(19)
(11) EP 0 048 776 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
23.11.1983 Bulletin 1983/47

(21) Application number: 80303412.3

(22) Date of filing: 29.09.1980
(51) International Patent Classification (IPC)3B21J 9/20

(54)

Precision forging press

Präzisions-Schmiedepresse

Presse à forger de précision


(84) Designated Contracting States:
DE FR GB IT

(43) Date of publication of application:
07.04.1982 Bulletin 1982/14

(71) Applicant: MITSUBISHI JUKOGYO KABUSHIKI KAISHA
Tokyo 100 (JP)

(72) Inventors:
  • Kushibe, Yuki
    Yokkaichi-shi Aichi-ken (JP)
  • Kishigami, Hisao
    Toki-shi Gifu-ken (JP)

(74) Representative: Sommerville, John Henry et al
Sommerville & Rushton, 45 Grosvenor Road
St. Albans, Hertfordshire AL1 3AW
St. Albans, Hertfordshire AL1 3AW (GB)


(56) References cited: : 
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates to improvements in precision forging presses.

    [0002] Heretofore, precision forging presses of the type in which a workpiece is forged within a space defined by a plurality of dies by means of a plurality of punches, which are usually hydraulically operable, said punches slidably penetrating the space defined by said dies, respectively, have been known and generally used. In order to assure precision in dimensions as well as in quality of the forged product, it is essentially necessary to control continuously the positions of all the punches as desired from the beginning of deformation of the workpiece up to the end of deformation. However, none of the precision forging presses of the prior art has been provided with means for completely satisfying such requirements.

    [0003] A conventional forging press is known from DD-A 124279 in which there is disclosed means (2 to 5, 15 and 10) for converting positional information relating to a punch into a voltage (14), a reference voltage generator (11) for setting a reference voltage (13), comparator means (5) for comparing the converted voltage with the reference voltage, and control means (7 and 8) for controlling a valve (9) of the drive means for the punch in accordance with comparison results from the comparator means.

    [0004] An object of the present invention is to provide a novel precision forging press which starts from such a conventional press, and in which the positions of the punches can be controlled continuously as desired during deformation of a workpiece.

    [0005] According to the present invention, there is provided a forging press of the kind discussed above in relation to DD-A-1242 79 which is characterised in that said press is precision forging press comprising a plurality of punches adapted to be driven by said drive means, and in that said reference voltage generator is a programmed generator comprising a template having a programmed profile for each punch, a follower associated with a respective profile of said template, and a potentiometer associated with each follower adapted to be rotated in response to movement of its follower to generate the reference voltage for its respective punch.

    [0006] In order that the invention may be readily understood, and other features and objects of the invention made more apparent, one preferred embodiment will now be described with reference to the accompanying drawings, in which:-

    Figure 1 is a system diagram showing one example of prior art precision forging press, partly in cross-section,

    Figure 2 is an enlarged cross-sectional view showing the dies of the press in Figure 1 at the start of a forging operation,

    Figure 3 is a view similar to Figure 2 showing the dies at the termination of a forging operation when a workpiece has been shaped by the dies, and

    Figure 4 is a system diagram showing said preferred embodiment of the present invention, partly in cross-section.



    [0007] Before describing the preferred embodiment, the structure and operation of one example of prior art precision forging press will be explained with reference to Figure 1, in order to facilitate understanding of the present invention.

    [0008] Referring to Figure 1, the press comprises an upper die 1 and a lower die 2, which define a forging space in which a workpiece 3 of raw material can be accommodated. An upper punch 4 and a lower punch 5 are associated with respective upper and lower dies, the upper punch being connected to a main ram 6. The upper and lower punches 4 and 5 slidably project through the upper and lower dies 1 and 2 respectively, into the forging space upon actuation of an upper auxiliary ram 7 and a lower auxiliary ram 8. To the bottom of the main ram 6 is mounted an upper bolster 9 to which the upper die 1 is fixed. Similarly, a lower bolster 10 is provided to which the lower die 2 is fixed, the lower bolster 10 being mounted on a machine frame 11. Hydraulic circuits are provided for the upper auxiliary ram 7, lower auxiliary ram 8 and main ram 6, respectively, said circuits including pressure regulation valves 12a, 12b and 12c, switching valves 13a, 13b and 13c, hydraulic pumps 14a, 14b and 14c and flow rate regulation valves 15a and 15b.

