| (19) |
 |
|
(11) |
EP 0 067 948 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
14.08.1985 Bulletin 1985/33 |
| (22) |
Date of filing: 05.05.1982 |
|
| (51) |
International Patent Classification (IPC)4: B41J 3/04 |
|
| (54) |
Method and apparatus for producing liquid drops on demand
Methode und Apparat zum Produzieren von Flüssigkeitstropfen auf Befehl
Méthode et appareil pour produire des gouttes liquides sur demande
|
| (84) |
Designated Contracting States: |
|
DE FR GB IT |
| (30) |
Priority: |
18.06.1981 US 274989
|
| (43) |
Date of publication of application: |
|
29.12.1982 Bulletin 1982/52 |
| (71) |
Applicant: International Business Machines
Corporation |
|
Armonk, N.Y. 10504 (US) |
|
| (72) |
Inventors: |
|
- Lee, Francis Chee-Shuen
San Jose
California 95120 (US)
- Mills, Ross Neal
Morgan Hill
California 95037 (US)
- Talke, Frank Eberhard
Morgan Hill
California 95037 (US)
|
| (74) |
Representative: Lewis, Alan John |
|
IBM United Kingdom Limited
Intellectual Property Department
Hursley Park Winchester
Hampshire SO21 2JN Winchester
Hampshire SO21 2JN (GB) |
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] This invention relates to methods and apparatus for generating liquid drops on demand
under control of a suitable electrical signal.
[0002] Ink jet printing has been known in the prior art, including systems which use a pressure
generated continuous stream of ink, which is broken into individual drops by a continuously
energized transducer. The individual drops are selectively charged and deflected either
to the print medium for printing or to a sump where the drops are collected and recirculated.
Examples of these pressurized systems include US-A-3,596,275 to Sweet, and 3,373,437
to Sweet et al. There have also been known in the prior art inkjet printing systems
in which a transducer is used to generate ink drops on demand. One example of such
a system is commonly assigned US-A-3,787,884 to Demer. In this system, the ink is
supplied to a cavity by gravity flow and a transducer mounted in the back of the cavity
produces motion when energized by an appropriate voltage pulse, which results in the
generation of an ink drop so that only those ink drops required for printing are generated.
A different embodiment of a drop-on-demand printing system in which the transducer
is radially arranged is shown in US-A-3,683,212 to Zoltan.
[0003] The prior art drop-on-demand printing systems have been limited by low drop production
rates, low resolution, and low efficiency. Typical prior art drop-on-demand printing
systems have utilized a constant cross-section nozzle and ink having a viscosity during
operation lower than 10 centipoise. Attempts to increase the drop production rates,
and thus to increase the print resolution, have led to stream instability.
[0004] It is an object of the invention to overcome this problem and to provide a method
of generating liquid drops on demand and apparatus for carrying out that method, which
is capable of operating at increased speeds compatible with high resolution printing.
[0005] Briefly the invention provides a drop-on-demand ink jet printing method and apparatus
comprising a print head having a fluid chamber supplied with a suitable high viscosity
marking fluid. An orifice comprising a strongly converging nozzle is in fluid communication
with the fluid chamber, and an electromechanical transducer is mounted in mechanical
communication with the fluid chamber. The transducer is selectively energized with
a series of signals so that one drop of the marking fluid is ejected from the orifice
for each of the signals having at least a predetermined amplitude.
[0006] More precisely, the invention provides a method of producing single liquid drops
of demand, comprising ejecting the volume of liquid required to form a single drop
from a tapering nozzle passage as and when a drop is demanded, said method being characterised
in that the liquid used has a viscosity in the range of 15 to 100 centipoise and in
that the nozzle passage tapers towards the exit orifice of the nozzle and has an included
or apex angle of between 60 and 80 degrees.
[0007] The invention includes apparatus for carrying out the foregoing method, said apparatus
comprising a print head having an ink chamber to which ink is supplied and from which
ink exits through a nozzle passage under the control of an electromechanical transducer
mounted in mechanical communication with the ink chamber, said transducer being operative
on appropriate energisation to cause a single drop to be ejected from the nozzle and
said nozzle passage converging towards the exit orifice of the nozzle, said apparatus
being characterised in that the nozzle passage has an included or apex angle of between
60 and 80 degrees whereby single drops of liquid having a viscosity in the range 15
to 100 centipoise can be formed.
