| (19) |
 |
|
(11) |
EP 0 056 624 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
02.05.1985 Bulletin 1985/18 |
| (22) |
Date of filing: 14.01.1982 |
|
|
| (54) |
Switch assembly
Schalteraufbau
Assemblage d'un interrupteur
|
| (84) |
Designated Contracting States: |
|
CH DE FR GB IT LI SE |
| (30) |
Priority: |
16.01.1981 JP 5595/81 13.07.1981 JP 109903/81 30.07.1981 JP 119941/81
|
| (43) |
Date of publication of application: |
|
28.07.1982 Bulletin 1982/30 |
| (71) |
Applicant: OMRON TATEISI ELECTRONICS CO. |
|
Kyoto 616 (JP) |
|
| (72) |
Inventors: |
|
- Sato, Ryuichi
Kyoto-shi
Kyoto-fu (JP)
- Taniguchi, Tsutomu
Fukakusa, Fushimi-ku
Kyoto-shi, Kyoto-fu (JP)
- Koga, Hirofumi
Otokuni-gun
Kyoto-fu (JP)
|
| (74) |
Representative: Wilhelms, Rolf E., Dr. et al |
|
WILHELMS, KILIAN & PARTNER
Patentanwälte
Eduard-Schmid-Strasse 2 81541 München 81541 München (DE) |
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] The present invention relates to a switch assembly and, more particularly, to an
improved switch assembly capable of being used for interrupting and supplving a.c.
power.
[0002] When a switch assembly having at least one pair of contacts supplies a.c. power,
the current flowing through the switch assembly varies from a positive maximum point
through zero to a negative maximum point and vice versa as in a sinusoidal waveform.
When the switch assembly breaks the current at zero, the contacts may separate from
each other without producing any arc. On the contrary, when the current is interrupted
at a moment other than zero, an arc may be produced between the contacts, and this
possibility is higher as the interruption is effected closer to the maximum point
of the a.c. current. Once the arc is produced, it continues until the next zero current
occurs.
[0003] When the arc is produced, it results in various disadvantages, such as increase of
temperature, generation of poisonous gas, and corrosion of contacts.
[0004] In order to avoid the generation of arc, one may use a phase detector in combination
with a switch assembly to effectuate the interruption of the current in synchronized
relation to the detection of zero current by the phase detector.
[0005] This arrangement, however, results in a bulky size and high manufacturing cost.
[0006] In document DD-A-52,447 a switching device adapted to be used in a vacuum chamber
is disclosed, wherein the interruption of the current is effectuated in synchronized
relationship to the detection of zero current. Said device is provided with a magnetic
circuit, whose excitation is controlled by an electromagnet in such a way that, when
a current flows through the electromagnet's winding, a first magnetic force is generated
which attracts a leaf spring contact piece against an associated fixed contact, closing
in this manner an electric circuit in which the main current flows. Furthermore, the
main current conductor is connected with a current transformer which, by means of
another winding, delivers to said magnetic circuit an additional excitation which
is proportional to the main current and which generates a second magnetic force also
acting on said leaf spring contact.
[0007] In order to open the contacts, a switch connected with the electromagnet is opened;
consequently the first force disappears. The leaf spring contact is held against the
fixed contact only by the second magnetic force which decreases proportionally to
the current in a half cycle. At a certain moment, close to the zero current, the leaf
spring opening force overcomes the second magnetic force and the leaf spring contact
is separated from the fixed contact.
[0008] However, as pointed out, this construction needs a current transformer and an additional
winding inserted in the magnetic circuit.
[0009] Accordingly, it is a primary object of the present invention to provide an improved
switch assembly which substantially breaks the contacts at zero current without employing
any electrical phase detector.
[0010] It is another object of the present invention to provide an improved switch assembly
of the above described type which is simple in construction and can be readily manufactured
at low cost.
[0011] In accomplishing these and other objects, a switch assembly according to the present
invention comprises first and second conducting means provided operatively to take
respectively one of two positions, namely a break-position in which the first and
second conducting means are electrically separated from each other, and a make-position
in which the first and second conducting means are electrically connected with each
other to define a current path therethrough, first and second magnetic bodies provided
operatively in association with said first and second conducting means such that said
first and second magnetic bodies define at least one closed magnetic loop with at
least one of said first and second conducting means extending through said closed
magnetic loop when said first and second conducting means are turned to said make-position,
said magnetic loop being opened when said first and second conducting means are turned
to said break-position, biasing means for biasing said first and second conducting
means towards said break-position, and actuating means for actuating said first and
second conducting means towards said make-position against said biasing means, whereby
a magnetic force is generated by said closed magnetic lo
pp, said force acting in such a way that said conducting means can take said break
position only when the current is substantially zero.
[0012] These and other objects and features of the present invention will become apparent
from the following description taken in conjunction with preferred embodiments thereof
with reference to the accompanying drawings, in which:
Fig. 1 is a perspective view of a switch assembly according to a first embodiment
of the present invention;
Fig. 2 is a diagrammatic view of a switch assembly of Fig. 1 with a framework being
removed;
Fig. 3 is a cross-sectional view taken along a line III-III shown in Fig. 2;
Fig. 4 is a graph showing operating condition of the switch assembly according to
the present invention in timed relation;
Fig. 5 is a side view of a switch assembly according to a second embodiment of the
present invention;
Fig. 6 is an exploded view partly showing first and second contact members and first
and second magnetic members;
Fig. 7 is a cross-sectional view taken along a line VII shown in Fig. 5;
Fig. 8 is a diagrammatic view of a modification of the second embodiment;
Fig. 9 is a perspective view showing major parts of a switch assembly according to
a third embodiment of the present invention;
Fig. 10 is a side view of the switch assembly shown in Fig. 9;
Fig. 11 is a diagrammatic view showing a closed magnetic loop defined in the switch
assembly of Fig. 9;
Fig. 12 is a diagrammatic view of a modification of the third embodiment and particularly
showing a modified portion;
Fig. 13 is a diagrammatic view of another modification of the third embodiment;
Fig. 14 is a diagrammatic view of a further modification of the third embodiment and
particularly showing a modified portion;
Fig. 15 is a side view of a switch assembly according to the fourth embodiment of
the present invention;
Fig. 16 is a perspective view particularly showing relationship among first and second
conducting members and first and second magnetic members of the switch assembly of
Fig. 15;
Fig. 17 is a top view of a switch assembly of Fig. 15;
Fig. 18 is a diagrammatic view of an electret employed in the switch assembly of Fig.
15;
Fig. 19 is a view similar to Fig. 15, but particularly showing a modification thereof;
Fig. 20 is a diagrammatic view of a bimorph employed in the switch assembly of Fig.
19;
Fig. 21 is a perspective view of a major portion of a switch assembly according to
a fifth embodiment of the present invention; and
Figs. 22 and 23 are diagrammatic views showing different operated positions of the
switch assembly of Fig. 21.
[0013] Referring to Fig. 1, there is shown a switch assembly of a first embodiment according
to the present invention. The switch assembly of the first embodiment comprises a
framework 2 made of electrically non-conductive material, such as synthetic resin,
a yoke 4 made of magnetic material, such as iron, and rigidly supported by the frame
2, a see-saw plate 6 made of magnetic material, such as iron, and rotatably supported
by the frame 2, a coil 8 mounted on the yoke 4, and first and second contact members
10 and 12 which are electrically insulated from each other and from the yoke 4 and
see-saw plate 6. The structure of the switch assembly of the first embodiment is described
in detail below with reference to Fig. 2 schematically showing the switch assembly
without the framework 2 and Fig. 3 showing a cross-sectional view taken along a line
III-III shown in Fig. 2.
[0014] The yoke 4, as best shown in Fig. 2, has an "S" shape configuration defined by three
horizontal bars 4a, 4b and 4c aligned parallelly to each other and two vertical bars
4d and 4e. As apparent from Figs. 2 and 3, the bars 4b, 4c, 4d and 4e extend in the
same plane, whereas the bar 4a extends above said plane.
[0015] The coil 8 is mounted on the bar 4d of the yoke 4 and is electrically connected to
a switch 14 and a power source 16 in series. The power source 16 shown in Fig. 2 is
a d.c. power source, such as a battery, but it can be an a.c. power source. The coil
8 is provided for magnetizing particularly the bars 4a and 4b of the yoke 4 when the
switch 14 is closed.
[0016] The see-saw plate 6 is so long that its one end locates under the bar 4a and the
other end locates above the bar 4c of the yoke 4. A pair of pins 6a and 6b are provided
approximately at the center of the see-saw plate 6 for the engagement with corresponding
recesses or openings (not shown) formed in the framework 2 so that the see-saw plate
6 may rotate about the pins 6a and 6b. The clockwise rotation of the see-saw plate
6 is restricted by the framework 2 to terminate in a position shown in Fig. 3. On
the other hand, the counterclockwise rotation of the see-saw plate 6 is restricted
by the contact members 10 and 12 as will become apparent from the description below.
[0017] The first conducting member 10 has a "T" shaped portion, as shown in Fig. 1, defined
by arms 10a and 10b such that the arm 10b extends perpendicularly from the center
of the arm 10a. The opposite ends of the arm 10a of the conducting member 10 are rigidly
supported by the framework 2 and the arm 10b extends over the see-saw plate 6. The
arm 10b, serving as a leaf spring, is slightly bent downwardly with respect to the
arm 10a so that the end of the arm 10b remote from the arm 10a contacts and pushes
the see-saw plate 6 to the position shown in Fig. 3. A contact point 10c is mounted
on the end portion of the arm 10b, as best shown in Fig. 3. Since there is no framework
2 shown in Figs. 2 and 3, the arm 10a of the conducting member 10 is not apparently
shown in these Figs. 2 and 3.
[0018] The first conducting member further includes an arm 10d connected to the arm 10a
and extends in a space between the see-saw plate 6 and bar 4e of the yoke 4 and further
extends in the direction away from the bar 4e under the see-saw plate 6, and terminates
to a terminal leg 10e for the external connection.
[0019] The second conducting member 12 has an "L" shaped portion, as shown in Figs. 1 and
2, defined by arms 12a and 12b. A contact point 12c is mounted on the end portion
of the arm 12a in face-to-face relation with the contact point 10c. Since the arms
12a and 12b are made of hard metallic plate and are rigidly supported by the frame
2, the arm 12a stops the rotation of see-saw plate 6 upon contact of the contact points
10c and 12c with a very small degree of bending of the arms 12a and 12b.
