Technical field
[0001] This invention relates to the preparation of a ceramic shell mold useful for investment
casting purposes, and particularly to a method of making a shell mold that will effectively
reduce the amount of surface decarburization of a ferrous article formed in the shell
mold.
Background art
[0002] Investment casting, also referred to as the "lost wax" process, typically involves
alternate applications of a ceramic coating composition and a stucco composition to
an expendable pattern in order to provide a multi-layered shell mold. The pattern
is usually made of wax, plastic or similar material which is melted out to leave a
correspondingly shaped internal cavity into which molten metal is poured.
[0003] Unfortunately, there have been many attempts to control the surface finish and the
amount of decarburization of steel investment castings. The problem of a metal-mold-atmosphere
reaction at the time of pouring and initial stages of solidification of the molten
metal has continued to cause an undesirable carbon-free zone adjacent the surface
of the article as well as surface blemishes. The methods of minimizing this phenomenon
have included casting in a vacuum, use of inert gas shrouding, the addition of reducing
agents into the mold cavity prior to pouring, preheating the mold in a carbonaceous
atmosphere prior to casting, etc. All of these production steps are costly, time-
consuming or raise issues of safety to foundry personnel such as by producing noxious
vapors.
[0004] U.S. Patent No. 3,184,813 issued to P. J. O'Shea on May 25, 1965 and U.S. Patent
No. 3,296,666 issued to N. G. Lirones on January 10, 1967 are representative of the
large number of ceramic dip coat compositions used in building up multi-layered shell
molds. Frequently, the compositions of the shell mold layers are tailored for the
specific metal,
[0005] U.S. Patent 3,153,826 discloses a method of making a ceramic shell mold including
Step (a) alternately applying a coating composition including a ceramic powder and
a binder, and then a stucco composition including granular refractory material to
an expendable pattern a preselected number of times, drying the coating between applications,
and forming a resultant multi-layered mold, Step (b) heating the multi-layered mold,
removing the pattern, and forming a resultant hardened mold, and Step (c) applying
a barrier coating.
[0006] In the past, for example, graphite has been added to the usual coating composition
of a ceramic powder and a binder in order to improve surface finish and to minimize
the amount of decarburization of steel articles. But while the use of a relatively
uniform amount of graphite throughout the full cross section of the shell mold wall
has resulted in some improvement in the quality of the castings, surface irregularities
and localized carburization have been observed because of the undesirable contact
of the molten metal directly with the graphite particles. Moreover, the strength of
the individually applied layers is reduced by graphite addition and the shell mold
is more costly than desired.
[0007] The present invention is directed to overcoming one or more of the problems as set
forth above.
Disclosure of invention
[0008] In accordance with one aspect of the present invention, a ceramic shell mold is made
according to claim 1.
[0009] In another aspect of the invention a method of investment casting of a ferrous article
in a shell mold is disclosed, the features of which method are claimed in claim 10.
Brief description of drawing
[0010] The sole figure is a diagrammatic and enlarged, fragmentary cross sectional view
through a multi-layered shell mold having a barrier coating thereon in accordance
with the present invention.
Best mode for carrying out the invention
[0011] A preferred method of making a ceramic shell mold 6 comprises the steps of alternately
applying a ceramic coating composition 8 and a stucco composition 10 to an expendable
or thermally meltable pattern a pre-selected number of times, firing such multi-layered
mold to remove the pattern and provide a hardened mold 12 having an internal casting
cavity 14, and applying a barrier coating 16 including a ceramic powder, a binder
and a preselected amount of graphite as is generally illustrated in the drawing. The
presence of any significant amount of graphite is preferably avoided in the multi-layered
mold, particularly adjacent the casting cavity 14, and is preferably controlled to
a range of about 13 to 17 Wt.% graphite of the total amount of the solid portion of
the barrier coating 16.
[0012] The aforementioned ceramic coating composition 8 basically includes a ceramic powder
and a binder. Typically, the ceramic powder is selected from the group consisting
essentially of fused silica, vitreous silica, crystalline silica, alumina silicate,
alumina, magnesium silicate, zircon, zirconium silicate, and clay treated to remove
impurities, and can be mixtures thereof. The binder is selected from the group consisting
essentially of colloidal silica sol, ethyl silicate, aluminum phosphate, and aqueous
alkali metal silicate.