[0008] The invention will now be further described with reference to the accompanying drawings,
in which:
Figure 1 is a schematic view showing a converging nozzle;
Figure 2 is a drop-on-demand ink jet printer embodying a converging nozzle;
Figure 3 is a section view taken along line 3-3 of Figure 2 of the drop-on-demand
ink jet print head.
Figure 4 is a view, partially in section, of an alternate embodiment of a drop-on-demand
ink jet print head;
Figure 5 is a right side view of an array of drop-on-demand ink jet print heads;
Figure 6 is a section view taken along lines 6-6 in Figure 5.
[0009] Referring to Figure 2, the printer apparatus comprises a print head 10 to which is
supplied high viscosity liquid ink from ink supply means 12. The viscosity requirement
is a function of nozzle size and maximum drop-on-demand drop production rate. The
viscosity for inks for high resolution printing extends up to 100 centipoise, and
the viscosity can be substantially higher for applications in which lower resolution
is suitable. Control means 14 provides the voltage control pulses to selectively energize
print head 10 to produce one ink drop for each voltage pulse supplied to print head
10. Print head 10 comprises head body 20 having a chamber or cavity 22 formed therein.
Cavity 22 is maintained filled with ink through supply line 24 from ink supply means
12. Ink from supply means 12 is not pressurized so the ink in cavity 22 is maintained
at or near atmospheric pressure under static conditions. An exit from cavity 22 is
provided by nozzle portion 26 which is designed so that the ink does not flow out
of nozzle portion 26 under static conditions. An intermediate ink reservoir 28 is
formed in head body 20 and is separated from cavity 22 by internal wall portion 30.
The top of cavity 22, as shown in Figure 2, is closed by a suitable transducer means
which is fixed to the head body. Internal wall portion 30 is designed so that a narrow
passageway 32 is provided for the transfer of liquid ink from intermediate ink reservoir
28 to ink cavity 22. The transducer means comprises a membrane member 34 which is
fastened to an electromechanical transducer 36. Transducer 36 displaces radially when
energized with a suitable voltage pulse and bends membrane 34 inwardly (as shown dotted
in Figure 3), and produces a pressure wave in cavity 22 so that liquid ink is expelled
out through nozzle portion 26 to form a single drop. Control means 14 provides the
voltage control pulses to selectively energize transducer 36 to produce one ink drop
for each voltage pulse applied to transducer 36.
[0010] The nozzle portion 26 of the drop-on-demand ink jet printing apparatus comprises
a converging nozzle. As shown in Figure 1, the nozzle has an entrance dimension d
1, which is larger than the exit dimension d
2. The nozzle shown in the drawing has a substantially linear taper in the dimension
of the nozzle along its physical length I however, other tapers such as a horn configuration
would also be suitable. The flow through the nozzle is in the direction from the larger
opening to the smaller opening, as shown by the arrow.
[0011] From a fluid mechanics viewpoint, the effective viscous length l
d2 of a converging nozzle can be calculated as

where d
1, d
2 are the dimensions at the entrance and exit of the converging section, respectively,
and I is the physical length of the nozzle (see Figure 1). Thus, it can be seen that
the converging nozzle is physically "long" but hydraulically "short". Since the converging
nozzles are "short", the converging nozzles do not provide reliable drop-on-demand
operation when using prior art ink formulations having moderate viscosities up to
about 16 centipoise due to drop formation instability. However, it was found that
highly reliable drop-on-demand operation can be produced with converging nozzles when
using marking fluids having a substantially higher viscosity than typical prior art
systems. Although the prior art systems using constant cross-section nozzles would
not even work in the drop-on-demand mode when utilizing marking fluids of the substantially
higher viscosity (up to 100 centipoise for high resolution printing, for example),
the combination of the converging nozzle and the high viscosity marking fluids produced
not only higher reliable drop-on-demand operation, but also much higher drop-on-demand
drop production rates than those obtainable by prior art drop-on-demand ink jet printers.
[0012] The operation was superior in other ways as well. For example, air ingestion into
the nozzle is completely inhibited and the stream stability is improved so that a
stream of drops of equal size and spacing can be produced. The stream directionality
is improved, and the jet velocity is easily increased which is essential for high
speed printing. The nozzle can be operated at any frequency in the frequency spectrum
up to 120 kHz without jet failure, and the nozzle can be operated up to 80 kHz drop-on-demand
drop production rate in high resolution printing operation.
