Background of the invention
I. Field of the invention
[0001] The present invention relates to an image pick up tube target and, more particularly,
to a structure of a Se-As-Te type chalcogen photoconductive film (Saticon (trade mark)
film) with improved sticking characteristics.
II. Description of the prior art
[0002] Fig. 1 shows a section of a main part of a conventional image pickup tube target
and a concentration distribution of selenium, arsenic and tellurium as major constituents
of a photoconductive film.
[0003] Referring to Fig. 1, a transparent conductive film 2 containing Sn0
2 or ln
20
3 as a major constituent is formed on the rear major surface of a disc-like glass substrate
1. A very thin N-type transparent Ce0
2 conductive film 3 serving as a blocking layer is formed on the rear major surface
of the transparent conductive film 2. A P-type photoconductive film 4 comprising a
P-type Se-As-Te amorphous semiconductor film is formed on the rear major surface of
the N-type transparent conductive film 3. A P-type Sb
2S
3 photoconductive film 5 serving as a beam landing layer is formed on the rear major
surface of the P-type photoconductive film 4. The P-type photoconductive film 4 consists
of first, second and third P-type photoconductive layers 4a, 4b and 4c. The first
P-type photoconductive layer 4a comprises a P-type Se-As amorphous semiconductor film
having an Se concentration of 97 to 98 wt% and an As concentration of 3 to 12 wt%
and is formed on the rear major surface of the N-type transparent conductive film
3 to have a thickness of 30 to 60 nm. The second P-type photoconductive layer 4b comprises
a P-type Se-As-Te amorphous semiconductor film having an Se concentration of about
67 wt%, an As concentration of 3 wt%, and a Te concentration of about 30 wt% and is
formed on the rear major surface of the first P-type photoconductive layer 4a to have
a thickness of about 60 nm. The third P-type photoconductive layer 4c is formed on
the rear major surface of the second P-type photoconductive layer 4b such that a total
thickness of the multilayer film 4 is set to be about 3900 nm, for example. The third
P-type photoconductive layer 4c comprises a P-type Se-As amorphous semiconductor film
wherein in the Se-As concentration distribution, the As concentration continuously
changes from 20 to 30 wt% to 3±2 wt% over a thickness of 45±20 nm which starts from
the interface between the second and third P-type photoconductive layers 4b and 4c.
The 3±2 wt% As concentration remains unchanged as the thickness increases. The P-type
photoconductive film 5 is formed on the rear major surface of the multilayer film
4. A light beam 6 is incident on the front major surface of the glass substrate 1,
and a scanning electron beam 7 is supplied to the P-type photoconductive film 5.
[0004] In the image pickup tube target having the structure described above, the gradient
As concentration layer as part of the third P-type photoconductive layer 4c serves
as a carrier extraction layer for effectively and stably extracting carriers generated
in the Te layer of the second P-type photoconductive film 4b. The gradient As concentration
layer also serves to prevent the Te layer from being diffused, thereby preventing
degradation of the voltage-photocurrent characteristic (V-I characteristic) forming
part of evaluation criterion. The uniform 3±2 wt% As concentration layer contiguous
to the gradient As concentration layer serves as a capacitive layer for storage of
the carriers. The P-type photoconductive layer 4c including the gradient As concentration
layer and the uniform As concentration layer is the most important layer to determine
quality of the electrical characteristics of the target in use.
[0005] However, when a highly luminous object or a still object is picked up with an image
pickup tube having the above-mentioned target, a so-called sticking phenomenon occurs
wherein a previous image sticks to the present image. The occurrence of this phenomenon
is mainly dependent on the P-type photoconductive film 4.
[0006] Especially, when a Saticon (trade mark) film is used, the sticking phenomenon largely
depends on the content of highly concentrated arsenic in the third P-type photoconductive
layer 4c. With the content of arsenic decreased, the sticking can be suppressed but
sufficient extraction of the carriers from the Te layer cannot be sustained. As a
result, a practically sufficient signal current cannot be obtained.
