[0001] This invention is concerned with a machine for performing a roughing operation progressively
along marginal portions of shoe bottoms comprising a shoe support, tool supporting
means, means for effecting relative movement, lengthwise of the bottom of a shoe supported
by the shoe support, between said shoe support and the tool supporting means first
in one direction and then in an opposite direction, and means, operable as relative
lengthwise movement takes place as aforesaid, for effecting relative movement, widthwise
of the bottom of a shoe supported by the shoe support, between said shoe support and
the tool supporting means, whereby, in the operation of the machine, a roughing operation
can be progressively performed along marginal portions of such shoe bottom, wherein
the tool supporting means is arranged to support two roughing tools for operating
along opposite marginal portions of the shoe bottom, each tool being caused to effect
an inwiping action on the marginal portion on which it is caused to operate. In one
such machine, described in GB-A-1137254, the tools are arranged in tandem relationship
so that, as relative lengthwise movement takes place as aforesaid, first one tool
engages the shoe bottom and operates along one marginal portion, and thereafter, following
said one tool, the other tool engages the shoe and operates along the opposite mar-.
ginal portion, the arrangement being such that the relative lengthwise movement is
arrested when said other tool has completed its operation. Thereafter, with the tools
in an out-of-the- way condition, relative lengthwise movement may then take place
in an opposite direction along said path and the shoe can then be removed from the
shoe support.
[0002] Whereas the machine referred to above operates satisfactorily on a variety of shoe
styles and sizes, nevertheless it will be appreciated that the machine cycle includes
a certain amount of "dead" time, in which the shoe bottom is not being operated upon
but is merely being returned to a loading position. Furthermore, by arranging the
tools in tandem relationship, the amount of relative lengthwise movement necessary
for both brushes to traverse their respective marginal portions is greater than the
overall length of the shoe, and this in turn leads to an extended machine cycle time.
In addition, the brushes always operate on the shoe bottom in the same direction,
so that the "leading" edge of the operating surface of each brush is more subject
to wear than the "trailing" edge of that surface, with the result that uneven brush
wear takes place with consequent shortening of the effective life of the brush.
[0003] It is an object of the present invention to provide an improved machine for performing
a roughing operation progressively along marginal portions of shoe bottoms, in the
operation of which machine the cycle time is reduced and further more even brush wear
takes place.
[0004] To this end, a machine of the type set out above is characterised in accordance with
the invention in that, in a cycle of operation of the machine, one of said tools is
caused to operate along the marginal portion of the shoe bottom at one side thereof
during relative lengthwise movement as aforesaid in said one direction, and the other
of said tools is caused to operate along the marginal portion of such shoe bottom
at the opposite side thereof during said relative lengthwise movement in said opposite
direction.
[0005] In a preferred embodiment, furthermore, two shoe supports are provided, arranged
side-by-side, the arrangement being such that the tool supporting means is caused
to be aligned alternately with each shoe support whereby successive roughing operations
can be performed alternately on the bottom of shoes supported thereby.
[0006] Thus, in the machine in accordance with the invention, not only is the path of relative
lengthwise movement shortened, since the brushes are no longer arranged in a tandem
relationship, but further, by arranging for each tool to operate along one of the
sides of the shoe bottom, the changeover from one tool to the other at the end of
the relative lengthwise movement in said one direction can be minimised in that, as
the first tool leaves engagement with the shoe bottom, the other tool is brought into
engagement therewith. This advantage is especially the case where, as preferred, the
tool supporting means comprises a single support member by which both roughing tools
are supported, preferably side-by-side. Furthermore, where two supports are provided
as aforesaid, it can be ensured that each side of the operating surface of each tool
alternately "leads" and "trails" as it is caused to operate progressively, so that
brush wear is rendered more even.
[0007] In some circumstances, it may be desirable, in the operation of the machine, for
a left hand one of the tools to be caused to operate along the marginal portion of
the shoe bottom at the right hand side thereof during relative lengthwise movement
as aforesaid in said one direction, while the right hand tool is caused to operate
along the left hand side of the shoe bottom during the return movement in the opposite
direction. This is especially advantageous, from a time-saving point of view, when
two shoe supports are provided, in that by operating firstly on the marginal portion
of the shoe bottom at the side remote from the other shoe support, when lengthwise
movement takes place in said one direction, and thereafter on the marginal portion
near the other shoe support during the return movement, only one reversal in the direction
of relative widthwise movement is required in each machine cycle.
[0008] The machine in accordance with the invention is readily capable of being adapted
to operate under the control of computer means, and to this end conveniently each
of the means for effecting relative movement, respectively lengthwise, widthwise and
heightwise of the bottom of a shoe supported by the shoe support, between the tool
supporting means and the shoe support comprises a numerically controlled motor. By
the term "numerically controlled motor" is to be understood a motor the operation
of which is controlled by control signals supplied thereto in accordance with stored
information appropriate to a desired operation. Examples of such motors are stepping
motors and d.c. servomotors. In addition, the machine also preferably comprises computer
control means is provided by which drive signals are generated and supplied to the
numerically controlled motors, in accordance with a programmed instruction, including
digitised co-ordinate axis values, using three co-ordinate axes, for a plurality of
successive selected points along the marginal portion to be operated upon of a shoe
bottom whereby, in the operation of the machine, marginal portions of such shoe bottom
can be operated upon progressively.
[0009] The tool supporting means may also have associated therewith sensing means by which
the pressure applied by the tool supported thereby to the bottom of a shoe being operated
upon can be gauged and which, in response to changes in such pressure, is effective
to supply control signals to the computer control means which is thus caused to modulate
the drive signals supplied thereby to said third numerically controlled motor. In
this manner, any deviation in heightwise contour of the shoe bottom being operated
upon from the digitised information can be accommodated. Conveniently, furthermore,
in response to such control signals, the computer control means may be effective to
vary the frequency and/or polarity of the drive signals to the third stepping motor,
thus to vary the output velocity thereof. The sensing means may comprise strain gauges
associated with each tool, or alternatively, where the tools are rotary, the sensing
means may sense variations in the output torque of the motors by which such rotation
is caused to take place.
