and features of the invention will
become apparent in the following detailed discussion of preferred embodiments according
to this invention. It is understood that the following preferred embodiments are not
to be interpreted as limiting the scope of the invention.
PROMOTER SYSTEM
[0013] The essentially oil-insoluble carboxylic compounds is represented by the formula:

wherein
X is
H, -
eH20
H, -CH2C" -CH
2Br, -CH
2COCH
3, R or RNH
2 and Y is H, R, or M
n where R is an alkyl radical of from 1 to 4 carbon atoms, the sum of all the carbon
atoms in the R radicals not exceeding 5, and M
" is an alkali or alkaline earth metal atom wherein n is an integer of 1 or 2.
[0014] Preferred oil-insoluble carboxylic compounds of this invention are acetic acid, propionic
acid, butanoic acid, glycine, chloroacetic acid, bromoacetic acid, glycolic acid,
ethyl acetoacetate, sodium acetate, calcium acetate, and magnesium acetate. These
compounds may be used individually or in combination with one another where the amount
of this promoter ranges from .5 up to 5 equivalents per equivalent of oil-soluble
sulphonic acid. Preferably, the amount ranges from 0.7 to 1.3 equivalents. It has
been found in most instances that if over 5 equivalents of the promoter are used,
the reaction mixture becomes very viscous and although a product is obtained, the
viscosity of the mixture makes the isolation of the product and the introduction of
acidic gas into the mixture during the latter part of the process difficult.
[0015] The initial reaction mixture should have at least 2 equivalents of water per equivalent
of sulphonic acid. The mixture may have up to 15 equivalents of water where the preferred
range in the initial mixture is from 2 to 8 equivalents of water per equivalent of
sulphonic acid.
[0016] Although the mechanism of the reaction is not fully understood, it is theorised that
the presence of water in the reaction mixture initiates absorption of the acidic gas
by the reaction mixture. There is, however, a competing reaction for the water in
the formation of hydoxides of the magnesium oxide. It is therefore preferred to minimise
the reaction of water with the magnesium oxide by carrying out additions of small
amounts of water to the reaction mixture during the time that the acidic gas is contacted
with one reaction mixture so as to ensure that water is available in the system to
promote the absorption of the acidic gas. The amount of water used determines to a
certain extent the value of the metal ratio in that higher amounts of water, there
is usually a resultant haziness in the product. On the other hand, a deficiency of
water causes higher viscosity in the reaction mixture and a lower metal ratio.
[0017] The total amount of water added to the mixture over the entire reaction time should
not exceed 30 equivalents per equivalent of oil-soluble sulphonic acid used. The optimum
amount of water to be used is determined by the amount of magnesium oxide used and
the metal ratio desired because a larger amount of water results in a product having
a higher metal ratio. Depending upon the end use of the product, it may be acceptable
for the product to be hazy if used, for example, in bunker fuel oils and the like;
however, higher clarity products are required in lubricating oils.
[0018] The alcohols used in this process include lower aliphatic alkanols, alkoxy alkanols,
and mixtures thereof, where the number of carbon atoms does not exceed 5. Examples
of the alcohols include methanol, ethanol, isopropanol, n-propanol, butanol, and pentanol.
The preferred alcohol is methanol because of the low cost and ease of removal from
the reaction mixture. Examples of the alkoxy alkanols include methoxy ethanol and
ethoxy ethanol.
[0019] In order to initiate absorption of the acidic gas in the reaction mixture, it is
not necessary to have an alcohol present in the initial mixture. It is believed, however,
that the primary function of the alcohol is to promote the stability of the colloidal
dispersion of magnesium salts in the oil. To this end there may be none or a small
amount of alcohol in the initial reaction mixture and during contacting with the acidic
gas further amounts of alcohol are added either separately or in combination with
the addition of water. It has been found that lower metal ratios result if the total
amount of alcohol to be added exceeds 35 equivalents per equivalent of sulphonic acid.
The preferred amount to be used ranges from 4 to 20 equivalents per equivalent of
sulphonic acid.