[0007] EP-A-0 067 015 describes an image pickup tube target in which the multilayer photoconductive
film has a first amorphous semiconductor layer mainly made of Se and As, a second
amorphous semiconductor layer mainly made of Se, Te and As, a third amorphous semiconductor
layer mainly made of Se, As and on the fourth layer side doped with In
20
3, and a fourth amorphous semiconductor layer mainly made of Se and As with an average
concentration of As being lower than that in the third layer. So a layer doped with
a dopant (in
2O
3) having negative space charges in selenium is formed as a sublayer of the third amorphous
semiconductor layer in contact with the fourth amorphous semiconductor layer and not
in contact with the second amorphous semiconductor layer.
Summary of the invention
[0008] It is, therefore, an object of the present invention to provide an image pickup tube
target capable of suppressing the sticking phenomenon by optimizing the doped layer
position and compensating for a decrease in carrier extraction effect due to a decrease
in arsenic content of the high arsenic concentration layer.
[0009] In order to achieve the above object of the present invention, there is provided
an image pickup tube target comprising: a transparent substrate; a first transparent
conductive film formed on a rear major surface of said transparent substrate; a second
transparent conductive film serving as a blocking layer and formed on a rear major
surface of said first transparent conductive film; a multilayer photoconductive film
which has a first amorphous semiconductor layer mainly made of Se and As, a second
amorphous semiconductor layer mainly made of Se, Te, and As, a third amorphous semiconductor
layer mainly made of Se and As, and a fourth amorphous semiconductor layer mainly
made of Se and As with an average concentration of As being lower than that in the
third layer, in the order named, including a sublayer doped with a dopant having negative
space charges in selenium in contact with the fourth amorphous semiconductor layer
and not in contact with the second amorphous semiconductor layer, which multilayer
photoconductive film is formed on a rear major surface of said second transparent
conductive film to have a predetermined thickness; and a single photoconductive film
formed on a rear major surface of said fourth amorphous semiconductor layer of said
multilayer photoconductive film; said sublayer being formed across the interface between
said third and fourth amorphous semiconductor layers of said multilayer photoconductive
film; and said interface being defined as a boundary where the arsenic concentration
is decreased by about 90% of the arsenic concentration difference between said third
and fourth amorphous semiconductor layers.
[0010] The dependent claims set out particular embodiments of the invention.
Brief description of the drawings
[0011]
Fig. 1 is a diagram for explaining a conventional image pickup tube target;
Fig. 2 is a diagram for explaining an image pickup tube target according to an embodiment
of the present invention;
Fig. 3 is a graphical representation useful in explaining effects of the present invention;
Figs. 4a to 4c are diagrams showing various positions of the indium-doped layer; and
Fig. 5 is a diagram showing an actual contour of the interface between the third and
fourth amorphous semiconductor layers.
Detailed description of the preferred embodiments
[0012] Fig. 2 shows a section of a main part of an image pickup tube target according to
an embodiment of the present invention, and a diagram of a Se-As-Te concentration
distribution. In Figs. 1 and 2, the same reference numerals are used to denote the
same parts, a detailed description of which will be omitted.
[0013] Referring to Fig. 2, a third P-type photoconductive layer 4d as a carrier extraction
layer is formed on the rear major surface of a second P-type photoconductive layer
4b as a carrier generating layer to have a thickness of 12±6 nm. The layer 4d comprises
a P-type Se-As amorphous semiconductor film having a concentration distribution such
that the Se concentration is 75±5 wt% and the As concentration is 25±5 wt%. A fourth
P-type photoconductive layer 4e serving as a capacitive layer is formed on the rear
major surface of the third P-type photoconductive layer 4d to have a thickness such
that a multilayer film 4' has a total thickness of, for example, about 3900 nm. The
fourth P-type photoconductive layer 4e comprises a P-type Se-As amorphous semiconductor
film having a concentration such that the Se concentration is 97±2 wt% and the As
concentration is 3±2 wt%. In
20
3 having negative space charges in selenium is doped to a thickness of 3 to 30 nm at
a concentration of 100 to 3,000 wtppm across an interface between the third and fourth
P-type photoconductive layers 4d and 4e, so that an In
20
3-doped layer 4f is formed not to contact the Te layer of the second P-type photoconductive
layer 4b. Although the layer 4f is illustrated as doped with ln
20
3, other dopants such as Mo0
2 or a mixture of In
20
3 and Mo0
2 which have negative space charges in selenium may also be used.