[0020] The conducting member 12 further includes an arm 12d connected to the arm 12b and
extends, as best shown in Fig. 2, towards the bar 4e of the yoke 4 under the see-saw
plate 6. The arm 12d further extends upwardly in a space between the see-saw plate
6 and the bar 4e and yet further extends above and across the bar 4e towards a terminal
leg 12e for the external connection.
[0021] It is to be noted that the portions 10d and 12d of the conducting members 10 and
12 pass through said space between the see-saw plate 6 and the bar 4e in such a manner
that, when the contact points 10c and 12c contact, the currents in said portions 10d
and 12d are directed simultaneously in the same direction.
[0022] It is to be noted that, when the switch assembly described above is in an inoperative
position as shown in Fig. 3, a gap G1 between contact points 10c and 12c is smaller
than a gap G2 between see-saw plate 6 and bar 4a of the yoke 4. Thus, when the above
described switch assembly of the first embodiment is turned to an operative position
to establish a contact between the contact points 10c and 12c, the see-saw plate 6
and the bar 4a of the yoke 4 are maintained apart from each other, e.g., by 0.2 to
0.3 mm.
[0023] The switch assembly described above is particularly designed for use in switching
a power load actuated by an a.c. power source. Fig. 2 shows a load and an a.c. power
source externally connected in series between the terminal legs 10e and 12e.
[0024] Next, the operation of the switch assembly of the first embodiment is described with
reference to a time chart shown in Fig. 4. The load is considered to be highly resistive.
[0025] When the switch 14 is turned on at a moment t1, the coil 8 is excited to magnetize
the yoke 4, particularly the bar 4a. Thus, a magnetic force F1 (Fig. 3) appears in
the bar 4a attracting the see-saw plate 6. Therefore, the see-saw plate 6, which has
been in the position shown in Fig. 3, starts to turn counterclockwise until the contact
points 10c and 12c contact with each other, i.e., at a moment t2. Even after the contact
points 10c and 12c contact, a narrow gap is present between the see-saw plate 6 and
the bar 4a of the yoke 4 with the attractive force F1 exerting on the see-saw plate
6. Thus, a predetermined contact pressure between the contact points 10c and 12c can
be obtained by the attractive force F1.
[0026] The counterclockwise rotation of the see-saw plate 6 not only results in contact
between the contact points 10c and 12c, but also in contact between see-saw plate
6 and each of bars 4b and 4c of the yoke 4, establishing a closed magnetic loop through
the bars 4b, 4e and 4c and the see-saw plate 6.
[0027] Thus, when the see-saw plate 6 is rotated counterclockwise to make contact between
the contact points 10c and 12c and to establish the closed magnetic loop at the moment
t2, a.c. current flows through the contact members 10 and 12 from the a.c. power source.
(A waveform of a.c. voltage is shown in Fig. 4.) Since the portions 10d and 12d of
the conducting members 10 and 12, respectively, pass through the closed magnetic loop,
a magnetic flux appears in the closed magnetic loop proportionally to the current
flowing through the conducting members 10 and 12. A waveform of the current flowing
through the conducting members 10 and 12 is shown in Fig. 4. Thus, by the generated
magnetic flux, an attractive force F2 appears between the see-saw plate 6 and the
yoke 4, particularly the bars 4b and 4c. As apparent to those skilledoin the art,
the magnetic force F2 will be at a maximum at the peaks of the a.c. current and will
be zero at the zero point of the a.c. current. A waveform of the magnetic force F2
is shown in Fig. 4. This magnetic force F2 aids the above mentioned magnetic force
F1, thus, the contact pressure between thr contact points 10c and 12c is further reinforced.
In other words, the contact pressure is effected by the sum of the forces F1 and F2.
A waveform of the forces F1 and F2 added with each other is shown in Fig. 4.
[0028] This reinforcement has such an advantage that the contact pressure required between
the contact points 10c and 12c is obtained by the sum of the forces F1 and F2, and
accordingly, the force F1 can be presented less than that needed to produce the required
contact pressure, resulting in compact size of the coil 8.
[0029] Thereafter, when it is required to break the contacts 10c and 12c, the switch 14
is turned off at a moment t3. Accordingly, the magnetic force F1 disappears at the
moment t3, and only the magnetic force F2 is present thereafter. If, at the moment
t3, a.c. current from the a.c. power is relatively high either in positive or negative
region, the magnetic force F2 is also relatively high, thus maintaining the see-saw
plate 6 in contact with the bars 4b and 4c of the yoke 4, that is, maintaining the
contact points 10c and 12c in contact with each other. Then, within the half cycle
of the a.c. current, the current level becomes as small as zero level, and accordingly,
the magnetic force F2 also becomes zero. During this half cycle, the biasing force
of the leaf spring or arm 10b urging the see-saw plate 6 clockwise exceeds the force
F2 for effecting the clockwise rotation of the see-saw plate 6 towards inoperative
position, and thus substantially breaking the contacts 10c and 12c. In the time chart
of Fig. 4, it is seen that the contacts 10c and 12c break at a moment t4, at which
the level of the a.c. current is very low. Thus, when the contacts 10c and 12c separate
awayfrom each other, this separation breaks very small amount of current resulting
in no arc between the contacts 10c and 12c. The inertia moment of the contact 10c
and its associated parts that move together with the contact 10c further delays the
separation, reaching closer to the zero point of the a.c. current.
[0030] Since the switch assembly according to the present invention breaks the contacts
approximately at the zero point of the a.c. current, no arc is produced, and accordingly,
various disadvantages caused by the arc producing can be avoided. For example, the
increase oftemperature, generation of poisonous gas, and corrosion of contact points
can be avoided.
[0031] Although the contact points 10c and 12c may be worn to some degree after numbers
of operations, this results merely in the reduction of narrow gap produced between
the see-saw plate 6 and the bar 4a of the yoke 4 when the switch assembly is in the
operative position.
[0032] It is to be noted that the coil 8 defining an electromagnet together with the bars
4a and 4d for producing the force F1 may be replaced with any other means for actuating
the see-saw plate 6, such as a push button or a device using piezoelectric effect
as employed in the embodiments described later.
[0033] Referring to Fig. 5, there is shown a switch assembly according to a second embodiment
of the present invention. The switch assembly of the second embodiment comprises a
base 16 on which an electromagnet 18 is rigidly mounted. The electromagnet 18 includes
a core 18a, a coil 18b and a frame 18c. Operatively provided to the electromagnet
18 is an "L" shaped lever 20 made of iron and pivotally supported at 20a. The lever
20 has one end portion provided with an electrically insulating material 20b and the
other end portion located in a position capable of being affected by the magnetic
force F1 of the electromagnet 18. A leaf spring 23 is mounted on the base 16 for pushing
the corner of the "L" shaped lever 20. Thus, the lever 20 is normally rotated clockwise
by the leaf spring 23 and is held in a position as shown in Fig. 5.
[0034] The switch assembly of the second embodiment further comprises a first conducting
member 22 made of rigid conductive material, such as iron, and fixedly mounted on
the base 16. The first conducting member 22 has a contact point 22a rigidly mounted
at its one end remote from the base 16. A first magnetic member 24 made of magnetic
material and having a "U" shape cross section, as best shown in Figs. 6 and 7, is
rigidly attached to an intermediate portion of the first conducting member 22 through
a suitable insulator, such as epoxy synthetic resin.
[0035] A second conducting member 26 made of resilient conductive material, such as a thin
iron plate, is fixedly mounted on the base 16 at a position between the first conducting
member 22 and the lever 20. The second conducting member 26 has a contact point 26a
rigidly mounted at its one end remote from the base 16 in such a manner that the contact
point 26a faces the contact point 22a. Normally, the contact points 22a and 26a are
spaced apart from each other, as shown in Fig. 5. A second magnetic member 28 made
of magnetic material is attached to an intermediate portion of the second conducting
member 26, preferably through an insulator.
[0036] It is to be noted that the first and second magnetic members 24 and 28 are so arranged
that, when the second conducting member 26 is pushed towards the first conducting
member 22 against the resiliency of the second conducting member 26 to make contact
between contact points 22a and 26a, the first and second magnetic members 24 and 28
contact with each other to define a tubular member in which the first conducting member
22 passes through.
[0037] The base 16 is further mounted with terminal legs 30a, 30b, 32a and 32b, in which
the terminal legs 30a and 30b are connected to the coil 18b of the electromagnet 18,
and the terminal legs 32a and 32b are connected, respectively, to the first and second
conducting members 22 and 26. Although not shown in Fig. 5, it is understood from
the previous embodiment that the terminal legs 30a and 30b are provided for the connection
with switch and d.c. or a.c. source in series, and the terminal legs 32a and 32b are
provided for the connection with a load and a.c. source of power.
[0038] Next, the operation of the switch assembly of the second embodiment is described
with reference to Fig. 4.
[0039] When the switch is turned on at the moment t1 to excite the electromagnet 18, the
"L" shaped lever 20 is turned counterclockwise against the force of leaf spring 23
and resiliency of the conducting member 26 by the magnetic force F1 exerting on the
lever 20. Thus, at the moment t2, the contact points 22a and 26a make contact and,
at the same time, the first and second magnetic members 24 and 28 contact each other
to define the tube. Thus, a.c. current flows through the conducting members 22 and
26. By the current flowing through the conducting member 22, a magnetic flux (p appears
in a closed magnetic loop defined in the tube, as shown in Fig. 7. The magnetic flux
0 gives rise to attractive force F2 between the magnetic members 24 and 28 in such
a manner as to aid the contact pressure between the contact points 22a and 26a. Accordingly,
the contact pressure exerting on the conducting member 26 is effected by the sum of
forces F1 and F2.
[0040] Then, at the moment t3, the electromagnet 18 is deenergized by the opening of the
switch, and accordingly, the force F1 disappears, and thereafter, the second conducting
member 26 is biased only by the force F2. When the force F2 is reduced to about zero
(moment t4), i.e., when the a.c. current reaches closed to the zero point, the second
conducting member 26 separates away from the first conducting member 22 by the force
of leaf spring 22 and the resiliency of the conducting member 26. Since a.c. current
flow through the conducting members 22 and 26 at the moment t4 is very low, no arc
will be produced during the separation of the contact points 22a and 26a.