[0010] Conveniently in the machine in accordance with the invention the shoe support is
mounted for movement in a direction extending lengthwise of the shoe bottom, and the
tool supporting means is movable to effect movement of the tool supported thereby
both widthwise and heightwise of the shoe bottom. This widthwise movement of the tool
supporting means, furthermore, can be utilised to bring the tools into opposed relationship
with grinding means by which the operating surface of each tool can be ground, the
third numerically controlled motor being effective to move the tool supporting means
heightwise to bring the tools supported thereby into operative engagement with grinding
stones of the grinding means. Furthermore, in order to ensure that grinding of each
tool can take place, and further to ensure that the operating surface of each tool
will lie in a datum plane after the grinding operation, preferably the tool support
means is moved through a first distance (corresponding to the distance between said
datum plane and the operating surfaces of the grinding stones) by the third numerically
controlled motor, and the tools are moved by a further numerically controlled motor
(as herein defined), whereby the grinding operation is caused to take place, and thereafter,
again by means of said third numerically controlled motor, tool supporting means is
moved in an opposite direction, to move each tool away from its associated grinding
stone, through said first distance. Furthermore, the grinding stones are preferably
caused to rotate with a peripheral speed greater than that of the periperal speed
of the tools, the arrangement being such that the operating surfaces of each tool
and its associated stone are moving in the same direction at the point of engagement
therebetween. In this manner, the need, in previous machines, to arrest rotation of
the tool and to reverse its rotation prior to grinding, using a stationary grinding
stone, is avoided.
[0011] Further in order to ensure that a good degree of evenness of wear in the brushes
is achieved, it is preferable that each tool be maintained with the plane in which
its operating surface lies disposed normal to the portion of the shoe bottom being
operated upon, as the tool operates therealong. To this end, in the machine in accordance
with the invention, preferably the tools are supported by the tool supporting means
for pivotal movement about a horizontal axis passing through the area of engagement
thereof with the shoe bottom, means, comprising a fourth numerically controlled motor
(as hereinbefore defined), being provided for effecting such pivotal movement.
[0012] There now follows a detailed description, to be read with reference to the accompanying
drawings, of one machine in accordance with the invention, selected for description
merely by way of non-limiting example.
[0013] In the accompanying drawings:-
Figure 1 is a left hand perspective view of the machine in accordance with the invention;
Figure 2 is a front view, with parts broken away, showing two rotary radial roughing
tools and support means therefor;
Figures 3 and 4 together form a plan view, with parts broken away, showing especially
the tool supporting means;
Figures 5 and 6 together form a side view of parts shown in Figures 3 and 4;
Figure 7 is a fragmentary view taken along the arrow VII on Figure 3; and
Figure 8 is a diagram showing an operating sequence of tools on shoe bottoms successively
presented thereto.
[0014] The machine now to be described is for use in performing a roughing operation progressively
along marginal portions of shoe bottoms, and comprises a base 10 (Figure 1) supporting
on brackets 12 two pivotal shafts 14, each shaft carrying a support 16 for a shoe
support 18. Each shoe suppport 18 can support a shoe S, bottom uppermost, the the
toe end thereof facing towards the front of the machine i.e. towards the operator.
[0015] At its rear (Figures 3, 5 and 7), the base 10 supports a support column structure
22 carrying a casting 24 on which tool supporting means generally designated 26 is
carried. The tool supporting means comprises a bifurcated arm 30 supported, for pivotal
movement about a horizontal axis 100 between, upstanding lugs 32. The lugs form part
of a support casting 34 supported, above and below the casting 24, for pivotal movement
about a vertical axis 38. Thus, by moving either shoe support 18 about the axis of
its associated shaft 14, and further by effecting pivotal movement of the arm 32 about
said horizontal and vertical axes, relative lengthwise, heightwise and widthwise movement
is effected between the tool supporting means 26 and such shoe support 18.
[0016] For effecting such widthwise pivotal movement, a rearwardly extending portion 40
of the support casting 34 has secured thereto a toothed segment 42, with which meshes
a sprocket 48 (Figures 3 and 7) supported on a block 52 slidably mounted in a block
54 secured on the casting 24, the arrangement being such that the block 52, and thus
the sprocket 48 therewith, are urged towards the toothed segment 42 by a spring 58
accommodated in the block 54. An adjustable stop member 60 is provided for varying
the tension in the spring.
[0017] Rotatable with the sprocket 48 is a toothed drive pulley 62, operatively connected
by a drive belt 64 with a further toothed drive pulley 66 carried on the casting 24.
Rotatable with the pulley 66 is a toothed pulley 72 operatively connected by a drive
belt 74 to a toothed drive pulley 76 supported, via a universal coupling 80, to the
output drive shaft 82 of a stepping motor 84 mounted on the casting 24. The stepping
motor 84 is thus effective to cause the arm 30 to be pivoted widthwise of the bottom
of a shoe supported by the shoe support 18.
[0018] For pivoting the arm 30 about the horizontal axis 100, a rearwardly extending portion
102 thereof supports an annular casting 104. The casting, which is supported for limited
pivotal movement in bearings 106 on stub shafts 108, is secured by spring plates 110
to a housing 112 for a ball screw arrangement 114. Said arrangement is coupled through
a universal coupling 118, to an output drive shaft 120 of a stepping motor 122. The
motor 122 is mounted in a support frame 124 opposed lugs 126 of which are connected,
by spring plates 128, to an annular casting 130 itself connected, also by opposed
spring plates 132 (arranged at 90° to the spring plates 128), to the rearwardly extending
portion 40 of the support casting 34. The stepping motor 122 is thus effective to
cause the arm 30 to pivot about the horizontal axis 100. A spring 134 acts to urge
the rearwardly extending portion 102 downwardly in relation to said rearwardly extending
portion 40.
[0019] For effecting pivotal movement of each shoe support 108, each support 16 carries
a toothed segment 140 (one only shown in Figure 1), and a drive arrangement generally
designated 142, which is generally the same as the drive arrangement illustrated in
Figure 7, for effecting pivotal movement of the arm 30 about the vertical axis 38.
