[0001] This invention is directed to a flow divider-combiner valve.
[0002] A flow divider-combiner valve is generally designed for use with a system which uses
a pressurized hydraulic fluid to drive at least two hydraulic cylinders, motors, or
the like, one such being driven independently of the other. Such a valve functions
as a flow divider when a single stream of hydraulic fluid, from a hydraulic fluid
source, flows through the valve and thereby is divided into at least two hydraulic
fluid streams. When flow of hydraulic fluid through such a valve is reversed, the
valve functions as a flow combiner to combine several such hydraulic fluid streams.
[0003] For example, such a flow divider-combiner valve is often used in combination with
a wheeled vehicle having at least two independently driven wheels. Each wheel of the
vehicle is generally driven by a respective hydraulic motor. Each hydraulic motor
is generally connected to the combiner side of such a valve as well as to the divider
side. Independent connections between the flow-divider side of the valve and the respective
hydraulic motors are made in a manner such that the flow divider-combiner valve supplies
each hydraulic motor, independently, with hydraulic fluid. In addition, independent
connections between the flow-combiner side of the valve and the respective motors
are made in a manner such that the divider-combiner valve receives at least two independent
streams or flows of hydraulic fluid from the separate hydraulic motors. Thus, the
flow divider-combiner valve either independently supplies hydraulic fluid to or independently
receives hydraulic fluid for each such hydraulic motor.
[0004] For such a wheeled vehicle, flow of hydraulic fluid through the valve causes each
of the driven wheels to rotate at about the same speed and in the same direction.
When flow of fluid is reversed through the valve, rotation of the wheels is similarly
reversed. Thus, when equipped with a flow-combiner valve, the wheeled vehicle does
not require a conventional transmission. It is desirable that the divider-combiner
valve cause the wheels to rotate at about the same speed so that the wheeled vehicle
moves in a linear and predictable fashion.
[0005] Commercially available divider-combiner valves generally independently control flow
of hydraulic fluid to each hydraulic motor by being responsive to pressures within
and thereby accordingly adjusting or regulating the flows within the connections,
lines or conduits supplying hydraulic fluid to or receiving hydraulic fluid from the
hydraulic motors. A problem is encountered when using such commercially available
divider-combiner valves, however, when one motor is subjected to a no-load condition
(such as when its respective wheel is on ice) or when the vehicle is turning. Most
of the commercially available divider-combiner valves react to such situations in
two ways. First, as to the no-load condition, conventional divider-combiner valves
generally respond to such a condition by reducing flow of hydraulic fluid through
the no-load motor and by reducing flow through the other motor as well, resulting
in the slowing down or stopping of the vehicle. Second, when the vehicle is directed
around a corner, the wheel traversing the greater arc causes its respective motor
to act as a pump, in contrast to the motor guiding the vehicle through the turn. The
motor which acts as a pump causes a low resistance to flow to be sensed at the conventional
divider-combiner valve connected thereto. The divider-combiner valve responds by reducing
the flow of hydraulic fluid to the motor guiding the vehicle through the turn. In
addition, when the wheeled vehicle is directed around a corner, the wheel traversing
the greater arc sometimes locks up, and upon being dragged across the ground by the
wheel traversing the lesser arc, generally generates skid marks upon the ground, rug
or such support surface.
[0006] Valves of the general class, in which the valve of the present invention falls are
known in the prior art. Exemplary is a valve described in United States Patent No.
3,481,489. The structure there described includes a valve body having a valve port,
a plurality of cylinder parts, and a pair of pressure-responsive flow control elements
in combination with end springs and an intermediate spring. The referred to prior
art valve also includes L-shaped claws which serve mechanically to link the control
elements for movement in unison.
[0007] There are, however, important and patentably significant differences between such
prior art devices and the valve of the present invention. The spring loading and restraint
mechanisms of the present invention are so arranged and structured to prevent the
flow control elements from abutting against each other in the normal position of the
valve and to maintain a substantially unrestricted flow condition in use. Acting independently
of one another at the initiation of operation, the flow control elements function
in unison thereafter.
[0008] An object of the invention is to provide a divider-combiner valve which, when used
with an apparatus such as a wheeled vehicle, does not react to cause such a vehicle
to stop when one wheel of the vehicle is subjected to a no-load condition.
[0009] A related object is to provide such a valve which, when used with such a vehicle,
is adapted to substantially avoid a wheel lock-up condition which otherwise might
occur when such a vehicle is directed around a corner.
[0010] According to the invention, a flow divider-combiner valve unit includes fluid passageway
means comprising a cavity, a first and second outlet ports communicating with first
and second spaced portions of said cavity and an inlet port communicating with an
intermediate portion of said cavity, first and second pressure-responsive flow control
elements movable in said cavity respectively between first open positions and progressively
closed positions for controlling fluid flow between said first and said second cavity
portions and said first and second outlet ports, said valve unit being characterised
in that there are provided means for retaining said elements substantially in said
first open position until there is at least a predetermined substantial pressure difference
between fluid pressures in said first and said second cavity portions and said intermediate
cavity portion and for enabling said elements to move substantially independently
of each other toward closed positions, upon initiation of operation of said valve
unit, when a pressure differential between said intermediate cavity portion and one
of said first and said second cavity portions exceeds said predetermined pressure
differential, and means for causing said elements to move substantially in unison
when the pressure differential between said intermediate cavity portion and both of
said first and second cavity portions exceeds said predetermined pressure differential.