[0041] Referring to Fig. 8, there is shown a modification of the switch assembly of the
second embodiment. Instead of the electromagnet, the modification shown employs a
push button which is diagrammatically depicted by an arrow 34. Furthermore, the conducting
member 26' shown is a snap action type capable of producing a predetermined contact
pressure when the push button 34 is depressed.
[0042] Referring to Fig. 9, there is shown a switch assembly according to the third embodiment
of the present invention. The switch assembly according to the third embodiment is
a double make-and-break switch and it comprises an "L" shaped wall defined by an upright
wall 36 and base wall 38 which are connected in right angle to each other. A "U" shaped
magnetic member 40 is fixedly mounted on the upright-wall 36 such that the opposite
side faces or walls of the "U" shaped magnetic member 40 extend away from the upright
wall 36 and a groove defined in the "U" shaped magnetic member 40 extends parallelly
to the corner between the upright and base walls 36 and 38. A first conducting member
42 having contact points 42a and 42b at its opposite ends, respectively, is fixedly
connected to the "U" shaped magnetic member 40 through a suitable insulator such that
the elongated first conducting member 42 extends through the groove of the "U" shaped
magnetic member 40. A pair of second conducting members 44 and 46 made of resilient
conductive material are rigidly mounted on the base plate 38. The second conducting
members 44 and 46 have at their respective free ends contact points 44a and 46a which
are in face-to-face relation with the contact points 42a and 42b, respectively, of
the first conducting member 42. It is to be noted that the contact points 44a and
46a are normally held away from the contact points 42a and 42b, respectively. The
base wall 38 is formed with an elongated recess 38a which is located between the second
conducting members 44 and 46 and extends parallelly to the corner between the upright
and base walls 36 and 38. The elongated recess 38a is provided for pivotally receiving
a plate 48 made of magnetic material. The plate 48 is so long that its free end remote
from the base wall 38 can contact the free end of the "U" shaped magnetic member 40.
[0043] A card, or bar, 50 has its intermediate portion connected or rigidly secured to the
plate 48 with its opposite end portions aligned respectively with the conducting members
44 and 46 on one side thereof opposite to the side provided with the contact points
44a and 46a such that, when the external pushing force F1 indicated by an arrow is
applied to the plate 48 through a suitable member 52 (Fig. 10) against the force of
a spring 54, the plate 48 pivots about the elongated recess 38a towards the "U" shaped
magnetic member 40, and by the bar 50, the conducting members 44 and 46 can be pushed
towards the first conducting member 42. The resultant is such that the contact points
44a and 46a make contact with contact points 42a and 42b, respectively, and at the
same time, the plate 48 contacts the "U" shaped magnetic member 40, as best shown
in Fig. 11. Accordingly, when the contact is made, a closed magnetic loop is formed
between the "U" shaped magnetic member 40 and the plate 48.
[0044] It is to be noted that the member 52 connected to the plate 48 is provided operatively
in association with a suitable actuating means, such as a push button, electromagnet
or the like for applying the pushing force F1 to the plate 48.
[0045] As diagrammatically shown in Fig. 9, the conducting members 44 and 46 are electrically
connected with a load and an a.c. power source in series.
[0046] The operation of the switch assembly of the third embodiment is as follows.
[0047] When the plate 48 is pushed by the force F1, the contact points 42a and 42b make
contact with contact points 44a and 46a, respectively to permit a.c. current flow
through conducting members 44, 42 and 46. Simultaneously with the above, a magnetic
fiux (
p appears in the closed magnetic loop through the "U" shaped magnetic member 40 and
the plate 48, as shown in Fig. 11. Accordingly, the member 40 and the plate 48 are
attracted with each other by a magnetic force F2, as shown in Fig. 11.
[0048] Then, when the biasing force F1 is removed, e.g., by stopping the depression of a
push button (not shown), only the magnetic force F2 is present. This magnetic force
F2 decreases to zero within a half cycle of a.c. current, and accordingly, the contact
points break in a similar manner described above, without producing any arc.
[0049] Since the switch assembly according to the third embodiment of the present invention
is a double make-and-break switch, the sum of gaps between contact points 44a and
42a and between contact points 46a and 42b would be the required contact gap, and
therefore, the stroke length of the conducting members 44 and 46 can be shortened,
resulting in compact size of the switch assembly.
[0050] It is to be noted that the first conducting member 42 can be connected to the "U"
shaped magnetic member 40 through a suitable biasing means, such as a spring 56 as
shown in Fig. 12, for increasing the contact pressure between the contact points 44a
and 42a and between contact points 46a and 42b.
[0051] Referring to Fig. 13, there is shown a modification of the switch assembly of the
third embodiment. The switch assembly shown employs an electromagnet 58 as the actuating
means for applying the biasing force F1 to the plate 48. The electromagnet 58 includes
a coil 58a and a core 58b formed in a shape of "U". Instead of being pivotally supported
in the elongated recess 38a, the lower end of the plate 48 is hinged to the edge of
the core 58b.
[0052] Referring to Fig. 14, there is shown another modification of the switch assembly
of the third embodiment. According to the switch assembly shown, the first conducting
member 42' is rigidly secured to the plate 48. Accordingly, the first conducting member
42 is placed inside the groove of the "U" shaped magnetic member 40 only when the
contacts are made.
[0053] Referring to Fig. 15, there is shown a switch assembly according to a fourth embodiment
of the present invention. The switch assembly shown is a double make-and-break switch
and it includes an air tight casing 60 made of, e.g., glass or synthetic resin, and
a base 62 made of elec-- trically non-conductive material, such as synthetic resin.
The base 62 is secured inside and at the bottom portion of the casing 60. The base
62 has an upright wall 62a standing approximately at the center of the base 62 and
a projection 62b extending from the upright wall 62a. The base 62 further has a hook
62c formed, when viewed in Fig. 15, at right-hand side thereof.
[0054] A first magnetic member 64 made of magnetic material and having a "U" shaped configuration
defined by upper and lower arm portions is fixedly mounted on the base 62 with the
upper and lower arm portions directing towards the upright wall 62a. A second magnetic
member 66 having a recess 66a formed in its one end portion is positioned operatively
in association with the first magnetic member 64 such that the recess 66a loosely
engages with the projection 62b. Thus, the second magnetic member 66 may pivot about
the projection 62b between a first pivoted position in which the second magnetic member
66 separates away from the first magnetic member 64, particularly from the upper arm
portion of the magnetic member 64, as shown in-Fig. 15, and a second pivoted position
in which the second. magnetic member 66 abuts against the first magnetic member 64
to define a closed magnetic loop.
[0055] A pair of first conducting members 68 and 70 are fixedly mounted on the base 62 adjacent
and on opposite sides, respectively, of the base 62. As best shown in Fig. 16,-the
conducting member 68 extends through the groove of the "U" shaped magnetic member
64 and appears on the other side of the "U" shaped magnetic member 64. Similarly,
the other conducting member 70 passes through the groove of the "U" shaped magnetic
member 64. In other words, the conducting members 68 and 70 intersect with each other
in the groove of the "U" shaped magnetic member 64. For preventing a contact between
the conducting members within the groove of the "U" shaped magnetic member 64, an
insulation plate 71 is positioned between the conducting members. 68 and 70. At the
ends of the conducting members 68 and 70 remote from the base 62, contact points 68a
and 70a are fixedly mounted.
[0056] A second conducting member 72 is rigidly secured to the second magnetic member 66
with opposite end portions aligned respectively with the contact points 68a and 70a.
Accordingly, a pair of contact points 72a and 72b fixedly mounted at opposite end
portions of the second conducting member 72 align in face-to-face relation with contact
points 68a and 70a, respectively.
[0057] An electret 74 deposited with a first electrode 76 is fixedly attached to the upright
wall 62a on a side opposite to the side provided with the projection 62b with said
first electrode 76 being on a side touching the upright wall 62a. A second electrode
78 made of rigid but thin film plate, such as an aluminum plate, is operatively provided
in association with the electret 74 in such a manner that the lower end of the second
electrode 78 is pivotally engaged to the hook 62c of the base 62 and its upper end
is linked with the second magnetic member 66 through a suitable arm 80 made of non-magnetic
and non-conductive material. A biasing means, such as a leaf spring 82 is connected
to the second electrode 78 for urging the second electrode 78 away from the electret
74.
[0058] The switch assembly of the fourth embodiment further includes terminal legs 84a,
84b, 86a and 86b in which the terminal legs 84a and 84b are connected to the first
and second electrodes 76 and 78, respectively, and the terminal legs 86a and 86b to
the conducting members 68 and 70, respectively. The terminal legs 84a and 84b are
externally connected with a switch and a d.c. or a.c. source in series and the terminal
legs 86a and 86b are externally connected with a load and an a.c. power source in
series, in a similar manner to that shown in Fig. 2. The terminal legs 84a and 84b
may be further connected with a discharging resistance 88, as shown in Fig. 18.
[0059] In order to reduce the possibility of producing any arc, the casing 60 is made vacuum
or is filled with inactive gas, such as SF
e (sulfur hexafluoride).
[0060] Next, the operation of the switch assembly according to the fourth embodiment is
described.
[0061] When the switch is closed to supply d.c. voltage between the terminal legs 84a and
84b, the second electrode 78 receives attractive force F1 (Fig. 18) towards the electret
74 by the electrostatic charge appearing on the electret 74. Accordingly, the second
electrode 78 pivots leftwardly about the hook 62c, and thus, it pushes the second
magnetic member 66 leftwardly towards the second pivoted position mentioned above.
When the second magnetic member 66 is turned to the second pivoted position, it not
only contacts with the first magnetic member 64 to define a closed magnetic loop but
also makes a contact between contact points 68a and 72a and between contact points
70a and 72b. Accordingly, a.c. current flows through the conducting members 68,72
and 70 to supply a.c. power to the externally connected load. Since the conducting
members 68 and 70 pass through the closed magnetic loop defined by the magnetic members
64 and 66, and since the direction of currents flowing through the conducting members
68 and 70 at the closed magnetic loop is the same, such currents give rise to magnetic
flux 0 through the closed magnetic loop. Accordingly, the first and second magnetic
members 64 and 66 attract each other by a magnetic force F2, as indicated in Fig.
15.