SULPHONIC ACIDS
[0020] The sulphonic acids to be used in this process are those which are widely known by
those skilled in the art as oil-soluble sulphonic acids. Such compounds may be derived
from natural petroleum fractions or various synthetically prepared sulphonated compounds.
Typical oil-soluble sulphonic acids which may be used include:
alkane sulphonic acids, aromatic sulphonic acids, alkaryl sulphonic acids, aralkyl
sulphonic acids, petroleum sulphonic acids such as mahogany sulphonic acid, petroleum
sulphonic acid, paraffin wax sulphonic acid, petroleum naphthene sulphonic acid, polyalkylated
sulphonic acid, and other types of sulphonic acids which may be obtained by fuming
sulphuric acid treatment of petroleum fractions.
[0021] It is understood, of course, that mixtures of the sulphonic acids may be used in
preparing an over-based magnesium sulphonate.
[0022] The process according to this invention is operative with low sulphonate concentrations
which thereby allows the use of oil-based feed stock compositions containing as little
as 10% by weight of magnesium sulphonate without further concentration of the oil-based
stock.
ACIDIC GAS
[0023] As is appreciated by those skilled in the art, various types of acidic gases may
be used in over-basing magnesium sulphonates. The preferred acidic gases are carbon
dioxide, sulphur dioxide, nitrogen dioxide, and hydrogen sulphide. These gases are
bubbled through the reaction mixture as it is being mixed to that the selected gas
or gases become intimately mixed and in contact with the components of the reaction
mixture.
[0024] The temperatures at which the contacting of the gas with the reaction temperature
mixture according to a preferred embodiment may vary from 10 to 93.3°C (50 to 200°F),
although preferably within the 48.9 to 76.7°C (120 to 170°F) range.
MAGNESIUM OXIDE
[0025] The type of magnesium oxide used in a preferred embodiment of the process is the
light or active form. Such magnesium oxides are sold under the Trade Marks: MAGNESITE,
available from Martin Marietta Chemicals, Hunt Valley, Maryland; MICHIGAN No. 3, MICHIGAN
No. 15, MICHIGAN No. 340, available from Michigan Chemical Corporation, Chicago, Illinois;
DOW L-2, DOW C-1, available from Dow Chemical Co., Midland Michigan; ELASTOMAG 170,
and ELASTOMAG 20, available from Morton Chemical Co., Chicago, Illinois; MAGLITE Y,
available from Whittacker, Clark and Daniels, South Plainfield, New York; LYCAL 93/711,
and LYCAL 96/575 available from Pigment and Chemicals, Toronto, Canada; and MAGOX
PREMIUM, available from Basic Chemical, Cleveland, Ohio. The amount of magnesium oxide
used is dependent upon the metal ratio desired in the final product. The metal ratio
is the ratio of the number of equivalents of magnesium in the over-based compound
to the equivalents of sulphonic acid in the over-based compound. Therefore, to obtain
a metal ratio of, for example, 30, there must be at least thirty equivalents of magnesium
oxide per equivalent of sulphonic acid in the initial reaction mixture. It is apparent
that when the reaction is carried out under less favourable conditions, at lower efficiencies,
an excess of magnesium oxide beyond that determined by the metal ratio should be used
to ensure sufficient incorporation of magnesium with the structure of the over-based
magnesium salt of the sulphonic acid.
INERT DILUENTS
[0026] Several different types of volatile and non-volatile diluents may be used in this
process. The non-volatile diluents are generally mineral or synthetic lubricating
oils, such as lubricating oils having a viscosity around 0.2 St (cm2s-1) (100 SUS)
at 37.8°C (100°F) or higher. The volatile diluents which are inert to the reaction
are preferably hydrocarbons with boiling points ranging from 65.6 to 148.9°C (150
to 300°F). These can be aliphatic, aromatic, or a mixture of both types of solvents.
For example, naphtha is a particularly useful diluent. Other types of suitable diluents
include Stoddard solvent, cycloaliphatic and aromatic hydrocarbons, and corresponding
halogenated hydrocarbons, such as chlorobenzene, and other conventional organic diluents
generally employed in the over-basing procedures in this particular art of manufacture.