[0013] The stucco composition 10 basically includes conventional granular refractory materials
such as zircon.
[0014] The multi-layered mold made by alternately applying the ceramic coating composition
8 and the stucco composition 10 a preselected number of times to the pattern is substantially
free of graphite. By this term it is meant that less than 0.5 Wt.% graphite is present
in the multi-layered mold before the barrier coating 16 is applied.
[0015] More particularly, a preferred method of making the ceramic shell mold 6 includes
the following steps:
Step (a) Forming an expendable or meltable pattern of wax, plastic or similar material
of a construction having the desired shape;
Step (b) Applying a prime or first ceramic coating composition 8 including fused silica
flour, finely divided zircon, a limited amount of nitrile polymer latex for low temperature
strength, for example 2 Wt.%, and colloidal silica sol including water in the form
of a slurry to the pattern by dipping the pattern into an agitated thixotropic slurry
thereof, removing the coated pattern therefrom and allowing a preselected amount of
draining and initial stages of setting thereof;
Step (c) Applying a coarser or stucco coating composition 10 including granular refractory
material such as zircon to the still wet first coating composition 8 by sprinkling
same thereon from a conventional rainfall sander, or alternately by immersing it in
a conventional fluidized bed, and with the AFS grain size of the stucco coating composition
being generally limited to a range of from about 35 mesh to 20 mesh (about 0.5 mm
to 0.8 mm);
Step (d) Drying the coated and stuccoed pattern for a preselected time period, for
example 30 minutes to 6 hours, to a waterproof or gelled shape and providing a first
layer 18;
Step (e) Alternately repeating Steps (b), (c), and (d) a preselected number of times
while preferably increasing the relative coarseness of the solid particles therein,
for example for nine cycles, and providing a multi-layered "green" mold having a plurality
of the layers 18, each layer being about 1 mm (.040") thick and intimately associated
with each other as is representatively indicated in the drawing;
Step (f) Heating the multi-layered "green" mold in an autoclave at a preselected first
temperature of about 180 to 200°C (350 to 400°F) for about 5 to 25 minutes, melting
out and removing the pattern, and providing some strength to the mold;
Step (g) Firing the multilayered mold in a furnace at a preselected second temperature
of about 800 to 1400°C (1500 to 2500°F), and preferably about 1000°C (1800°F) for
about one hour to provide a hardened mold 12 having an exterior surface 20, and an
interior surface 22 facing the casting cavity 14 as shown in the drawing;
Step (h) Applying a barrier coating layer 24 to the exterior surface 20 of the hardened
mold 12 while it is at a preselected third temperature of about 200°C (400°F), the
barrier coating layer including a mixture of zircon, fused silica, finely divided
graphite, and colloidal silica sol, the AFS grain size of the graphite particles being
preferably limited in size to passing through a 200 mesh sieve (less than about 0.075
mm or 0.003"), and being most desirably limited to a range of about 600 mesh to 325
mesh (about .01 mm to .05 mm), and limiting the amount of graphite to a range of about
4 to 20 Wt.% of the solid or dry portion of the mixture;
Step (i) Drying the barrier coating layer for a preselected period of time;
Step (j) Repeating Steps (h) and (i) a plurality of times, for example three times,
to provide a plurality of the graphite containing barrier coating layers 24 to define
the multi-layered barrier coating 16 as shown in the drawing; and
Step (k) Heating the hardened mold 12 and the barrier coating 16 in a furnace of the
like to a pre-selected third temperature of about 900 to 1400°C (1650 to 2550°F),
and preferably about 1050°C (1920°F) to make the ceramic shell mold 6.
[0016] Subsequently, a ferrous molten metal such as steel is poured into the casting cavity
14 of the ceramic shell mold 6. Most desirably, the mold is maintained at a temperature
of about 1000°C (1830°F), or slightly below, since the molten metal poured therein
is about 1350 to 1700°C (2460 to 3100°F) and this minimizes the temperature differential
therebetween.
