| (19) |
 |
|
(11) |
EP 0 072 797 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
26.09.1984 Bulletin 1984/39 |
| (22) |
Date of filing: 18.02.1981 |
|
| (86) |
International application number: |
|
PCT/US8100/208 |
| (87) |
International publication number: |
|
WO 8202/940 (02.09.1982 Gazette 1982/21) |
|
| (54) |
HEAT EXCHANGER PLATE HAVING DISTORTION RESISTANT UNIFORM PLEATS
WÄRMAUSTAUSCHPLATTE MIT VERWINDUNGSSTEIFER, GLEICHMÄSSIGER WELLUNG
PLAQUE D'ECHANGEUR DE CHALEUR POSSEDANT DES PLIS UNIFORMES ET RESISTANT A LA DEFORMATION
|
| (84) |
Designated Contracting States: |
|
CH DE GB LI SE |
| (43) |
Date of publication of application: |
|
02.03.1983 Bulletin 1983/09 |
| (71) |
Applicant: CATERPILLAR TRACTOR CO. |
|
Peoria,
Illinois 61629 (US) |
|
| (72) |
Inventor: |
|
- VIDAL-MEZA, Gonzalo Dario
Peoria, IL 61614 (US)
|
| (74) |
Representative: Jackson, Peter Arthur et al |
|
GILL JENNINGS & EVERY
Broadgate House
7 Eldon Street London EC2M 7LH London EC2M 7LH (GB) |
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] This invention relates to a low cost, distortion resistant heat transfer plate for
use in a heat exchanger such as a gas turbine recuperator or other type of primary
surface heat exchanger. The invention also relates to a method for efficiently and
easily forming a heat exchanger plate out of ductile metal or other heat conductive
sheet material and to apparatus for forming an undulatory pattern of uniform pleats
in such sheet material to form a heat exchanger plate.
[0002] Rising energy costs have significantly increased the need for low cost, yet effective,
heat exchangers since virtually every type of fuel consuming engine, power plant or
industrial process gives off some recoverable heat capable of being converted to useful
work. The cost of such exchangers has, however, in the past discouraged widespread
use of heat exchangers in certain applications. One well known type of low cost heat
exchanger employs a plurality of stacked plates arranged to allow heat donative and
heat recipient fluids to flow in heat exchange relationship on opposite sides of each
plate. It has long been recognized that the efficiency of such primary surface heat
exchangers is a direct function of the total surface area of the stacked plates and
an inverse function of the wall thickness of the plates which separate the heat exchange
fluids.
[0003] One known kind of heat exchanger plate, hereinafter referred to as of the kind described,
includes undulatory pleats forming a set of donative fluid flow passages on one side
of the plate and a set of recipient fluid flow passages on the other side of the plate
interleaved with the donative fluid flow passages, each flow passage being bounded
on opposite sides by the side walls of a pleat and having a central axis extending
along a continuous curvilinear path between separate points on the plate perimeter.
An example of this type of corrugated heat exchanger plate is illustrated in US-A-3,759,323.
It is in order to prevent nesting of the plates when stacked, that the pleats are
given a wavy (or curvilinear) configuration. When thus constructed the pleat crests
of one plate form at least some points of contact with the crests of the adjacent
plates.
[0004] Attempts to increase the heat transfer efficiency of corrugated plates of the type
illustrated by US-A-3,759,323, by metal gauge reduction and increased plate density,
have not always met with success. The structural rigidity of the corrugation pleats
is decreased upon reduction in the gauge of metal forming the plate, and when such
weakening is combined with an increase in the density of pleats, the chances of a
flow passage becoming restricted or obstructed dramatically increases. In particular,
weak walled, high density pleats are subject to mechanical distortion during the process
of manufacture and are also subject to distortion and/or collapse from uneven temperature
induced expansions and contractions.
[0005] In US-A-3,892,119, it is noted that cost savings without reduced efficiency can be
realized in the manufacture of heat exchangers formed of plates such as illustrated
in UA-A-3,759,323 by increasing the height, and number of pleats in each plate to
permit reduction in the number of plates required for a given heat exchange capacity.
An increase in the height of each pleat, however, has further aggravated the problem
of undesired mechanical or temperature induced pleat wall distortions and has, up
to the present, placed a practical limit on the efficiency which can be achieved by
the use of primary surface heat exchangers employing pleated plates.
[0006] In accordance with a primary aspect of the invention, a heat exchanger plate of the
kind described is characterised in that the slope of each of the side walls of each
of the pleats is constant along the entire length of the flow passage, wherein the
slope is measured in a plane perpendicular to the central axis of the corresponding
flow passage.
[0007] This construction provides a low cost, structurally rigid heat exchanger plate which
overcomes the deficiencies of the prior art as described above. In particular, the
new heat exchanger plate is provided with an undulatory pattern of pleats the side
wall of each of which has a constant slope throughout the length of each fluid flow
passage. This iniformity in slope provides greater structural rigidity and over-all
uniformity to the heat exchanger plate. Moreover, restriction and/or obstruction of
fluid flow passages due to mechanical or temperature induced distortions in the walls
forming the fluid flow passages can be reduced by this arrangement without sacrificing
the efficiency and low cost manufacturing advantages of prior art pleated heat exchanger
plates.
[0008] Preferably, the slope of each of the side walls is equal to the slope of all the
other side walls; and, also preferably, the central axis defines a curvilinear path
having constant periodic function with a constant amplitude. In the latter case, each
side wall may be formed of a plurality of wavelength portions, each wavelength portion
including a first section which, as seen perpendicular to the general plane of the
plate, forms a first circular arc on one fluid passage side and a second circular
arc on the other fluid passage side with the first and second circular arcs having
a first coincident centre of curvature on one side of the side wall and wherein each
wavelength portion of the side wall includes a remaining section which forms a third
circular arc on the other fluid passage side and a fourth circular arc on the one
fluid passage side with the third and fourth circular arcs having a second coincident
centre of curvature on the side of the side wall which is opposite to the first coincident
centre of curvature.
[0009] The present invention also includes a method for forming a heat exchanger plate,
the method including the steps of (a) bending a sheet of ductile heat conductive material
to form an undulatory pleat containing a donative fluid flow passage bounded on opposed
sides by a pair of side walls formed from the sheet and having a central axis, perpendicular
to the general plane of the plate, extending along a continuous curvilinear path between
separate points on the sheet perimeter, (b) bending a portion of the sheet adjacent
the donative fluid flow passage to form a recipient fluid flow passage on an opposite
side of the sheet from the donative fluid flow passage with the recipient fluid flow
passage being bounded by a pair of side walls one of which is shared by the donative
fluid flow passage and having a central axis extending along a continuous curvilinear
path between separate points on the sheet perimeter, and (c) repeating steps (a) and
(b) to form a set of donative fluid flow passages on one side of the sheet and a set
of recipient fluid flow passages on the opposite side of the sheet, each flow passage
sharing a common side wall with the adjacent fluid flow passages characterised by
controlling bending steps and in a way to cause the slope of each side wall of each
flow passage to be constant along the entire length of the flow passage, wherein the
slope is measured in a plane perpendicular to the central axis of the corresponding
flow passage.