The amount of diluents used is sufficient to lower the viscosity of the reaction mixture
to facilitate mixing thereof during the introduction and contacting of the acidic
gases with the mixture.
[0027] The length of time that the acidic gas is contacted with the reaction mixture depends
upon the desired level of magnesium in the over-based magnesium sulphonate. The contacting
of the gas with the mixture may be continued until no further gas is absorbed to indicate
that substantially all of the magnesium oxide originally introduced into the system
has been reacted to form an over-based magnesium sulphonate.
[0028] To determine when the absorption of the gas is complete, the flow rate of the gas
leaving the system. When the flow rate of leaving gas almost equals the flow rate
of the introduced gas, then the absorption is substantially complete.
[0029] As can be appreciated by those skilled in the art, impurities and other variations
in the selected petroleum feed stocks and magnesium oxides, according to this invention,
can cause the resultant product to have slightly different metal ratios than that
achieved in the following examples. These examples are intended to illustrate various
aspects of the invention and are not intended to limit the scope of the invention
in any way.
PREPARATION 1
[0030] An oil-soluble magnesium sulphonate was prepared by charging into a 1 litre reactor,
equipped with stirrer, dropping funnel, thermometer, cooling and vent, 310 gm of a
solvent refined lubricating oil having a viscosity of 0.7 St (330 SUS) at 37.8°C (100°F)
and while stirring vigorously, 103 gm of 25 percent by weight oleum was added dropwise
over a half hour period. The temperature was maintained at 32.2 to 43.3°C (90 to 110°F).
The mixture was stirred for an additional 10 minutes and then quenched with 25 gm
water, 310 gm VM&P naphtha (Varnish Makers and Painters Naphtha) was added and the
mixture allowed to settle in a separatory funnal for 3 hours; 80 gm spent acid was
separated and removed. The organic naphtha layer was washed with 120 gm water and
the aqueous lower yellowish layer was separated and discarded. To the upper sulphonic
acid/naphtha layer was added 100 gm water, 10 gm methanol and 8 gm magnesium oxide.
The mixture was stirred at 60°C (140°F) effecting neutralisation of the sulphonic
acid and allowed to stand. The bottom aqueous layer which separated was discarded
and the naphtha layer was stripped of solvent and water to give a 30 wt% solution
of magnesium sulphonate in oil.
Example 1
[0031] Into a 1000 ml flask fitted with mechanical stirrer, thermometer, condenser, dropping
funnel and a course cylindrical dispersion tube were charged 85 gm of the magnesium
sulphonate of Preparation 1, 25 gm lubricating oil of 0.2 St (100 SUS) viscosity at
37.8°C (100°F), 140 gm naphtha and 30 gm magnesium oxide (MAGNESITE No. 569). The
mixture was heated to 54.4°C (130°F) and 6 gm magnesium acetate was added. Heating
was continued, and at 60°C (140°F) a mixture of water/methanol of 20 gm/16 gm respectively
was added dropwise through the dropping funnel over a period of 66 minutes. At the
same time carbonation was initiated at 75 ml/min and continued for 3 hours.
[0032] The product of carbonation was then filtered with the aid of diatomaceous filter
aid. Water, methanol and naphtha were then stripped off by heating to 204.4°C (400°F)
leaving a product which was clear and bright with a magnesium content of 9.2% which
is equivalent to a metal ratio of 27.0.
Example 2
[0033] The following reagents were mixed together in a 1000 ml flask fitted with mechanical
stirrer, thermometer, condenser and a course cylindrical dispersion tube:
137 g naphtha (B.P. 115.6-143.30C (240-290°F))
8 g methanol
4 g water
32 g lubricating oil
100 gm magnesium sulphonate solution made up to 45% magnesium sulphonate, 42% lubricating
oil, and 13% naphtha. The sulphonic acid used to make the magnesium sulphonate is
a straight chain alkyl benzene sulphonic acid of molecular weight about 500 which
may be obtained from Continental Oil
30 g magnesium oxide sold under the Trade Mark MAGNESITE No. 569 available from Martin
Marietta co. (USA) and
5.25 g glacial acetic acid.