    [0009] For a forging operation, at first when the dies 1 and 2 are in an opened condition, the workpiece 3 of raw material is inserted between the dies 1 and 2. Then, the switching valve 13c is actuated to introduce pressurized oil into the upper chamber of the main ram 6 by the action of the hydraulic pump 14c, and thereby the main ram 6 is lowered to close the dies 1 and 2 together. Subsequently, the upper and lower punches 4 and 5 are set in motion to press into the dies 1 and 2 by the actuation of the upper and lower auxiliary rams 7 and 8, respectively, and thus the forging of the workpiece 3 of raw material is started.

    [0010] In this operation, in order to assure precision in dimensions as well as in quality of the forged product 3a, the positions A and B of the upper and lower punches 4 and 5 at the start of deformation of the workpiece 3, as well as the positions A, and B1 of the upper and lower punches 4 and 5 at the end of deformation (as shown in Figures 2 and 3 respectively) must always be kept constant. Moreover, in the case of a forged product having a complex shape, not only the punch positions A and B at the start and end of deformation of the workpiece, but also the successive punch positions during the deformation process must be continuously controlled. However, such requirements for the control of the upper and lower punch positions are not fulfilled in the prior art precision forging press described above, and, therefore, very high precision in dimensions together with excellent quality of the forged product cannot be obtained.

    [0011] Turning now to the preferred embodiment of the present invention illustrated in Figure 4, component parts equivalent to those included in the prior art precision forging press shown in Figure 1 are given like reference numerals. Thus, the press comprises an upper die 1, and a lower die 2 defining a forging space for a workpiece 3, an upper punch 4, a lower punch 5, a main ram 6, upper and lower auxiliary rams 7, 8 respectively, upper and lower bolsters 9 and 10 respectively, a machine frame 11 and hydraulic circuits including pressure regulation valves 12a, 12b and 12c, a switching valve 13c and hydraulic pumps 14a, 14b and 14c. The above- referred to components are identical to those included in the prior art press shown in Figure 1.

    [0012] In this embodiment the press has a mount table 16 for a potentiometer 176 provided on the machine frame 11, a mount table 18 for a potentiometer 17a provided on the upper bolster 9, and racks 19a and 19b mounted on the upper and lower auxiliary ram 7, 8 respectively, which racks are meshed with pinions 20a and 20b respectively, mounted on the ends of the shafts of the potentiometers 17a and 17b. The control circuit for the press includes amplifiers 21a and 21b, electromagnetically operable servo valves 22a and 22b, which are included in the hydraulic circuits for the upper and lower auxiliary rams 7 and 8, respectively, and a template 24 that is movable along an arrowed dash-dot line C--C and whose profile is designed according to a programme for the positional control of the punches 4 and 5. Reference numerals 25a and 25b designate potentiometers which are associated, at their shaft ends, with pinions 26a and 26b meshed with racks 27a and 27b respectively. At one end, each rack 27a and 27b has a roller 28a and 28b respectively serving as a cam follower, the other end of each rack being slidably supported by a rack guide 29a, 29b respectively. In addition, the racks 27a and 27b are adapted to be urged against opposite, inclined side surfaces of the template 24 via their rollers 28a and 28b, respectively, by suitable resilient means not shown.

    [0013] In operation, since the upper auxiliary ram 7 and the upper punch 4 are driven integrally, the potentiometer 17a which generates a voltage corresponding to the position of the upper auxiliary ram 7, can represent the extent of insertion of the upper punch 4 into the forging space defined by the dies 1 and 2. The same is also true with respect to the lower punch 5, and the voltage generated by the potentiometer 17b indicates the extent of insertion of the lower punch 5 into the space formed by the dies 1 and 2.

    [0014] The voltages generated by the potentiometers 1 7a and 17b respectively, are compared in comparator circuits Xi and X2 with programmed reference voltages generated by a programmed reference voltage generator 23 consisting of the above-described template 24, potentiometers 25a and 25b, pinions 26a and 26b, racks 27a and 27b, rollers 28a and 28b and rack guides 29a and 29b, and the difference signals issued from the comparator circuits X, and X2 are amplified by the amplifiers 21a a and 21b and then applied to the signal inputs of the servo valves 22a and 22b, respectively. As a result, the servo valves 22a and 22b are actuated to drive the upper auxiliary ram 7 and the lower auxiliary ram 8 by means of the respective hydraulic pressure sources 12a-14a and 12b-14b so that the difference between the programmed reference voltages and the voltages generated by the potentiometers 17a and 17b may be nulled. Accordingly, the positions of the upper and lower punches 4 and 5 can be continuously controlled in accordance with the programmed reference voltages issued from the programmed reference voltage generator 23.