[0011] The foregoing, as well as other objects, features and advantages of the invention
will become more readily understood upon reading the following detailed description
of the illustrated embodiment, together with reference to the drawings, wherein:
FIG. 1 is a schematic of a hydraulic circuit incorporating the divider-combiner valve
of the invention;
FIG. 2 is a side view, partially in section, of a preferred embodiment of the flow
divider-combiner valve in accordance with the invention, respectively presenting open
positions between first and second spaced portions of the cavity and first and second
passageways through the valve body;
FIG. 3 is a partial view, in section, presenting upwardly directed axial movement
of the upper pressure-responsive flow control element within the cavity and subsequent
partial closure of one of the passageways;
FIG. 4 is also a partial view, in section, but presenting downwardly directed axial
movement of the flow control element presented in Fig. 3 (within the cavity) and subsequent
partial closure of the passageway;
FIG. 5 is a side view, partially in section, presenting one fluid-flow situation where
the two pressure-responsive flow control elements axially move in unison with the
cavity; and,
FIG. 6 is a side view, partially in section, presenting another such fluid-flow situation
where the two pressure-responsive flow control elements axially move in unison within
the cavity.
Referring to the drawings and initially to Fig. 1, the novel divider-combiner valve
will now be discussed as it is used in combination with a typical hydraulic circuit.
The hydraulic circuit includes a fluid source 21, and a pump 23 for drawing the hydraulic
fluid from the source 21 (via a conduit 25) and for pumping the fluid forward through
a system or hydraulic circuit 26. Flow of hydraulic fluid through the circuit 26 can
be accomplished in any one of at least three different ways.
[0012] A well-known schematic representation for a conventional, biased, three-position
solenoid valve, referred to generally by the reference numeral 27, presents a first
position 29 which permits or causes the hydraulic fluid to bypass much of the hydraulic
circuit 26 and to be directed back to the fluid source 21 via a conduit 31.
[0013] A second position 33 of the solenoid valve 27 permits or causes hydraulic fluid to
be directed forward in the hydraulic circuit 26 via a conduit 35 and into the flow
divider-combiner valve, referred to generally by the reference numeral 37. With the
solenoid valve 27 in the second position 33, the flow divider-combiner valve 37 functions
as a flow divider, hydraulic fluid being directed through individual conduits 39,
41 to individual, respective hydraulic motors 43, 45. Each hydraulic motor 43, 45
is directly coupled to and is used to drive a respective wheel (wheels not shown).
[0014] Hydraulic fluid individually exits each hydraulic motor 43, 45 via a respective conduit
47, 49. The hydraulic fluid exiting the motors 43, 45 is combined in a manifold 51
and conveyed forward within the manifold 51, through the conduit 31 and ultimately,
is conveyed through the conduit 31 back into the source 21 to complete the flow of
hydraulic fluid through the circuit 26.
[0015] When the solenoid valve 27 is set at a third position 53, flow of hydraulic fluid
through much of the divider-combiner valve 37 and hydraulic motor 43, 45 portions
of the hydraulic circuit 26 is reversed and the flow divider-combiner valve 37 functions
as a flow combiner: whereby hydraulic fluid, which is flowing out of the divider-combiner
37, is directed via the conduit 35, through the conduit 31, and back into the fluid
source 21.
[0016] Referring to Fig. 2, it will be seen that the preferred embodiment of the flow divider-combiner
valve 37 of the present invention is generally cylindrical in shape and adapted to
be disposed within a cavity (referred to generally by the reference numeral 55) of
a valve body 57. The cavity 55 comprises a series of individual steps 58A, 58B, 58C,
and 58D, all of which are concentric with each other. The diameters of the steps 58A,
58B, 58C and 58D progressively decrease moving inwardly into the cavity 55.
[0017] The divider-combiner valve 37 structure presented in Figs. 2-6 includes external
circumferential threads 59 near the opening or mouth of the cavity 55 so that the
divider-combiner valve 37 can be screwed into mated threads which have been cut or
otherwise formed in the valve body 57.
[0018] A first 0-ring 61, located near the outer or exterior surface of the valve body 57
and circumferentially mounted at the opening or mouth of the cavity 55, is urged against
the threads 59 (at the junction of the divider-combiner valve 37 and the valve body
57) by a portion of a valve cap or retainer 63 in a manner such that the first O-ring
61 seats and thereby seals the divider-combiner valve 37 into the cavity 55.
[0019] A second O-ring 65, circumferentially carried by the divider-combiner valve 37, seats
against a circumferential portion of the inner periphery of the cavity 55, is urged
outwardly against such circumferential portion by the divider-combiner valve 37 and
thereby seals the first step 58A of the cavity 55 from the second step 58B. A third
0-ring 67 similarly carried by the divider-combiner valve 37 and similarly circumferentially
urged against different portions of the inner periphery of the cavity 55 similarly
seals off or isolates the second step 58B from the third step 58C. A fourth O-ring
69 similarly isolates the third step 58C from the fourth step 58D.
[0020] The valve body 57 presented in Figs. 2-6 includes a first or upper passageway 71
which permits communication of hydraulic fluid between the hydraulic fluid source
21 and the first step 58A of the cavity 55. The valve body 57 also includes a second
or intermediate passageway 73 which permits similar hydraulic fluid communication
between the hydraulic fluid source 21 and the second step 58B of the cavity 55. The
valve body 57 further includes a third or lower passageway 75 (presented in Figs.
2, 5 and 6) which permits communication between the hydraulic fluid source 21 and
the third and fourth steps 58C and 58D.