[0013] The converging nozzle can be produced by any suitable technique. The preferred technique
for producing a converging nozzle is by anisotropically etching the nozzle in a silicon
substrate. This technique will be described with reference to the embodiment of the
drop-on-demand print head shown in Figure 4. The print head comprises cylindrical
transducer member 60 closed at one end by a nozzle plate 62, having formed therein
nozzle portion 64. The other end of the transducer is fixed to body member 66. When
transducer 60 is actuated by a suitable voltage drive pulse, i.e. with a drive pulse
having an amplitude greater than a predetermined threshold, transducer 60 is deflected
to the position shown dotted in Figure 4 to cause a single drop of ink 78 to be expelled
out through nozzle portion 64. Energisation of the transducer with a drive pulse of
less than the predetermined threshold amplitude does not cause a drop to be ejected
so drops can be selected by varying the amplitude of a continuous drive signal.
[0014] Nozzle plate 62 comprises a silicon substrate formed of single crystal material oriented
with the (100) planes parallel to the front surface. The front surface 68 and the
rear surface 70 of the nozzle plate are coated with etchant masking material. An aperture
is made in the masking material on the rear surface of the nozzle plate. The nozzle
plate is then subjected to a suitable anisotropic etching solution such as a water,
amine, pyro- catechol etchant, for example. It has been known for some time that the
(111) plane is a slow etch plane in single crystal silicon. The nozzle is etched in
the form of a truncated pyramid type opening with a square entrance aperture, tapered
sides, and a smaller square exit aperture. The tapered sides form an angle a of 54.7°
to the front surface since the etching is along the crystal planes of the silicon
substrate. The etching is continued until an exit aperture of the desired size is
formed.
[0015] In a particular embodiment, the silicon nozzle plate was about 1.27x 10-
2 cms, i.e. five mils thick and the nozzle plate was etched to produce about a 26x10-
6 sq.cm. i.e. a two mil square, exit aperture. In an embodiment similar to that shown
in Figure 4, the print head, including the above-described nozzle plate, produced
reliable drop-on-demand operation up to a drop production rate of 60 kHz at a resolution
of about 95 pels/cm i.e. 240 pels/inch. This resolution is considered high resolution
printing since it produces print resolution approaching that of engraved type. However,
the print quality began to decline at drop production rates over 40 kHz. In this apparatus,
inks having a viscosity with a range from about 15 centipoise up to 100 centipoise
worked to produce ink drops in a drop-on-demand mode, and the preferred. range of
viscosity was from 20 to 40 centipoise.
[0016] In a second embodiment similar to that shown in Figure 4, about a 9.3x 10-
6 sq.cm. i.e. a 1.2 mil square nozzle was used and this apparatus produced printing
at a drop-on-demand production rate of 80 kHz at a resolution of about 177 pels/cm
i.e. 450 pels/inch. This apparatus worked to produce ink drops in the drop-on-demand
mode with inks having a viscosity from about 10 centipoise up to about 70 centipoise.
The preferred range of viscosity was from about 20 to 40 centipoise.
[0017] Figures 5 and 6 show a print head array 40 comprising forty print heads 42 arranged
in four rows 44 with corresponding orifices 46 offset so that a line of printing can
be produced at a resolution approaching engraved type as the print head moves across
a print sheet. Each of the print heads 42 comprises a hollow cylindrical piezoelectric
transducer 48 which forms an ink chamber 50 to which ink is supplied from common reservoir
52. A housing 54 is provided which includes a tapered channel 56 for each print head
which transmits ink from ink chamber 50 to the corresponding orifice 46 in nozzle
plate 58. The orifices are strongly convergent nozzles, as indicated in Figure 6.
In the preferred embodiment nozzle plate 58 comprises a single crystal silicon substrate
and orifices are formed by anisotropic etching as described above to form square orifices
in nozzle plate 58, as shown in Figure 5.
[0018] In a particular embodiment, a forty nozzle array similar to that shown in Figures
5 and 6 was constructed with about a 26x10-6 sq.cm. i.e. a 2 mil square nozzles. This
array can be operated to produce printing at a resolution of about 95 pels/cm i.e.
240 pels/inch at a drop-on-demand drop production rate of up to 40 kHz. The array
operated successfully with ink having a viscosity down to 15 centipoise and up to
100 centipoise. However, the optimum range for the viscosity was 20 to 40 centipoise.