[0017] Various modifications of Steps (a) through (k) set forth above can be visualized
without departing from the scope of the present invention as defined by the appendant
claims. For example, drying Step (d) can be achieved under ambient air conditions
for a period of about one-half to one hour, or alternatively the drying can be achieved
in an oven or furnace at a temperature slightly above ambient temperature to reduce
the holding time. Of course, the temperature cannot be elevated too much because the
pattern either can melt or can expand to the point of unduly stressing the relatively
weak walls of the partially complete mold.
[0018] One of the advantages of this method of investment casting is that it is easier to
melt out and remove the pattern from the multi-layered mold because it has a thinner
section during intermediate Step (f) than the equivalent strength prior art shell
mold has at the time of pattern removal. I have also noted a consistently higher quality
of the hardened molds 12 when compared with the thicker prior art molds. Furthermore,
Step (g) can be achieved without the need for a reducing atmosphere because the multi-layered
mold is substantially free of graphite at that stage.
[0019] Moreover, in Step (h) zircon can be replaced by an equivalent amount of alumina silicate.
The barrier coating is preferably about 78 Wt% of dry materials including the aforementioned
zircon or alumina silicate, fused silica, and graphite, and the remaining 22 Wt.%
is substantially liquid binder including the colloidal silica sol. Specifically, the
preferred proportions of the dry materials in the barrier coating 16 are about 75
parts zircon, 25 parts fused silica, and 11 to 25 parts graphite by weight.
[0020] In actuality, Steps (h), (i), and (j) were achieved by repetitively dipping the hardened
mold 12 while hot into an agitated thixotropic solution of the aforementioned ceramic
and graphite materials for about four or five seconds and removing the mold to permit
substantial gelling of the ceramic materials during periods of about 30 seconds therebetween
in ambient air. The fact that the mold is hot accelerates the gelling and tends to
bridge the ceramic materials over any minor imperfections. Such dipping was automatically
accomplished by a known mechanical dipping apparatus provided with a suitable timing
and counting control system, not shown.
Industrial applicability
[0021] In order to determine the optimum range of graphite in the barrier coating 16, various
weight percentages of graphite were added to the zircon and fused silica portions
thereof. Steel articles were made by pouring steel of about 0.3 Wt.% carbon into the
heated ceramic shell molds 10 as mentioned above, and the carbon free depth (CFD)
and maximum affected depth (MAD) from the surface of the article measured after sectioning
of the article. The carbon free depth (CFD) is a measure of the thickness of the surface
zone that has experienced substantially total decarburization. The maximum affected
depth (MAD) is a measure of the thickness of a thicker surface zone that has experienced
at least partial decarburization or a substantive deviation from the carbon level
of the central body portion of the article. The test results were as follows:

[0022] Thus, the test data indicates that the prior art ceramic shell mold with substantially
no graphite therein exhibited an undesirably high level of decarburization, and the
articles prepared in accordance with one aspect of the present invention exhibited
a decreasing degree of decarburization as the proportion of graphite in the barrier
coating 16 increased up to about 17 Wt.96.
[0023] In addition to such decarburization measurements, which typically reflect the amount
of surface material that must be removed so that any subsequent heat treatment effect
of the carbon will be uniform throughout the steel article, the surface smoothness
of the test articles was noted. For example, the relatively frequent valleys of about
1.5 mm (0.060") maximum depth in the prior art articles were proportionately reduced
to minimal blemishes of less than about 0.4 mm (0.015") with the addition of graphite
toward 15 Wt.% in the barrier coating 16. I found out also that at about 3.4 Wt% graphite
the effect on decarburization was minimal, whereas at the other end of the range at
about 20 Wt.% graphite, the graphite was difficult to keep in suspension, tended to
agglomerate and thereby weaken the layers, and did not appear to result in any significant
change in the results from that of about 15 Wt.% graphite proportion.
[0024] In view of such beneficial results, the broad range of graphite in the barrier coating
16 is about 4 to 20 Wt.%, the preferred range is about 13 to 17 Wt.%, and the most
desirable amount is about 15 Wt.%.