[0021] It can be appreciated that the valve body 57 can include a plurality of individual
passageways at any of the above-discussed first (or upper), second (or intermediate)
or third (or lower) passageways 71, 73 or 75, which respectively permit fluid communication
between the hydraulic fluid source 21 and the first, second and third (and fourth)
steps 58A, 58B and 58C (and 58D) of the cavity 55.
[0022] When the divider-combiner valve 37 functions as a flow divider, the second passageway
73 functions as a fluid input or inlet port for the valve 37, and the first and third
passageways 71, 75 function as fluid output or outlet ports. When the valve 37 functions
as a flow combiner, inlet and outlet functions of the passageways 71, 73 and 75 are
reversed.
[0023] The illustrated embodiment of the valve 37 is disposed within the cavity 55 along
an axis 77; and a valve housing 79 (static in relation to the valve body 57) separates
the inner working parts of the valve 37 from the cavity 55. The valve housing 79 includes
threads 80 externally circumferentially cut or otherwise formed along a portion of
the outer periphery of the valve housing 79 proximate to the opening or mouth of the
cavity 55. A circumferential inner portion of the retainer 63 includes mated threads
80, the retainer 63 being screwed onto the valve housing 79 at the threads 80. The
valve housing 79 thereby being held or otherwise urged into the cavity 55 by the retainer
63.
[0024] The valve housing 79 provides a generally cylindrical shell, on line with and oriented
about the axis 77, enclosing a cylindrical channel 81 through which hydraulic fluid
flows and within which two pressure-responsive flow control elements 83, 85 snugly
fit. Movement of the first and second flow control elements 83, 85 is permitted generally
along the axis 77.
[0025] Each flow control element 83, 85 has an inner core portion 87, a plurality of orifices
89, and a plurality of respective ports 91A, 91b. Each respective inner core portion
87 provides each respective flow control element 83, 85 with a cylindrically-shaped
inner void oriented substantially about the axis 77. Each orifice 89 forms a cylindrically-shaped
void through a portion of the respective flow control elements 83, 85, each orifice
89 being oriented substantially transverse to the axis 77 and permitting fluid communication
between a portion of the channel 81 and the inner core 87. Each orifice 89 has a relatively
small diameter, as contrasted against the relatively large diameter of the core portion
87. Each flow control element 83,85 has a respective plurality of ports 91A, 91B which
provide fluid communication between portions of the channel 81 and respective inner
portions 87 of the flow control elements 83, 85. Like the orifices 89, each port 91A,
91B forms a cylindrically-shaped void through a portion of the respective flow control
element 83, 85, each respective port 91A, 91B being oriented substantially transverse
to the axis 77. An individual port 91A, 91B has a greater diameter than an individual
orifice 89. In addition, as to the upper or the lower flow control elements 83 or
85, the cumulative cross-sectional area of all of the ports 91A or 91B is substantially
greater than the cumulative cross-sectional area of all of the orifices 89.
[0026] As an initially empty valve 37, functioning as a flow divider, is filled with hydraulic
fluid, hydraulic fluid enters the cavity 55 via the second or intermediate passageway
73 and flows from the second step 58B (of the cavity 55), through the valve housing
79 via a first opening 93, and into an intermediate portion 95 of the channel 81.
Once in the intermediate portion 95, fluid flows through the orifices 89 and into
the core portion 87 of each respective flow control element 83, 85. Hydraulic fluid
eventually fills each inner core portion 87 and the remainder portions 97, 98 (of
the channel 81) and thereafter is caused to flow out of the channel 81 via the ports
91A, 91B, and into the first (or upper) and third (or lower) passageways 71, 75. The
first and third passageways 71, 75 are appropriately connected individually to hydraulic
motors 43, 45 (Fig. 1), as discussed above.
[0027] First and second end caps 99, 101 seal respective ends of the channel 81 thereby
isolating the channel 81 from the cavity 55. The upwardly oriented or outwardly extending
end cap 99 is not integral with the end portion of the valve housing 79, but, rather,
is urged against such end portion of the valve housing 79 by a spacer 103, which itself
is biasly engaged and inwardly urged into the cavity 55 by the above-discussed cap
or retainer 63.
[0028] Nor is the downwardly oriented or inwardly extending end cap 101, located at the
other end portion of the valve housing 79, integral with the valve housing 79, Rather,
the lower end cap 101 is urged against the opposite end portion of the valve housing
79 by the base 102 of the cavity 55.
[0029] A first or upper spring 105, preloaded to a pressure corresponding to about 50 psi
(3.45 x 10
5 Pa) and partially restrained by a first or upper spring guide 107 which is secured
by a bolt 109 to the upper end cap 99, is oriented along the axis 77 between the end
cap 99 and the first flow control element 83 such that the upper spring 105 urges
the upper flow control element 83 away from the end cap 99. Biasing action of the
upper spring 105 upon the upper flow control element 83 is restrained, however, when
the upper spring guide 107 is restrained by the head of the upper bolt 109 (Figs.
2, 4 and 6). Such a restraint by the upper spring guide 107 is of a one-way nature
and the spring guide 107 is generally free to move axially along the axis 77 compressing
the upper spring 105 (Figs. 3, 5). However, it is the action of the first or upper
flow control element 83, acting upon the upper spring guide 107, which compresses
the upper spring 105 (Figs. 3 and 5).
[0030] In a similar fashion, a second or lower spring 111, also preloaded to a pressure
corresponding to about 50 psi (3.5 x 10
5 Pa), is partially restrained by a second or lower spring guide 113 which is secured
to the lower end cap 101 by a second bolt 115. In a manner somewhat similar to the
above discussion, the lower spring 111 generally urges the lower flow control element
85 and the lower end cap 101 apart but is restrained by the lower spring guide 113
engaging the head of the lower bolt 115. Restraint of the lower spring 111 is similar
to the one-way kind of restraint discussed above in that as the lower flow control
element 85 moves upwardly away from the lower spring guide 113, the lower flow control
element 85 eventually becomes free from influence of the lower spring 111 (Fig. 6).