1. A method of producing single liquid drops of demand, comprising ejecting the volume
of liquid required to form a single drop from a tapering nozzle passage as and when
a drop is demanded, said method being characterised in that the liquid used has a
viscosity in the range of 15 to 100 centipoise and in that the nozzle passage tapers
towards the exit orifice of the nozzle and has an included or apex angle of between
60 and 80 degrees.
2. A method as claimed in Claim 1, further characterised in that the liquid has a
viscosity in the range of 20 to 60 centipoise.
3. A method as claimed in Claim 1, further characterised in that the liquid has a
viscosity in the range of 20 to 40 centipoise.
4. A method as claimed in Claim 3, further characterised in that the apex angle is
substantially 70 degrees.
5. A method as claimed in any one of Claims 1 to 4, further characterised in that
the drops can be ejected selectively using a drive signal at a base frequency of up
to 120 kHz, a drop being ejected only when the amplitude of the drive signal exceeds
a predetermined threshold amplitude.
6. A method as claimed in Claim 5, further characterised in that the drops can be
ejected selectively at a base frequency of up to 80 kHz, a drop being ejected only
when the amplitude of the drive signal exceeds a predetermined threshold amplitude.
7. A method of operating a drop-on-demand ink jet printer comprising an ink jet print
head having an ink cavity, an ink outlet therefrom provided as a nozzle passage having
an entrance dimension and an exit dimension, characterised in that the ratio of said
entrance dimension to said exit dimension being such that the passage has an included
or apex angle of between 60 and 80 degrees thereby producing a nozzle passage which
converges strongly toward the exit orifice of the nozzle passage and in which the
effective viscous length of said nozzle passage is short with respect to the physical
length of the nozzle passage, and an electromechanical transducer mounted in mechanical
communication with said ink cavity;
said method comprising filling said ink cavity with a marking fluid having any selected
viscosity in the range of 15 to 100 centipoises at the normal operating temperature;
and
selectively energizing said electromechanical transducer with a series of signals
comprising signals at a base frequency up to 120 kHz to eject one drop of said marking
fluid from said opening only when the amplitude of the signal exceeds a predetermined
threshold amplitude, whereby said drop-on-demand inkjet print head is capable of operating
with a marking fluid at each one of said viscosities throughout the stated range at
any given time and with signals at any frequency within the stated range at any given
time to produce reliable drop-on-demand printing operation.
8. Drop-on-demand ink jet printing apparatus for carrying out the method claimed in
any one of Claims 1 to 6, said apparatus comprising a print head (10) having an ink
chamber (22) to which ink is supplied and from which ink exits through a nozzle passage
(26) under the control of an electromechanical transducer (36) mounted in mechanical
communication with the ink chamber, said transducer being operative on appropriate
energisation to cause a single drop to be ejected from the nozzle and said nozzle
passage converging towards the exit orifice of the nozzle, said apparatus being characterised
in that the nozzle passage has an included or apex angle of between 60 and 80 degrees
whereby single drops of liquid having a viscosity in the range 15 to 100 centipoise
can be formed.
9. Apparatus as claimed in Claim 8, further characterised in that the nozzle passage
has an included or apex angle of about 70 degrees.
10. Apparatus as claimed in Claim 8 or 9, further characterised in that the nozzle
passage is anisotropically etched in a silicon substrate formed from single crystal
material oriented with the (100) plane parallel to the major substrate surfaces.
11. Drop-on-demand ink jet printing apparatus comprising a print head having fluid
chamber supplied with a marking fluid, an orifice in fluid communication with the
fluid chamber, an electromechanical transducer mounted in mechanical communication
with the fluid chamber means for producing a series of signals to selectively energize
the transducer to eject one drop of the marking fluid from the orifice only when the
amplitude of the signal exceeds a predetermined threshold amplitude, and said orifice
comprising a nozzle passage having an entrance dimension and an exit dimension, characterised
in that the ratio of said entrance dimension to said exit dimension being such that
the passage has an included or apex angle between 60 and 80 degrees thereby producing
a nozzle passage which converges strongly toward the exit orifice of the nozzle and
in which the effective viscous length of said nozzle passage is short with respect
to the physical length of said nozzle passage;
said marking fluid has a viscosity in the range of 15 to 100 centipoises at the normal
operating temperature of said print head; and
said series of signals for selectively energizing said electromechanical transducer
comprises signals at a base frequency up to 120 kHz.