[0062] Then, when the biasing force F1 is removed by turning the switch off, only the magnetic
force F2 is present. This magnetic force F2 decreases to zero within a half cycle
of a.c. current, and accordingly, the contact points break in a similar manner described
above without producing any arc.
[0063] As will be understood to those skilled in the art, the electret 74 and its associated
parts serve as an actuating means for actuating the conducting members.
[0064] It is to be noted that the conducting members 68 and 70, both of which have been
described as passing through the groove of the "U" shaped magnetic member 64, may
be so arranged as to allow only one contact member 68 or 70 pass through said groove.
Furthermore, at least one of the conducting members 68 and 70 may be so arranged as
to pass through the groove for a number of times. This can be accomplished by winding
the conducting member for a number of times on the "U" shaped magnetic member 64.
[0065] Since the switch assembly according to the fourth embodiment of the present invention
has an air tight casing for keeping the conducting members in a vacuum or in inactive
gas, the insulation between contact points can be increased without widening the gap
therebetween. Accordingly, the stroke length of the conducting member 72 can be arranged
very small. This is particularly suitable for use in a combination with the electret
which can provide only a small stroke to the pivotally associated electrode.
[0066] Since the electret is small in size and consumes relatively low power, and since
the stroke of the movable conducting member is relatively short, the switch assembly
according to the fourth embodiment can be prepared in a compact size and operated
with less power.
[0067] Referring to Figs. 19 and 20, there is shown a modification of the switch assembly
of the fourth embodiment. Instead of the electret, the switch assembly shown has a
bimorph 90 which moves in a direction indicated by an arrow in Fig. 20 by the piezoelectric
effect when d.c. voltage is applied thereto. Such a movement of the bimorph results
in termination of the second magnetic member 60 to the second pivoted position. Thus,
the modification shown operates in a similar manner to the switch assembly of the
fourth embodiment and has the same meritorious effect as described above.
[0068] Referring to Fig. 21, there is shown a switch assembly according to a fifth embodiment
of the present invention. The switch assembly shown is a double make-and-break switch
and it includes stationarily provided conducting members 92 and 94 having contact
points 92a and 94a, respectively, at their end portions. As apparent from the drawings,
the contact point 92a projects upwardly from the conducting member 92 and the contact
point 94a projects downwardly from the conducting members 94. Another conducting member
96 is fixedly connected to an axle 98 which is rotatably supported and positioned
approximately at the center between the contact points 92a and 94a. The conducting
member 96 is so long that its opposite ends provided with contact points 96a and 96b,
respectively, align with the contact points 92a and 94a. Since the contact points
96a and 96b are mounted on the opposite faces of the conducting member 96, the contact
point 96a comes into face-to-face contact with the contact point 92a and the contact
point 96b comes into face-to-face contact with the contact point 94a when the conducting
member 96 is rotated counterclockwise about the axle 98.
[0069] The conducting member 96 rigidly carries a "U" shaped magnetic member 100 at intermediate
portion between the axle 98 and the contact point 96a such that the conducting member
96 extends through the groove defined in the "U" shaped magnetic member 100 and the
opposite parallel arms of the "U" shaped magnetic member 100 direct in the same direction
as the projecting direction of the contact point 96a, as shown in Fig. 21.
[0070] Similarly, another "U" shaped magnetic member 102 is rigidly carried by the conducting
member 96 at intermediate portion between the axle 98 and the contact point 96b. In
this case, the parallel arms of the "U" shaped magnetic member 102 direct in the same
direction as the projecting direction of the contact point 96b. The mounting of the
"U" shaped magnetic members 100 and 102 is effected by the injection of non-conductive
and non-magnetic material, such as epoxy resin, in the groove of the "U" shaped magnetic
members 100 and 102.
[0071] A stationary magnetic member 104 having bifurcated arms 104a and 104b is provided
in association with the "U" shaped magnetic members 100 and 102 such that when the
conducting member 96 is rotated counterclockwise to make contacts between the contact
points 92a and 96a and between contact points 94a and 96b, the "U" shaped magnetic
member 100, particularly the free ends of the opposite parallel arms of the "U" shaped
magnetic member 100, abuts against the arm 104a of the bifurcated arms and, at the
same time, the "U" shaped magnetic member 102 similarly abuts against the arm 104b
of the bifurcated arms. Accordingly, one closed magnetic loop is defined by the "U"
shaped magnetic member 100 and the arm 104a, and another closed magnetic loop is defined
by the "U" shaped magnetic member 102 and the arm 104b.
[0072] Normally, the conducting member 96 and "U" shaped magnetic members 100 and 102 carried
by the member 96 are held in a position shown in Fig. 23 by a suitable biasing means,
such as springs 106 and 108. In this position, no closed magnetic loop is formed and
facing contact points are separated away from each other.
[0073] The switch assembly according to the fifth embodiment further includes actuating
means which exerts rotating force F1 on the conducting member 96 or on at least one
of "U" shaped magnetic members 100 and 102, as shown by arrows in Fig. 22, for actuating
the conducting member 96 to rotate counterclockwise about the axle 98 against the
biasing force of the springs 106 and 108. Although any embodied form of such an actuating
means is not shown in Figs. 21 to 23, such an arrangement can be readily understood
from the previous embodiments employing electromagnet, push button, electret or bimorph
for the actuating means.
[0074] Next, the operation of the switch assembly according to the fifth embodiment of the
present invention is described.
[0075] When the biasing force F1 pushes the conducting member 96, the conducting member
96 carrying the "U" shaped magnetic members 100 and 102 rotates counterclockwise from
the position shown in Fig. 23 to the position shown in Fig. 22. Accordingly, a.c.
current flows through conducting members 92, 96 and 94. Simultaneously with the above,
magnetic flux appears in the closed magnetic loop defined by the "U" shaped magnetic
member 100 and arm 104a and also that defined by the "U" shaped magnetic member 102
and arm 104b. Thus, the "U" shaped magnetic member 100 and arm 104a are attracted
with each other, and the "U" shaped magnetic member 102 and arm 104b are attracted
with each other to aid the biasing force F1.
[0076] Then, when the biasing force F1 is removed, only the above mentioned attractive forces
are present. These attractive forces decrease to zero within a half cycle of a.c.
current, and accordingly, the contact points break in a similar manner described above
without producing any arc to terminate the conducting member 96 in the position shown
in Fig. 23.
[0077] Since the switch assembly of the fifth embodiment is arranged symmetrically and well
balanced about the axle 98, resistance against shock and vibration is improved.
[0078] As has been described in connection with several preferred embodiments, the switch
assembly according to the present invention breaks the contact points approximately
at zero current without employing any electrical detecting means. Accordingly, switch
assembly according to the present invention can break the contact points without producing
any arc and yet can be assembled compact in size with a simple structure.
1. A switch assembly comprising:
first and second conducting means (10, 22, 42, 68, 70, 96; 12, 26, 44, 46, 72, 92,
94) provided operatively to take respectively one of two positions, namely a break-position
in which the first and second conducting means are electrically separated from each
other, and a make-position in which the first and second conducting means are electrically
connected with each other to define a current path therethrough;
first and second magnetic bodies (4, 24, 40, 64, 100, 102; 6, 28, 48, 66, 104) provided
operatively in association with said first and second conducting means such that said
first and second magnetic bodies define at least one closed magnetic loop with at
least one of said first and second conducting means extending through said closed
magnetic loop when said first and second conducting means are turned to said make-position,
said magnetic loop being opened when said first and second conducting means are turned
to said break-position;
biasing means (10b, 23, 54, 82) for biasing said first and second conducting means
towards said break-position;
actuating means (8, 18, 20, 34, 74, 90) for actuating said first and second conducting
means towards said make-position against said biasing means, whereby a magnetic force
is generated by said closed magnetic loop, said force acting in such a way that said
conducting means (10, 22, 42, 68, 70, 96; 12, 26, 44, 46, 72, 92, 94) can take said
break position only when the current is substantially zero.
2. A switch assembly as claimed in Claim 1, wherein said first magnetic body (4) substantially
has an "S" shape configuration defined by first, second and third bars (4a, 4b, 4c)
extending parallelly to each other with the second bar (4b) positioned intermediately
between the first and third bars (4a, 4c), and said first bar (4a) being positioned
above a plane in which the second and third bars (4b, 4c) are contained, said configuration
being further defined by a fourth bar (4d) connecting the first and second bars (4a,
4b) and a fifth bar (4e) connecting the second and third bars (4b, 4c).
3. A switch assembly as claimed in Claim 2, wherein said second magnetic body (6)
has an elongated plate configuration with its intermediate portion pivotally supported
adjacent said second bar (4b) of said first magnetic body (4), said elongated second
magnetic body (6) having its first end portion located under said first bar (4a) and
its second end portion located above said third bar (4c), whereby when said elongated
second magnetic body (6) is rotated to narrow a first gap (G2) between said first
end portion and said first bar (4a), said elongated second magnetic body (6) and said
second, third and fifth bars (4b, 4c, 4e) define a closed magnetic loop.
4. A switch assembly as claimed in Claim 3, wherein said first conducting means comprises
a first elongated conducting member (10) extending along a longitudinal direction
of said elongated second magnetic body (6) and passing through a space defined by
said elongated second magnetic body (6) and second, third and fifth bars (4b, 4c,
4e), and a first contact point (10c) mounted on the first elongated conducting member
(10) at a position where said first elongated conducting member (10) is located adjacent
to said first end portion of said elongated second magnetic body (6).
5. A switch assembly as claimed in Claim 4, wherein said second conducting means comprises
a second elongated conducting member (12) extending through said space capable of
passing current through said space in the same direction as that flowing through said
first elongated conducting member (10) when said first and second conducting means
are turned to said make-position, and a second contact point (12c) mounted on said
second elongated conducting member (12) in such a manner as to locate said second
contact point (12c) in face-to-face relation with said first contact point (10c).
6. A switch assembly as claimed in Claim 5, wherein said first and second contact
points (10c, 12c) have a second gap (G1) smaller than said first gap (G2) between
said first end portion and said first bar (4a) so as to maintain said first gap (G2)
greater than zero even after the first and second contact points (10c, 12c) are contacted
with each other.