Each drive arrangement 142 includes a stepping motor 144 effective to cause pivotal
movement of its associated shoe support about the horizontal axis 14.
[0020] Each of the stepping motors 144 constitutes a first stepping motor for effecting
relative movement, lengthwise of the bottom of a shoe S supported by the shoe support
18 associated with said motor, between said shoe support and the tool supporting means,
while the motor 84 constitutes a second stepping motor for effecting relative movement
therebetween widthwise of such shoe bottom, and the motor 122 constitutes a third
stepping motor for effecting relative movement therebetween heightwise of such shoe
bottom.
[0021] The arm 30 carries, at its forward end (Figures 2, 4 and 6), a transversely extending
bridge member 150 supporting, at each of the opposite ends thereof, a forwardly projecting
arm 152. Fulcrum pins 154, at the forward end of each arm 152, support a generally
U-shaped cradle comprising a cross-beam 156, two bevel gear housings 158, arranged
one at either end of the cross-beam, and two forwardly projecting arms 160. Each housing
158 carries a bearing 162 for a forwardly extending shaft 164 on which an inwardly
extending transverse support arm 166 is pivotally mounted. Each support arm 166 carries
a rotary radial roughing brush 168. The inner end of support arm 166 has a link 170
pivotally connected thereto, opposite ends of the links 170 being carried by a block
172 mounted for limited heightwise sliding movement on a front face of the cross-beam
156. The block 172 threadedly receives a threaded shaft 180 coupled, via a universal
coupling 182, to an output drive shaft 184 of a stepping motor 186 supported on the
cross-beam 156. The stepping motor 186 is thus effective to enable the operating surface
of each tool 168 to be maintained in a datum plane (which passes through the axis
of the fulcrum pins 154) as the brushes become worn or are ground down; Figures 2
and 4 show in full line the size of a worn roughing brush 1 68 (shown aligned with
said datum plane in Figure 2) and in chain-dot line the outline of a roughing brush
prior to its use.
[0022] The aforementioned cradle is mounted for pivotal movement on the fulcrum pins 154,
thus to cause the roughing brushes 168 to be tilted bodily therewith about an axis
lying in said datum plane and tangential to the operating surface of each brush. To
this end, the cross-beam 156 carries an upstanding bracket 200 to which is fixed a
link 202 connected by a rod 204 to an upper end of a lever 206 pivotally mounted on
the arm 30. Intermediate its ends the lever has pivotally connected thereto a further
rod 208 threadedly secured in a crossmember 210 (Figures 3 and 5) carried by two links
212, which are connected to a vertical plane member 214. The member 214 supports a
threaded collar 216 for a forwardly projecting threaded rod 218. The rod is rotatably
mounted in a support frame comprising an end plate 220, an upper and a lower support
rod 222, projecting forwardly from the end plate, and a front plate 224, in which
a forward, necked down, unthreaded portion of the rod 218 is held captive. The end
plate 220 is formed integral with a support structure 226 mounted on the arm 30. The
structure accommodates a universal coupling 228 by which a rearward end of the rod
218, extending through the end plate 220, is connected to an output drive shaft 230
of a stepping motor 232, to which the support structure 226 is bolted. The various
components designated 210 to 232 together constitute a stepping motor arrangement
234. The stepping motor 232, by which said cradle is caused to be pivoted about the
axis 154, constitutes a fourth stepping motor of the illustrative machine.
[0023] The roughing brushes 168 are caused to rotate in contrary directions such that each
brush, as it is caused to operate progressively along a marginal portion of the shoe
bottom, effects an inwiping action on such marginal portion. To this end, each brush
is mounted on a spindle 240 (Figures 2, 4 and 6) and each spindle carries a toothed
pulley 242 operatively connected, by a toothed belt 244, to a drive pulley 246. The
pulleys 246 are carried on the shafts 164, at the rearward end of each of which is
a bevel gear 248 meshing with a further bevel gear 250, inside the housing 158. Each
bevel gear 250 is carried on a transverse shaft 252 carrying, outside the housing
158, a toothed drive pulley 254 operatively connected, by a toothed belt 256, to a
further toothed pulley 258 carried on the fulcrum pin 154. Each pin 154 also carries
a further toothed pulley 260 operatively connected by a toothed belt 262 to a further
toothed pulley 264. The various belts 244, 256 and 262 are maintained tensioned by
pulleys 266, 268, 270 respectively. The pulleys 264 are supported on a transverse
shaft 280 carried by the bridge member 150 and comprising two portions connected by
a universal coupling 282 for each of disassembly. The shaft 208 carries a toothed
drive pulley 284 operatively connected by a toothed belt 286 with a toothed drive
pulley 288 (Figures 3 and 5) carried by the left hand pivot pin 100. The belt 286
is maintained tensioned by a pulley 290. The pin 100 also carries a further toothed
drive pulley 294 connected by a toothed belt 296 to a toothed drive pulley 298 (Figure
1) on the output drive shaft of an electric motor 300 carried on a bracket 302 on
the base 10. The output speed of the motor 300 and the gearing of the pulleys is such
that the brushes are caused to rotate at a speed in the order of 2,900 r.p.m.
[0024] The roughing brushes 168 are provided with guards 310 (Figures 2 and 4) which shroud
upper portions of the brushes, leaving only the work-engaging surface portion thereof
exposed, such guards 310 also incorporating a dust extraction system in the usual
manner.