1. Verfahren zur Erzeugung einzelner Flüssigkeitstropfen auf Anforderung, mit Ausdrücken
des für die Bildung eines einzelnen Tropfens benötigten Flüssigkeitsvolumens aus einem
sich verjüngenden Düsendurchlauf bei und zur Zeit der Anforderung eines Tropfens,
dadurch gekennzeichnet, dass die benutzte Flüssigkeit eine Viskosität im Bereich von
15 bis 100 cP besitzt, und dass sich der Düsendurchlauf zur Ausgangsmündung der Düse
hin verjüngt und einen eingeschlossenen bzw. Spitzenwinkel von zwischen 60 und 80
Grad besitzt.
2. Verfahren nach Anspruch 1, weiterhin dadurch gekennzeichnet, dass die Flüssigkeit
eine Viskosität im Bereich von 20 bis 60 cP besitzt.
3. Verfahren nach Anspruch 1, weiterhin dadurch gekennzeichnet, dass die Flüssigkeit
eine Viskosität im Bereich von 20 bis 40 cP besitzt.
4. Verfahren nach Anspruch 3, weiterhin dadurch gekennzeichnet, dass der Spitzenwinkel
im wesentlichen 70 Grad beträgt.
5. Verfahren nach einem der Ansprüche 1 bis 4, weiterhin dadurch gekennzeichnet, dass
die Tropfen durch Anwendung eines Ansteuersignals mit einer Grundfrequenz von bis
zu 120 kHz gezielt ausdrückbar sind, wobei ein Tropfen nur dann ausgedrückt wird,
wenn die Grösse des Ansteuersignals eine vorbestimmte Schwellgrösse überschreitet.
6. Verfahren nach Anspruch 5, weiterhin dadurch gekennzeichnet, dass die Tropfen mit
einer Grundfrequenz von bis zu 80 kHz gezielt ausdrückbar sind, wobei ein Tropfen
nur dann ausgedrückt wird, wenn die Grösse des Ansteuersignals eine vorbestimmte Schwellgrösse
Überschreitet.
7. Verfahren zum Betreiben eines Tropfen auf Anforderung liefernden Tintenstrahldruckers
mit einem Tintenstrahldruckkopf mit einem Tintenhohlraum, einem als Düsendurchlauf
mit einer Eingangsabmessung und einer Ausgangsabmessung vorgesehenen Auslass für die
Tinte aus diesem, dadurch gekennzeichnet, dass die besagte Eingangsabmessung zur besagten
Ausgangsabmessung in einem solchen Verhältnis steht, dass der Durchlauf einen eingeschlossenen
bzw. Spitzenwinkel von zwischen 60 und 80 Grad besitzt, womit ein Düsendurchlauf hergestellt
wird, der stark zur Ausgangsmündung des Düsendurchlaufs hin zusammenläuft und in dem
die effektive viskose Strömungslänge des besagten Düsendurchlaufs im Verhältnis zur
physikalischen Länge des Düsendurchlaufs kurz ist, und ein in mechanischer Verbindung
mit besagtem Tintenhohlraum montierter elektromechanischer Wandler vorgesehen ist,
wobei das besagte Verfahren darin besteht, dass der besagte Tintenhohlraum mit einer
Markierflüssigkeit angefüllt wird, die bei der normalen Betriebstemperatur eine beliebig
ausgewählt Viskosität im Bereich von 15 bis 100 cP besitzt; und dass der besagte elektromechanische
Wandler gezielt mit einer Reihe von Signalen erregt wird, die Signale mit einer Grundfrequenz
von bis zu 120 kHz umfassen, um einen Tropfen der besagten Markierflüssigkeit nur
dann aus der besagten Oeffnung auszudrücken, wenn die Signalgrösse eine vorbestimmte
Schwellgrösse überschreitet, womit der besagte Tropfen auf Anforderungliefende Tintenstrahldruckkopf
zum Betrieb mit einer Markierflüssigkeit mit jeder der besagten Viskositäten im gesamten
angegebenen Bereich zu jeder gegebenen Zeit und mit Signalen beliebiger Frequenz innerhalb
des angegebenen Bereichs zu jeder gegebenen Zeit befähigt wird, um sicheren Tropfen
auf Anforderungliefernden Druckbetrieb zu liefern.