[0014] In the P-type multilayer film 4' having the structure described above, the arsenic
content (concentrationxthickness) in the third P-type photoconductive layer 4d as
the carrier extraction layer is decreased to 1/3 to 1/6 of that of the conventional
image pickup tube target. In addition, the doped layer 4f of In
z0
3, Mo0
2 or mixture thereof which has negative space charges in selenium and which has carrier
extraction capability is formed across the interface between the third and fourth
P-type photoconductive layers 4d and 4e, so that the carrier extraction efficiency
is greatly improved and the sticking phenomenon can be greatly decreased. In this
case, when the arsenic content of the carrier extraction layer is decreased to about
1/6 or lower, the effect for preventing tellurium from being diffused from the second
P-type photoconductive layer 4b is impaired. Therefore, the arsenic content in a rectangular
concentration distribution cannot be decreased to about 1/6 or lower.
[0015] Fig. 3 shows the relation between the position of the indium-doped layer 4f and the
sticking contrast for various In
20
3 doping contents (wtppm . nm) as defined by concentration y (wtppm)xthickness x (nm).
Curves 1 to 4 correspond to doping contents of 90000 wtppm - nm (3000 wtppmx30 nm),
15000 wtppm . nm (1000 wtppmx15 nm), 8000 wtppm · nm (750 wtppmx12 nm) and 300 wtppm
- nm (100 wtppmx3 nm), respectively. Points P1, P2 and P3 correspond to positions
of the indium-doped layer as shown in Figs. 4a, 4b and 4c, respectively. It will then
be appreciated that when the indium-doped layer is formed across the interface X,
preferably, substantially centered to the interface X, all the characteristic curves
1 to 4 representative of 100 to 3000 wtppm ln
20
3 doping concentrations and 3 to 30 nm indium-doped layer thicknesses fall in an allowable
sticking contrast range as hatched.
[0016] In the foregoing embodiment, the ln
20
3 layer is formed in a thickness region having as a center the interface or boundary
X where the arsenic content (25±5 wt%) of the third P-type photoconductive layer 4d
is abruptly decreased to the arsenic content (3±2 wt%) of the fourth P-type photoconductive
layer 4e. In effect, however, the arsenic content gradually decreases as shown at
solid line or dotted line in Fig. 5. In this case, the In
20
3 layer may be formed in a thickness region having as a center a point where the arsenic
concentration of the third P-type photoconductive layer 4d is decreased to 10% of
an arsenic concentration difference between the third and fourth P-type photoconductive
layers 4d and 4e. This point is also defined as interface or boundary X in this application.
Further, the total thickness of P-type photoconductive layer 4' is not limited to
3900 nm and the effects of the present invention can be attained irrespective of the
total thickness. For example, the total thickness may be 5900 nm with the photoconductive
layer 5 ending at 6000 nm.
[0017] In a modification of the embodiment described above, In
z0
3, Mo0
2 or a mixture thereof is doped in a highlight sticking prevention Saticon Film (Japanese
Patent Application No. 55-157084) doped with Li-F across an interface between the
first and second P-type photoconductive layers 4a and 4b as shown at dotted line in
Fig. 2, to form a doped layer 4f. In this modification, the sticking phenomenon can
be prevented in the same manner as in the above embodiment. In addition, the sticking
phenomenon which results from picking up of a highly luminous object can also be suppressed.
[0018] As has been described, according to the image pickup tube target of the present invention,
the sticking phenomenon due to highly luminous incident light can be greatly decreased
to obtain a high-quality image.
[0019] The present invention is not limited to the particular embodiments described above,
and various changes and modifications may be made within the spirit and scope of the
present invention.