[0025] The machine in accordance with the invention is computer-controlled, the computer
having a storage memory for storing digitised information relating to a number of
selected styles of shoe bottoms to be operated upon, the operator selecting the appropriate
style for the particular shoe to be operated on in the next cycle of operation; such
selection may be through a keyboard (not shown) of the computer. The computer is thus
effective to cause the roughing brushes 168 to follow a pre-determined path along
three axes in accordance with the selected digitised information, as they are caused
to operate progressively along opposite marginal portions of the shoe bottom. Thus,
for each digitised point the computer supplies control pulses to the appropriate stepping
motor 144, whereby the appropriate shoe support is caused to move the shoe bottom
beneath the brushes 168, while simultaneously control pulses are supplied to the stepping
motor 84 for effecting movement of the tool supporting arm 30 widthwise of such shoe
bottom, and also to the stepping motor 122, whereby the tool supporting arm 30 is
pivoted about the axis 100 thus to move the roughing tools 168 heightwise of the shoe
bottom. The computer further supplies control pulses to the stepping motor 232 whereby
the cradle supporting the roughing tool is caused to pivot about the axis of the fulcrum
pins 154 thus to retain the plane of the radial roughing brushes 168 normal or substantially
so to the portion of the shoe bottom being operated upon. The computer means is of
the so-called open loop type, that is to say there is no constant monitoring of the
various moving parts to ensure that they have in fact moved in the manner and to the
extent intended. Consequently, it is possible for stepping motor pulses to be "lost"
during a machine cycle. Whereas such a loss can be tolerated in any given machine
cycle, clearly a cumulative loss over the course of a working day could significantly
affect the efficiency of the machine. To this end, in known manner, homing devices
are provided, associated with each of the stepping motors 84, 122, 144 and 232. These
homing devices, which may be operative at the end and/or beginning of each machine
cycle, are effective to ensure that their associated moving parts are at a known datum
position prior to initiation of each machine cycle.
[0026] In a cycle of operation of the illustrative machine, the operator will generally
load the shoe supports 18 alternately.
[0027] With a shoe clamped in e.g. the left hand shoe support 18 (see Figure 8), the operator
initiates the operating cycle. The shoe support is thus caused to pivot about the
axis of the shaft 14, while the toool supporting arm 30 is caused to pivot about the
axis 38, thus to bring the right hand brush 168 (viewing Figure 8) into engagement
with the shoe bottom at the heel end thereof, said brush then being caused to operate
progressively along the left hand marginal portion of the shoe bottom from the heel
to the toe thereof (as shown in the first drawing of Figure 8). If any part of the
heightwise contour of the shoe bottom is steeply angled, the operating roughing brush
168 is pivoted in its cradle about the fulcrum pins 154 thus to retain the plane of
the brush normal to the shoe bottom in the region being operated upon. (This pivoting
of the brushes may take place between three or more selected positions, or may be
infinitely variable, as desired.)
[0028] As the operating brush 168 reaches the toe end, it will be appreciated that the arm
30 is swinging to the right (viewing Figure 8) following the plan shape of the shoe
bottom, and this is considered generally advantageous since as the right hand brush
is moved off the shoe at the toe end thereof, continued movement of the arm brings
the left hand brush into contact with the toe end of the shoe bottom, whereafter the
left hand brush is caused to operate progressively along the right hand side of the
shoe bottom, as the shoe support 18 is returned to the loading position. The dotted
lines in Figure 8 show the relative path between the roughing brushes and the shoe
bottom, the solid arrows drawn within the confines of the shoe bottom shape indicating
the direction of movement of the shoe support.
[0029] While said one shoe is being operated upon as aforesaid, the operator is unloading
and reloading the other shoe support 18, so that, when the first-mentioned shoe has
been completely operated upon, and the first-mentioned shoe support has returned to
its loading position, the next cycle of operation can be immediately initiated. When
the left hand tool 168 reaches the heel end of the first-mentioned shoe, the arm 30
is moving to the left, following the plan shape of the shoe bottom. Such movement
of the tool arm is immediately thereafter reversed, and the left hand brush is thus
caused to move towards the next shoe clamped in the second shoe support 18, so that
the arm is moving at an operating velocity when the left hand roughing tool 168 comes
into contact with the shoe in the second shoe support. Not only does this produce
a significant saving in time in the course of a working day, but further the strain
on the stepping motor 84 is thus significantly reduced. At the end of the operation
on the second shoe, the right hand brush 168, operating progressively along the left
hand side of the shoe bottom, is moving to the right (viewing Figure 8) as it leaves
contact with the shoe bottom; this movement is again reversed, the arm then being
swung to bring the right hand brush into contact with the heel end of the next shoe
to be operated upon, supported by the first-mentioned shoe support 18. It will also
be appreciated that, in two operating cycles each brush will effect one operation
in each direction along the shoe bottom.
[0030] As each brush 168 is caused to operate along a marginal portion of the shoe bottom,
the pressure exerted thereby on said shoe bottom is monitored by strain gauges (not
shown) carried by the links 170, variation in such applied pressure from a predetermined
level (whether it is increased or decreased) causing a signal to be passed from the
appropriate strain gauge to the computer, which in turn supplies modulating control
pulses to the stepping motor 122, thus to vary the height of the brush 168 whereby
to bring the applied pressure back to said predetermined level. In this way, where,
for example, the particular shoe S being operated upon varies significantly in its
heightwise contour from the selected digitised pattern being followed, modification
of said pattern, to compensate for such variation, is achieved.