7. A switch assembly as claimed in Claim 4, wherein said biasing means comprises a
portion (10b) of said first elongated conducting member (10) that extends along a
longitudinal direction of said elongated second magnetic body (6) such that said portion
(10b) of said first elongated conducting member (10) serves as a leaf spring for biasing
said first end portion of said second magnetic body (6) away from said first bar (4a).
8. A switch assembly as claimed in Claim 3, wherein said actuating means is an electromagnet
comprising a coil (8) wound on said fourth bar (4d) of said first magnetic body (4)
to produce an attractive force (F1) between said first bar (4a) of said first magnetic
body (4) and said first end portion of said elongated second magnetic body (6).
9. A switch assembly as claimed in Claim 1, further comprising a base (2, 16, 36,
38, 62).
10. A switch assembly as claimed in Claim 9, wherein said first conducting means comprises
an elongated and stationary first conducting member (22) having its first end rigidly
mounted on said base (16), and a first contact point (22a) attached to said first
conducting member (22) at its second end opposite to said first end.
11. A switch assembly as claimed in Claim 10, wherein said second conducting means
comprises an elongated and movable second conducting member (26) having its first
end rigidly mounted on said base (16), and a second contact point (26a) attached to
said second conducting member (26) at its second end opposite to said first end in
such a manner that said first and second contact points (22a, 26a) are located in
face-to-face relation with each other, said second conducting member (26) being movable
between said break-position in which said first and second contact points (22a, 26a)
are electrically separated from each other and said make-position in which said first
and second contact points (22a, 26a) are connected with each other.
12. A switch assembly as claimed in Claim 11, wherein said first magnetic body (24)
has a "U" shape configuration having a groove defined therein, said first magnetic
body (24) connected to said first conducting member (22) such that said first conducting
member (22) extends through said groove.
13. A switch assembly as claimed in Claim 12, wherein said second magnetic body (28)
has a plate configuration, said second magnetic body (28) being connected to said
second conducting member (26) so as to move together with said second conducting member
(26), said second magnetic body (28) closing said groove to define a closed magnetic
loop around said first conducting member (22) with said first and second magnetic
bodies (24, 28) when said second conducting member (26) moves to said make-position,
and opening said groove when said second conducting member (26) moves to said break-position.
14. A switch assembly as claimed in Claim 11, wherein said actuating means comprises
an electromagnet (18) and a pivoted lever (20) actuated by said electromagnet (18),
said lever (20) being adapted to push said second conducting means (26) to said make-position
when said electromagnet (18) is actuated.
15. A switch assembly as claimed in Claim 14, wherein said biasing means is a leaf
spring (23) exerting a force on said lever (20) for biasing said lever (20) in a direction
opposite to the direction in which said electromagnet (18) exerts its force.
16. A switch assembly as claimed in Claim 9, wherein said first conducting means comprises
an elongated and stationary first conducting member (42) having its intermediate portion
supported by said base, and first and second contact points (42a, 42b) attached to
opposite ends of said first conducting member (42).
17. A switch assembly as claimed in Claim 16, wherein said second conducting means
comprises elongated and movable second and third conducting members (44, 46) having
their first ends rigidly mounted on said base, and third and fourth contact points
(44a, 46a) attached to said second and third conducting members (44, 46), respectively,
at their second ends opposite to said first end in such a manner that said first and
second contact points (42a, 42b) are located in face-to-face relation, respectively,
with said third and fourth contact points (44a, 46a), said second and third conducting
members (44, 46) being linked with each other to move simultaneously between said
break-position in which said first and second contact points (42a, 42b) are electrically
separated from said third and fourth contact points (44a, 46a), respectively, and
said make-position in which said first and second contact points (42a, 42b) are electrically
connected with said third and fourth contact points (44a, 46a), respectively.
18. A switch assembly as claimed in Claim 17, wherein said first magnetic body (40)
has a "U" shape configuration having a groove defined therein, said first magnetic
body (40) connected to said first conducting member (42) such that said first conducting
member (42) extends through said groove.
19. A switch assembly as claimed in Claim 18, wherein said second magnetic body (48)
has a plate configuration, said second magnetic body (48) being connected to said
second and third conducting members (44, 46) so as to move together with said second
and third conducting members (44, 46), said second magnetic body (48) closing said
groove to define a closed magnetic loop around said first conducting member (42) by
said first and second magnetic bodies (40, 48) when said second and third conducting
members (44, 46) move to said make-position, and opening said groove when said second
and third conducting members (44, 46) move to said break-position.
20. A switch assembly as claimed in Claim 9, wherein said first magnetic body (64)
has a "U" shape configuration and rigidly mounted on said base.
21. A switch assembly as claimed in Claim 20, wherein said second magnetic body (66)
has a plate configuration movably mounted on said base to move between a first position
in which the second magnetic body (66) abuts against the first magnetic body (64)
to define a closed magnetic loop by said first and second magnetic bodies (64, 66)
and a second position in which said magnetic loop is opened.
22. A switch assembly as claimed in Claim 21, wherein said first conducting means
comprises first and second conducting members (68, 70) rigidly mounted on said base
and extending through a groove defined in said "U" shaped first magnetic body (64),
and first and second contact points (68a, 80a) mounted on said first and second conducting
members (68, 70), respectively, at their ends remote from the base.
23. A switch assembly as claimed in Claim 22, wherein said second conducting means
comprises an elongated third conducting member (72) having its intermediate portion
supported by said second magnetic body (66), and third and fourth contact points (72a,
72b) attached to opposite ends of said third conducting member (72), said third and
fourth contact points (72a, 72b) being connected to said first and second contact
points (68a, 70a), respectively, when said second magnetic body (66) moves to said
first position, and separated therefrom when said second magnetic body (66) moves
to said second position.
24. A switch assembly as claimed in Claim 9, wherein said first conducting means comprises
an elongated plate shaped first conducting member (96) having an intermediate portion
provided with an axle (98) which is rotatably supported by said base, first and second
contact points (96a, 96b) mounted at opposite end portions of said elongated first
conducting member (96) on opposite faces, respectively.
25. A switch assembly as claimed in Claim 24, wherein said second conducting means
comprises second and third conducting members (92, 94) rigidly mounted on said base,
and third and fourth contact points (92a, 94a) mounted on said second and third conducting
members (92, 94), respectively, said first conducting member (96) being rotated about
said axle (98) between said make-position in which said first and second contact points
(96a, 96b) contact with said third and fourth contact points (92a, 94a), respectively,
and said break-position in which said first and second contact points (96a, 96b) are
separated from said third and fourth contact points (92a, 94a), respectively.
26. A switch assembly as claimed in Claim 25, wherein said first magnetic body (100
or 102) has a "U" shape configuration and rigidly mounted on said first conducting
member (96).
27. A switch assembly as claimed in Claim 26, wherein said second magnetic body (104a
or 104b) has a plate configuration and rigidly mounted on said base, and said first
and second magnetic bodies (100, 104a) abut against each other to define a closed
magnetic loop when said first conducting member (96) is rotated to said make-position.
28. A switch assembly as claimed in Claim 1, further comprising a casing (60) for
locating said first and second conducting means in a vacuum.
29. A switch assembly as claimed in Claim 1, further comprising a casing (60) for
locating said first and second conducting means in an atmosphere of inactive gas.
30. A switch assembly as claimed in Claim 29, wherein said inactive gas is SF6.
31. A switch assembly as claimed in Claim 1, wherein said actuating means is an electromagnet
(8, 18).
32. A switch assembly as claimed in Claim 1, wherein said actuating means is a push
button (34).
33. A switch assembly as claimed in Claim 1, wherein said actuating means is an electret
(74).
34. A switch assembly as claimed in Claim 1, wherein said actuating means is a bimorph
(90).
1. Schalteraufbau, welcher aufweist:
erste und zweite Leitungsmittel (10, 22, 42, 68, 70, 96; 12, 26, 44, 46, 72, 92, 94),
welche so vorgesehen sind, daß sie jeweils eine von zwei Stellungen einnehmen, nämlich
einer Unterbrechungsstellung, in der die ersten und zweiten Leitungsmittel elektrisch
voneinander getrennt sind, und einer Schließstellung, in der die ersten und zweiten
Leitungsmittel elektrisch miteinander verbunden sind und einen durch sie hindurchgehenden
Stromweg bestimmen;
einen ersten und einen zweiten magnetischen Körper (4, 24, 40, 64, 100, 102; 6, 28,
48, 66, 104), die in Zuordnung zu den ersten und zweiten Leitungsmitteln vorgesehen
sind, derart daß der erste und der zweite magnetische Körper wenigstens einen geschlossenen
magnetischen Kreis, durch welchen sich wenigstens eines der ersten und zweiten Leitungsmittel
erstreckt, bestimmen, wenn die ersten und zweiten Leitungsmittel in die Schließstellung
geschwenkt werden, wobei der magnetische Kreis geöffnet wird, wenn die ersten und
zweiten Leitungsmittel in die Unterbrechungsstellung geschwenkt werden;
Belastungsmittel (10b, 23, 54, 82) zur Belastung der ersten und zweiten Leitungsmittel
in die Unterbrechungsstellung;
Betätigungsmittel (8, 18, 20, 34, 74, 90) zur Betätigung der ersten und zweiten Leitungsmittel
in die Schließstellung gegen die Vorbelastungsmittel,
wodurch eine magnetische Kraft durch den geschlossenen magnetischen Kreis erzeugt
wird, die so wirkt, daß die Leitungsmittel (10, 22, 42, 68, 70, 96; 12, 26, 44, 46,
72, 92, 94) die Unterbrechungsstellung nur einnehmen können, wenn der Strom im wesentlichen
null ist.
2. Schalteraufbau nach Anspruch 1, bei welchem der erste magnetische Körper (4) im
wesentlichen S-förmig ist, bestimmt durch einen ersten, zweiten und dritten Stab (4a,
4b, 4c), welche parallel zueinander verlaufen, wobei der zweite Stab (4b) zwischen
dem ersten und dem dritten Stab (4a, 4c) liegt und der erste Stab (4a) oberhalb einer
Ebene liegt, in welcher der zweite und der dritte Stab (4b, 4c) enthalten sind, wobei
der Aufbau ferner durch einen vierten Stab (4d), welcher den ersten und den zweiten
Stab (4a, 4b) miteinander verbindet, und einen fünften Stab (4e), welcher den zweiten
und den dritten Stab (4b, 4c) miteinander verbindet, bestimmt ist.