8. Tropfen auf Anforderunglieferndes Tintenstrahldruckgerät zum Ausführen des Verfahrens
nach einem der Ansprüche 1 bis 6, wobei das besagte Gerät einen Druckkopf (10) mit
einer Tintenkammer (22) umfasst, der Tinte zugeführt wird, und aus welcher Tinte unter
Steuerung durch einen in mechanischer Verbindung mit der Tintenkammer monitierten
elektromechanischen Wandler (36) durch einen Düsendurchlauf (26) austritt, wobei durch
den besagten Wandler bei entsprechender Erregung das Ausdrücken eines einzelnen Tropfens
aus der Düse bewirkt wird und der besagte Düsendurchlauf zur Ausgangsmundung der Düse
hin zusammenläuft, dadurch gekennzeichnet, dass der Düsendurchlauf einen eingeschlossenen
bzw. Spitzenwinkel von zwischen 60 und 80 Grad besitzt, womit einzelne Flüssigkeitstropfen
mit einer Viskosität im Bereich von 15 bis 100 cP gebildet werden können.
9. Gerät nach Anspruch 8, weiterhin dadurch gekennzeichnet, dass der Düsendurchlauf
einen eingeschlossenen bzw. Spitzenwinkel von ca. 70 Grad besitzt.
10. Gerät nach Anspruch 8 oder 9, weiterhin dadurch gekennzeichnet, dass der Düsendurchlauf
anisotrop in ein Siliciumsubstrat eingeätzt ist, das aus Einkristallmaterial gebildet
ist, dessen (100)-Ebene parallel zu den Hauptsubstratflächen ausgerichtet ist.
11. Tropfen auf Anforderung lieferndes Tintenstrahldruckgerät mit einem Druckkopf
mit einer Flüssigkeitskammer, der eine Markierflüssigkeit zugeführt wird, einer in
Flüssigkeitsverbindung mit der Flüssigkeitskammer stehenden Mündung, einem in mechanischer
Verbindung mit der Flüssigkeitskammer monitierten elektromechanischen Wandler, und
Mitteln zum Erzeugen einer Reihe von Signalen für die gezielte Erregung des Wandlers,
um einen Tropfen der Markierflüssigkeit nur dann aus der Mündung auszudrücken, wenn
die Signalgrösse eine vorbestimmte Schwellgrösse überschreitet, und wobei die besagte
Mündung einen Düsendurchlauf mit einer Eingangsabmessung und einer Ausgangsabmessung
umfasst, dadurch gekennzeichnet, dass die besagte Eingangsabmessung zur besagten Ausgangsabmessung
in einem solchen Verhältnis steht, dass der Durchlauf einen eingeschlossenen bzw.
Spitzenwinkel von zwischen 60 und 80 Grad besitzt, woraus sich ein Düsendurchlauf
ergibt, der stark zur Ausgangsmündung der Düse hin zusammenläuft, und in dem die effektive
viskose Strömungslänge des besagten Düsendurchlaufs im Verhältnis zur physikalischen
Länge des besagten Düsendurchlaufs kurz ist; wobei die besagte Markierflüssigkeit
bei der normalen Betriebstemperatur des besagten Druckkopfs eine Viskosität im Bereich
von 15 bis 100 cP besitzt; und die besagte Reihe von Signalen für die gezielte Erregung
des besagten elektromechanischen Wandlers Signale mit einer Grundfrequenz von bis
zu 120 kHz umfasst.
1. Procédé de production à la demande de gouttes isolées de liquide, comportant l'expulsion
du volume de liquide nécessaire pour former une goutte unique à la sortie d'un passage
conique de buse chaque fois qu'une goutte est demandée, le procédé étant caractérisé
en ce que le liquide utilisé a une viscosité de l'ordre de 15 à 100 centipoises et
en ce que le passage de la buse se rétrécit vers l'orifice de sortie de la buse et
possède un angle inclus ou angle au sommet de 60 à 80 degrés.
2. Procédé selon la revendication 1, caractérisé en outre en ce que le liquide a une
viscosité de l'ordre de 20 à 60 centipoises.
3. Procédé selon la revendication 1, caractérisé en outre en ce que le liquide a une
viscosité de l'ordre de 20 à 40 centipoises.
4. Procédé selon la revendication 3, caractérisé en outre en ce que l'angle au sommet
est d'environ degrés.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en outre en
ce que les gouttes peuvent être expulsées sélectivement grâce à un signal de commande
à une fréquence de base maximale de 120 kHz, une goutte n'étant expulsée que lorsque
l'amplitude du signal de commande dépasse un seuil préétabli.