[0025] It is of note to appreciate that the problems of decarburization and surface blemishes
of investment cast articles is more severe when the amount of carbon in the ferrous
molten metal is reduced toward 0.1 Wt.96 carbon. Thus, the method of the present invention
is particularly useful for minimizing decarburization of steel articles with less
than 1.5 Wt.% carbon. Graphite is reactive to oxygen, and the reaction is accelerated
as the temperature increases. In a crystalline material such as the shell mold, graphite
will travel in the porous interstices thereof during heating. I theorize that during
pouring of molten metal into the shell mold a portion of the graphite in the barrier
coating 16 diffuses inwardly toward the casting cavity 14 while at the same time a
portion of the carbon in the molten metal tends to diffuse into the shell mold where
oxygen is available. Under any theory, however, carbon depletion is greatly minimized
by the method of present invention.
1. A method of making a ceramic shell mold including:
Step (a) alternately applying a coating composition (8) including a ceramic powder
and a binder, and then a stucco composition (10) including granular refractory material
to an expendable pattern a preselected number of times, drying the coating between
applications, and forming a resultant multilayered mold,
Step (b) heating the multi-layered mold, removing the pattern, and forming a resultant
hardened mold (12), and step (c) applying a barrier coating (16) characterized in
that:
the multilayered mold of Step (a) has less than 0.5 Wt.% graphite; and
Step (c) includes applying the barrier coating (16) to the exterior surface of the
multi- layered mold (12) while the hardened mold (12) is at a preselected temperature
above ambient, said barrier coating (16) including a mixture of a ceramic powder,
a binder, and a preselected amount of particulate graphite within a range of 4 to
20 Wt.% of the solid portion of the barrier coating (16).
2. The method of claim 1 wherein Step (c) includes applying the barrier coating (16)
to the hardened mold (12) while the hardened mold has a temperature of 200°C.
3. The method of claim 1 wherein Step (c) includes selecting the barrier coating mixture
as a thixotropic solution of zircon, fused silica, particulate graphite and colloidal
silica sol.
4. The method of claim 1 wherein Step (c) includes selecting the barrier coating mixture
as a thixotropic solution of alumina silicate, fused silica, particulate graphite
and colloidal silica.
5. The method of claim 1 including maintaining said preselected amount of particulate
graphite in a range of 13 to 17 Wt.% of the solid portion of the barrier coating (16).
6. The method of claim 1 including selecting said preselected amount of particulate
graphite at 15 Wt.% of the solid portion of the barrier coating (16).
7. The method of claim 1 including maintaining said preselected amount of particulate
graphite in a size range less than 0.075 mm.
8. The method of claim 1 including maintaining said preselected amount of particulate
graphite within an AFS grain size range of 0.01 mm to 0.05 mm.
9. The method of claim 1 wherein Step (c) includes repetitively dipping the hardened
mold (12) into and removing the hardened mold (12) from an agitated thixotropic solution
of the barrier coating (16).
10. A method of investment casting of a ferrous article in a shell mold (6) comprising:
Step (a) applying a coating composition (8) including a ceramic powder and binder
to an expendable pattern, said ceramic powder being selected from the group consisting
essentially of fused silica, vitreous silica, crystalline silica, alumina silicate,
alumina silicate, alumina, magnesium silicate, zircon, zirconium silicate, and clay,
and binder being selected from the group consisting essentially of colloidal silica
sol, ethyl silicate, aluminum phosphate, and aqueous alkali metal silicate;
Step (b) applying a stucco composition (10) including a granular refractory material;
Step (c) alternately repeating Steps (a) and (b) a preselected number of times and
forming a multi-layered mold, said multi-layered mold having less than 0.5 Wt.% graphite;
Step (d) heating the multi-layered mold and forming a hardened mold (12) having an
internal cavity (14);
Step (e) applying a barrier coating (16) to the exterior surface (20) of the hardened
mold (12) at a location spaced from the internal cavity (14) and while the hardened
mold (12) is hot, said barrier coating (16) having a solid portion and being a mixture
of a ceramic powder, a binder, and a preselected amount of finely divided graphite,
said preselected amount of graphite being within a range of 4 to 20 Wt.% of the solid
portion of the barrier coating (16);
Step (f) heating the hardened mold (12) and barrier coating (16) and forming a hot
shell mold (6); and
Step (g) pouring a ferrous molten metal into the internal cavity (14) of the hot shell
mold (6).
11. The method of claim 10 wherein Step (e) includes maintaining said preselected
amount of graphite in a range of 13 to 17 Wt.%.