    [0015] In the programmed reference voltage generator 23, the successive reference voltages corresponding to the desired positions of the upper and lower punches 4 and 5 are generated in accordance with the profile of the template 24. Therefore, if the profile of the template 24 is appropriately designed from the position for start of a forging operation up to the position for termination of the forging operation, and if the template 24 is moved in the direction of arrow D in Figure 4 during the forging operation from the forging start position up to the forging termination position, then it becomes possible to control continuously the positions of the upper and lower punches 4 and 5 during the entire forging process.

    [0016] It is to be noted that while description has been made above in connection to a forging press provided only with vertically movable punches, obviously the same control method can be equally applied for a forging press in which not only vertically movable punches but also horizontally movable punches are provided, these punches being simultaneously actuated in their respective vertical and horizontal directions. In addition, although a programmed reference voltage generator 23 of template type has been described above, it is possible to generate similar programmed reference voltages by substituting purely electrical means such as, for example, a function generator, an electronic computer, etc. for the template type generator.

    [0017] As described in detail above, according to the present invention, since the movements or positions of the punches can be continuously controlled during the forging process from the forging start position up to the forging termination position, the mode of deformation flow of the workpiece is always kept constant, and as a result, excellent forged products having good quality and high precision in dimensions can be obtained.

    [0018] Since many modifications can be made in the construction of the embodiment described above it will be appreciated that it is given by way of example only and many apparently widely different embodiments of this invention could be made without departing the scope thereof. It is, therefore, intended that all matter contained in the above description and shown in Figure 4 of the accompanying drawings shall be interpreted as illustrative and not as a limitation of the scope of the invention.


    Claims

    1. A forging press of the kind having means for converting positional information relating to a punch (4, 5) into a voltage, a reference voltage generator (23) for setting a reference voltage, comparator means (X,) for comparing said converted voltage with said reference voltage, and control means (21a, 21b, 22a, 22b) for controlling drive means (6 to 8) for the punch in accordance with comparison results from said comparator means, characterised in that said press is a precision forging press comprising a plurality of punches (4, 5) adapted to be driven by said drive means (6 to 8), and in that said reference voltage generator (23) is a programmed generator comprising a template (24) having a programmed profile for each punch, a follower (28a, 28b) associated with a respective profile of said template, and a potentiometer (25a, 25b) associated with each follower adapted to be rotated in response to movement of its follower to generate the reference voltage for its respective punch.
     
    2. A precision forging press as claimed in Claim 1, and in which two opposed punches (4 and 5) are provided and the drive means for the punches comprise a hydraulic ram assembly (6) providing a ram (7 and 8) for each punch fed from a hydraulic pressure source, characterised in that said control means consists of an amplifier (21a, 21 b) and a servo valve (22a, 22b) for each ram interposed between a respective ram and said hydraulic pressure source.
     
    3. A precision forging press as claimed in Claim 2, characterised in that positional movement of each ram (6 and 7) is fed by mechanical means to a respective potentiometer (1 7a, 17b) (e.g. via a rack and pinion) for conversion into a voltage which is fed, together with the respective reference voltage, to said comparator means (X, and X2) to produce a difference signal which is fed to the amplifier (21 a or 21 b) of the respective ram servo valve (22a or 22b).
     