[0010] In accordance with a further aspect of the invention, a method of forming a heat
exchanger plate from a deformable sheet into narrowly grooved corrugations across
the sheet, comprises positioning a first forming blade of undulating serpentine profile
having a substantially uniform thickness along its length against one'side of the
sheet; and sequentially and repetitively moving second and third forming blades against
the other side of the sheet in a straddling manner with respect to the first blade,
each of the second and third forming blades having an undulating serpentine profile
and a variable thickness along its length sufficient to slope the side walls of the
corrugations substantially uniformly across the sheet.
[0011] The invention also includes apparatus for forming a heat exchanger plate including
pleat forming means for forming undulatory pleats in a sheet of ductile heat transfer
material, the pleat forming means including first passage forming means for forming
donative fluid flow passages on one side of the sheet with each donative fluid flow
passage being bounded on opposite sides by the side walls of a pleat and having a
central axis extending along a continuous curvilinear path between separate points
on the sheet perimeter and second passage forming means for forming recipient fluid
flow passages on the opposite side of the sheet with each recipient fluid flow passage
being bounded on opposite sides by the side walls of a pleat and having a central
axis extending along a continuous curvilinear path between separate points on the
sheet perimeter, characterised in that the first and second passage forming means
are shaped and positioned to cause the slope of each of the side walls of each of
the said pleats to be constant along the entire length of the flow passage, wherein
the slope is measured in a plane perpendicular to the central axis of the corresponding
fluid flow passage.
[0012] Preferably, the first passage forming means includes a first blade having an operative
portion with a configuration corresponding to the desired undulatory configuration
of each donative fluid flow passage and the second passage forming means including
a second blade having an operative portion with a configuration corresponding to the
desired undulatory configuration of each recipient fluid flow passage, one of the
blades having a cross-sectional thickness which varies along its length.
[0013] The invention will now be explained in more detail by reference to the accompanying
drawings, in which:-
Fig. 1 is an exploded perspective view of a plurality of heat exchanger plates;
Fig. 2 is a cross-sectional view of an apparatus for forming a heat exchanger plate;
Fig. 3 is a cross-sectional view of the apparatus illustrated in Fig. 2 wherein portions
of the apparatus have been moved to an open position in preparation for a pleat forming
operation;
Fig. 4 is a cut-away perspective view of a prior art pleating apparatus;
Fig. 5 is a cross-sectional view of the prior art pleating apparatus illustrated in
Fig. 4 as such apparatus would appear when moved to the position illustrated in Fig.
2, the cross-sectional view being taken along lines 5-5 of Fig. 2;
Fig. 6 is a partial cross-sectional view of the pleat forming apparatus of Fig. 5
as taken along lines 6-6;
Fig. 7 is a partial cross-sectional view of the pleat forming apparatus of Fig. 5
taken along lines 7-7;
Fig. 8 is an exploded, cutaway, perspective view of a pleat forming apparatus designed
in accordance with the subject invention;
Fig. 9 is a cross-sectional view of the pleat forming apparatus illustrated in Fig.
8 as such would appear when moved to the position illustrated in Fig. 2, the cross-sectional
view being taken along lines 5-5;
Fig. 10 is a partial cross-sectional view of the pleat forming apparatus of Fig. 9
as taken along lines 10-10; and
Fig. 11 is a partial cross-sectional view of the apparatus of Fig. 9 as taken along
lines 11-11.
[0014] Referring now to Fig. 1, a plurality of heat exchanger plates 2, 4, 6, 8 are illustrated
in exploded perspective view as such plates would be used to form a stacked plate
type heat exchanger, Heat exchangers of this general type are disclosed and discussed
more fully in US― A-3 759 323, the disclosure of which is incorporated herein by reference.
As explained more fully therein, each heat exchanger plate includes a plurality of
undulatory pleats 12 having a wavy pattern in plan view designed to prevent nesting
of the respective plates by causing the crowns or crests of each pleat to contact
the crowns of the pleats formed in an adjacent heat exchanger plate. The side walls
of each pleat subdivide the space between adjacent plates into a plurality of fluid
flow passages to increase the total surface area actually contacted by the heat transfer
fluids flowing between the heat exchanger plates.
[0015] As more fully explained in US-A-3 759 323 edge bars 14 are positioned at selected
peripheral positions between successive heat exchanger plates to direct the flow of
heat exchange fluids through the heat exchanger and prevent commingling of the fluids
while allowing heat transfer therebetween. Inlet sections 15 and outlet sections 16
are attached to opposed sides of each heat exchanger plate to assist in directing
the heat exchange fluids into the interplate spaces.
[0016] For purposes of this description, the term "donative fluid" will refer to fluids
capable of giving up heat energy within a heat exchanger and may include either gas
or liquid. The term "recipient fluid" will refer to any fluid, gas or liquid, which,
when introduced into a heat exchanger, is capable of receiving heat energy from the
donative fluid. In Fig. 1, heat exchanger plates 2 and 4 are designed to define a
recipient fluid flow chamber when the respective plates are positioned adjacent one
another. Within this recipient fluid flow chamber, a plurality of recipient fluid
flow passages 18 are defined by. adjacent side walls of the pleats 12 projecting into
the recipient fluid flow chamber from plates 2 and 4. Similarly, the space between
plates 4 and 6 is designed to form a donative fluid flow chamber with the area between
pleats 12 opening into the chamber forming a plurality of donative fluid flow passages
20. In the specific embodiment of Fig. 1 the edge bars 14 and inlet and outlet sections
15 and 16 are arranged to cause the donative fluid to flow along the C-shaped flow
path illustrated by arrow 22 within alternate spaced formed by the stacked plates
while the recipient fluid is caused to flow in a reverse C-pattern illustrated by
arrows 24 within the remaining alternate spaces.
[0017] To understand more fully the unique advantages of the subject invention, a previously
known pleated heat exchanger plate as disclosed in U.S. Patent No. 3,892,119 will
first be discussed. In this patent, a method and apparatus for forming substantially
flat, relatively thin deformable sheet metal into a pleated heat exchanger plate is
disclosed. According to the patent, progressive single fold forming steps are performed
on the sheet material as it advances between oscillating pleat forming blades mounted
on two pairs of opposed forming members. Since the exact purpose and sequential movement
of each of the four forming members is not critical to an understanding of the subject
invention, reference is made to US-A-3,892,119 for a more complete description of
the movement and purpose of each of the four forming members employed to form a pleated
heat exchanger plate of the type to which the subject invention is directed. For purposes
of this invention, it is sufficient to note that an upper donative fluid flow passage
forming blade is mounted for relative oscillatory movement with respect to a lower
recipient fluid flow passage forming blade. The blades are designed to move between
a first position in which the blades are separated to recieve an unpleated ductile
sheet material and a second position in which the ductile sheet material has been
deformed so as to form a pleat side wall in the clearance space between the respective
passage forming blades.