12. The method of claim 10 wherein Step (e) includes dipping the hot hardened mold
(12) into a thixotropic solution a preselected number of times to apply the barrier
coating (16).
13. The method of claim 12 wherein Step (e) includes maintaining the finely divided
graphite in the thixotropic solution within an AFS grain size range of 0.01 mm to
0.05 mm.
1. Verfahren zur Herstellung einer keramischen Schalenform einschließlich der folgenden
Schritte:
Schritt a: Alternatives Aufbringen einer Beschichtungszusammensetzung (8) einschließlich
eines Keramikpulvers und eines' Bindemittels, und sodann einer Gipszusammensetzung
(10) einschließlich eines granularen feuerfesten Materials auf ein verbrauchbares
Muster und eine vorgewählte Anzahl von Malen, Trocknen der Schicht zwischen den Aufbringungen
und Ausbildung einer sich dadurch ergebenden mehrerer Lagen aufweisenden Form,
Schritt b: Erhitzung der mehrere Lagen aufweisenden Form, Entfernung des Musters und
Bildung einer sich ergebenden gehärteten Form (12), und
Schritt c: Aufbringen einer Sperrschicht (16), dadurch gekennzeichnet, daß die mehrere
Lagen aufweisende Form des Schritts a weniger als ungefähr 0,5 Gewichts% Graphit besitzt
und daß im Schritt c das Aufbringen der Sperrschicht (16) auf die Außenoberfläche
der mehrere Lagen besitzenden Form (12) vorgersehen ist, während sich die gehärtete
Form auf einer vorgewählten Temperatur oberhalb der Umgebungstemperatur befindet,
und wobei die Sperrschicht (16) eine Mischung aus einem Keramikpulver, einem Bindemittel
und einer vorgewählten Menge teilchenförmigen Graphits, und zwar innerhalb eines Bereichs
von 4-20 Gewichts-% des festen Anteils der Sperrschicht (16), einschließt.
2. Verfahren nach Anspruch 1, wobei der Schritt c das Aufbringen der Sperrschicht
(16) auf die gehärtete Form (12) umfaßt, und zwar während die gehärtete Form eine
Temperatur von 200°C besitzt.
3. Verfahren nach Anspruch 1, wobei der Schritt c die Auswahl der Sperrschichtmischung
als eine thixotrope Lösung von Zirkon, geschmolzenem Silizium-Dioxyd, teilchenförmigem
Graphit und kolloidalem Kieselsäuresol umfasst.
4. Verfahren nach Anspruch 1, wobei der Schritt c die Auswahl der Sperrschichtmischung
als eine thixotrope Lösung aus Aluminiumsilikat, geschmolzenem Siliziumdioxyd, teilchenförmigem
Graphit und kolloidalem Siliziumdioxyd umfaßt.
5. Verfahren nach Anspruch 1, wobei die vorgewählte Menge an teilchenförmigem Graphit
in einem Bereich von 13-17 Gewichts% des festen Anteils der Sperrschicht (16) gehalten
ist.
6. Verfahren nach Anspruch 1, wobei die vorgewählte Menge an teilchenförmigem Graphit
mit 15 Gewichts% des festen Anteils der Sperrschicht (16) ausgewählt ist.
7. Verfahren nach Anspruch 1, wobei die vorgewählte Menge an teilchenförmigem Graphit
in einem Größenbereich von weniger als 0,075 mm erhalten ist.
8. Verfahren nach Anspruch 1, wobei die vorgewählte Menge an teilchenförmigem Graphit
innerhalb eines AFS Korngrößenbereichs von 0,01 mm bis 0,05 mm gehalten ist.
9. Verfahren nach Anspruch 1, wobei der Schritt c das weiderholte Eintauchen der gehärteten
Form (12) in eine gerührte thixotrope Lösung der Sperrschicht (16) und das Herausnehmen
der gehärteten Form (12) umfaßt.