[0034] The mixture was heated near its reflux temperature 65.6°C (150°F) and carbon dioxide
was introduced while mixing via the dispersion tube into the mixture at a flow rate
of 100 ml/min. Carbonation was continued for 2-1/2 hours, during which 8 gm water
and 8 gm methanol were added after 40 minutes of carbonation and further 4 gm of water
and 8 gm methanol were added after 80 minutes of carbonation.
[0035] The product of the carbonation was filtered with the aid of diatomaceous filter aid.
The volatile components of solvent, water, methanol and naphtha were stripped off
by heating to 204.4°C (400°F). A stream of C0
2 was introduced to the heated mixture to remove the last traces of solvents. The final
product thus obtained was a clear and bright oil soluble solution which contained
9.4% by weight magnesium, 26.5% by weight magnesium sulphonate and had a viscosity
of 1.2 St (525 SUS) at 98.9°C) (210°F). The metal ratio of the product was 14.8.
Example 3
[0036] This example illustrates the effect of temperature during carbonation. The exact
procedure of Example 2 was followed except that the mixture was maintained at 32.2
to 43.3°C (90 to 110°F) during carbonation. The final product was a clear and bright
oil soluble solution which contained 6.9% by weight magnesium, 26.9% by weight magnesium
sulphonate. The metal ratio of the product was 10.7.
Examples 4 to 7
[0037] The results of a series of experiments are listed in Table 1 which illustrates the
effect on the metal ratio in varying the amounts of methanol and water used during
the carbonation step. The procedure is as for Example 2 with water/methanol addition
made at 0, 40 and 80 minutes during the carbonation step.

Examples 8 to 11
[0038] Table 2 summarises results of a series of experiments which illustrate the effect
of adding the water/methanol at different time intervals. The procedure used in each
experiment is similar to that used in Example 2.

Examples 12 to 23
[0039] This series of experiments illustrate the effect of the amount of promoter used in
terms of product quality. The results of these experiments are summarised in Table
3. The procedure for each experiment is similar to that used in Example 2.

Examples 24 to 29
[0040] Table 4 summarises the results of a series of experiments which illustrate the use
of different promoters. All conditions of the procedure in each experiment are similar
to that used in Example 2 except for using an equivalent amount of the different promoters
as listed.

Examples 30 to 33
[0041] These examples illustrate how the sulphonic acids affect the product quality when
using this process for production of magnesium containing lubricating oils. The results
of the experiments are summarised in Table 5. The procedure of each experiment is
similar to that used in Example 2.

Examples 34 to 46
[0042] The results of these experiments are summarised in Table 6 to illustrate the effect
on the product obtained by using different commercially available magnesium oxides.
The procedure in each experiment is similar to that of Example 2.

Examples 47 to 49
[0043] These experiments illustrate the use of different lower alcohols in the procedure
of Example 2. The results of the experiments are summarised in Table 7.

[0044] It can be appreciated from the results of these experiments that high quality, over-based
magnesium salts of sulphonic acids may be manufactured and used as additives in lubricating
oils, greases and other types of oil-based products, such as fuel oils, bunker oils,
etc., where the metal ratio of the additives are in the range of 5 to 40. The products
are permanently soluble in many organic environments and therefore find application
as additives in the field of lubricants and fuels.
[0045] Although various preferred embodiments of the invention have been described herein
in detail, it will be appreciated by those skilled in the art that variations may
be made thereto without departing from the spirit of the invention or the scope of
the appended claims.