[0031] In order to ensure that the brushes 168 are maintained in a suitable sharpened condition
for roughing, the machine also comprises grinding means (Figure 2) comprising two
grinding stones 630 mounted on a support pedestal 632 fixed on the base 10 of the
machine, the stones being arranged side-by-side and spaced apart by the same, or substantially
the same, spacing as between the roughing brushes 168. Each grinding stone is carried
on a spindle 634 rotatable in a collar 636, the collars being independently mounted
for pivotal movement on a casting (not shown) carried at the upper end of the support
pedestal. Adjustable locking means (not shown) is also provided for locking each collar,
and thus each grinding stone, in adjusted heightwise position. The grinding stones
are caused to rotate in contrary directions to one another, the direction of rotation
in each case being such that, when engaged by a rotating roughing brush 168, the operating
surface of each stone is moving in the same direction as the operating surface of
the roughing brush engaged thereby. For rotating the stones 630, a single motor (not
shown) is provided, mounted on the base 10 of the machine, and operatively connected
to pulleys (not shown) on the spindle 634 by means of a drive belt 638. A grinding
operation may take place after a predetermined number of machine cycles, or alternatively
when the operator considers a sharpening operation is required. In either case, for
a grinding operation the arm 30 is caused to pivot abouts its vertical axis, under
the action of the stepping motor 84, to bring the roughing brushes 168 into opposed
relationship with the grinding stones 630. Thereafter, the stepping motor 122 is actuated
to move the brushes 168 into proximity (or engagement according to the amount of brush
wear since the previous grinding operation) with the grinding stones, the motor 122
operating to bring the datum plane, which passes through the axis of the fulcrum pins
154, to a position in which the uppermost portion of the operating surface of each
stone lies in said datum plane. In order to ensure that the brushes, when ground,
are of uniform diameter, the stepping motor 186 is actuated to cause the brushes 168
to be moved downwardly, through a relatively small "grinding" distance, relative to
the arm 30 of the tool supporting means. It will of course be appreciated that, in
this manner, the grinding stone 630 will grind away any portion of the operating surface
of each brush, thus to maintain the lowermost portion of the operating surface of
each brush in said datum plane. When the grinding operation is completed, the motor
122 is again actuated to return the arm, and the brushes 168 therewith, to an operating
position, in readiness for the next roughing operation.
[0032] For providing the digitised information to the computer control means, for use in
the said machine digitising may be effected in the machine itself. To this end the
tool 168 can be positioned at selected points along the shoe bottom marginal portions
by the operator, the computer control means comprising a "teach" circuit by which,
for each such selected point, the position of the tool, lengthwise, widthwise and
heightwise of the shoe bottom marginal portion, is stored by the computer control
means in a programmed instruction in terms of digitised co-ordinate axis values, using
three co-ordinate axes. Furthermore, the computer control means has a "brush tilt"
determining programme, said programme serving to calculate the gradient of the shoe
bottom between each pair of successive points (by calculating the ratio between the
amount of lengthwise movement and the amount of heightwise movement between such points)
and supplying appropriate drive pulses to the stepping motor 232.
1. A machine for performing a roughing operation progressively along marginal portions
of shoe bottoms comprising a shoe support (18), tool supporting means (26) means (142)
for effecting relative movement, lengthwise of the bottom of a shoe supported by the
shoe support (18), between said shoe support (18) and the tool supporting means (26)
first in one direction and then in an opposite direction, and means (42, 48, 62-84)
operable as relative lengthwise movement takes place as aforesaid, for effecting relative
movement, widthwise of the bottom of a shoe supported by the shoe support (18), between
said shoe support (18) and the tool supporting means (26), whereby, in the operation
of the machine, a roughing operation can be progressively performed along marginal
portions of such shoe bottom, wherein the tool supporting means (26) is arranged to
support two roughing tools (168) for operating along opposite marginal portions of
the shoe bottom, each tool (168) being caused to effect an inwiping action on the
marginal portion on which it is caused to operate, characterised in that, in a cycle
of operation of the machine, one of said tools (168) is caused to operate along the
marginal portion of the shoe bottom at one side thereof during relative lengthwise
movement as aforesaid in said one direction, and the other of said tools (168) is
caused to operate along the marginal portion of such shoe bottom at the opposite side
thereof during said relative lengthwise movement in said opposite direction.
2. A machine according to Claim 1 characterised in that, in the operation thereof,
a left hand one of said tools (168) is caused to operate along the marginal portion
of the shoe bottom at the right hand side thereof during relative lengthwise movement
as aforesaid in said one direction, and the right hand one of said tools (168) is
caused to operate along the marginal portion of such shoe bottom at the left hand
side thereof during said relative lengthwise movement in said opposite direction.
3. A machine according to either one of the preceding Claims characterised in that
the tool supporting means (26) comprises a single support member (30) by which both
roughing tools (168) are supported.
4. A machine according to any one of the preceding Claims characterised in that there
are provided a first numerically controlled motor (as herein defined) (144) for effecting
relative movement, lengthwise of the bottom of a shoe supported by the shoe support
(18), between said shoe support (18) and the tool supporting means (26), a second
numerically controlled motor (as herein defined) (84) for effecting relative movement,
widthwise of such shoe bottom, between the shoe support (18) and the tool supporting
means (26), and a third numerically controlled motor (as herein defined) (122) for
effecting relative movement, heightwise of such shoe bottom, between the shoe support
(18) and the tool supporting means (26), and further characterised in that computer
control means is provided by which drive signals are generated and supplied to the
numerically controlled motors (144, 84, 122), in accordance with a programmed instruction,
including digitised co-ordinate axis values, using three co-ordinate axes, for a plurality
of successive selected points along the marginal portion to be operated upon of a
shoe bottom whereby, in the operation of the machine, marginal portions of such shoe
bottom can be operated upon progressively.
5. A machine according to Claim 4 characterised in that the tool supporting means
(26) has associated therewith sensing means (strain gauges- not shown) by which the
pressure applied by the tool (168) supported thereby to the bottom of a shoe being
operated upon can be gauged and which, in response to changes in such pressure, is
effective to supply control signals to the computer control means which is thus caused
to modulate the drive signals supplied thereby to said third numerically controlled
motor (122).
6. A machine according to either one of Claims 4 and 5 wherein the shoe support (18)
is mounted for movement in a direction extending lengthwise of the shoe bottom, and
the tool supporting means (26), is movable to effect movement of the tools (168) supported
thereby both widthwise and heightwise of the shoe bottom, characterised in that such
widthwise movement of the tool supporting means (26) is also effective to bring the
tools (168) into opposed relationship with grinding means (630) by which the operating
surface of each tool (168) can be ground, the third numerically controlled motor (122)
being effective to move the tool supporting means (26) heightwise to bring the tools
(168) supported thereby into operative engagement with grinding stones (630) of the
grinding means, the arrangement being such that the tool supporting means (26) is
moved through a first distance (corresponding to the distance between a datum plane
and the operating surfaces of the grinding stones (630)) by the third numerically
controlled motor (122) and the tools (168) are moved by a further numerically controlled
motor (as herein defined) (186) through a further distance (thus to ensure that grinding
of each tool (168) can take place), and thereafter, again by means of said third numerically
controlled motor (122), the tool supporting means (26) is moved in an opposite direction,
to move each tool (168) away from its associated grinding stone (630), through said
first distance.