10. Präzisionsformgußverfahren für einen Eisen enthaltenden Gegenstand in einer Schalenform
(6) unter Verwendung folgender Schritte:
Schritt a: Aufbringen einer Beschichtungszusammensetzung (8) einschließlich eines
keramischen Pulvers und eines Bindemittels auf einem verbrauchbaren Muster, wobei
das keramische Pulver aus der im wesentlichen aus folgendem bestehenden Gruppe ausgewählt
ist: Geschmolzenes Siliziumdioxyd, glasiges Siliziumdioxyd, kristallines Silizium-
dioxyd, Aluminiumsilikat, Aluminiumoxyd, Magnesiumsilikat, Zirkon, Zirkonsilikat und
Ton, wobei ferner das Bindemittel aus der im wesentlichen aus folgendem bestehenden
Gruppe ausgewählt ist: Kolloidales Kieselsäuresol, Äthylsilikat. Aluminiumphosphat,
wässriges Alkalimetallsilikat,
Schritt b: Aufbringen einer Gipszusammensetzung (10) einschließlich eines granularen
feuerfesten Materials;
Schritt c: Abwechselnde Wiederholung der Schritte a und b für eine vorgewählte Anzahl
von Malen und bildung einer mehrere Lagen aufweisenden Form, die mindestens 0,5 Gewichts%
Graphit besitzt,
Schritt d: Erhitzen der mehrere Lagen aufweisenden Form und Ausbildung einer gehärteten
Form (12) mit einem Innenhohlraum (14);
Schritt e: Aufbringen eines Sperrüberzugs (16) auf die Außenoberfläche (20) der gehärteten
Form (12) an einer gegenüber dem Innenhohlraum (14) in Abstand angeordneten Stelle,
und zwar während die gehärtete Form (12) heiß ist, wobei die Sperrschicht (16) einen
Festanteil besitzt und eine Mischung aus einem Keramikpulver, einem Bindemittel und
einer vorgewählten Menge an fein verteilten Graphit ist, und wobei ferner die vorgewählte
Menge an Graphit innerhalb eines Bereichs von 4--20% des Festanteils der Sperrschicht
(16) liegt:
Schritt f: Erhitzung der gehärteten Form (12) und der Sperrschicht (16) und Ausbildung
einer heißen Schalenform (6); und
Schritt g: Eingießen eines eisenhaltigen geschmolzenen Metalls in den Innenhohlraum
(14) der heißen Schalenform (6).
11. Verfahren nach Anspruch 10, wobei der Schritt e die Aufrechterhaltung der vorgewählten
Graphitmenge im Bereich von 13-17 Gewichts% umfaßt.
12. Verfahren nach Anspruch 10, wobei der Schritt e das Eintauchen der heißen gehärteten
Form (12) in eine thixotrope Lösung umfaßt, und zwar für eine vorgewählte Anzahl von
Malen, um die Sperrschicht (16) aufzubringen.
13. Verfahren nach Anspruch 12, wobei der Schritt e die Aufrechterhaltung des fein
geteilten Graphits in der thixotropen Lösung innerhalb eines AFS Korngrößenbereichs
von 0,01 mm bis 0,05 mm umfaßt.
1. Procédé de fabrication d'une coquille de moulage en céramique comportant:
Etape (a) l'application alternée d'une composition de revêtement (8) comportant une
poudre céramique et un liant, puis d'une composition de stuc (10) comportant une matière
réfractaire granuleuse, sur un modèle non réutilisable, un nombre de fois prédéterminé,
le séchage du revêtement entre les applications, et la formation d'un moule à couches
multiples résultant,
Etape (b) le chauffage du moule à couches multiples, l'enlèvement du modèle, et la
formation d'un moule durci résultant (12), et Etape (c) l'application d'un revêtement
protecteur (16), caractérisé en ce que:
le moule à couches multiples de l'Etape (a) contient moins de 0,5% en poids de graphite;
et
l'Etape (c) comporte l'application du revêtement protecteur (16) sur la surface extérieure
du moule à couches multiples (12) tandis que le moule durci (12) se trouve à une température
prédéterminée au-dessus de la température ambiante, ledit revêtement protecteur (16)
comportant un mélange d'une poudre céramique, d'un liant, et d'une quantité prédéterminée
de graphite en particules dans une proportion de 4 à 20% en poids de la partie solide
du revêtement protecteur (16).
2. Procédé selon la revendication 1, dans lequel l'Etape (c) comporte l'application
du revêtement protecteur (16) sur le moule durci (12) tandis que le moule durci est
à une température de 200°C environ.