1. A process for preparing an over-based oil-soluble magnesium salt of a sulphonic
acid having a metal ratio of equivalents of magnesium to equivalents of sulphonic
acid of from 10 to 40; comprising contacting an acidic gas with a mixture comprising:
(a) an oil-soluble magnesium salt of a sulphonic acid,
(b) from ten equivalents up to 40 equivalents of a light magnesium oxide per equivalent
of sulphonic acid,
(c) a promoter system comprising:
(1) from 0.5 to 5 equivalents of an essentially oil-insoluble carboxylic compound
per equivalent of sulphonic acid, said compound being selected from the group of compounds
consisting of lower carboxylic acids, lower carboxylic anhydrides, substituted lower
carboxylic acids, metal salts and esters of lower carboxylic acids and mixtures thereof,
all having from 1 to 5 carbon atoms.
(2) from 2 to 30 equivalents of water per equivalent of sulphonic acid, and
(3) from 0 to 35 equivalents of an alcohol per equivalent of sulphonic acid, said
alcohol being selected from the group consisting of lower alkanols, lower alkoxy alkanols
and mixtures thereof, all having from 1 to 5 carbon atoms, and
(d) an inert solvent for lowering the viscosity of said mixture to facilitate mixing;
said contacting being conducted at a temperature ranging from 10°C (50°F) up to reflux
temperature of said mixture and the volatile components being stripped from the reaction
mixture after absorption of the acidic gas by the reaction mixture is at a desired
level to give an over-based, oil-soluble magnesium salt of a sulphonic acid.
2. A process according to Claim 1 wherein said contacting is carried out at a temperature
of from 10°C to 93.3°C (50°F to 200°F).
3. A process according to Claim 2 in which said contacting is carried out at a temperature
of from 48.9°C to 76.7°C (120°F to 170°F).
4. A process according to Claim 1, 2 or 3 in which the acidic gas is contacted with
the mixture until absorption of the gas by the mixture is essentially complete.
5. A process according to any one of the preceding claims in which the promoter system
includes from 0.5 to 3 equivalents of the essentially oil-insoluble carboxylic compound
per equivalent of sulphonic acid.
6. A process according to any one of the preceding claims wherein 0.7 to 1.3 equivalents
of the carboxylic compound are used.
7. A process according to any one of the preceding claim wherein the initial amount
of water is less than 30 equivalents and additional water is added to the mixture
during the time that acidic gas is contacted with the mixture to bring the total amount
of water used to not more than 30 equivalents per equivalent of sulphonic acid.
8. A process according to any one of the preceding claims wherein an initial amount
of selected alcohol is present in said mixture sufficient to initiate absorption of
the acidic gas and an additional amount of alcohol is added to said mixture during
the time that the acidic gas is contacted with the mixture to bring the total amount
of alcohol used to not more than 35 equivalents per equivalent of sulphonic acid.
9. A process according to any one of the preceding claims wherein said acidic gas
is selected from the group consisting of carbon dioxide, sulfur dioxide hydrogen sulfide
and nitrogen dioxide.
10. A process according to any one of the preceding claim wherein said acidic gas
is carbon dioxide.
11. A process according to any one of the preceding claims wherein the amount of water
present in the mixture prior to contacting the mixture with acidic gas ranges from
2 to 15 equivalents.
12. A process according to any one of the preceding claims wherein the amount of water
present in the mixture prior to contacting the mixture with carbon dioxide gas ranges
from 2 to 18 equivalents.
13. A process according to any one of the preceding claims wherein the total amount
of alcohol used ranges from 4 to 20 equivalents.
14. A process according to any one of the preceding claims wherein said alcohol is
selected from the group consisting of methanol, ethanol, isopropanol, n-propanol,
butanol, pentanol, methoxy ethanol, and ethoxy ethanol.
15. A process according to any one of the preceding claims wherein said carboxylic
compound is represented by the formula:

wherein X is H, -GH
20H, -CH
2CI, -CH
2Br, -CH
ZCOCH
3, R, or NRH
2 and Y is H, R, or M" where R is an alkyl radical of from 1 to 4 carbon atoms, the
sum of all the carbon atoms in the R radicals not exceeding 5 and M" is an alkali
or alkaline earth metal atom wherein n is an integer of from 1 to 2.
16. A process according to Claim 15 wherein said carboxylic compound is selected from
the group consisting of acetic acid, propionic acid, butanoic acid, glycine, chloroacetic
acid, bromoacetic acid, glycolic acid, ethyl acetoacetate, sodium acetate, calcium
acetate, magnesium acetate and mixtures thereof.