However, the compressive action of the lower flow control element 85 upon the lower
spring guide 113 compresses the lower spring 111.
[0031] Whenever the first spring 105 or the second spring 111 is in such a restrained state
(Fig. 2) and while the upper and lower flow control elements 83, 85 respectively touch
the upper and lower spring guides 107, 113, the ports 91A and 91B of the first (or
upper) and second (or lower) flow control elements 83 and 85 substantially line up
respectively with a second and third opening 117 and 119 through the valve housing
79 thereby permitting flow of hydraulic fluid therethrough and fluid communication
between respective first and third passageways 71 and 75 and a core portion 87 of
respective first and second flow control elements 83, 85.
[0032] Prior to the present invention, the first and second springs 105 and 111 had been
moderately weak springs. It was not uncommon, in a commercially available divider-combiner
flow valve, to preload end springs to a pressure corresponding to about 5 psi (3.45
x 10
4 Pa). Hydraulic fluid pressures generally encountered in passageways 71 and 75 can
easily cause the flow control elements 83 or 85 to compress such a spring and to restrict,
sometimes adversely, flow through such passageways 71 or 75.
[0033] In addition, the present invention incorporates spring guides 107 and 113 to restrain
the end springs 105 and 111 and, more importantly, to maintain a substantially unrestricted
flow condition permitting hydraulic fluid to generally freely flow through the passageways
71 and 75. Thus, it is the cooperation between the springs 105, 111 and respective
spring guides 107, 113 which permits fluid flow through passageways 71, 75 to be relatively
insensitive to operating upsets which otherwise result in fluid pressure changes and
resultant changes in flows of hydraulic fluid occurring within the passageways 71,
75.
[0034] A third or intermediate spring 121, preloaded to a pressure corresponding to about
25 psi (1.7 x 10
5 Pa), is oriented along the axis 77 such that the first flow control element 82 is
biased against the second flow control element 85.
[0035] When the valve 37 functions as a flow divider, it can be appreciated that the orifices
89 effect a pressure drop for the hydraulic fluid flowing from the intermediate portion
95 (of the channel 81) into the hollow inner cores 87 of the respective flow control
elements 83, 85. Referring to the first or upper pressure-responsive flow control
element 83 (Fig. 2), it will be appreciated that such a pressure drop exists because
the orifices 89 offer much more resistance to flow than do the ports 91A. Because
the orifices 89 offer such a resistance to flow, a first pressure differential exists
between a first pressure-responsive surface 123 and a second pressure-responsive surface
125 of the first flow control element 83.
[0036] The orifices 89B (of the second flow control element 85) are similarly responsible
for a second pressure differential acting upon the second flow control element 85.
[0037] When the valve 37 functions as a flow divider, it will be appreciated that as fluid
pressure in the intermediate portion 95 of the channel 81 causes the sum of the first
and the second pressure differentials to exceed 25 psi (1.7 x 10
5 Pa), the upper and lower springs 105, 111 become compressed by the respective flow
control elements 83, 85. As the first flow control element 83 compresses the first
spring 105, the ports 91A of the first flow control element 83 move in relation to
the (corresponding) second opening 117 (Fig. 3) and flow therethrough becomes restricted
(to a slight degree). Likewise, compression of the second or lower spring 111 by the
second or lower flow control element 85 similarly moves the ports 91 B (of the second
flow control element 85) in relation to the (corresponding) third opening 119 similarly
resulting in slight restriction of hydraulic fluid therethrough.
[0038] The first and the second flow control elements 83, 85 each include an L-shaped tail
127, 129 structurally integral therewith and extending out- wardlytherefrom in the
direction of the other flow control element 83, 85. The L-shaped end or tail 127 of
the upper flow control element 83 and the L-shaped tail 129 of the lower flow control
element 85 are axially inserted into opposite ends of the intermediate spring 121,
are adapted to interfit therein, and are further adapted to engage at end portions
131 of the L-shaped tails 127, 129 so that the first and second flow control elements
83, 85 move in unison (Fig. 5) when fluid pressure in the intermediate portion 95
(of the cavity 55) is sufficient to compress the end springs 105, 111 and cause the
end portions 131 of opposing tails 127,129 to touch. And when fluid pressure within
the upper passageway 71 of the lower passageway 75 or both such passageways 71, 75
(Fig. 6) is sufficiently greater than the pressure exerted by the intermediate spring
121, the intermediate spring 121 becomes compressed and the L-shaped tail 127, 129
of one flow control element 83,85 butts against the other flow control element at
ends 133; and both flow control elements 83, 85 move in unison (Fig. 6) within the
channel 81.