7. A machine according to Claim 6 characterised in that the grinding stones (630)
are caused to rotate with a peripheral speed greater than that of the peripheral speed
of the tools (168), the arrangement being such that the operating surfaces of each
tool (168) and its associated stone (630) are moving in the same direction at the
point of engagement therebetween.
8. A machine according to any one of Claims 4 to 7 wherein each tool (168) is maintained
with the plane in which its operating surface lies disposed normal to the portion
of the shoe bottom being operated upon, as said tool (168) operates therealong, characterised
in that the tools (168) are supported by the tool supporting means (26) for pivotal
movement about a horizontal axis (154) passing through the area of engagement thereof
with the shoe bottom, means (234), comprising a fourth numerically controlled motor
(as hereinbefore defined) (232), being provided for effecting such pivotal movement.
9. A machine according to any one of Claims 4 to 8 characterised in that two shoe
supports (18) are provided, arranged side-by-side, each support (18) having a first
numerically controlled motor (144) associated therewith, and the second numerically
controlled motor (84) being effective to move the tool supporting means (26) into
alignment with each of the shoe supports (18) alternately, whereby successive roughing
operations can be performed alternately on the bottom of shoes supported thereby.
1. Machine destinée à effectuer une opération de cardage progressivement le long de
parties marginales de dessous de chaussure, comprenant un support de chaussure (18),
un dispositif support d'outil (26), un dispositif (142) pour produire un mouvement
relatif suivant la longueur du dessous d'une chaussure supporté par le support de
chaussure (18), entre ledit support de chaussure (18) et le dispositif support d'outil
(26), d'abord dans un sens puis dans un sens opposé et un dispositif (42, 48, 62-84)
qui, quand un mouvement longitudinal relatif se produit comme précité, effectue un
mouvement relatif suivant la largeur du dessous d'une chaussure supportée par le support
de chaussure (18) entre ledit support de chaussure (18) et le dispositif support d'outil
(26) de manière que lors du fonctionnement de la machine, une opération de cardage
puisse être effectuée progressivement le long des parties marginales de ce dessous
de chaussure, dans laquelle le dispositif support d'outil (26) est agencé pour supporter
deux outils de cardage (168) pour fonctionner le long de parties marginales opposées
du dessous de chaussure, chaque outil (168) étant amené à exercer une action d'essuyage
sur la partie marginale sur laquelle il est amené à fonctionner, caractérisée en ce
que dans un cycle de fonctionnement de la machine, l'un desdits outils (168) est amené
à fonctionner le long de la partie marginale du dessous de chaussure sur un côté pendant
un mouvement longitudinal relatif comme précité dans ledit sens, et l'autre desdits
outils (168) est amené à fonctionner le long de la partie marginale de ce dessous
de chaussure sur son côté opposé pendant ledit mouvement longitudinal relatif dans
ledit sens opposé.
2. Machine selon la revendication 1, caractérisée en ce que, lors de son fonctionnement,
celui desdits outils (168) qui se trouve à gauche est amené à fonctionner le long
de la partie marginale du dessous de chaussure à sa droite, pendant le mouvement longitudinal
relatif dans ledit premier sens, et celui desdits outils (168) qui se trouve à droite
est amené à fonctionner sur la partie marginale du dessous de chaussure qui se trouve
à sa gauche, pendant le mouvement longitudinal relatif dans ledit sens opposé.
3. Machine selon l'une quelconque des revendications précédentes, caractérisée en
ce que le dispositif support d'outil (26) consiste en une seule pièce support (30)
par laquelle sont supportés deux outils de cardage (168).
4. Machine selon l'une quelconque des revendications précédentes, caractérisée en
ce qu'elle comporte un premier moteur à commande numérique (tel que défini ici) (144)
pour effectuer un mouvement relatif suivant la longueur du dessous d'une chaussure
supporté par le support de chaussure (18), entre ledit support de chaussure (18) et
le dispositif support d'outil (26), un second moteur à commande numérique (tel que
défini ici) (84) pour produire un mouvement relatif suivant la largeur du dessous
de chaussure entre le support de chaussure (18) et le dispositif support d'outil (26)
et un troisième moteur à commande numérique (tel qui défini ici) (122) pour produire
un mouvement relatif suivant la hauteur de ce dessous de chaussure, entre le support
de chaussure (18) et le dispositif support d'outil (26), et caractérisée en outre
en ce qu'un dispositif de commande à calculateur est prévu par lequel des signaux
d'attaque sont produits et appliqués aux moteurs à commande numérique (144, 84, 122)
en fonction d'une instruction programmée, comprenant des valeurs numérisées d'axes
de coordonnées, utilisant trois axes de coordonnées, pour plusieurs points successifs
choisis le long d'une partie marginale à traiter sur un dessous de chaussure, de manière
que pendant le fonctionnement de la machine, les parties marginales de ce dessous
de chaussure soient traitées progressivement.
5. Machine selon la revendication 4, caractérisée en ce que le dispositif support
d'outils (26) est associé avec une dispositif de détection (jauge de contraintes,
non représentée) par lequel la pression appliquée par l'outil (168) supporté sur le
dessous d'une chaussure traité puisse être détecté, et qui, en réponse à des variations
de cette pression, fournit des signaux de commande au dispositif de commande à calculateur
qui est ainsi amené à moduler les signaux d'attaque qu'il fournit audit troisième
moteur à commande numérique (122).