1. An image pickup tube target comprising:
a transparent substrate (1);
a first transparent conductive film (2) formed on a rear major surface of said transparent
substrate (1);
a second transparent conductive film (3) serving as a blocking layer and formed on
a rear major surface of said first transparent conductive film (2);
a multilayer photoconductive film (4') which has a first amorphous semiconductor layer
(4a) mainly made of Se and As, a second amorphous semiconductor layer (4b) mainly
made of Se, Te, and As, a third amorphous semiconductor layer (4d) mainly made of
Se and As, and a fourth amorphous semiconductor layer (4e) mainly made of Se and As
with an average concentration of As being lower than that in the third layer (4d),
in the order named, including a sublayer (4f) doped with a dopant having negative
space charges in selenium in contact with the fourth amorphous semiconductor layer
(4e) and not in contact with the second amorphous semiconductor layer (4b), which
multilayer photoconductive film (4') is formed on a rear major surface of said second
transparent conductive film (3) to have a predetermined thickness; and
a single photoconductive film (5) formed on a rear major surface of said fourth amorphous
semiconductor layer (4e) of said multilayer photoconductive film (4'), characterized
in that
said sublayer (4f) is formed across the interface between said third and fourth amorphous
semiconductor layers (4d, 4e) of said multilayer photoconductive film (4') and that
said interface is defined as a boundary where the arsenic concentration is decreased
by about 90% of the arsenic concentration difference between said third and fourth
amorphous semiconductor layers (4d, 4e).
2. An image pickup tube target according to claim 1 wherein the dopant is In203.
3. An image pickup tube target according to claim 1 wherein dopant is Mo02.
4. An image pickup tube target according to claim 1 wherein dopant is a mixture of
In203 and Mo02.
5. An image pickup tube target according to one of claims 1 to 4, wherein said doped
sublayer (4f) is centered to said interface.
6. An image pickup tube target according to one of claims 1 to 5, wherein said doped
sublayer is formed such that indium oxide is doped to a concentration of 100 to 3,000
wtppm to a thickness falling within a range of 3 to 30 nm.
7. An image pickup tube target according to one of claims 1 to 6 further comprising
an Li-F sublayer formed across an interface between said first and second amorphous
semiconductor layers.
1. Target für eine Bildaufnahmeröhre, mit
einem transparenten Substrat (1),
einem ersten transparenten leitenden Film (2), der auf einer hinteren Hauptfläche
des transparenten Substrats (1) gebildet ist,
einem zweiten transparenten leitenden Film (3), der als Sperrschicht dient und auf
einer hinteren Hauptfläche des ersten transparenten leitenden Films (2) gebildet ist,
einem mehrlagigen photoleitenden Film (4'), der in folgender Reihenfolge eine erste
amorphe Halbleiterschicht (4a), die hauptsächlich aus Se und As besteht, eine zweite
amorphe Halbleiterschicht (4b), die hauptsächlich aus Se, Te und As besteht, eine
dritte amorphe Halbleiterschicht (4d), die hauptsächlich aus Se und As besteht, und
eine vierte amorphe Halbleiterschicht (4e) aufweist, die hauptsächlich aus Se und
As besteht, wobei die durchschnittliche Konzentration von As niedriger als diejenige
der dritten Schicht (4d) ist,
und die eine Subschicht (4f) enthält, die mit
einem Dotierungsstoff dotiert ist, der negative Raumladungen in Selen besitzt, der
mit einer vierten amorphen Halbleiterschicht (4e) in Berührung und mit der zweiten
amorphen Halbleiterschicht (4b) außer Berührung steht, wobei der mehrlagige photoleitende
Film (4') auf einer hinteren Hauptfläche des zweiten transparenten leitenden Films
(3) mit einer vorbestimmten Dicke ausgebildet ist, und
einem einzigen photoleitenden Film (5), der auf einer hinteren Hauptfläche der vierten
amorphen Halbleiterschicht (4e) auf dem mehrlagigen photoleitenden Film (4') gebildet
ist, dadurch gekennzeichnet, daß
die Subschicht (4f) an der Grenzschicht zwischen der dritten und vierten amorphen
Halbleiterschicht (4d, 4e) des mehrlagigen photoleitenden Films (4') ausgebildet ist
und daß die Grenzschicht dadurch definiert ist, daß die Arsenkonzentration um ungfähr
90% der Arsenkonzentrations-differenz zwischen der dritten und vierten amorphen Halbleiterschicht
(4d, 4e) verringert ist.