[0039] When the divider-combiner valve 37 is functioning as a flow divider and the first
or upper passageway 71 is supplying a hydraulic motor 43 or 45 which is under little
or no load (as would be the case when such a hydraulic motor 43 or 45 drives a wheel
on ice), the no-load hydraulic motor 43 or 45 offers very little resistance to flow
of hydraulic fluid and hydraulic fluid pressure resultingly drops in the first passageway
71. Hydraulic fluid pressure in the inner core 87 of the first or upper flow control
element 83 accordingly drops, which results in an increase in the (first) pressure
differential (between the first and the second pressure-responsive surfaces 123 and
125) of the first or upper flow control element 83. Whereupon, the first flow control
element 83 moves upwardly in the cavity 81, usually compressing the upper spring 105
(Fig. 3). However, because the upper spring 105 is relatively insensitive to most
pressures normally experienced within the upper passageway 71, the upper spring 105
is not substantially compressed and flow through the first or upper passageway 71
is not entirely cut off (Fig. 3); and if the flow control elements 83,85 are acting
in unison (Fig. 5), fluid flow through the lower fluid passageway 75 is not greatly
affected. When flow of hydraulic fluid is reversed through the divider-combiner valve
37, the present invention presents substantially the same advantages as to flow of
hydraulic fluid through the passageways 71 and 75.
[0040] The flow control elements 83,85 of the valve 37 are generally responsive to fluid
pressure in the first (or upper) and third (or lower) fluid passageways 71, 75, and
are adapted to generally adjust flow of hydraulic fluid accordingly. However, the
various elements of the novel divider-combiner valve 37 of the invention act or operate
cooperatively to prevent total cut-off or restriction of hydraulic fluid through the
passageways 71, 75 when the valve 37 is responding to operating upsets.
[0041] Accordingly, the present invention is relatively insensitive to system upsets such
as would normally be experienced when the wheel vehicle (discussed above) is on ice
or is rounding a corner. Incorporation of the valve 37 of the present invention within
such a wheeled vehicle has substantially eliminated the wheel lock-up problem discussed
above and has significantly reduced the wheel-dragging problem (addressed above) experienced
when the wheeled vehicle negotiates a curve.
[0042] The flow control elements 83, 85 of the divider-combiner valve 37 of the present
invention normally act independently at the start of operation, eventually act in
unison (Figs. 5, 6), normally initially act independently when a system upset arises
and eventually again act in unison sometime thereafter.
1. A flow divider-combiner valve unit (37) including fluid passageway means comprising
a cavity (81), first and second outlet ports (71, 75) communicating with first and
second spaced portions (97, 98) of said cavity (81) and an inlet port (73) communicating
with an intermediate portion (95) of said cavity (81), first and second pressure-responsive
flow control elements (73, 85) movable in said cavity (81) respectively between first
open positions and progressively closed positions for controlling fluid flow between
said first and said second cavity portions (97, 98) and said first and second outlet
ports (71, 75), said valve unit (37) being characterized in that there are provided
means (105,107,109; 111,113, 115) for retaining said elements (83, 85) substantially
in said first open position until there is at least a predetermined substantial pressure
difference between fluid pressures in said first and said second cavity portions (97,
98) and said intermediate cavity portion (95) and for enabling said elements (83,
85) to move substantially independently of each other toward closed positions, upon
initiation of operation of said valve unit (37), when a pressure differential between
said intermediate cavity portion (95) and one of said first and said second cavity
portions (97, 98) exceeds said predetermined pressure differential, and means (127,
129) for causing said elements (83, 85) to move substantially in unison when the pressure
differential between said intermediate cavity portion (95) and both of said first
and second cavity portions (97, 98) exceeds said predetermined pressure differential.
2. The flow divider-combiner valve unit (37) of claim 1 and further comprising means
adjacent first and second ends (99, 101) of said cavity (81) respectively confining
movement of said first and said second flow control elements (83, 85) therebetween,
and wherein each said flow control element (83, 85) has a first and a second pressure-responsive
surface (123, 125), a first differential corresponding to a difference in fluid pressure
between said first and said second pressure-responsive surfaces (123, 125) of said
first flow control element (83), a second pressure differential corresponding to a
difference in fluid pressure between said first and said second surfaces (123, 125)
of said second flow control element (85), said first flow control element (83) controlling
fluid flow through one of said outlet ports (71, 75), said second flow control element
(85) controlling fluid flow through the other of said outlet ports (71, 75); first
biasing means (121) for biasing said first flow control element (83) away from said
second flow control element (85); said second biasing means (105) for biasing said
first flow control element (83) away from said first cavity end (99), said second
biasing means (105) including first restraint means (107, 109) for partially restraining
said second biasing means (105); third biasing means (111) for biasing said second
flow control element (85) away from said second cavity end (101), said third biasing
means (111) including second restraint means (113, 115) for partially restraining
said third biasing means (111), so that flow control elements (83, 85) do not abut
against each other in the normal position of the valve unit (37), thereby maintaining
a substantially unrestricted flow condition.
3. The flow divider-combiner valve (37) of claim 2 wherein: said second biasing means
(105, 107, 109) opposes said first biasing means (121) and said first pressure differential
when said second restraint means (113, 115) restrains said third biasing means (111,
113, 115); and wherein said third biasing means (111, 113, 115) opposes said first
biasing means (121) and said second pressure differential when said first restraint
means (107, 109) restrains said second biasing means (105,107,109), said second biasing
means (105, 107, 109) otherwise opposing said third biasing means (111, 113, 115)
and a net pressure differential corresponding to a difference in pressure between
said first pressure differential and said second pressure differential.
4. The flow divider-combiner valve (37) of claim 3 wherein said third biasing means
(111,113,115) and said net pressure differential causes movement of said first flow-control
element (83) within said cavity (81) from a substantially open position whereby fluid
flows through said first flow-control element (83) to progressively closed positions
which progressively restrict fluid flow through said first flow-control element (83),
said second biasing means (105, 107, 109) and said net pressure differential causing
movement of said second flow-control element (85) within said cavity (81) from a substantially
open position where fluid flows through said second flow-control element (85) to progressively
closed positions which progressively restrict fluid flow through said second flow-control
element (85).