1. Un procédé pour préparer un sel de magnésium d'acide sulfonique contenant un excès
de base, soluble dans l'huile, à un rapport de métal de 10 à 40 entre les équivalents
de magnésium et les équivalents d'acide sulfonique, ce procédé consistant à mettre
en contact un gaz acide avec un mélange comprenant:
(a) un sel de magnésium d'acide sulfonique soluble dans l'huile;
(b) de 10 à 40 équivalents d'une magnésie légère par équivalent d'acide sulfonique;
(c) un système activateur comprenant:
(1) de 0,5 à 5 équivalents d'un composé carboxylique essentiellement insoluble dans
l'huile par équivalent d'acide sulfonique, ledit composé étant choisi dans le groupe
des composés consistant en les acides carboxyliques inférieurs, les anhydrides carboxyliques
inférieurs, les acides carboxyliques inférieurs substitués, les sels métalliques et
esters d'acides carboxylique inférieurs, et leurs mélanges, tous ces composés contenant
de 1 à 5 atomes de carbone;
(2) de 2 à 30 équivalents d'eau par équivalent d'acide sulfonique; et
(3) de 0 à 35 équivalents d'un alcool par équivalent d'acide sulfonique, cet alcool
étant choisi dans le groupe consistant en les alcanols inférieurs, les alcoxyalcanols
inférieurs et leurs mélanges, tous ces composés contenant de 1 à 5 atomes de carbone;
et
(d) un solvant inerte pour abaisser la viscosité de ce mélange et faciliter le mélange;
le contact étant réalisé à une température allant de 10°C jusqu'à la température de
reflux du mélange, et les composants volatils étant éliminés du mélange de réaction,
lorsque le mélange de réaction a absorbé le gaz acide en quantité voulue pour former
un sel de magnésium d'acide sulfonique contenant un excès de base et soluble dans
l'huile.
2. Un procédé selon la revendication 1, dans lequel ledit contact est réalisé à une
température de 10 à 93,3°C.
3. Un procédé selon la revendication 2, dans lequel ledit contact est réalisé à une
température de 48,9 à 76,7°C.
4. Un procédé selon la revendication 1, 2 ou 3, dans lequel le gaz acide est mis en
contact avec le mélange jusqu'à absorption essentiellement complète du gaz par le
mélange.
5. Un procédé selon l'une quelconque des revendications précédentes, dans lequel le
système activateur comprend de 0,5 à 3 équivalents du composé carboxylique essentiellement
insoluble dans l'huile par équivalent d'acide sulfonique.
6. Un procédé selon l'une quelconque des revendications précédentes, dans lequel on
utilise de 0,7 à 1,3 èquivalents du composé carboxylique.
7. Un procédé selon l'une quelconque des revendications précédentes, dans lequel la
quantité initiale d'eau est inférieure à 30 èquivalents et on ajoute au mélange, durant
le contact du gaz acide avec le mélange, des compléments d'eau portant la quantitié
totale d'eau utilisée à un maximum de 30 équivalents par équivalent d'acide sulfonique.
8. Un procédé selon l'une quelconque des revendications précédentes, dans lequel ledit
mélange contient une quantité initiale d'un alcool sélectionné, suffisante pour déclencher
l'absorption du gaz acide, et on ajoute audit mélange, durant le contact du gaz acide
avec le mélange, des compléments d'alcool portant la quantité totale d'alcool utilisée
à un maximum de 35 équivalents par équivalent d'acide sulfonique.
9. Un procédé selon l'une quelconque des revendications précédentes, dans lequel le
gaz acide est choisi dans le groupe formé par l'anhydride carbonique, l'anhydride
sulfureux, l'hydrogène sulfuré et le peroxyde d'azote.
10. Un procédé selon l'une quelconque des revendications précédentes, dans lequel
le gaz acide est l'anhydride carbonique.