2. Target nach Anspruch 1, dadurch gekennzeichnet, daß der Dotierungsstoff In203 ist.
3. Target nach Anspruch 1, dadurch gekennzeichnet, daß der Dotierungsstoff Mo02 ist.
4. Target nach Anspruch 1, dadurch gekennzeichnet, daß der Dotierungsstoff ein Gemisch
aus In203 und Mo02 ist.
5. Target nach einem der Ansprüche 1-4, dadurch gekennzeichnet, daß die dotierte Subschicht
(4f) an der Grenzschicht konzentriert ist.
6. Target nach einem der Ansprüche 1-5, dadurch gekennzeichnet, daß die dotierte Subschicht
so ausgebildet ist, daß Indiumoxid mit einer Konzentration von 100 bis 3000 wtppm
in einer Dicke dotiert ist, die in einem Bereich von 3 bis 30 nm liegt.
7. Target nach einem der Ansprüche 1-6, weiters gekennzeichnet durch eine Li-F-Subschicht,
die an der Grenzschicht zwischen der ersten und zweiten amorphen Halbleiterschicht
ausgebildet ist.
1. Cible pour tube capteur d'images comprenant:
un substrat transparent (1);
un premier film conducteur transparent (2) formé sur une surface majeure arrière dudit
substrat transparent (1);
un second film conducteur transparent (3) servant de couche de blocage et formé sur
une surface majeure arrière dudit premier film conducteur transparent (2);
un film photoconducteur multicouche (4') qui a une première couche semi-conductrice
amorphe (4a) principalement faite de Se et As, une seconde couche semi-conductrice
amorphe (4b) principalement faite de Se, Te et As, une troisième couche semi-conductrice
amorphe (4d) principalement faite de Se et As, et une quatrième couche semi-conductrice
amorphe (4e) principalement faite de Se et As avec une concentration moyenne de As
plus faible que celle de la troisième couche (4d), dans l'ordre nommé, comprenant
une sous-couche (4f) dopée d'un dopant ayant des charges spatiales négatives dans
le sélénium en contact avec la quatrième couche semi-conductrice amorphe (4e) et non
en contact avec la seconde couche semi-conductrice amorphe (4b), lequel film photoconducteur
multicouche (4') est formé sur une surface majeure arrière dudit second film conducteur
transparent (3) pour avoir une épaisseur prédéterminée; et
un seul film photoconducteur (5) formé sur une surface majeure arrière de ladite quatrième
couche semi-conductrice amorphe (4e) dudit film photoconducteur multicouche (4'),
caractérisée en ce que
ladite sous-couche (4f) est formée à travers l'interface entre lesdites troisième
et quatrième couches semi-conductrices amorphes (4d, 4e) dudit film photoconducteur
multicouche (4') et en ce que ladite interface est définie en tant que limite où la
concentration en arsenic est dimi- nuèe d'environ 90% de la différence de concentration
en arsenic entre lesdites troisième et quatrième couches semi-conductrices amorphes
(4d, 4e).
2. Cible pour tube capteur d'images selon la revendication 1, où le dopant est Inz03.
3. Cible pour tube capteur d'images selon la revendication 1, où la dopant est Mo02.
4. Cible pour tube capteur d'images selon la revendication 1, où le dopant est un
mélange de ln203 et Mo02.
5. Cible pour tube capteur d'images selon l'une des revendications 1 à 4, où ladite
sous-couche dopée (4f) est centrée sur ladite interface.
6. Cible pour tube capteur d'images selon l'une quelconque des revendications 1 à
5, où ladite sous-couche dopée est formée de manière que le l'oxyde d'indium soit
dopé à une concentration de 100 à 3000 ppm en poids sur une épaisseur comprise entre
3 et 30 nm.
7. Cible pour tube capteur d'images selon l'une quelconque des revendications 1 à
6, comprenant de plus une sous-couche de Li-F formée à travers une interface entre
lesdites première et seconde couches semi-conductrices amorphes.