3. Procédé selon la revendication 1, dans lequel l'Etape (c) comporte le choix du
mélange de revêtement protecteur sous la forme d'une solution thixotropique de zircon,
de silice fondue, de graphite en particules et d'un sol de silice colloïdale.
4. Procédé selon la revendication 1, dans lequel l'Etape (c) comporte le choix du
mélange de revêtement protecteur sous la forme d'une solution thixotropique de silicate
d'alumine, de silice fondue, de graphite en particules et de silice colloïdale.
5. Procédé selon la revendication 1, comportant le maintien de ladite quantité prédéterminée
de graphite en particules dans l'intervalle de 13 à 17% en poids de la partie solide
du revêtement protecteur (16).
6. Procédé selon la revendication 1, comportant le choix de ladite quantité prédéterminée
de graphite en particules à 15% en poids de la partie solide du revêtement protecteur
(16).
7. Procédé selon la revendication 1, comportant le maintien de ladite quantité prédéterminée
de graphite en particules à une granulométrie inférieure à 0,075 mm.
8. Procédé selon la revendication 1, comportant le maintien de ladite quantité prédéterminée
de graphite en particules dans un intervalle de granulométrie AFS de 0,01 mm à 0,05
mm.
9. Procédé selon la revendication 1, dans lequel l'Etape (c) comporte une répétition
des opérations de trempage du moule durci (12) dans une solution thixotropique agitée
du revêtement protecteur (16), puis de retrait du moule de cette solution.
10. Procédé de moulage à cire perdue d'un objet ferreux dans une coquille de moulage
(6) comprenant:
Etape (a): l'application d'une composition de revêtement (8) comportant une poudre
céramique et un liant sur un modèle non réutilisable, ladite poudre céramique étant
choisie dans le groupe qui se compose essentiellement de la silice fondue, de la silice
vitreuse, de la silice cristalline, du silicate d'alumine, de l'alumine, du silicate
de magnésium, du zircon, du silicate de zirconium, et de l'argile, et le liant étant
choisi dans le groupe qui se compose essentiellement des sols de silice colloïdale,
du silicate d'éthyle, du phosphate d'alumium, et des solutions aqueuses de silicates
de métaux alcalins;
Etape (b): l'application d'une composition de stuc (10) comportant une matière réfractaire
granuleuse;
Etape (c): la répétition alternée des étapes (a) et (b) un nombre de fois prédéterminé,
et la formation d'un moule à couches multiples, ledit moule à couches multiples contenant
moins de 0,5% en poids de graphite;
Etape (d): le chauffage du moule à couches multiples et la formation d'un moule durci
(12) comportant une cavité interne (14);
Etape (e): l'application d'un revêtement protecteur (16) sur la surface extérieure
(20) du moule durci (12) à un endroit situé à une certaine distance de la cavité interne
(14) et tandis que le moule durci (12) est encore chaud, ledit revêtement protecteur
(16) comportant une partie solide et étant formé d'un mélange d'une poudre céramique,
d'un liant, et d'une quantité prédéterminée de graphite finement divisé, ladite quantité
prédéterminée de graphite étant comprise dans l'intervalle de 4 à 20% en poids de
la partie solide du revêtement protecteur (16);
Etape (f): le chauffage du moule durci (12) et du revêtement protecteur (16) et la
formation d'une coquille de moulage chaude (6); et
Etape (g): la coulée d'un métal ferreux en fusion dans la cavité interne (14) de la
coquille de moulage chaude (6).
11. Procédé selon la revendication 10, dans lequel l'étape (e) comporte le maintien
de ladite quantité prédéterminée de graphite dans un intervalle de 13 à 17% en poids.
12. Procédé selon la revendication 10, dans lequel l'Etape (e) comporte le trempage,
un nombre de fois prédéterminé, du moule durci chaud (12) dans une solution thixotropique
pour appliquer le revêtement protecteur (16).
13. Procédé selon la revendication 12, dans lequel l'Etape (e) comporte le maintien
du graphite finement divisé contenu dans la solution thixotropique dans un intervalle
de granulométrie AFS de 0,01 mm à 0,05 mm.