3. Schalteraufbau nach Anspruch 2, bei welchem der zweite magnetische Körper (6) die
Form einer langgestreckten Platte hat, welche zwischen ihren Enden im Bereich des
zweiten Stabs (4b) des ersten magnetischen Körpers (4) schwenkbar gelagert ist, wobei
der langgestreckte zweite magnetische Körper (6) mit seinem ersten Ende unter dem
ersten Stab (4a) und mit seinem zweiten Ende über dem dritten Stab (4c) liegt, wodurch,
wenn der langgestreckte zweite magnetische Körper (6) einen ersten Zwischenraum (G2)
zwischen dem ersten Ende und dem ersten Stab (4a) verringernd gedreht wird, der langgestreckte
zweite magnetische Körper (6) und der zweite, dritte und fünfte Stab (4b, 4c, 4e)
einen geschlossenen magnetischen Kreis bestimmen.
4. Schalteraufbau nach Anspruch 3, bei welchem die ersten Leitungsmittel ein erstes
langgestrecktes leitendes Element (10), welches sich in Längsrichtung des langgestreckten
zweiten magnetischen Körpers (6) erstreckt und durch einen durch den langgestreckten
zweiten magnetischen Körper (6) und den zweiten, dritten und fünften Stab (4b, 4c,
4e) bestimmten Raum verläuft, und einen ersten Kontaktpunkt (10c), welcher auf dem
ersten langgestreckten leitenden Element (10) an einer Stelle angebracht ist, wo das
erste langgestreckte leitende Element (10) benachbart zum ersten Ende des langgestreckten
zweiten magnetischen Körpers (6) liegt, umfassen.
-5. Schalteraufbau nach Anspruch 4, bei welchem die zweiten leitenden Mittel ein sich
durch den genannten Raum erstreckendes zweites langgestrecktes leitendes Element (12),
welches Strom durch den Raum in der gleichen Richtung wie der durch das erste langgestreckte
leitende Element (10) führen kann, wenn die ersten und zweiten Leitungsmittel in die
Schließstellung geschwenkt werden, und einen auf dem langgestreckten leitenden Element
(12) so angebrachten zweiten Kontaktpunkt (12c), daß der zweite Kontaktpunkt (12c)
dem ersten Kontaktpunkt (10c) direkt gegenübersteht, umfassen.
6. Schalteraufbau nach Anspruch 5, bei welchem der erste und der zweite Kontaktpunkt
(10c, 12c) einen zweiten Zwischenraum (G1), welcher kleiner als der erste Zwischenraum
(G2) zwischen dem ersten Ende und dem ersten Stab (4a) ist, aufweisen, um den ersten
Zwischenraum (G2) größer als null zu halten, auch wenn der erste und der zweite Kontaktpunkt
(10c, 12c) miteinander in Berührung stehen.
7. Schalteraufbau nach Anspruch 4, bei welchem die Belastungsmittel einen Abschnitt
(10b) des ersten langgestreckten leitenden Elementes (10) umfassen, der sich in Längsrichtung
des langgestreckten zweiten magnetischen Körpers (6) erstreckt, so daß dieser Abschnitt
(10b) des ersten langgestreckten leitenden Elements (10) als Blattfeder zur Belastung
des ersten Endes des zweiten magnetischen Körpers (6) vom ersten Stab (4a) weg dient.
8. Schalteraufbau nach Anspruch 3, bei welchem die Betätigungsmittel ein eine auf
den vierten Stab (4d) des ersten magnetischen Körpers (4) gewickelte Wicklung (8)
aufweisender Elektromagnet zur Erzeugung einer anziehenden Kraft (F1) zwischen dem
ersten Stab (4a) des ersten magnetischen Körpers (4) und dem ersten Ende des langgestreckten
zweiten magnetischen Körpers (6) sind.
9. Schalteraufbau nach Anspruch 1, welcher ferner eine Basis (2, 16, 36, 38, 62) aufweist.
10. Schalteraufbau nach Anspruch 9, bei welchem die ersten Leitungsmittel ein langgestrecktes
und stationäres ersten leitendes Element (22), das mit seinem ersten Ende starr an
der Basis (16) befestigt ist, und einen ersten Kontaktpunkt (22a), welcher an dem
ersten leitenden Element (22) an seinem dem ersten Ende entgegengesetzten zweiten
Ende angebracht ist, umfassen.
11. Schalteraufbau nach Anspruch 10, bei welchem die zweiten Leitungsmittel ein langgestrecktes
und bewegliches zweites leitendes Element (26), welches mit seinem ersten Ende starr
an der Basis (16) befestigt ist, und einen zweiten Kontaktpunkt (26a), welcher an
dem zweiten leitenden Element (26) an seinem dem ersten entgegengesetzten Ende zweiten
Ende in einer solchen Weise angebracht ist, daß der erste und der zweite Kontaktpunkt
(22a, 26a) einander direkt gegenüberstehen, umfassen, wobei das zweite leitende Element
(26) zwischen der Unterbrechungsstellung, in welcher der erste und der zweite Kontaktpunkt
(22a, 26a) elektrisch voneinander getrennt sind, und der Schließstellung, in welcher
der erste und der zweite Kontaktpunkt (22a, 26a) miteinander verbunden sind, beweglich
ist.
12. Schalteraufbau nach Anspruch 11, bei welchem der erste magnetische Körper (24)
U-förmig ist und darin eine Kehle bestimmt, wobei der erste magnetische Körper (24)
mit dem ersten leitenden Element (22) so verbunden ist, daß sich das erste leitende
Element (22) durch die Kehle erstreckt.
13. Schalteraufbau nach Anspruch 12, bei welchem der zweite magnetische Körper (28)
plattenförmig aufgebaut ist, wobei der zweite magnetische Körper (28) mit dem zweiten
leitenden Element (26) so verbunden ist, daß er sich zusammen mit dem zweiten leitenden
Element (26) bewegt, wobei der zweite leitende Körper (28) die Kehle schließt und
einen geschlossenen magnetischen Kreis um das erste leitende Element (22) herum mit
dem ersten und dem zweiten magnetischen Körper (24, 28) bestimmt, wenn das zweite
leitende Element (26) sich in die Schließstellung bewegt, und die Kehle öffnet, wenn
sich das zweite leitende Element (26) in die Unterbrechungsstellung bewegt.
14. Schalteraufbau nach Anspruch 11, bei welchem die Betätigungsmittel einen Elektromagneten
(18) und einen durch den Elektromagneten (18) betätigten Schwenkhebel (20) umfassen,
wobei der Hebel (20) so eingerichtet ist, daß er die zweiten Leitungsmittel (26) in
die Schließstellung drückt, wenn der Elektromagnet (18) in Tätigkeit gesetzt wird.
15. Schalteraufbau nach Anspruch 14, bei welchem die Belastungsmittel eine Blattfeder
(23) sind, welche auf den Hebel (20) eine Kraft ausübt, die den Hebel (20) in eine
Richtung belastet, die derjenigen, in welcher der Elektromagnet (18) seine Kraft ausübt,
entgegengesetzt ist.
16. Schalteraufbau nach Anspruch 9, bei welchem die ersten Leitungsmittel ein langgestrecktes
und stationäres erstes leitendes Element (42), welches zwischen seinen Enden durch
die Basis gehaltert wird, und einen ersten und zweiten Kontaktpunkt (42a, 42b), welche
an entgegengesetzten Enden des ersten leitenden Elements (42) angebracht sind, umfassen.
17. Schalteraufbau nach Anspruch 16, bei welchem die zweiten Leitungsmittel langgestreckte
und bewegliche zweite und dritte leitende Elemente (44, 46), welche mit ihren ersten
Enden starr an der Basis befestigt sind, und einen dritten und einen vierten Kontaktpunkt
(44a, 46a), die an dem zweiten bzw. und dem dritten leitenden Element (44, 46) an
deren dem ersten Ende entgegengesetzten zweiten Enden in einer solchen Weise angebracht
sind, daß der erste und zweite Kontaktpunkt (42a, 42b) dem dritten bzw. vierten Kontaktpunkt
(44a, 46a) direkt gegenüberliegen, umfassen, wobei das zweite und das dritte leitende
Element (44, 46) so miteinander verbunden sind, daß sie sich gleichzeitig zwischen
der Unterbrechungsstellung, in welcher der erste und der zweite Kontaktpunkt (42a,
42b) elektrisch vom dritten bzw. vierten Kontaktpunkt (44a, 46a) getrennt sind, und
der Schließstellung, in welcher der erste und der zweite Kontaktpunkt (42a, 42b) mit
dem dritten bzw. vierten Kontaktpunkt (44a, 46a) elektrisch verbunden sind, bewegen.
18. Schalteraufbau nach Anspruch 17, bei welchem der erste magnetische Körper (40)
U-förmig ist und darin eine Kehle bestimmt, wobei der erste magnetische Körper (40)
mit dem ersten leitenden Element (42) so verbunden ist, daß sich das erste leitende
Element (42) durch die Kehle erstreckt.
19. Schalteraufbau nach Anspruch 18, bei welchem der zweite magnetische Körper (48)
plattenförmig aufgebaut ist, wobei der zweite magnetische Körper (48) mit dem zweiten
und dem dritten leitenden Element (44, 46) so verbunden ist, daß er sich zusammen
mit dem zweiten und dem dritten leitenden Element (44, 46) bewegt, wobei der zweite
magnetische Körper (48) die Kehle schließt und einen geschlossenen magnetischen Kreis
um das erste leitende Element (42) herum durch den ersten und den ersten magnetischen
Körper (40, 48) bestimmt, wenn das zweite und das dritte leitende Element (44, 46)
sich in ihre Schließstellung bewegen, und die Kehle öffnet, wenn das zweite und das
dritte leitende Element (44, 46) sich in die Unterbrechungsstellung bewegen.
20. Schalteraufbau nach Anspruch 9, bei welchem der erste magnetische Körper (64)
U-Form hat und starr an der Basis befestigt ist.
21. Schalteraufbau nach Anspruch 9,0, bei welchem der zweite magnetische Körper (66)
Plattenform hat und an der Basis zwischen einer ersten Stellung, in welcher der zweite
magnetische Körper (66) am ersten magnetischen Körper (64) anliegt und einen geschlossenen
magnetischen Kreis durch den ersten und den zweiten magnetischen Körper (64, 66) bestimmt,
und einer zweiten Stellung, in welcher der magnetische Kreis geöffnet ist, beweglich
angebracht ist.