11. Un procédé selon l'une quelconque des revendications précédentes, dans lequel
la quantité d'eau présente dans le mélange avant contact du mélange avec le gaz acide
va de 2 à 15 équivalents.
12. Un procédé selon l'une quelconque des revendications précédentes, dans lequel
la quantité d'eau présente dans le mélange avant contact du mélange avec l'anhydride
carbonique gazeux va de 2 à 8 équivalents.
13. Un procédé selon l'une quelconque des revendications précédentes, dans lequel
la quantité totale d'alcool utilisée va de 4 à environ 20 équivalents.
14. Un procédé selon l'une quelconque des revendications précédentes, dans lequel
l'alcool est choisi dans le groupe formé par le méthanol, l'éthanol, l'isopropanol,
le n-propanol, le butanol, le pentanol, le méthoxyéthanol et l'éthoxyéthanol.
15. Un procédé selon l'une quelconque des revendications précédents, dans lequel le
composé carboxylique répond à la formule:

dans laquelle X représente H, -CH
20H, -CH
ZCI, -eH
2Br, -CH
2COCH
3, R, ou NRH
2 et Y représente H, R ou M", R représentant un radical alkyle en C1-C4, la somme de
tous les atomes de carbone des radicaux R ne dépassant pas 5 et M" représentant un
atome de métal alcalin ou alcalino-terreux, n étant le nombre allant de 1 à 2.
16. Un procédé selon la revendication 15, dans lequel le composé carboxylique est
choisi dans le groupe formé par l'acide acétique, l'acide propionique, l'acide butanoïque,
la glycine, l'acide chloroacétique, l'acide bromacétique, l'acide glycolique, l'acétylacétate
d'éthyle, l'acétate de sodium, l'acétate de calcium, l'acétate de magnésium et leurs
mélanges.
1. Verfahren zur Herstellung eines überbasischen öllöslichen Magnesiumsalzes einer
Sulfonsäure mit einem Metallverhältnis von Magnesiumäquivalenten zu Sulfonsäureäquivalenten
von 10-40, dadurch gekennzeichnet, dass man ein saures Gas in Berührung bringt mit
einer Mischung enthaltend:
(a) ein öllösliches Magnesiumsalz einer Sulfonsäure;
(b) von 10 bis zu 40 Äquivalenten eines leichten Magnesiumoxids pro Äquivalent Sulfonsäure;
(c) ein Promotorsystem aus:
(1) von 0,5 bis 5 Äquivalenten einer im wesentlichen ölunlöslichen Karbonsäureverbindung
pro Äquivalent der Sulfonsäure, wobei die Verbindung ausgewählt ist aus der Gruppe
der Verbindungen, bestehend aus Niedrigkarbonsäuren, Niedrigkarbonsäureanhydriden,
substituierten Niedrigkarbonsäuren, Metallsalzen und Estern von Niedrigkarbonsäuren
und Mischungen davon, alle mit 1 bis 5 Kohlenstoffatomen,
(2) von 2 bis 30 Äquivalenten Wasser pro Äquivalent Sulfonsäure, und
(3) von 0 bis 35 Äquivalenten eines Alkohols pro Äquivalent Sulfonsäure, wobei der
Alkohol ausgewählt ist aus der Gruppe bestehend aus aus Niedrigalkanolen, Niedrigalkoxyalkanolen
und Mischungen davon, alle mit 1 bis 5 Kohlenstoffatomen; und
(d) ein inertes Lösungsmittel zur Erniedrigung der Viskosität der Mischung zum Erleichtern
des Mischens;
wobei das Inberührungbringen durchgeführt wird bei einer Temperatur im Bereich von
10°C (50°F) bis zur Rückflusstemperatur der Mischung und die flüchtigen Komponenten
aus dem Reaktionsgemisch nach Absorption des sauren Gases durch die Reaktionsmischung
auf ein gewünschtes Niveau abgestreift werden, unter Erhalt eines überbasischen öllöslichen
Magnesiumsalzes einer Sulfonsäure.
2. Verfahren gemäss Anspruch 1, dadruch gekennzeichnet, dass das Inberührungbringen
durchgeführt wird bei einer Temperatur von 10 bis 93,3°C (50 bis 200°F).