[0018] Fig. 2 is a schematic cross-sectional illustration of pleating apparatus in which
both the method and apparatus of the prior art as well as that of the present invention
may be employed. In particular, two pairs of relatively movable forming means 26,
28, 30 and 32 are illustrated. First forming means 26 and second forming means 28
each carry an identical donative fluid passage forming blade 34 and 36, respectively.
Third forming means 30 is positioned to cooperate with blade 34 in order to properly
position the incoming ductile sheet material 37 and to form one side wall 38 of each
pleat. Fourth forming means 32 supports a recipient fluid passage forming blade 40
adapted to enter the space between blades 34 and 36 as illustrated in Fig. 2, thereby
causing a second side wall 42 to be formed in the clearance space between blades 34
and 40 and a third side wall 44 to be formed in the clearance space between blades
40 and 36.
[0019] Fig. 3 illustrates the apparatus of Fig. 2 wherein first and second forming means
26 and 28 have been displaced upwardly to permit the ductile sheet material 37 to
be displaced by a distance equal to the wavelength of the pleat wave in plan view
in preparation for forming a successive pleat by forming means 26 through 32, all
as described in greater detail in US-A-3 892 119.
[0020] Turning now to Fig. 4, a perspective view of prior art fluid passage forming blades
of the type used in the apparatus of U.S. Patent No. 3,892,119 is shown including
a pair of donative fluid flow passage forming blades 34' and 36' and a recipient fluid
flow passage forming blades 40'. The prior art blades of Fig. 4 have uniform thicknesses.
When equipped with fluid passage forming blades of this type, the apparatus of Fig.
2 will form pleats in ductile sheet material 37 having side walls of irregular slope,
thus creating an unstable structure in which the side walls are easily distorted by
outside mechanical force or temperature induced contractions and expansions. To understand
this more fully, reference is made to Fig. 5 wherein a cross-sectional view taken
along lines 5-5 of the apparatus of Fig. 2 is illustrated as the apparatus would appear
if equipped with the prior art blades of Fig. 4. In particular, Fig. 5 illustrates
donative fluid passage forming blades 34' and 36' having a constant thickness d, and
a pair of curvilinear side walls each of which consists of alternating circular arcs
arranged in a path which defines a periodic function. The recipient fluid passage
forming blade 40' is also formed with a constant thickness d
2 and is provided with side walls which in cross section are each formed of successive
circular arcs which define a periodic function having the said phase and wavelength
as the periodic functions defined by the surfaces of blades 34' and 36'. As long as
the passage forming blades have a constant thickness, the clearance space between
the blades in plan view, regardless of the shape or configuration of the curvilinear
pattern formed by the blade surfaces, cannot be constant. Even if the surfaces of
each blade were formed by identical sine waves displaced laterally, the clearance
spacing between the blade surfaces would still vary when the clearance is measured
in a direction perpendicular to the central axis of the. clearance space. For purposes
of this application, the central axis between two curvilinear lines will be defined
as the loci of all points located midway between the two curvilinear lines as measured
along a line normal to one of the curvilinear lines at each point along such line.
Obviously, this definition presupposes the absence of any discontinuities in the two
curvilinear lines in order for there to be a continuous central axis.
[0021] When the height of the pleats is constant and the clearance between blade surfaces
is variable, it is obvious that the slope of the side walls of the pleats must be
variable as measured in a plane perpendicular to the central axis of the clearance
in plan view. Such variation in side wall slope greatly affects the lateral stiffness
of the pleats and causes them to close up in some areas, thus restricting the total
flow area of a heat exchanger formed with pleated heat exchanger plates. To understand
this more clearly, it should be noted that the total effective cross-sectional area
for the flow of gaseous donative fluid is normally made larger than the effective
cross-sectional area of the flow of recipient fluid since the higher temperature donative
fluid will normally be available in larger volume in the heat exchange process. Thus,
given the requirement that the number of donative fluid passages and recipient fluid
passages must be equal, it follows that each donative fluid flow passage must be larger
in cross-sectional area than is each of the recipient fluid flow passages. As illustrated
in Fig. 5, each wavelength portion W of blade 40' is constructed in a first section
with side walls which sweep out circular arcs having radii r
1 and r
2 with both arcs having a coincident center of curvature C
1. The remaining portion of the wavelength section of blade 40' is similarly formed
to provide blade surfaces having radii of curvature r/ and r
2' with a coincident center of curvature C
2 located on the opposite side of the blade. If the blade is made symmetrically so
that r
1=r
1' and r
2=r
2', each wavelength portion of donative fluid forming passage blades 34' and 36' similarly
includes surfaces which define circular arcs having radii of curvature R
1 and R
2 with a coincident center of curvature C
3. A second section of each wavelength portion of blades 34' and 36' has corresponding
radii of curvature R/, and R
2' with a coincident center of curvature C
4 located on an opposite side of blades 34' and 36' from center of curvature C
3. Since these blades are normally made to be symmetrical, R1=R/ and R
2=R
2'.
[0022] Since the wave patterns defined by the blades are symmetrical, the centers of curvature
of the blade surfaces are also symmetrical and are displaced by an amount equal to
the double amplitude H of each wave plus r
2―r
1. This relationship facilitates the construction and reproduction of the heat exchanger
plate. As can be understood by reference to Fig. 5, the clearance between the blades
varies from a maximum of M to a minimum of m. The minimum clearance m is normally
made only slightly larger than the thickness of the plate material plus a small amount
allowed for ease of withdrawing the blades of the pleating apparatus. This arrangement
allows the greatest number of pleats per unit length of plate as possible.
[0023] When spaced in this manner, the slope of the side walls formed in the areas of minimum
clearance m between the respective passage forming blades will have a substantially
vertical slope. Side walls formed in this manner have very little lateral rigidity
which causes shifting of the pleating and uncontrolled obstruction of the fluid flow
passages. Some shifting of the side walls forming the donative fluid flow passages
may be tolerated since these passages have a substantial larger cross-sectional area.
However, a shift in the side walls forming each of the recipient fluid flow passages
can be highly detrimental due to their smaller cross-sectional area.
[0024] The disadvantages of varying side wall slope are illustrated more graphically in
Fig. 6 which is a partial cross-sectional view taken along lines 6-6 of Fig. 5 located
at a point of minimum clearance between respective pleat forming blades. In particular,
lines 6-6 indicate a cross-section taken along a plane perpendicular to the central
axis of blade 34' and thus lines
S1 in Fig. 6 are representative of the slope of both side walls 38 and 42. As is apparent,
the slope of these side walls is virtually perpendicular to the plan surface of the
heat exchanger plate being pleated.
[0025] Contrasting with the configuration of Fig. 6 is the cross-sectional view of Fig.