5. The flow divider-combiner valve (37) of claim 4 wherein: an effective degree of
stiffness for said first, said second, and said third biasing means (121; 105, 107,
108, 111, 113, 115) individually corresponds to a greater pressure than said first
or said second pressure differential, whereby cooperation among said first, said second
and said third biasing means (121; 105, 107, 109; 111, 113, 115) renders said first
and said second flow-control elements (83, 85) individually substantially insensitive
to normal flow of hydraulic fluid therethrough.
6. The flow divider-combiner valve (37) of claim 5 wherein said first biasing means
(121) includes a preloaded spring (121) corresponding to about 25 psi (1.7 x 105 Pa) pressure, and said second and said third biasing means (105, 107, 109; 111, 113,
115) include preloaded springs (105, 111) individually corresponding to about 50 psi
(3.5 x 105 Pa) pressure.
7. The flow divider-combiner valve (37) of claim 6 and further comprising uni-motion
means (127, 129) including a pair of L-shaped tails (127, 129), a first tail (127)
being integral with said first flow control element (83) and extending outwardly therefrom
and adapted to interfit with a second tail (129), said second tail (12) being integral
with said second flow-control element (85).
1. Strömungsteiler-Strömungsvereinigerventil (37) mit Fluiddurchgangsmitteln, umfassend
einen Hohlraum (81), eine erste und eine zweite Auslaßöffnung (71, 75), die mit einem
ersten und einem zweiten beabstandeten Abschnitt (97, 98) des Hohlraums (81) in Verbindung
stehen, und eine Einlaßöffnung (73), die mit einem Zwischenabschnitt (95) des Hohlraums
(81) in Verbindung steht, ein erstes und ein zweites druckabhängiges Strömungsregelement
(83, 85), die in dem Hohlraum (81) jeweils zwischen ersten Offenstellungen und zunehmenden
Schließstellungen bewegbar sind zur Regelung des Fluidstroms zwischen dem ersten und
dem zweiten Hohlraumabschnitt (97, 98) und der ersten und der zweiten Auslaßöffnung
(71, 75), dadurch gekennzeichnet, daß Mittel (105, 107, 109; 111, 113, 115) vorgesehen
sind, die die Elemente (83, 85) im wesentlichen in der ersten Offenstellung halten,
bis zwischen Fluiddrücken in dem ersten und dem zweiten Hohlraumabschnitt (97, 98)
und dem Hohlraumzwischenabschnitt (95) wenigstens ein vorbestimmtes erhebliches Druckgefälle
besteht, und die ein im wesentlichen voneinander unabhängiges Verschieben der Elemente
(83, 85) in Richtung ihrer Schließstellungen bei Betriebsbeginn der Ventileinheit
(37) ermöglichen, wenn ein Druckgefälle zwischen dem Hohlraumzwischenabschnitt (95)
und dem ersten oder dem zweiten Hohlraumabschnitt (97, 98) das vorbestimmte Druckgefälle
übersteigt, und daß Mittel (127, 129) vorgesehen sind, die ein im wesentlichen gemeinsames
Verschieben der Elemente (83,85) bewirken, wenn das Druckgefälle zwischen dem Hohlraumzwischenabschnitt
(95) und den beiden Hohlraumabschnitten (97, 98) das vorbestimmte Druckgefälle übersteigt.
2. Strömungsteiler-Strömungsvereinigerventil (37) nach Anspruch 1, ferner umfassend
Mittel nahe dem ersten und dem zweiten Ende (99, 101) des Hohlraums (81), die jeweils
die Bewegung des ersten und des zweiten Strömungsregelelements (83, 85) zwischen sich
begrenzen, wobei jedes Strömungsregelelement (83, 85) eine erste und eine zweite druckempfindliche
Fläche (123, 125) hat und ein erstes Gefälle einer Fluiddruckdifferenz zwischen der
ersten und der zweiten druckempfindlichen Fläche (123, 125) des ersten Strömungsregelelements
(83) entspricht und ein zweites Druckgefälle einer Fluiddruckdifferenz zwischen der
ersten und der zweiten Fläche (123, 125) des zweiten Strömungsregelelements (85) entspricht,
wobei das erste Strömungsregelelement (83) den Fluidstrom durch eine der Austrittsöffnungen
(71, 75) regelt und das zweite Strömungsregelelement (85) den Fluidstrom durch die
andere der Austrittsöffnungen (71, 75) regelt; ein erstes Vorspannorgan (121), das
das erste Strömungsregelelement (83) vom zweiten Strömungsregelelement (85) weg beaufschlagt;
ein zweites Vorspannorgan (105), das das erste Strömungsregelelement (83) vom ersten
Hohlraumende (99) weg beaufschlagt, wobei das zweite Vorspannelement (105) erste Rückhaltemittel
(107, 109) aufweist, die das zweite Vorspannelement (105) teilweise zurückhalten;
ein drittes Vorspannorgan (111), das das zweite Strömungsregelelement (85) Zon zweiten
Hohlraumende (101) weg beaufschlagt, wobei das dritte Vorspannorgan (111) zweite Rückhaltemittel
(113, 115) aufweist, die das dritte Vorspannorgan (111) teilweise zurückhalten, so
daß die Strömungsregelelemente (83, 85) in der Normalstellung der Ventileinheit (37)
nicht aneinander anliegen, wodurch ein im wesentlichen ungedrosselter Strömungszustand
unterhalten wird.