6. Procédé selon la revendication 5, caractérisé en outre en ce que les gouttes peuvent
être éjectées sélectivement à une fréquence de base maximale de 80 kHz, une goutte
n'étant expulsée que lorsque l'amplitude du signal de commande dépasse un seuil préétabli.
7. Procédé d'exploitation d'une imprimante à jet de gouttes d'encre à la demande,
constitué d'une tête d'impression par jet d'encre possédant une cavité
à encre, une sortie d'encre hors de la cavité et un passage de buse ayant une dimension
d'entrée et une dimension de sortie, caractérisé en ce que le rapport entre la dimension
d'entrée et la dimension de sortie est tel que le passage possède un angle inclus
ou angle au sommet de 60 à 80 degrés, réalisant ainsi un passage rl/3 buse qui converge
fortement vers l'orifice de sortie du passage de buse et dans lequel la longueur visqueuse
utile du passage de buse est courte comparée à la longueur physique du passage de
buse et un transducteur électromécanique monté en communication mécanique avec la
cavité à encre
le procédé comportant le remplissage de la cavité à encre par un liquide de marquage
ayant une certaine viscosité de l'ordre de 15 à 100 centipoises à la température normale
de fonctionnement; et
l'excitation sélective du transducteur électromécanique par une série de signaux comprenant
des signaux à une fréquence de base maximale de 120 kHz pour expulser une seule goutte
du liquide de marquage par l'ouverture uniquement lorsque l'amplitude du signal dépasse
un seuil préétabli, grâce à quoi la tête d'impression par jet de gouttes d'encre à
la demande peut fonctionner avec un liquide de marquage à chacune des viscosités de
la gamme indiquée, à tout instant donné, et avec des signaux à toute fréquence de
la gamme indiquée, à tout moment, pour effectuer une opération d'impression sûre par
gouttes à la demande.
8. Appareil d'impression par jet de gouttes d'encre à la demande selon l'une quelconque
des revendications 1 à 6, l'appareil étant constitué l'une tête d'impression (10)
possédant une chambre à encre (22) dans laquelle est envoyée de l'encre et d'où l'encre
sort par un passage de buse (26) sous l'action d'un transducteur électromécanique
(36) monté en communication mécanique avec la chambre à encre, le transducteur opérant
au moment d'une excitation appropriée pour commander l'expulsion d'une goutte unique
de la buse, et le passage de buse convergeant vers l'orifice de sortie de la buse,
l'appareil étant caractérisé en ce que le passage de buse comporte un angle inclus
ou au sommet de 60 à 80 degrés, grâce à quoi des gouttes isolées de liquide à viscosité
de l'ordre de 15 à 100 centipoises peuvent être formées.
9. Appareil selon la revendication 8, caractérisé en outre en ce que le passage de
buse comporte un angle inclus ou angle au sommet d'environ 70 degrés.
10. Appareil selon la revendication 8 ou 9, caractérisé en outre en ce que le passage
de buse est ménagé par attaque chimique anisotrope, dans un substrat de silicium réalisé
à partir d'une matière monocristalline orientée avec le plan (100) parallèle aux surfaces
principales du substrat.
11. Appareil d'impression par jet de gouttes d'encre à la demande, comprenant une
tête d'impression possédant une chambre à liquide alimentée en liquide de marquage,
un orifice permettant le passage du liquide de la chambre à liquide, un transducteur
électromécanique en communication mécanique avec la chambre à liquide, et un moyen
de production d'une série de signaux pour exciter sélectivement le transducteur afin
d'expulser une goutte unique de liquide de marquage par l'orifice uniquement lorsque
l'amplitude du signal dépasse un seuil préétabli, et l'orifice comprenant un passage
de buse ayant une dimension d'entrée et une dimension de sortie, caractérisé en ce
que le rapport entre la dimension d'entrée et la dimension de sortie ettel que le
passage possède un angle inclus ou angle au sommet de 60 à 80 degrés, produisant ainsi
un passage de buse qui converge fortement vers l'orifice de sortie de la buse et dans
lequel la longueur visqueuse utilise du passage de buse est courte comparée à la longueur
physique du passage de buse
le liquide de marquage a une viscosité de l'ordre de 15 à 100 centipoises à la température
normale de fonctionnement de la tête d'impression; et
la série de signaux pour exciter sélectivement le transducteur électromécanique est
constituée de signaux à une fréquence de base maximale de 120 kHz.