7 of a portion of a heat exchanger plate being formed by the assembly illustrated
in Fig. 5 as taken along line 7-7. In particular, note the slope of side wall 38 as
represented by line s
2 and yet another slope angle represented by line s
3 of side wall 42. As can now be readily appreciated this varying slope of the pleat
side walls 38 and 42 along the longitudinal extent of each pleat formed by the assembly
of Fig. 5 results from variation in the clearance between the blade surfaces.
[0026] Reference is now made to Fig. 8, wherein a perspective view is shown of the heat
exchanger plate forming apparatus of the subject invention. As clearly illustrated
in Fig. 8, donative fluid flow passage forming blades 34" and 36" have been substituted
for the corresponding blades of the prior art illustrated in Fig. 4. As is apparent
by a comparison of Figs. 4 and 8, blades 34" and 36" have a non-uniform cross-sectional
configuration. To understand the precise function of the modified blades 34" and 36",
reference is made to Fig. 9, which is a cross-sectional view of the apparatus illustrated
in Fig. 8 when positioned by the forming assembly, illustrated in Fig. 2 taken along
lines 5-5.
[0027] Referring now particularly to Fig. 9, the donative fluid passage forming blades 34"
and 36" are shown as having a substantial blade thickness variation along the longitudinal
extent of each blade from a minimum of P
i to a maximum of P 21 In contrast to this, the recipient fluid passage forming blade
40" is provided with a uniform thickness as measured in the direction of a plane passing
perpendicularly through the central axis of the blade in plan view along the entire
longitudinal length of the central axis. Variations in the width of the donative fluid
flow passages are significanly more acceptable in view of the substantial width of
such passages as compared with the narrower cross-sectional width of the recipient
fluid flow passages. Any variation in the cross-sectional width of such recipient
fluid flow passages could obviously be more detrimental to the efficient operation
of a heat exchanger formed from pleated plates than would variations in the cross-sectional
area of a donative flow passage. More significantly, however, is the fact that a uniform
clearance space between the surfaces of blade 40" and each of the blades 34" and 36"
results in the formation of pleat side walls having a constant uniform slope as measured
in a plane passing perpendicularly through the central axis of each flow passage.
[0028] Achieving both uniform cross section in each recipient flow passage and uniform slope
in the orientation of the side walls of all pleats having a curvilinear plan view
configuration requires very careful design of the respective blades 34", 36" and 40".
Reference is now made to a wavelength W section of each of the blades 34", 36" and
40" wherein the general case required for forming a recipient flow passage or uniform
cross-sectional area combined with pleat side walls having a constant slope throughout
the heat exchanger plate is illustrated. In particular, the wavelength portion W of
blades 34", 36" and 40" spanning between the lines marked w
1 and
W2 can each be divided into a first arcuate section wherein the radii of curvature of
the respective side walls of blade 40" are indicated by S
1 and S
2' respectively. The adjacent surfaces of blades 34" and 36" facing the corresponding
surfaces of blades 40" are shown by arrows indicated at S
3 and S
4, respectively.
[0029] As illustrated in Fig. 9, the center of curvature of each of the circular arcs identified
by arrows S
1 through S
4 are coincident at point SC. Similarly, the remaining side surfaces of each of the
blades 34", 36" and 40" form in plan view circular arcs touched by arrows Y
1, Y
2, Y
3 and Y
4 having a coincident center of curvature YC located on a side of blade 40" opposite
to center of curvature SC. The circular arcs touched by arrows Y
1 and S
1 complete a full wavelength of one side of blade 40". Similarly, arrows Y
2 and S
2 complete a wavelength of the opposite side of blade 40". A full wavelength of the
surface of blade 34" adjacent blade 40" is formed by circular arcs touched by arrows
Y
4 and S
4. Finally, a full wave length of the side of blade 36" adjacent blade 40" is formed
by the circular arcs touched by arrows Y
3 and S
3. By this arrangement, the clearance space between blades 34", 36" and 40" is uniform.
It is not, however, necessary for the first and second circular arcs of each blade
surface to have equal radii since the waves need not be symmetrical when viewed from
opposite sides of the heat exchanger plate. Moreover, the wavelength W along the longitudinal
extent of each blade need not be identical nor is it necessary for the amplitude of
successive wavelength portions W of each of the blades to be equal. By merely maintaining
coincidence of the center of curvature of each of the circular arcs touched by arrows
identified by S
1―S
4 and similarly maintaining the coincidence of the center of curvature of each of the
circular arcs touched by the arrows Y,-Y
4, the cross-sectional area of the recipient fluid flow passages formed by blade 40"
will remain constant throughout their longitudinal length. At the same time the slope
of all of the side walls forming the pleats within the heat exchanger plate will remain
uniformly constant and equal throughout the full longitudinal extent of each pleat.
The side walls 42 and 44 similarly include wavelength sections W having concentric
circular arc sections having radii of curvature corresponding to the radii S
1 through S
4 and Y
1 through Y
4. Each such radius is less or greater than the corresponding radius by an amount equal
to the spacing of the blade surface from the corresponding side wall surface.
[0030] Turning now to Fig. 10, a partial cross-sectional view of blades 34", 36" and 40"
is illustrated as taken along lines 10-10 of Fig. 9 wherein the slopes of side walls
38, 42 and 44 are illustrated by lines 46, 48 and 50. As can be seen in Fig. 10, lines
46, 48 and 50 form an equal angle relative to a plane formed by the outer plane surfaces
of the pleated heat exchanger plate.
[0031] Fig. 11 similarly discloses a partial cross-sectional view of blades 34", 36" and
40" taken along lines 11-11 of Fig. 9. Note that the cross-sectional view of Fig.
11 has been taken at a point of maximum width of blade 34" as compared with the position
of the cross-sectional view illustrated in Fig. 10 wherein the thickness of blade
34" is at a minimum. Despite this variation in the cross section width of blade 34",
the slopes of side walls 38, 42 and 44 as represented by lines 52, 54 and 56 are identical
to the slopes of the corresponding lines 46, 48 and 50 of Fig. 9.
[0032] It should now be amply apparent that the method and apparatus of forming a pleated
heat exchanger plate as illustrated in Figs. 8-11, is capable of providing a heat
exchanger plate wherein the recipient fluid flow passages include uniform and constant
cross-sectional areas while the slope of the side walls of the pleats forming the
respective fluid flow passages is constant throughout the entire longitudinal extent
of each fluid flow passage. By this arrangement, a highly efficient, compact and rigid
heat exchanger can be formed by stacking plural pleated heat exchanger plates of the
type formed by the apparatus and method illustrated in Figs. 2, 8 and 9.
Industrial applicability
[0033] Heat exchangers formed by the method and apparatus disclosed herein, as well as the
heat exchanger plates designed in accordance with this invention, can be employed
in a vast number of applications wherein the transfer of heat from one fluid to a
second fluid is desired. For example, the exhaust gases from a gas turbine may form
the donative fluid for heating the compressed intake air leading to the combustor
and then to the turbine whereby the intake air becomes the recipient fluid referred
to above. Alternatively, a heat exchanger formed in accordance with the subject invention
and including the pleated plates described above can be used in the boiler of a steam
generation device wherein hot gases from fuel combustion forms the donative fluid
while the recipient fluid is the return water or make-up water from which steam is
to be generated in the heat exchanger. Still other applications include the use of
a heat exchanger formed in accordance with the subject invention wherein the recipient
fluid is the cooling water of an internal combustion engine and the donative fluid
is the hot oil. Additional applications include the use of heat exchangers of the
subject type employed in heat treatment furnaces and other industrial applications
wherein it is desired to transfer heat from one fluid to another.