3. Strömungsteiler-Strömungsvereinigerventil (37) nach Anspruch 2, wobei: das zweite
Vorspannorgan (105,107,109) dem ersten Vorspannorgan (121) und dem ersten Druckgefälle
gegenübersteht, wenn die zweiten Ruckhaltemittel (113, 115) das dritte Vorspannorgan
(111, 113, 115) zurückhalten; und wobei das dritte Vorspannorgan (111, 113, 115) dem
ersten Vorspannorgan (121) und dem zweiten Druckgefälle gegenübersteht, wenn die ersten
Rückhaltemittel (107, 109) das zweite Vorspannorgan (105, 107, 109) zurückhalten,
wobei das zweite Vorspannorgan (105, 107, 109) im übrigen dem dritten Vorspannorgan
(111, 113, 115) und einem resultierenden Druckgefälle gegenübersteht, das einer Druckdifferenz
zwischen dem ersten Druckgefälle und dem zweiten Druckgefälle entspricht.
4. Strömungsteiler-Strömungsvereinigerventil (37) nach Anspruch 3, wobei das dritte
Vorspannorgan (111, 113, 115) und das resultierende Druckgefälle eine Bewegung des
ersten Strömungsregelelements (83) innerhalb des Hohlraums (81) aus einer im wesentlichen
Offenstellung, in der Fluid durch das erste Strömungsregelelement (83) strömt, in
zunehmend weiter geschlossene Stellungen, in denen der Fluidstrom durch das erste
Strömungsregelelement (83) immer weiter gedrosselt wird, bewirken, und wobei das zweite
Vorspannorgan (105, 107, 109) und das resultierende Druckgefälle eine Bewegung des
zweiten Strömungsregelelements (85) innerhalb des Hohlraums (81) aus einer im wesentlichen
Offenstellung, in der Fluid durch das zweite Strömungsregelelement (85) strömt, in
zunehmend weiter geschlossene Stellungen, in denen der Fluidstrom durch das zweite
Strömungsregelelement (85) immer weiter gedrosselt wird, bewirken.
5. Strömungsteiler-Strömungsvereinigerventil (37) nach Anspruch 4, wobei: ein effektiver
Steifigkeitsgrad des ersten, des zweiten und des dritten Vorspannorgans (121; 105,
107, 108; 111, 113, 118) jeweils einem größeren Druck als das erste oder das zweite
Druckgefälle entspricht, so daß durch Zusammenwirken des ersten, des zweiten und des
dritten Vorspannorgans (121; 105, 107, 109; 111, 113, 115) das erste und das zweite
Strömungsregelelement (83, 85) gegenüber dem sie durchsetzenden normalen Hydraulikfluidstrom
jeweils im wesentlichen unempfindlich gemacht werden.
6. Strömungsteiler-Strömungsvereinigerventil (37) nach Anspruch 5, wobei das erste
Vorspannorgan (121) eine vorgespannte Feder (121) entsprechend einem Druck von ca.
1,7 x 105 Pa (25 psi) umfaßt und das zweite und das dritte Vorspannorgan (105, 107, 109; 111,
113, 115) vorgespannte Federn (105, 111) umfassen, die jeweils einem Druck von ca.
3,5 x 105 Pa (50 psi) entsprechen.
7. Strömungsteiler-Strömungsvereinigerventil (37) nach Anspruch 6, ferner umfassend
Gleichbewegungsmittel (127, 129) mit einem Paar von L-förmigen Ansätzen (127, 129),
wobei ein erster Ansatz (127) mit dem ersten Strömungsregelelement (83) einstückig
ist und sich davon nach außen erstreckt und in einen zweiten Ansatz (129) greift,
wobei der zweite Ansatz (129) mit dem . zweiten Strömungsregelelement (85) einstückig
ist.
1. Unité de vanne diviseuse-réunisseuse de débit (37) comprenant des moyens à passage
de fluide possédant une cavité (81), une première et une seconde ouvertures de sortie
(71, 75) communiquant avec des première et seconde parties espacées (97, 98) de ladite
cavité, et une ouverture d'entrée (73) communiquant avec une partie intermédiaire
(95) de ladite cavité (81 des premier et second éléments de commande de débit sensibles
à la pression (83, 85) mobiles respectivement dans ladite cavité (81) entre des premières
positions ouvertes et des positions qui se ferment progressivement pour commander
le débit du fluide entre ladite première et ladite seconde parties de cavité (97,
98) et lesdites première et seconde ouvertures de sortie (71, 75), ladite unité de
vanne (37) étant caractérisée en ce que sont prévus des moyens (105, 107, 109; 111,
113, 115) pour retenir lesdits éléments (83, 85) sensiblement dans ladite première
position ouverte jusqu'à ce qu'existe au moins une différence de pression substantielle
et prédéterminée entre les pressions du fluide dans lesdites première et seconde parties
de cavité (97, 98) et ladite partie de cavité intermédiaire (95), et pour autoriser
lesdits éléments (83, 85) à se déplacer sensiblement indépendamment l'une de l'autre
en direction de positions fermées, après initiation du fonctionnement de ladite unité
de vanne (37), quand un différentiel de pression entre ladite partie de cavité intermédiaire
(95) et l'une de ladite première et de ladite seconde parties de cavité (97, 98) dépasse
ledit différentiel de pression prédéterminé, et des moyens (127, 129) pour amener
lesdits éléments (83, 85) à se déplacer sensiblement à l'unisson quand le différentiel
de pression entre ladite partie de cavité intermédiaire (95) et les deux desdites
première et seconde parties de cavité (97, 98) dépassent ledit différentiel de pression
prédéterminé.