22. Schalteraufbau nach Anspruch 21, bei welchem die ersten Leitungsmittel ein erstes
und ein zweites leitendes Element (68, 70), welche starr an der Basis angebracht sind
und sich durch eine in dem U-förmigen ersten magnetischen Körper (64) bestimmte Kehle
erstrecken, und einen ersten und einen zweiten Kontaktpunkt (68a, 80a), die an dem
ersten bzw. zweiten leitenden Element (68, 70) an deren von der Basis entfernten Enden
angebracht sind, umfassen.
23. Schalteraufbau nach Anspruch 22, bei welchem die zweiten Leitungsmittel ein langgestrecktes
drittes leitendes Element (72), welches zwischen seinen Enden durch den zweiten magnetischen
Körper (66) gehaltert ist, und einen dritten und einen vierten Kontaktpunkt (72a,
72b), die an entgegengesetzten Enden des dritten leitenden Elements (72) angebracht
sind, umfassen, wobei der dritte und der vierte Kontaktpunkt (72a, 72b) mit dem ersten
bzw. dem zweiten Kontaktpunkt (68a, 70a) verbunden sind, wenn sich der zweite magnetische
Körper (66) in die erste Stellung bewegt, und von diesen getrennt sind, wenn sich
der zweite magnetische Körper (66) in die zweite Stellung bewegt.
24. Schalteraufbau nach Anspruch 9, bei welchem die ersten Leitungsmittel ein langgestrecktes
plattenförmiges erstes leitendes Element (96), welches zwischen seinen Enden mit einer
durch die Basis drehbar gehalterten Achse (98) versehen ist, und einen ersten und
einen zweiten Kontaktpunkt (96a, 96b), welche an entgegengesetzten Enden des langgestreckten
ersten leitenden Elements (96) an entgegengesetzten Seiten angebracht sind, umfassen.
25. Schalteraufbau nach Anspruch 24, bei welchem die zweiten Leitungsmittel ein zweites
und ein drittes leitendes Element (92, 94), die starr an der Basis befestigt sind,
und einen dritten und einen vierten Kontaktpunkt (92a, 94a), die am zweiten bzw. am
dritten leitenden Element (92, 94) angebracht sind, umfassen, wobei das erste leitende
Element (96) um die Achse (98) zwischen der Schließstellung, in welcher der erste
und der zweite Kontaktpunkt (96a, 96b) den dritten bzw. vierten Kontaktpunkt (92a,
94a) berühren, und der Unterbrechungsstellung, in welcher der erste und der zweite
Kontaktpunkt (92a, 94a) getrennt sind, gedreht wird.
26. Schalteraufbau nach Anspruch 25, bei welchem der erste magnetische Körper (100
oder 102) U-Form hat und starr an dem ersten leitenden Element (96) befestigt ist.
27. Schalteraufbau nach Anspruch 26, bei welchem der zweite magnetische Körper (104a
oder 104b) Plattenform hat und starr an der Basis befestigt ist, und der erste und
der zweite magnetische Körper (100, 104a) einen geschlossenen magnetischen Kreis bestimmend
aneinander anliegen, wenn das erste leitende Element (96) in die Schließstellung gedreht
wird.
28. Schalteraufbau nach Anspruch 1, welcher ferner ein Gehäuse (60) zur Anordnung
der ersten und zweiten Leitungsmittel in einem Vakuum umfaßt.
29. Schalteraufbau nach Anspruch 1, welcher ferner ein Gehäuse (60) zur Anordnung
der ersten und zweiten leitenden Mittel in einer Atmosphäre aus inaktivem Gas umfaßt.
30: Schalteraufbau nach Anspruch 29, bei welchem das inaktive Gas SF6 ist.
31. Schalteraufbau nach Anspruch 1, bei welchem die Betätigungsmittel eine Elektromagnet
(8, 18) sind.
32. Schalteraufbau nach Anspruch 1, bei welchem die Betätigungsmittel ein Druckknopf
(34) sind.
33. Schalteraufbau nach Anspruch 1, bei welchem die Betätigungsmittel ein Elektret
(74) sind.
34. Schalteraufbau nach Anspruch 1, bei welchem die Betätigungsmittel ein Zweielementkristall
(90) sind.
1. Ensemble d'interrupteur comprenant un premier et un second dispositifs conducteurs
(10,22, 42, 68, 70, 96; 12, 26, 44, 46, 72, 92, 94) prévus en fonctionnement pour
adopter respectivement l'une de deux positions, à savoir une position d'ouverture
dans laquelle le premier et le second dispositifs conducteurs sont séparés électriquement
l'un de l'autre et une position de fermeture dans laquelle le premier et le second
dispositifs conducteurs sont connectés électriquement entre eux pour définir un circuit
de courant, une première et une seconde pièces magnétiques (4, 24, 40, 64, 100, 102;
6, 28, 48, 66, 104) prévues en fonctionnement en association avec ledit premier et
ledit second dispositifs conducteurs de manière que ladite première et ladite seconde
pièces magnétiques définissent au moins une boucle magnétique fermée avec l'un au
moins dudit premier et dudit second dispositifs conducteurs passant dans ladite boucle
magnétique fermée quand ledit premier et ledit second dispositifs conducteurs sont
amenés dans ladite position de fermeture, ladite boucle magnétique étant ouverte quand
ledit premier et ledit second dispositifs conducteurs sont amenés dans ladite position
d'ouverture, un dispositif de rappel (10b, 23, 54, 82) destiné à rappeler ledit premier
et ledit second dispositifs conducteurs vers ladite position d'ouverture, un dispositif
d'actionnement (8, 18, 20, 34, 74, 90) pour actionner ledit premier et ledit second
dispositifs conducteurs vers ladite position de fermeture contre ledit dispositif
de rappel de manière qu'une force magnétique soit développée par ladite boucle magnétique
fermée, ladite force s'exerçant de manière que lesdits dispositifs conducteurs (10,
22, 42, 68, 70, 96; 12, 26, 44, 46, 72, 92, 94) ne puissent passer dans ladite position
d'ouverture que lorsque le courant est pratiquement nul.
2. Ensemble d'interrupteur selon la revendication 1, dans lequel ladite première pièce
magnétique (4) a une forme en "S" définie par une première, une seconde et une troisième
barrettes (4a, 4b, 4c) disposées parallèlement entre elles, avec la seconde barrette
(4b) positionnée entre la première et la troisième barrettes (4a, 4c) et ladite première
barrette (4a) étant positionnée au-dessus du plan dans lequel se trouvent la seconde
et la troisième barrettes (4b, 4c), ladite configuration étant en outre définie par
une quatrième barrette (4d) reliant la première et la seconde barrettes (4a, 4b) et
une cinquième barrette (4e) reliant la seconde et la troisième barrettes (4b, 4c).
3. Ensemble d'interrupteur selon la revendication 2, dans lequel ladite seconde pièce
magnétique (10) comporte une configuration de plaque allongée avec sa partie intermédiaire
supportée pour pivoter près de ladite seconde barrette (4b) de ladite première pièce
magnétique (4), ladite seconde pièce magnétique allongée (6) ayant sa première partie
d'extrémité située au-dessous de ladite première barrette (4a) et sa seconde partie
d'extrémité située au-dessus de ladite troisième barrette (4c) de manière que lorsque
ladite seconde pièce magnétique allongée (6) est tournée pour réduire un premier intervalle
(G2) entre ladite première partie d'extrémité et ladite première barrette (4a), ladite
seconde pièce magnétique allongée (6) et ladite seconde, ladite troisième et ladite
cinquième barrettes (4b, 4c, 4e) définissent une boucle magnétique fermée.
4. Ensemble d'interrupteur selon la revendication 3, dans lequel ledit premier dispositif
conducteur consiste en une première pièce conductrice allongée (10) s'étendant le
long d'une direction longitudinale de ladite seconde pièce magnétique allongée (6)
et passant dans un espace défini par ladite seconde pièce magnétique allongée (6)
et la seconde, la troisième et la cinquième barrettes (4b, 4c, 4e) et un premier contact
(10c) étant monté sur la première pièce conductrice allongée (10) dans une position
où la première pièce conductrice allongée (10) est disposée près de ladite première
partie d'extrémité de ladite seconde pièce magnétique allongée (10).
5. Ensemble d'interrupteur selon la revendication 4, dans lequel ledit second dispositif
conducteur consiste en une seconde pièce conductrice allongée (12) passant dans ledit
espace, capable de faire passer un courant dans ledit espace dans le même sens que
celui qui circule dans ladite première pièce conductrice allongée (10) quand ledit
premier et ledit second dispositifs conducteurs sont amenés dans ladite position de
fermeture et un second contact (12c) monté sur ladite seconde pièce conductrice allongée
(12) de manière à disposer ledit second contact (12c) en face dudit premier contact
(10c).
6. Ensemble d'interrupteur selon la revendication 5, dans lequel ledit premier et
ledit second contacts (10c, 12c) présentent un second intervalle (G1) plus petit que
ledit premier intervalle (G2) entre ladite première partie d'extrémité et ladite première
barrette (4a) de manière à maintenir ledit premier intervalle (G2) supérieur à zero
même après que le premier et le second contacts (10c et 12c) soient venus en contact
entre eux.
7. Ensemble d'interrupteur selon la revendication 4, dans lequel ledit dispositif
de rappel consiste en une partie de (10b) de ladite première pièce conductrice allongée
(10) qui s'étend dans une direction longitudinale de ladite seconde pièce magnétique
allongée (6) de manière que ladite partie (10b) de ladite première pièce conductrice
allongée (10) serve de lame ressort pour appeler ladite première partie d'extrémité
à ladite seconde pièce magnétique (6) à l'opposé de ladite première barrette (4a).
8. Ensemble d'interrupteur selon la revendication 3, dans lequel ledit dispositif
d'actionnement est un électro-aimant comportant une bobine (8) enroulée autour de
ladite quatrième barrette (4d) de ladite première pièce magnétique (4) pour produire
une force d'attraction (F1) entre ladite première barrette (4a) de ladite première
pièce magnétique (4) et ladite première partie d'extrémité de ladite seconde pièce
magnétique allongée (6).