[0034] Other aspects, objects and advantages of this invention can be obtained from a study
of the drawings, the disclosure and the appended claims.
1. A heat exchanger plate (2, 4, 6, 8) for forming a barrier between donative and
recipient fluids flowing through a heat exchanger and for forming fluid flow passages
(18, 20) arranged to cause heat transfer through the plate from the donative fluid
to the recipient fluid, the plate (2, 4, 6, 8) including undulatory pleats (12) forming
a set of donative fluid flow passages (20) on one side of the plate and a set of recipient
fluid flow passages (18) on the other side of the plate interleaved with the donative
fluid flow passages (20), each flow passage (18, 20) being bounded on opposite sides
by the side walls (38, 42, 44) of a pleat (12) and having a central axis extending
along a continuous curvilinear path between separate points on the plate perimeter,
characterised in that the slope of each of the side walls (38, 42, 44) of each of
the pleats (12) is constant along the entire length of the flow passage (18, 20),
wherein the slope is measured in a plane perpendicular to the central axis of the
corresponding flow passage (18,20).
2. A heat exchange plate (2, 4, 6, 8) as defined in claim 1, wherein the slope of
each of the side walls (38, 42, 44) is equal to the slope of all the other side walls
(38, 42, 44).
3. A heat exchange plate (2, 4, 6, 8) as defined in claim 1 or claim 2, wherein the
central axis defines a curvilinear path having constant periodic function with a constant
amplitude.
4. A heat exchange plate (2, 4, 6, 8) as defined in claim 3, wherein each side wall
(38, 42, 44) is formed of a plurality of wavelength portions (W), each wavelength
portion including a first section which, as seen perpendicular to the general plane
of the plate, forms a first circular arc (Y,) on one fluid passage side and a second
circular arc (Y 2) on the other fluid passage side with the first and second circular
arcs having a first coincident centre of curvature (YC) on one side of the side wall
(38, 42, 44) and wherein each wavelength portion (W) of the side wall (38, 42, 44)
includes a remaining section which forms a third circular arc (S2) on the other fluid passage side and a fourth circular arc (S,) on the one fluid
passage side with the third and fourth circular arcs having a second coincident centre
of curvature (SC) on the side of the side wall which is opposite to the first coincident
centre of curvature.
5. A method for forming a heat exchanger plate (2, 4, 6, 8) for use as a barrier between
donative and recipient fluids flowing through a heat exchanger and for forming fluid
flow passages (18, 20) within the plate (2, 4, 6, 8) arranged to cause heat transfer
through the plate (2, 4, 6, 8) from the donative fluid to the recipient fluid, the
method including the steps of (a) bending a sheet (37) of ductile heat conductive
material to form an undulatory pleat (12) containing a donative fluid flow passage
(20) bounded on opposed sides by a pair of side walls (38, 42, 44) formed from the
sheet (37) and having a central axis, perpendicular to the general plane of the plate,
extending along a continuous curvilinear path between separate points on the sheet
perimeter, (b) bending a portion of the sheet (37) adjacent the donative fluid flow
passage (20) to form a recipient fluid flow passage (18) on an opposite side of the
sheet (37) from the donative fluid flow passage (20) with the recipient fluid flow
passage (18) being bonded by a pair of side walls (38, 42, 44) one of which is shared
by the donative fluid flow passage and having a central axis extending along a continuous
curvilinear path between separate points on the sheet perimeter, and (c) repeating
steps (a) and (b) to form a set of donative fluid flow passages (20) on one side of
the sheet (37) and a set of recipient fluid flow passages (18) on the opposite side
of the sheet (37), each flow passage (18, 20) sharing a common side wall (38, 42,
44) with the adjacent fluid flow passages (18, 20) characterised by controlling bending
steps (a) and (b) in a way to cause the slope of each side wall (38,42,44) of each
flow passage (18, 20) to be constant along the entire length of the flow passage (18,
20), wherein the slope is measured in a plane perpendicular to the central axis of
the corresponding flow passage (18, 20).
6. A method of forming a heat exchanger plate (2, 4, 6, 8) as defined in claim 5,
wherein steps (a) and (b) include the step of bending the sheet (37) such that the
slope of each of the side walls (38, 42, 44) is equal to the slope of all the other
side walls (38, 42, 44).
7. A method of forming a heat exchanger plate (2, 4, 6, 8) from a deformable sheet
(37) into narrowly grooved corrugations across the sheet as defined in claim 5 or
6, the method comprising: positioning a first forming blade (40") of undulating serpentine
profile having a substantially uniform thickness along its length against one side
of the sheet (37); and sequentially and repetitively moving second and third forming
blades (34", 36") against the other side of the sheet (37) in a straddling manner
with respect to the first blade (40"), each of the second and third forming blades
(34", 36") having an undulating serpentine profile and a variable thickness along
its length sufficient to slope the side walls (38, 42, 44) of the corrugations substantially
uniformly across the sheet (37).
8. Apparatus for forming a heat exchanger plate (2, 4, 6, 8) including pleat forming
means (26, 28, 30, 32, 34", 36", 40") for forming undulatory pleats (12) in a sheet
(37) of ductile heat transfer material, the pleat forming means (26, 28, 30, 32, 34",
36", 40") including first passage forming means (26, 28, 34", 36") for forming donative
fluid flow passages (20) on one side of the sheet (37) with each donative fluid flow
passage (20) being bounded on opposite sides by the side walls (38, 42, 44) of a pleat
(12) and having a central axis extending along a continuous curvilinear path between
separate points on the sheet perimeter and second passage forming means (30, 32, 40")
for forming recipient fluid flow passages (18) on the opposite side of the sheet (37)
with each recipient fluid flow passage (18) being bounded on opposite sides by the
side walls (38, 42, 44) of a pleat (12) and having a central axis extending along
a continuous curvilinear path between separate points on the sheet perimeter, characterised
in that the first and second passage forming means (26, 28, 30, 32, 34", 36", 40")
are shaped and positioned to cause the slope of each of the side walls (38, 42, 44)
of each of the said pleats (12) to be constant along the entire length of the flow
passage (18, 20), wherein the slope is measured in a plane perpendicular to the central
axis of the corresponding fluid flow passage (18, 20).
9. Apparatus as defined in claim 8, wherein the first passage forming means (26, 28,
34", 36") includes a first blade (34", 36") having an operative portion with a configuration
corresponding to the desired undulatory configuration of each donative fluid flow
passage (20) and the second passage forming means (30, 32, 40") including a second
blade (40") having an operative portion with a configuration corresponding to the
desired undulatory configuration of each recipient fluid flow passage (18), one of
the blades (34", 36", 40") having a cross-sectional thickness which varies along its
length.