6. Machine selon l'une quelconque des revendications 4 et 5, dans laquelle le support
de chaussure (18) est monté pour un mouvement dans une direction longitudinale du
dessous de chaussure, et le dispositif support d'outil (26) est mobile pour effectuer
un mouvement des outils (168) qu'il supporte suivant la largeur et la hauteur du dessous
de chaussure, caractérisée en ce que ce mouvement suivant la largeur du dispositif
support d'outil (26) amène également les outils (168) en face d'un dispositif de meulage
(630) par lequel les surfaces d'attaque de chaque outil (168) peuvent être meulées,
le troisième moteur à commande numérique (122) ayant pour fonction de déplacer le
dispositif support d'outil (26) suivant la hauteur pour amener les outils (168) qu'il
supporte en engagement avec les meules (630) du dispositif de meulage, la disposition
étant telle que le dispositif support d'outil (26) est déplacé d'une première distance
(correspondant à la distance entre un plan de référence et les surfaces d'attaque
des meules (630) par le troisième moteur à commande numérique (122) et les outils
(168) sont déplacés par un autre moteur à commande numérique (tels que défini ici)
(186) d'une autre distant (assurant ainsi que le meulage de chaque outil (168) puisse
avoir lieu) et ensuite à nouveau au moyen dudit troisième moteur à commande numérique
(122), le dispositif support d'outil (26) est déplacé dans un sens opposé pour écarter
chaque outil (168) de sa meule associée (630) de ladite première distance.
7. Machine selon la revendication 6, caractérisée en ce que les meules (630) sont
mises en rotation avec une vitesse périphérique supérieure à celle des outils (168),
la disposition étant telle que les surfaces d'attaque de chaque outil (168) et sa
meule associée (630) se déplacent dans le même sens à la point de contact.
8. Machine selon l'une quelconque des revendications 4 à 7, dans laquelle chaque outil
(168) est maintenu avec le plan dans lequel se situe sa surface d'attaque, disposé
normalement à la partie du dessous de chaussure traité, quand ledit outil (168) fonctionne
le long de cette partie, caractérisée en ce que les outils (168) sont supportés par
le dispositif support d'outils (26) pour pouvoir pivoter autour d'un axe horizontal
(154) passant, par la région de contact avec le dessous de chaussure, un dispositif
(234) étant prévu pour effectuer ce mouvement pivotant, et comprenant un quatrième
moteur à commande numérique (tel qui défini ci-dessus) (232).
9. Machine selon l'une quelconque des revendications 4 à 8, caractérisée en ce que'elle
comporte deux supports de chaussure (18), disposés côté à côté, chaque support (18)
comportant un premier moteur à commande numérique (144) associé avec lui, et le second
moteur (84) à commande numérique ayant pour fonction de déplacer alternativement le
disposition support d'outils (26) en alignement avec chacun des supports de chaussure
de manière que des opérations successives de cardage puissent être effectuées alternativement
sur les dessous des chaussures qui sont supportées par ceux-ci.
1. Vorrichtung zum fortschreitenden Aufrauhen von Randbereichen der Schuhböden mit
einem Schuhträger (18), werkzeughaltemittel (26), Mittel (142) zum Bewirken einer
Relativbewegung, die in Längsrichtung des Bodens eines vom Schuhträger (18) getragenen
Schuhs gerichtet ist und die zwischen dem Schuhträger (18) und dem Werkzeug-Haltemittel
(26), zuerst in einer Richtung und dann in der entgegengesetzten Richtung erfolgt,
und Mittel (42, 48, 62-84), die betätigbar sind, wenn die vorher beschriebene, in
Längsrichtung erfolgende Relativbewegung stattfindet, zum Bewirken einer Relativbewegung
in Breitenrichtung des Bodens eines von dem Schuhträger (18) getragenen Schuhs zwischen
diesem Schuhträger (18) und dem Werkzeug-Haltemittel (26), wobei, beim Betrieb des
Maschine, ein fortschreitendes Aufrauhen von Ranbereichen eines solchen Schuhbodens
möglich ist, worin das Werkzeug-Haltemittel (26) zur Aufnahme von zwei Aufrauhwerkzeugen
(168) eingerichtet ist, um entlang den entgegengesetzten Randbereichen des Schuhs
zu arbeiten, wobei jedes Werkzeug (168) dazu gebracht wird, eine nach innen umschlagende
Bewegung an dem Randbereich auszuführen, an dem es eingesetzt ist, dadurch gekennzeichnet,
daß innerhalb eines Arbeitszyklusses der Maschine eines der Werkzeuge (168) eingesetzt
wird, um entlang des Randbereiches des Schuhbodens an einer seiner Seiten während
der in Längsrichtung gerichteten Bewegung in der besagten Bewegungsrichtung zur wirken,
und daß das andere der Werkzeuge (168) eingesetzt wird, um entlang des Randbereiches
dieses Schuhbodens an seiner entgegengesetzten Seite zu wirken, während die in Längsrichtung
gerichtete Relativbewegung in die entgegengesetzte Richtung erfolgt.
2. Vorrichtung gemäß Anspruch 1, dadurch gekennzeichnet, daß während ihrer Tätigkeit,
eines der Werkzeuge (168), das linkerhand angeordnet ist, eingesetzt wird, um entlang
des Randbereiches dieses Schuhbodens auf der rechten Seite zu arbeiten, während die
in Längsrichtung gerichtete Relativbewegung in der ersten Richtung erfolgt, und daß
eines der Werkzeuge (168), das an der rechten Seite angeordnet ist, eingesetzt wird,
um entlang des Randbereiches dieses Schuhbodens auf der linken Seite zu wirken, während
die in Längsrichtung gerichtete Relativbewegung in der entgegengesetzen Richtung erfolgt.
3. Vorrichtung gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß
das Werkzeug-Haltemittel (26) ein einzelnes Halteteil (30) aufweist, durch das beide
Aufrauhwerkzeuge (168) gehalten werden.