    Ansprüche

    1. Schmiedepresse mit Mitteln zum Umwandeln von Positionsangaben, die sich auf einen Stempel (4, 5) beziehen, in eine Spannung, mit einem Bezugsspannungsgenerator (23) zum Einstellen einer Bezugsspannung, mit einem Komparator (X,) zum Vergleichen der genannten umgewandelten Spannung mit der genannten Bezugsspannung, und mit Regeleinrichtungen (21a, 21 b, 22a, 22b) zum Regeln eines Antriebes (6-8) des Stempels entsprechend dem Vergleichsergebnis aus dem Komparator, dadurch gekennzeichnet, daß die Presse eine Präzisionsschmiedepresse ist, mit einer Mehrzahl von Preßstempeln (4, 5), die derart gestaltet und angeordnet sind, daß sie mittels des genannten Antriebes (6-8) angetrieben werden, daß der Bezugsspannungsgenerator (23) ein programmierter Generator mit einer Schablone (24) ist, die ein programmiertes Profil für jeden Stempel aufweist, mit einem jeden Profil der genannten Schablone zugeordneten Abtastern (28a, 28b), und einem Potentiometer (25a, 25b), der einen jeden Abtaster zugeordnet ist und der derart gestaltet und angeordnet ist, daß er in Abhängigkeit der Bewegung seines Abtasters umläuft, um die Bezugsspannung für seinen zugeordneten Stempel zu erzeugen.
     
    2. Präzisionsschmiedepresse nach Anspruch 1, mit zwei einander gegenüberliegenden Preßstempeln (4 und 5), wobei der Antrieb für die Stempel eine hydraulische Ramme (6) aufweist, die einen Preßkolben (7 und 8) für jeden Preßstempel umfaßt und von einer hydraulischen Druckquelle gespeist ist, dadurch gekennzeichnet, daß die genannte Regeleinrichtung aus einem Verstärker (21 a, 21 b) und einem Servo-Ventil (22a, 22b) für jeden Preßkolben besteht und zwischen dem betreffenden Preßkolben und die genannte hydraulische Druckquelle geschaltet ist.
     
    3. Präzisionsschmiedepresse nach Anspruch 2, dadurch gekennzeichnet, daß die Verschiebung der Position eines jeden Preßstempels (6 und 7) durch mechanische Mittel einem entsprechenden Potentiometer (17a, 17b) (beispielsweise über Zahnstange und Ritzel) zum Zwecke der Umwandlung in eine Spannung eingespeist wird, die zusammen mit der betreffenden Bezungsspannung dem genannten Komparator (X, und XZ) eingespeist wird, um ein Differenzsignal zu erzeugen, das dem Verstärker (21 a oder 21b) des betreffenden Preßstempel-Servo-Ventils (22a oder 22b) eingespeist wird.
     


    Revendications

    1. Presse d'estampage comportant des moyens pour convertir une information de position relative à une étampe (4, 5) en une tension, un générateur (23) d'une tension de référence pour définir une tension de référence, des moyens comparateurs (X,) pour comparer ladite tension mesurée à ladite tension de référence, et des moyens de commande (21 a, 21b, 22a, 22b) pour commander des moyens d'entraînement (6 à 8) de l'étampe en fonction des résultats de la comparaison des tensions effectuée par les moyens comparateurs, caractérisée en ce que ladite presse est une presse de formage de précision comportant plusieurs étampes (4, 5) agencées pour être actionnées par lesdits moyens d'entraînement (6 à 8), et en ce que ledit générateur de tension de référence (23) est un générateur programmé comportant un gabarit (24) pourvu d'un profil programmé pour chacune des étampes, un organe suiveur de profil (28a, 28b) associé à un profil donné de chaque gabarit, et un potentiomètre (25a, 25b) associé à chaque organe suiveur, agencé pour être entraîné en rotation en réponse au déplacement de l'organe suiveur correspondant, pour engendrer la tension de référence pour l'étampe correspondante.
     
    2. Presse de précision selon la revendication 1, comportant deux étampes opposées (4 et 5), dans laquelle les moyens d'entraînement des étampes comportent un agencement de béliers hydrauliques (6) comprenant un bélier (7 et 8) pour chaque étampe, ces béliers étant alimentés par une source de pression hydraulique, caractérisée en ce que lesdits moyens de commande de chacun des béleirs consistent en un amplificateur (21 a, 21 b) et une servo-soupape (22a, 22b), ces éléments étant interposés respectivement entre un bélier et ladite source de pression hydraulique.
     
    3. Presse de précision selon la revendication 2, caractérisée en ce que le déplacement de chaque bélier (6 et 7) est transmis par des moyens mécaniques à un potentiomètre correspondant (17a, 17b) (par exemple par l'intermédiaire d'une crémaillère) pour être transformé en un signal de tension, qui est transmis avec la tension de référence auxdits moyens comparateurs (X1 et X2) pour produire un signal de différence qui est transmis à l'amplificatuer (21 a ou 21b) de la servo-soupape de bélier (22a ou 22b) correspondante.
     




    Drawing