10. Apparatus as defined in claim 9, wherein said second blade (40") has a uniform
cross-sectional thickness.
1. Plaque d'échangeur de chaleur (2, 4, 6, 8) pour former une barrière entre un fluide
donneur et un fluide récepteur s'écoulant l'un et l'autre dans un échangeur de chaleur
et pour former des conduits d'écoulement du fluide (18, 20) disposés pour provoquer
un transfert de chaleur au travers de la plaque depuis le fluide donneur au fluide
récepteur, la plaque (2, 4, 6, 8) comportant des plis ondulés (12) formant un ensemble
de conduits d'écoulement (20) du fluide donneur sur l'une des faces de la plaque,
et un ensemble de conduits d'écoulement (18) du fluide récepteur sur l'autre face
de la plaque, alternant avec les conduits d'écoulement (20) du fluide donneur, chacun
des conduits (18,20) étant limité sur ses extrémités opposées par les parois latérales
(38, 42, 44) d'un pli (12) et comportant un axe central s'étendant le long d'un trajet
curviligne continu entre des points séparés du périmètre de la plaque, caractérisée
en ce que la pente de chacune des parois latérales (38, 42, 44) de chacun des plis
(12) est constante sur toute la longueur du conduit d'écoulement (18, 20), la pente
étant mesurée dans un plan perpendiculaire à l'axe central du conduit d'écoulement
(18, 20) corespondant.
2. Plaque d'échangeur de chaleur (2, 4, 6, 8) selon la revendication 1, dans lequelle
la pente de chacune des parois latérales (38, 42, 44) est égale à la pente de toutes
les autres parois latérales (38, 42, 44).
3. Plaque d'échangeur de chaleur (2, 4, 6, 8) selon la revendication 1 ou la revendication
2, dans laquelle l'axe central définit un trajet curviligne ayant une fonction périodique
constante d'amplitude constante.
4. Plaque d'échangeur de chaleur (2, 4, 6, 8) selon la revendication 3, dans laquelle
chacune des parois latérales (38, 42, 44) est formée de plusieurs parties égales chacune
à une longueur d'onde (W), chaque partie égale à une longueur d'onde (W) comprenant
une première partie qui, vue perpendiculairement au plan général de la plaque, forme
un premier arc de cercle (Y1) sur l'une des faces de conduit d'écoulement du fluide,
et un second arc de cercle (Y2) sur l'autre face de conduit d'écoulement du fluide,
le premier et le second arcs de cercle ayant un premier centre de courbure coïncident
(YC) sur l'une des faces de la paroi latérale (38, 42, 44), et dans laquelle chacune
des parties égale à une longueur d'onde (W) de la paroi latérale (38, 42, 44) comporte
une partie restante qui forme un troisième arc de cercle (S2) sur l'autre face de
conduit d'écoulement du fluide et un quatrième arc de cercle (S1) sur la première
face de conduit d'écoulement du fluide, le troisième et le quatrième arcs de cercle
ayant un second centre de courbure coïncident (SC) sur la face de la paroi latérale
qui est opposée au premier centre de courbure coïncident.
5. Procédé pour former une plaque d'échangeur de chaleur (2, 4, 6, 8) destinée à être
utilisée comme barrière entre un fluide donneur et un fluide récepteur s'écoulant
l'un et l'autre dans un échangeur de chaleur, et pour former des conduits d'écoulement
(18, 20) d'un fluide dans la plaque (2, 4, 6, 8) disposés pour provoquer un transfert
de chaleur au travers de la plaque (2, 4, 6, 8) depuis le fluide donneur au fluide
récepteur, ce procédé comportant les étapes consistant à:
(a) courber une feuille (37) d'un matériau ductile conducteur de la chaleur pour former
un pli ondulé (12) contenant un conduit d'écoulement (20) d'un fluide donneur limité
à ses extrémités opposées par deux parois latérales (38, 42, 44) formées par la feuille
(37) et comportant un axe central perpendiculaire au plan général de la plaque, et
s'étendant le long d'un trajet curviligne continu entre des points séparés sur le
périmètre de la feuille;
(b) courber une partie de la feuille (37) adjacente au conduit d'écoulement (20) du
fluide donneur pour former un conduit d'écoulement (18) du fluide récepteur sur une
face de la feuille (37) opposée au conduit d'écoulement (20) du fluide donneur, le
conduit d'écoulement (18) du fluide récepteur étant limité par deux parois latérales
(38, 42, 44) dont l'une est partagée par le conduit d'écoulement du fluide donneur
et ayant un axe central s'étendant le long d'un trajet curviligne continu entre des
points séparés sur le périmètre de la feuille; et
(c) répéter les étapes (a) et (b) pour former un ensemble de conduits d'écoulement
(20) du fluide donneur sur l'une des faces de la feuille (37) et un ensemble de conduits
d'écoulement (18) du fluide récepteur sur la face opposée de la feuille (37), chacun
des conduits d'écoulement (18, 20) partageant une paroi latérale commune (38, 42,
44) avec les conduits d'écoulement (18, 20) qui lui sont adjacents, caractérisé par
un contrôle des étapes de courbage (a) et (b) de manière à faire que la pente de chacune
des parois latérales (38, 42, 44) de chacun des conduits d'écoulement (18, 20) soit
constante sur toute la longueur des conduits d'écoulement ( 18,20), la pente étant
mesurée dans un plan perpendiculaire à l'axe central du conduit d'écoulement (18,
20) correspondant.
6. Procédé pour former une plaque d'échangeur de chaleur (2, 4, 6, 8) selon la revendication
5, dans lequel les étapes (a) et (b) comportent l'étape consistant à courber la feuille
(37) de manière à ce que la pente de chacune des parois latérales (38, 42, 44) soit
égale à la pente de toutes les autres parois latérales (38, 42, 44).
7. Procédé pour former une plaque d'échangeur de chaleur (2, 4, 6, 8) à partir d'une
feuille déformable (37) en ondulations étroitement creusées en travers de la feuille,
selon la revendication 5 ou 6, ce procédé comportant les étapes consistant à:
- disposer contre l'une des faces de la feuille (37) une première lame de formage
(40") de profil ondulant ayant une épaisseur sensiblement uniforme le long de sa longueur;
et
-déplacer successivement et répétitivement une seconde et une troisième lames de formage
(34", 36") contre l'autre face de la feuille (37) d'une manière chevauchante par rapport
à la première lame (40"), chacune des seconde et troisième lames de formage (34",
36") ayant un profil ondulant et une épaisseur variable le long de sa longueur et
suffisante pour incliner les parois latérales (38, 42, 44) des ondulations de façon
sensiblement uniforme en travers de la feuille (37).