3. Verfahren gemäss Anspruch 2, dadurch gekennzeichnet, dass das Inberührungbringen
durchgeführt wird bei einer Temperatur von 48,9 bis 76,7°C (120 bis 170°F).
4. Verfahren gemäss Ansprüchen 1, 2 oder 3, dadurch gekennzeichnet, dass das saure
Gas mit . der Mischung in Berührung gebracht wird, bis die Absorption des Gases in
der Mischung im wesentlichen vollständig ist.
5. Verfahren gemäss einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
das Promotorsystem 0,5 bis 3 Äquivalente der im wesentlichen ölunlöslichen Karbonsäuresäure
pro Äquivalent der Sulfonsäure einschliesst.
6. Verfahren gemäss einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
0,7 bis 1,3 Äquivalente der Karbonsäureverbindung verwendet werden.
7. Verfahren gemäss einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
die Anfangsmenge Wasser weniger als 30 Äquivalente beträgt und dass zusätzliches Wasser
su der Mischung während der Zeit, während der das saure Gas mit der Mischung in Berührung
gebracht wird, zugegeben wird, um die Gesamtmenge des Verwendeten Wassers auf nicht
mehr als 30 Äquivalente pro Äquivalent Sulfonsäure zu bringen.
8. Verfahren gemäss einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
die Anfangsmenge des gewählten Alkohols in der Mischung ausreicht für die Anfangsabsorption
des sauren Gases, und dass man eine zusätzliche Menge an Alkohol zu der Mischung während
der Zeit, während der das saure Gas in Berührung mit der Mischung ist, zugibt, um
die Gesamtmenge des Verwendeten Alkohols auf nicht mehr als 35 Äquivalente pro Äquivalent
der Sulfonsäure zu bringen.
9. Verfahren gemäss einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
das saure Gas ausgewählt ist aus der Gruppe bestehend aus Kohlendioxid, Schwefeldioxid,
Schwefelwasserstoff und Stickstoffdioxid.
10. Verfahren gemäss einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
das saure Gas Kohlendioxid ist.
11. Verfahren gemäss einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
die Menge des in der Mischung vor dem Inberührungbringen der Mischung mit dem sauren
Gas vorhandenen Wassers im Bereich von 2 bis 15 Äquivalenten liegt.
12. Verfahren gemäss einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
die Menge des in der Mischung vor dem Inberührungbringen der Mischung mit dem Kohlendioxidgas
vorhandenen Wassers im Bereich von 2 bis 8 Aquivalenten liegt.
13. Verfahren gemäss einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
die Gesamtmenge des Verwendeten Alkohols im Bereich von 4 bis ungefähr 20 Äquivalenten
liegt.
14. Verfahren gemäss einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
der Alkohol ausgewählt ist aus der Gruppe bestehend aus Methanol, Ethanol, Isopropanol,
n-Propanol, Butanol, Pentanol, Methoxyethanol und Ethoxyethanol.
15. Verfahren gemäss einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
die Karbonsäure die allgemeine Formel

hat, worin X H, -CH
2OH, -CH
2C1, -CH
2Br, -CH
ZCOCH
3, R oder NRH
2 und Y H, R oder M" bedeutet, wobei R ein Alkylrest mit 1 bis 4 Kohlenstoffatomen
ist und die Summe aller Kohlenstoffatome in den R-Resten 5 nicht übersteigt und M"
ein Alkali- oder Erdalkalimetallatom ist, worin n eine ganze Zahl von 1 bis 2 bedeutet.
16. Verfahren gemäss Anspruch 15, dadurch gekennzeichnet, dass die Karbonsäure ausgewählt
ist aus der Gruppe bestehend aus Essigsäure, Propionsäure. Buttersäure, Glyzin, Chloressigsäure,
Bromessigsäure, Glykolsäure, Ethylacetoacetat, Natriumacetat, Kalziumacetat, Magnesiumacetat
und Mischungen davon.