4. Vorrichtung gemäß einem der vorhergehenden Ansprüche, gekennzeichnet durch die
Anordnung eines ersten numerisch gesteuerten Motors (wie hier definiert) (144) zum
Bewirken einer in Längsrichtung des vom Schuhträger (18) getragenen Schuhbodens gerichtet
Relativbewegung zwischen diesem Schuhträger (18) und dem Werkzeug-Haltemittel (26),
eines zweiten numerisch gesteuerten Motors (wie hier definiert) (84) zum Bewirken
einer in Breitenrichtung dieses Schuhbodens erfolgenden Relativbewegung zwischen dem
Schuhträger (18) und dem Werkzeug-Haltemittel (26) und eines dritten numerisch gesteuerten
Motors (wie hier definiert) (122) zum Bewirken einer in Höhenrichtung eines solchen
Schuhbodens erfolgenden Relativbewegung, zwischen dem Schuhträger (18) und dem Werkzeug-Haltemittel
(26), und weiterhin dadurch gekennzeichnet, daß eine Computer-Kontrolleinrichtung
vorgesehen ist, durch welche Bewegungssignale erzeugt werden mit denen die numerisch
gesteuerten Motoren (144, 84, 122) versorgt werden, in Übereinstimmung mit einer Programm-Instruktion,
die digitalisierte Koordinatenachsen-Werte enthält, wobei drei Koordinatenachsen verwendet
werden, um eine Vielzahl von aufeinanderfolgenden, ausgewählten Punkten entlang des
Randbereiches auf einem Schuhboden zu bearbeiten, wobei während der Tätigkeit der
Maschine, Randbereiche eines derartigen Schuhbodens fortschreitend bearbeitet werden
können.
5. Vorrichtung gemäß Anspruch 4, dadurch gekennzeichnet, daß das Werkzeug-Haltemittel
(26) mit Fühlern (nicht dargestellte Dehnmeßstreifen) verbunden ist, durch welche
der Druck, der von dem dadurch gehaltenen Werkzeug (168) auf den Boden eines bearbeiteten
Schuhs ausgeübt wird, gemessen werden kann und welche, in Reaktion auf Veränderungen
dieses Druckes, wirksam werden, um Kontrollsignale zu der Computer-Kontrolleinrichtung
zu übermitteln, die dadurch veranlaßt werden, die Bewegungssignale mit denen der dritte
numerisch gesteuerte Motor (122) davon versorgt wird, zu ändern.
6. Vorrichtung gemäß einem der Ansprüche 4 oder 5, wobei der Schuhträger (18) für
eine sich in Längsrichtung des Schuhbodens erstreckende Bewegung montiert ist, und
das Werkzeug-Haltemittel (26) beweglich ist, um die Bewegung der Werkzeug (168) die
davon getragen werden sowohl in Breitenrichtung als auch in Höhenrichtung des Schuhbodens
zu bewirken, dadurch gekennzeichnet, daß eine solche in Breitenrichtung gerichtete
Bewegung des Werkzeug-Haltemittels (26) auch wirksam ist, um die Werkzeuge (168) in
eine gegenüberliegenden Stellung mit Schleifvorrichtungen (630) zu bringen, durch
die die Arbeitsoberfläche jedes Werkzeugs (168) geschliffen werden kann, wobei der
dritte numerisch gesteuerte Motor (122) wirksam ist, um das Werkzeug-Haltemittel (26)
in Höhenrichtung zu bewegen um die Werkzeuge (168) die dadurch gehalten werden, in
Arbeitseingriff mit den Schleifsteinen (630) der Schleifvorrichtungen zu bringen,
wobei die Anordnung so ist, daß das Werkzeug-Haltemittel (26) um eine erste Entfernung
(entsprechend der Entfernung zwischen einer Bezugsfläche und den Arbeitsoberflächen
der Schleifsteine (630)) bewegt wird, durch den dritten numerisch gesteuerten Motor
(122) und die Werkzeuge (168) durch einen weiteren numerisch gesteuerten Motor (wie
hier definiert) (186) bewegt werden, um eine weitere Entfernung (soweit um sicherzustellen,
daß das Schleifen jedes Werkzeuges (168) stattfinden kann), und daß danach, wieder-
um durch den genannten dritten numerisch gesteuerten Motor (122) das Werkzeug-Haltemittel
(26) in eine entgegengezetzte Richtung bewegt wird, um jedes Werkzeug (168) von seinem
zugehörigen Schleifstein (630) um die erste Entfernung wegzubewegen.
7. Vorrichtung gemäß Anspruch 6, dadurch gekennzeichnet, daß die Schleifsteine (630)
mit einer Umfangsgeschwindigkeit rotieren, die größer ist als die Umfangsgeschwindigkeit
der Werkzeuge (168), wobei die Anordnung so ist, daß die Arbeitsoberflächen von jedem
Werkzeug (168) und des dazugehörigen Schleifsteins (630) sich im dazwischenliegenden
Eingriffspunkt in die gleiche Richtung bewegen.
8. Vorrichtung gemäß einem der Ansprüche 4 bis 7, wobei jedes Werkzeug (168) in der
Ebene gehalten ist, in der seine Arbeitsoberfläche liegt, die senkrecht zu dem Teil
des Schuhbodens gerichtet ist, auf dem sie arbeitet, während dieses Werkzeug (168)
dort entlangarbeitet, dadurch gekennzeichnet, daß die Werkzeuge (168) von dem Werkzeug-Haltemittel
(26) gehalten sind, um eine Drehbewegung um eine horizontale Achse (154) auszuführen,
die durch das Gebiet ihres Zusammenwirkens mit dem Schuhboden geht, wobei Mittel (234)
angeordnet sind, die einen vierten numerisch gesteuerten Motor (wie hier definiert)
(232) enthalten, der angeordnet ist, um diese Drehbewegung zu bewirken.
9. Vorrichtung gemäß einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, daß zwei
Schuhträger (18) vorgesehen sind, die Seite an Seite angeordnet sind, wobei jeder
der Schuhträger (18) einen mit ihm verbundenen ersten numerisch gesteuerten Motor
(144) aufweist, und daß der zweite numerisch gesteuerte Motor (84) wirksam ist, um
das Werkzeug-Haltemittel (26) wechselseitig in eine Linie mit jedem dieser Schuhträger
(18) zu bewegen, wobei aufeinanderfolgend ein wechselseitiges Aufrauhen von jedem
davon getragenen Schuhboden durchgeführt werden kann.