8. Appareil pour former une plaque d'échangeur de chaleur (2, 4, 6, 8) comportant
des moyens de formage (26, 28, 30, 32, 34", 36", 40"), des plis pour former des plis
ondulés (12) dans une feuille (37) d'un matériau ductile conducteur de la chaleur,
les moyens de formage (26, 28, 30, 32, 34", 36", 40") des plis comportant un premier
moyen de formage (26, 28, 34", 36") des conduits pour former des conduits d'écoulement
(20) du fluide donneur sur l'une des faces de la feuille (37), chacun des conduits
d'écoulement (20) du fluide donneur étant limité à ses extrémités opposées par les
parois latérales (38, 42, 44) d'un pli (12) et comportant un axe central s'étendant
le long d'un trajet curviligne continu entre des points séparés sur le périmètre de
la feuille, et un second moyen de formage (30, 32, 40") des conduits, pour former
les conduits d'écoulement (18) du fluide récepteur sur la face opposée de la feuille
(37), chacun des conduits d'écoulement (18) du fluide récepteur étant limité à ses
extrémités par les parois latérales (38, 42, 44) d'un pli (12) et ayant un axe central
s'étendant le long d'un trajet curviligne continu entre des points séparés sur le
périmètre de la feuille, caractérisé en ce que les premiers et seconds moyens de formage
(26, 28, 30, 32, 34", 36", 40") des conduits ont une forme et une disposition propres
à faire que la pente de chacune des parois latérales (38, 42, 44) de chacun desdits
plis (12) soit constante sur toute la longueur du conduit d'écoulement (18, 20), cette
pente étant mesurée dans un plan perpendiculaire à l'axe central du conduit d'écoulement
(18, 20) correspondant.
9. Appareil selon la revendication 8, dans lequel le premier moyen de formage (26,
28, 34", 36") des conduits comprend une première lame (34", 36") ayant une partie
active dont la configuration correspond à la configuration ondulée désirée pour chacun
des conduits d'écoulement (20) du fluide donneur et dans lequel le second moyen de
formage (30, 32, 40") des conduits comporte une seconde lame (40") ayant une partie
active dont la configuration correspond à la configuration ondulée désirée pour chacun
des conduits d'écoulement (18) du fluide récepteur, l'une des lames (34", 36", 40")
ayant une épaisseur en coupe transversale qui varie le long de son longueur.
10. Appareil selon la revendication 9, dans lequel ladite seconde lame (40") possède
une épaisseur uniforme en coupe transversale.
1. Wärmeaustauscherplatte (2, 4, 6, 8) zur Bildung einer Sperre zwischen abgebenden
und aufnehmenden durch einen Wärmeaustauscher fließenden Strömungsmittel und zur Bildung
von Strömungsmittelströmungsdurchlässen (18, 20), die derart angeordnet sind, daß
eine Wärmeübertragung durch die Platte von dem abgebenden Strömungsmittel zum aufnehmenden
Strömungsmittel bewirkt wird, wobei die Platte (2, 4, 6, 8) gewellte Faltungen (12)
aufweist, die auf einer Seite der Platte einen Satz von Strömungsdurchlässen (20)
für das abgebende Strömungsmittel aufweist, und einen Satz von Strömungsdurchlässen
(18) für das Aufnahmeströmungsmittel auf der anderen Seite der Platte, und zwar ineinandergreifend
mit den Strömungsdurchlässen (20) für das abgebende Strömungsmittel, wobei jeder Strömungsdurchlaß
(18, 20) auf entgegengesetzten Seiten durch die Seitenwände (38, 42, 44) einer Faltung
(12) begrenzt ist und eine Mittelachse aufweist, die sich längs eines kontinuierlichen
gekrümmten Pfades zwischen gesonderten Punkten auf dem Plattenumfang erstreckt, dadurch
gekennzeichnet, daß die Neigung jeder der Seitenwände (38, 42, 44) jeder der Faltungen
(12) konstant längs der gesamten Länge des Strömungsdurchlasses (18, 20) ist, wobei
die Neigung in einer Ebene gemessen wird, die senkrecht zur Mittelachse des entsprechenden
Strömungsdurchlasses (18, 20) verläuft.
2. Wärmeaustauscherplatte (2, 4, 6, 8) nach Anspruch 1, wobei die Neigung jeder der
Seitenwände (38, 42, 44) gleich der Neigung sämtlicher anderen Seitenwände (38, 42,
44) ist.
3. Wärmeaustauscherplatte (2, 4, 6, 8) nach Anspruch 1 oder 2, dadurch gekennzeichnet,
daß die Mittelachse eine gekrümmte Bahn definiert mit einer konstanten periodischen
Funktion mit einer konstanten Amplitude.
4. Wärmeaustauscherplatte (2, 4, 6, 8) nach Anspruch 3, wobei jede Seitenwand (38,
42, 44) aus einer Vielzahl von Wellenlängenteilen (W) ausgebildet ist, wobei jeder
Wellenlängenteil einen ersten Abschnitt aufweist, der-gesehen senkrecht zur allgemeinen
Ebene der Platte-einen ersten kreisförmigen Bogen (Y,) auf einer Strömungsmitteldurchlaßseite
und einen zweiten kreisförmigen Bogen (Y2) auf der anderen Strömungsmitteldurchlaßseite bildet, wobei die ersten und zweiten
kreisförmigen Bogen ein erstes zusammenfallendes Krümmungszentrum (YC) auf einer Seite
der Seitenwand (38, 42, 44) aufweisen, wobei jeder Wellenlängenteil (W) der Seitenwand
(38, 42, 44) einen verbleibenden Abschnitt aufweist, der einen dritten kreisförmigen
Bogen (S2) auf der anderen Strömungsmitteldurchlaßseite und einen vierten kreisförmigen Bogen
(S1) auf der einen Strömungsmitteldurchlaßseite bildet, wobei die dritten und vierten
kreisförmigen Bogen ein zweites zusammenfallendes Krummungszentrum (SC) auf der Seite
der Seitenwand aufweisen, die entgegengesetzt zum ersten zusammenfallenden Krümmungszentrum
liegt.