2. Unité de vanne diviseuse-réunisseuse de débit (37) selon la revendication 1, comprenant
en outre des moyens adjacents aux première et seconde extrémités (99, 101) de ladite
cavité (81) et limitant respectivement le mouvement desdits premier et second éléments
de commande de débit (83, 85) entre eux, et dans laquelle chacun desdits éléments
de commande de débit (83, 85) comprend une première et une seconde surfaces sensibles
à la pression (123, 125), un premier différentiel de pression correspondant à une
différence de la pression du fluide entre lesdites première et seconde surfaces sensibles
à la pression (123, 125) dudit premier élément de commande de débit (83), un second
différentiel de pression correspondant à une différence de la pression du fluide entre
lesdites première et seconde surfaces (123,125) dudit second élément de commande de
débit (85), ledit premier élément de commande de débit (83) commandant le débit du
fluide par l'une desdites ouvertures de sortie (71, 75), ledit second élément de commande
de débit (85) commandant l'écoulement du fluide par l'autre desdites ouvertures de
sortie (71, 75); un premier moyen de sollicitation (121) pour solliciter ledit premier
élément de commande de débit (83) en l'éloignant dudit second élément de commande
débit (85); un second moyen de sollicitation (105) pour solliciter ledit premier élément
de commande de débit (83) pour l'éloigner de ladite première extrémité (99) de la
cavité, ledit second moyen de sollicitation (105) comprenant des premiers moyens de
retenue (107, 109) pour retenir partiellement ledit second moyen de sollicitation
(105); un troisième moyen de sollicitation (111) pour solliciter ledit second élément
de commande de débit (85) en l'éloignant de ladite seconde extrémité (101) de la cavité,
ledit troisième moyen de sollicitation (11) comprenant des seconds moyens de retenue
(113, 115) pour retenir partiellement ledit troisième moyen de sollicitation (111)
de manière que les éléments de commande de débit (83,85) ne viennent pas buter l'un
contre l'autre dans la position normale de l'unité de vanne (37), maintenant ainsi
une condition de débit sensiblement non limitée.
3. Vanne diviseuse-réunisseuse de débit (37) selon la revendication 2, dans laquelle:
ledit second moyen de sollicitation (105, 107, 109) s'oppose audit premier moyen de
sollicitation (121) et audit premier différentiel de pression lorsque ledit second
moyen de retenue (113, 115) retient ledit troisième moyen de sollicitation (111, 113,
115); et dans laquelle ledit troisième moyen de sollicitation (111, 113, 115) s'oppose
audit premier moyen de sollicitation (121) et audit second différentiel de pression
lorsque ledit premier moyen de retenue (107, 109) retient ledit second moyen de sollicitation
(105, 107, 109), ledit second moyen de sollicitation (105,107, 109) s'opposant autrement
audit troisième moyen de sollicitation (111, 113, 115) et à un différentiel de pression
net correspondant à une différence de pression entre ledit premier différentiel de
pression et ledit second différentiel de pression.
4. Vanne diviseuse-réunisseuse de débit (37) selon la revendication 3, dans laquelle
ledit troisième moyen de sollicitation (111, 113, 115) et ledit différentiel de pression
net provoquent le mouvement dudit premier élément de commande de débit (83) dans ladite
cavité (81) depuis une position sensiblement ouverte dans laquelle le fluide s'écoule
par ledit premier élément de commande de débit (83) vers des positions progressivement
fermées qui limitent progressivement le débit du fluide par ledit premier élément
de commande débit (83), ledit second moyen de sollicitation (105, 107, 109) et ledit
différentiel de pression net provoquant le mouvement dudit second élément de commande
débit (85) dans ladite cavité (81) depuis une position sensiblement ouverte dans laquelle
le fluide s'écoule par ledit second élément de commande débit (85) vers des positions
progressivement fermées qui limitent progressivement le débit du fluide par ledit
second élément de commande de débit (85).
5. Vanne diviseuse-réunisseuse de débit (37) selon la revendication 4, dans laquelle:
un degré effectif de rigidité pour ledit premier, ledit second et ledit troisième
moyens de sollicitation (121; 105, 107, 108; 111, 113, 115) correspond individuellement
à une pression plus importante que ledit premier ou ledit second différentiel de pression,
ce grâce à quoi la coopération entre ledit premier, ledit second et ledit troisième
moyen de sollicitation (121; 105, 107, 109; 111, 113, 115) rend ledit premier et ledit
second éléments de commande de débit (83, 85) individuellement sensiblement insensibles
audit débit normal du fluide hydraulique qui les traverse.
6. Vanne diviseuse-réunisseuse de débit (37) selon la revendication 5, dans laquelle
ledit premier moyen de sollicitation (121) comprend une ressort (121) soumis à une
précontrainte, correspondant à une pression d'environ 25 psi (1,7 x 105 Pa), et ledit second et ledit troisième moyens de sollicitation (105, 107, 109; 111,
113, 115) comprennent des ressorts (105, 111) soumis à précontrainte correspondant
individuellement à une pression d'environ 50 psi (3,5 x 105 Pa).
7. Vanne diviseuse-réunisseuse de débit (37) selon la revendication 6 et comprenant
en outre des moyens de déplacement unitaire (127, 129) comprenant une paire de parties
allongées en forme de L (127, 129), une première partie allongée (127) étant d'un
seul tenant avec ledit premier élément de commande de débit (83) et s'étendant vers
l'extérieur à partir de celui-ci et étant apte à coopérer avec une seconde partie
allongée (129), ladite seconde partie allongée (129) étant d'un seul tenant avec ledit
second élément de commande de débit (85).