9. Ensemble d'interrupteur selon la revendication 1, comprenant en outre une base
(2, 16, 36, 38, 62).
10. Ensemble d'interrupteur selon la revendication 9, dans lequel ledit premier dispositif
conducteur consiste en une première pièce conductrice (22) allongée et fixe ayant
sa première extrémité montée rigidement sur ladite base (16) et un premier contact
(22a) fixé sur ladite première pièce conductrice (22) à sa seconde extrémité opposée
à ladite première extrémité.
11. Ensemble d'interrupteur selon la revendication 10, dans lequel ledit second dispositif
conducteur consiste en une seconde pièce conductrice (26) allongée et mobile ayant
sa première extrémité montée rigidement sur ladite base (16) et un second contact
(26a) fixé sur ladite seconde pièce conductrice (26) à sa seconde extrémité opposée
à la première extrémité, de manière que ledit premier et ledit second contacts (22a,
26a), soient disposés face à face entre eux, ladite seconde pièce conductrice (26)
étant mobile entre ladite position de coupure dans laquelle ledit premier et ledit
second contacts (22a, 26a) sont séparés électriquement l'un de l'autre et ladite position
de fermeture dans laquelle ledit premier et ledit second contacts (22a, 26a) sont
connectés entre eux.
12. Ensemble d'interrupteur selon la revendication 11, dans lequel ladite première
pièce magnétique (24) a une configuration en forme de "U" avec une rainure définie
à l'intérieur, ladite première pièce magnétique (24) étant reliée à ladite première
pièce conductrice (22) de manière que ladite première pièce conductrice (22) passe
dans ladite rainure.
13. Ensemble d'interrupteur selon la revendication 12, dans lequel ladite seconde
pièce magnétique (28) a une configuration en plaque, ladite seconde pièce magnétique
(28) étant reliée à ladite seconde pièce conductrice (26) de manière à se déplacer
avec ladite seconde pièce conductrice (26), ladite seconde pièce magnétique (28) fermant
ladite rainure pour définir une boucle magnétique fermée autour de ladite première
pièce conductrice (22), avec ladite première et ladite seconde pièces magnétiques
(24, 28) quand ladite seconde pièce conductrice (26) se déplace jusqu'à ladite position
de fermeture, et ouvrant ladite rainure quand ladite seconde pièce conductrice (26)
se déplace jusqu'à ladite position d'ouverture.
14. Ensemble d'interrupteur selon la revendication 11, dans lequel ledit dispositif
d'actionnement consiste en un électro-aimant (18) et en un levier pivotant (20) actionné
par ledit électro-aimant (18), ledit levier (20) étant agencé pour pousser ledit second
dispositif conducteur (26) vers ladite position de fermeture quand ledit électro-aimant
(18) est excité.
15. Ensemble d'interrupteur selon la revendication 14, dans lequel ledit dispositif
de rappel est une lame ressort (23) exerçant une force sur ledit levier (20) pour
rappeler ledit levier (20) dans un sens opposé au sens dans lequel ledit électro-aimant
(18) exerce sa force.
16. Ensemble d'interrupteur selon la revendication 9, dans lequel ledit premier dispositif
conducteur consiste en une première pièce conductrice (42) allongée et fixe dont la
partie intermédiaire est supportée par ladite base, et ledit premier et ledit second
contacts (42a, 42b) étant fixés aux extrémités opposés de ladite première pièce conductrice
(42).
17. Ensemble d'interrupteur selon la revendication 16, dans lequel ledit second dispositif
conducteur consiste en une seconde et une troisième pièces conductrices (44, 46) allongées
et mobiles dont les premières extrémités sont fixées rigidement sur ladite base, et
un troisième et un quatrième contacts (44a, 46a) fixés sur ladite seconde et ladite
troisième pièces conductrices (44, 46) respectivement à leurs secondes extrémités
opposées à ladite première extrémité, de manière que ledit premier et ledit second
contacts (42a, 42b) soient situés face à face respectivement, avec ledit troisième
et ledit quatrième contacts (44a, 46a), ladite seconde et ladite troisième pièces
conductrices (44, 46) étant reliées entre elles pour se déplacer simultanément entre
ladite position de coupure dans laquelle ledit premier et ledit second contacts (42a,
42b) sont séparés électriquement dudit troisième et dudit quatrième points de contact
(44a, 46a) respectivement et ladite position de fermeture dans laquelle ledit premier
et ledit second contacts (42a, 42b) sont connectés électriquement avec ledit troisième
et ledit quatrième contacts (44a, 46a) respectivement.
18. Ensemble d'interrupteur selon la revendication 17, dans lequel ladite première
pièce magnétique (40) a une configuration en forme de "U" avec une rainure définie
à l'intérieur, ladite première pièce magnétique (40) étant reliée à ladite première
pièce conductrice (42) de manière que ladite première pièce conductrice (42) passe
dans ladite rainure.
19. Ensemble d'interrupteur selon la revendication 18, dans lequel ladite seconde
pièce magnétique (48) a une configuration en plaque, ladite seconde pièce magnétique
(48) étant reliée à ladite seconde et à ladite troisième pièces conductrices (44,
46) de manière à se déplacer ensemble avec ladite seconde et ladite troisième pièces
conductrices (44, 46), ladite seconde pièce magnétique (48) fermant ladite rainure
pour définir une boucle magnétique fermée autour de ladite première conductrice (42)
au moyen de ladite première et ladite seconde pièces magnétiques (40, 48) quand ladite
seconde et ladite troisième pièces conductrices (44, 46) se déplacent vers ladite
position de fermeture, et ouvrant ladite rainure quand ladite seconde et ladite troisième
pièces conductrices (44, 46) se déplacent vers ladite position d'ouverture.
20. Ensemble d'interrupteur selon la revendication 9, dans lequel ladite première
pièce magnétique (64) a une configuration en forme de "U" et est montée rigidement
sur ladite base.
21. Ensemble d'interrupteur selon la revendication 20, dans lequel ladite seconde
pièce magnétique (66) a une configuration en plaque, montée de façon mobile sur ladite
base pour se déplacer entre une première position dans laquelle la seconde pièce magnétique
(66) s'appuie contre la première pièce magnétique (64) pour définir une boucle magnétique
fermée par ladite première et ladite seconde pièces magnétiques (64, 66) et une seconde
position dans laquelle ladite boucle magnétique est ouverte.
22. Ensemble d'interrupteur selon la revendication 21, dans lequel ledit premier dispositif
conducteur consiste en une première et une seconde pièces conductrices (68, 70) montées
rigidement sur ladite base et passant dans une rainure définie dans ladite première
pièce magnétique (64) en forme de "U", et un premier et un second contacts (68a, 80a)
étant montés sur ladite première et ladite seconde pièces conductrices (68, 70) respectivement
à leurs extrémités opposées à ladite base.
23. Ensemble d'interrupteur selon la revendication 22, dans lequel ledit second dispositif
conducteur consiste en une troisième pièce conductrice allongée (72) dont une partie
intermédiaire est supportée par ladite seconde pièce magnétique (66) et un troisième
et un quatrième contacts (72a, 72b) fixés sur les extrémités opposées de ladite troisième
pièce conductrice (72), ledit troisième et ledit quatrième contacts (72a, 72b) étant
connectés respectivement audit premier et audit second contacts (68a, 70a) quand ladite
seconde pièce magnétique (66) se déplace jusqu'à ladite première position et étant
séparés quand ladite seconde pièce magnétique (66) se déplace jusqu'à ladite seconde
position.
24. Ensemble d'interrupteur selon la revendication 9, dans lequel ledit premier dispositif
conducteur consiste en une première pièce conductrice en forme de plaque allongée
(96) dont une partie intermédiaire est munie d'un axe (98) qui est supporté pour tourner
par ladite base, un premier et un second contacts (96a, 96b) étant montés aux parties
d'extrémités opposées de ladite première pièce conductrice allongée (96), respectivement
sur ses faces opposées.
25. Ensemble d'interrupteur selon la revendication 24, dans lequel ledit second dispositif
conducteur consiste en une seconde et une troisième pièces conductrices (92, 94) montées
rigidement sur ladite base, et un troisième et un quatrième contacts (92a, 94a) montés
sur ladite seconde et ladite troisième pièces conductrices (92, 94) respectivement,
ladite première pièce conductrice (96) étant tournée autour dudit axe (98) entre la
position de fermeture dans laquelle ledit premier et ledit second contacts (96a, 96b)
sont en contact avec ledit troisième et ledit quatrième contacts (90a, 94a) respectivement
et ladite position de coupure dans laquelle ledit premier et ledit second contacts
(96a, 96b) sont séparés dudit troisième et dudit quatrième contacts (92a, 94a).
26. Ensemble d'interrupteur selon la revendication 25, dans lequel ladite première
pièce magnétique (100 ou 102) a une configuration en forme de "U" et est montée rigidement
sur ladite première pièce conductrice (96).
27. Ensemble d'interrupteur selon la revendication 26, dans lequel ladite seconde
pièce magnétique (104a ou 104b) a une configuration de plaque et est montée rigidement
sur ladite base et ladite première et ladite seconde pièces magnétiques (100, 104a)
s'appuient l'une contre l'autre pour définir une boucle magnétique fermée quand ladite
première pièce conductrice (96) est tournée dans ladite position de fermeture.
28. Ensemble d'interrupteur selon la revendication 1, comprenant en outre un boitier
(60) pour recevoir ledit premier et ledit second dispositifs conducteurs dans le vide.
29. Ensemble d'interrupteur selon la revendication 1, comprenant en outre un boitier
(60) pour recevoir ledit premier et ledit second dispositifs _ conducteurs dans une
atmosphère de gaz inerte.
30. Ensemble d'interrupteur selon la revendication 29, dans lequel ledit gaz inerte
est SFs.
31. Ensemble d'interrupteur selon la revendication 1, dans lequel ledit dispositif
d'actionnement est un électro-aimant (8, 18).
32. Ensemble d'interrupteur selon la revendication 1, dans lequel ledit dispositif
d'actionnement est un bouton poussoir (34).
33. Ensemble d'interrupteur selon la revendication 1, dans lequel dispositif d'actionnement
est un électret (74).
34. Ensemble d'interrupteur selon la revendication 1, dans lequel ledit dispositif
d'actionnement est une lame bimorphe (90).