5. Verfahren zur Ausbildung einer Wärmeaustauscherplatte (2, 4, 6, 8) zur Verwendung
als eine Sperre zwischen abgebenden und aufnehmenden Strömungsmitteln, die durch einen
Wärmeaustauscher fließen und unter Bildung von Strömungsmittel-Flußdurchlässen (18,
20) innerhalb der Platte (2, 4, 6, 8) derart angeordnet, daß eine Wärmeübertragung
durch die Platte (2, 4, 6, 8) bewirkt wird, und zwar von dem abgebenden Strömungsmittel
zum aufnehmenden Strömungsmittel, wobei das Verfahren folgende Schritte vorsieht:
(a) Biegen eines Flächenelements (37) aus einem ziehfähigen wärmeleitenden Material
zur Bildung einer wellenförmigen Faltung (12), die einen Strömungsdurchlaß (20) für
abgebendes Strömungsmittel enthält, und zwar begrenzt an entgegengesetzt liegenden
Seiten durch ein Paar von Seitenwänden (38, 42, 44), die gebildet werden von dem Flächenelement
(37) und die eine Mittelachse aufweisen, und zwar senkrecht zur allgemeinen Ebene
der Platte, und zwar sich längs eines kontinuierlichen gekrümmten Pfades zwischen
gesonderten Punktten auf dem Flächenelementumfang erstreckend,
(b) Biegen eines Teils des Flächenelements (37) benachbart des Stromungsdurchlasses
(20) für das abgebende Strömungsmittel zur Bildung eines Strömungsdurchlasses (18)
für das Aufnahmeströmungsmittel auf einer entgegengesetzten Seite des Flächenelements
(37) gegenüber dem Strömungsmitteldurchlaß (20) für das abgebende Strömungsmittel,
wobei der Strömungsmitteldurchlaß (18) für das aufnehmende Strömungsmittel begrenzt
ist durch ein Paar von Seitenwänden (38, 42, 44), deren eine geteilt wird mit dem
Strömungsdurchlaß für das abgebende Strömungsmittel und mit einer Mittelachse, die
sich längs eines kontinuierlichen gekrümmten Pfades zwischen gesonderten Punkten auf
dem Flächenelementumfang erstreckt, und
(c) Wiederholung der Schritte (a) und (b) zur Bildung eines Satzes von Strömungsmitteldurchlässen
(20) für abgebendes Strömungsmittel auf einer Seite des Flächenelements (37) und eines
Satzes von Strömungsdurchlässen (18) für aufnehmendes Strömungsmittel auf der entgegengesetzt
liegenden Seite des Flächenelements (37), wobei jeder Strömungsdurchlaß (18, 20) eine
gemeinsame Seitenwand (38, 42, 44) mit den benachbarten Strömungsmittel-Strömungsdurchlässen
(18, 20) teilt, gekennzeichnet durch Steuerung der Biegeschritte (a) und (b) in der
Weise, daß bewirkt wird, daß die Neigung jeder Seitenwand (38, 42, 44) jedes Strömungsdurchlasses
(18, 20) konstant ist längs der gesamten Länge des Strömungsdurchlasses (18, 20),
wobei die Neigung in einer Ebene gemessen wird, die senkrecht zur Mittelachse des
entsprechenden Strömungsdurchlasses (18, 20) verläuft.
6. Verfahren zur Ausbildung einer Wärmeaustauscherplatte (2, 4, 6, 8) nach Anspruch
5, wobei die Schritte (a) und (b) den Schritt des Biegens des Flächenelements (37)
derart aufweisen, daß die Neigung jeder der Seitenwände (38, 42, 44) gleich der Neigung
sämtlicher anderen Seitenwände (38, 42, 44) ist.
7. Verfahren zur Ausbildung einer Wärmeaustauscherplatte (2, 4, 6, 8) aus einem deformierbaren
Flächenelement (37) in eng genutete Wellungen über das Flächenelement hinweg nach
Anspruch 5 oder 6, wobei das Verfahren folgendes aufweist: Positionierung einer ersten
Formungsklinge (40") von gewelltem serpentinenartigen Profil mit einer im wesentlichen
gleichförmigen Dicke entlang dessen Länge an einer Seite des Flächenelements (37);
und sequentielle und wiederholte Bewegung der zweiten und dritten Formklingen (34",
36") gegen die andere Seite des Flächenelements (37) in einer umgreifenden Art und
Weise bezüglich der ersten Klinge (40"), wobei jede der zweiten und dritten Formungsklingen
(34", 36") ein gewelltes serpentinenartiges Profil besitzt und eine variable Dicke
entlang deren Länge ausreichend um die Seitenwände (38, 42, 44) der Wellungen im wesentlichen
gleichförmig über das Flächenelement (37) hinweg zu neigen.
8. Vorrichtung zur Ausbildung einer Wärmeaustauscherplatte (2, 4, 6, 8) mit Faltungen
bildenden Mitteln (26, 28, 30, 32, 34", 36", 40") zur bildung von gewellten Faltungen
(12) in einem Flächenelement (37) aus ziehfähigem wärmeleitendem Material, wobei die
faltungsbildenden Mittel (26, 28, 30, 32, 34", 36", 40") erste Durchlaßausbildungsmittel
(26, 28, 34", 36") aufweisen, um Strömungsmitteldurchlässe (20) für abgebendes Strömungsmittel
auf einer Seite des Flächenelements (37) auszubilden, wobei jeder der Strömungsmitteldurchlässe
(20) für abgebendes Strömungsmittel auf entgegengesetzten Seiten begrenzt ist durch
die Seitenwände (38, 42, 44) einer Faltung (12) und mit einer Mittelachse, die sich
längs eines kontinuierlichen gekrümmten Pfades erstreckt, und .zwar zwischen gesonderten
Punkten auf dem Flächenelementumfang und wobei zweite Durchlaßausbildungsmittel (30,
32, 40") vorgesehen sind, zur Ausbildung von Strömungsdurchlässen (18) für aufnehmendes
Strömungsmittel auf der entgegengesetzten Seite des Flächenelements (37), wobei jeder
Strömungsmitteldurchlaß (18) für aufnehmendes Strömungsmittel an entgegengesetzten
Seiten begrenzt ist durch die Seitenwände (38, 42, 44) einer Faltung (12) und mit
einer Mittelachse, die sich längs eines kontinuierlichen gekrümmten Pfades zwischen
gesonderten Punkten des Flächenelementumfangs erstreckt, dadurch gekennzeichnet, daß
die ersten und zweiten durchlaßbildenden Mittel (26, 28, 30, 32, 34", 36", 40") derart
geformt und positioniert sind, daß bewirkt wird, daß die Neigung jeder der Seitenwände
(38, 42, 44) jeder der Faltungen (12) konstant längs der gesamten Länge des Strömungsdurchlasses
(18, 20) ist, wobei die Neigung in einer Ebene gemessen wird, die senkrecht zur Mittelachse
des entsprechenden Strömungsmittelflußdurchlasses (18, 20) verläuft.
9. Vorrichtung nach Anspruch 8, wobei die ersten durchlaßbildenden Mittel (26, 28,
34", 36") eine erste Klinge (34", 36") aufweisen, und zwar mit einem Betriebsteil
mit einer Konfiguration entsprechend der gewünschten gewellten Konfiguration jedes
der Strömungsmitteldurchlässe (20) für das abgebende Strömungsmittel und wobei die
den zweiten Durchlaß bildenden Mittel (30, 32, 40") eine zweite Klinge (40") aufweisen
mit einem Betriebsteil mit einer Konfiguration entsprechend der gewünschten ondulierten
Konfiguration jedes Strömungsdurchlasses (18) für das aufnehmende Strömungsmittel,
wobei eine der Klingen (34", 36", 40") eine Querschnittsdicke besitzt, die sich entlang
seiner Länge verändert.
10. Vorrichtung nach Anspruch 9, wobei die zweite Klinge (40") eine gleichförmige
Querschnittsdicke aufweist.